chapter 16 - filter circuits

Upload: geofurriel

Post on 29-May-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Chapter 16 - Filter Circuits

    1/26

    Chapter 16: Filter Circuits

    Exercises

    Ex. 16.3-1

    1( )

    11 1250

    ( )1250 12501

    1250

    H sn s

    s H s H

    n s s

    =+ = = = + +

    ProblemsSection 16.3: Filters

    P16.3-1Equation 16-3.2 and Table 16-3.2 provide a third-order Butterworth low-pass filter having acutoff frequency equal to 1 rad/s.

    2

    1( )

    ( 1)( 1)n

    H ss s s

    =+ + +

    Frequency scaling so that = 2 100=628 rad/s:c

    3

    L 2 2 22

    1 628 247673152( )

    ( 628)( 628 628 ) ( 628)( 628 394384)1 1628 628 628

    H ss s s s s ss s s

    = = =+ + + + + +

    + + +

    P16.3-2Equation 16-3.2 and Table 16-3.2 provide a third-order Butterworth low-pass filter having acutoff frequency equal to 1 rad/s and a dc gain equal to 1.

    2

    1( )

    ( 1)( 1 H s

    n s s s=

    )+ + +

    Multiplying by 5 to change the dc gain to 5 and frequency scaling to change the cutoff frequency to c = 100 rad/s:

    3

    L 2 2 22

    5 5 100 5000000( )

    ( 100)( 100 100 ) ( 100)( 100 10000)1 1

    100 100 100

    H ss s s s s ss s s

    = = =+ + + + + + + + +

    1

  • 8/9/2019 Chapter 16 - Filter Circuits

    2/26

    P16.3-3Use Table 16-3.2 to obtain the transfer function of a third-order Butterworth high-pass filterhaving a cutoff frequency equal to 1 rad/s and a dc gain equal to 5.

    3

    2

    5( )

    ( 1)( 1

    s H s

    ns s s

    =)+ + +

    Frequency scaling to change the cutoff frequency to 100 rad/s:c =

    3

    3 3

    H 2 2 22

    55 5100( )

    ( 100)( 100 100 ) ( 100)( 100 10000)1 1

    100 100 100

    s

    s s H s

    s s s s s ss s s

    = = =

    + + + + + + + + +

    P16.3-4

    Use Table 16-3.2 to obtain the transfer function of a fourth-order Butterworth high-pass filterhaving a cutoff frequency equal to 1 rad/s and a dc gain equal to 5.

    ( ) ( )( )4

    2 2

    5

    0.765 1 1.848 1n

    s H s

    s s s s=

    + + + +

    Frequency scaling can be used to adjust the cutoff frequency 500 hertz = 3142 rad/s:

    ( ) ( )( )

    4

    4

    H 2 2 2 2 2

    553142

    2403.6 3142 5806.4 3142

    0.765 1 1.848 13142 3142 3142 3142

    s

    s H s

    s s s ss s s s

    = = + + + + + + + +

    2

    P16.3-5First, obtain the transfer function of a second-order Butterworth low-pass filter having a dc gainequal to 2 and a cutoff frequency equal to 2000 rad/s:

    ( )L 2 22 8000000

    2828 40000001.414 1

    2000 2000

    H ss ss s

    = =+ + + +

    Next, obtain the transfer function of a second-order Butterworth high-pass filter having apassband gain equal to 2 and a cutoff frequency equal to 100 rad/s:

    2

  • 8/9/2019 Chapter 16 - Filter Circuits

    3/26

  • 8/9/2019 Chapter 16 - Filter Circuits

    4/26

    P16.3-8

    ( )( )

    ( )

    2 2

    N 222 2

    250 24 62500

    14 4 250 250 625002501

    ss

    H ss ss s

    +

    = = + + + +

    P16.3-9

    ( )( )

    2

    2 4

    L 222 2

    250 4 2504

    250 250 625002501

    H ss ss s

    = =

    + + + +

    P16.3-10

    ( )( )

    2

    2 4

    H 222 2

    44

    250 250 625002501

    s s H s

    s ss s

    = =

    + + + +

    4

  • 8/9/2019 Chapter 16 - Filter Circuits

    5/26

    Section 16.4: Second-Order Filters

    P16.4-1

    The transfer function is

    ( ) ( )( )

    2o

    22s

    2

    1

    11

    1 11

    1

    s LC s

    s L ss L

    V s s LC s s LC R C H s

    s L sV s s LCR s L Rs L R sC s s LC R C L C

    Rs L

    C s

    ++= = = = =

    + + + +++

    +

    +

    so

    2 00 01 11 , and C K Q LC RC Q L

    = = = = = RC R

    20

    1Pick 1 F. Then 1 H and 1000

    LC L R Q

    C C

    = = = = =

    P16.4-2

    The transfer function is

    0

    2

    1

    ( )( )1( )s

    I s LC T ss I s s

    RC LC

    = =+ +

    so

    2 00 0

    1 11 , and

    C k Q

    LC RC Q L

    = = = = = RC R

    20

    1Pick 1 F then 25 H and 3535

    LC L R Q

    C C

    = = = = =

    1

  • 8/9/2019 Chapter 16 - Filter Circuits

    6/26

    P16.4-3

    The transfer function is

    21

    22 2

    1

    1

    ( )1 1

    2

    R RC T s

    Rs s R C R R C

    =

    + + +

    Pick 0.01 FC = , then

    0

    01

    1

    12000 50000 50

    12 8333 8.33

    2

    R k RC

    R R R k

    Q RC R Q

    = = = =

    = + = = =

    P16.4-4

    1 2 3Pick 0.02 F. Then 40 k , 400 k and R =3.252 k .C R R = = =

    P16.4-5

    1 2Pick 1 FC C C = = = . Then6

    01 2

    10

    R R =

    and1 10

    2 21 2

    1

    R RQ R

    R C Q R Q = = =

    6

    2 1 110

    In this case, since 1, we have and 1000 1 k 1000

    Q R R R= = = = =

    2

  • 8/9/2019 Chapter 16 - Filter Circuits

    7/26

    P16.4-6

    The node equations are

    ( ) ( )

    ( ) ( ) ( ) ( )( )

    20 a

    22

    0 a1 a i

    1

    1

    0

    RV s V s

    R C s

    V s V sC s V s V s

    R

    =+

    =

    Doing a little algebra

    ( ) ( ) ( )o a 1 11 1

    1V sV s s C s C V s

    R R

    + =

    i

    Substituting for ( )aV s

    ( ) ( ) ( )o 2 2 1 1o 11 2 2 1

    1 1V s R C s R C sV s s C V s R R C s R

    + + + =

    i

    ( )( )

    ( )( )( )

    21 1 2 2o 1 2 1 2

    2i 1 2 1 2 1 12 2 2 2 1 1 11 1

    C s R R C sV s R R C C s

    V s R R C C s R C s R C s R C s R C s= =

    + + + + +

    The transfer function is:

    ( ) ( )( )

    20

    2i

    2 2 1 2 1 2

    1V s s

    H ssV s s

    R C R R C C

    = =+ +

    0 2 21 2 1 20

    2 11 2

    1 1Pick 1 F. Then and

    RC C C Q R Q R

    R C Q RC R R

    = = = = = = = .

    1 2 0

    1In this case and 1000 R R R R

    C R = = = = .

    3

  • 8/9/2019 Chapter 16 - Filter Circuits

    8/26

    P16.4-7

    ( ) 02i

    1 1( )

    1 1( )V s C s LC

    T s RV s L s R s s

    C s L LC

    = = =+ + + +

    2 6When 25 , 10 H and 4 10 F, then R L C = = = the transfer function is

    ( )6

    2 6

    25 102500 25 10

    H ss s

    =+ +

    so6

    old 25 10 5000 = = and

    new

    f old

    2500.055000k

    = = =

    The scaled circuit is

    P16.4-8

    The transfer function of this circuit is

    4

  • 8/9/2019 Chapter 16 - Filter Circuits

    9/26

    ( ) ( )( ) ( )( )

    2

    2 2 2 1 1 20

    i 1 1 2 2 21

    11 1 2 2 1 2 1 2

    11

    1 1 1 1 1 1

    Rs

    R C s R C s R C V s H s

    V s R C s R C s R s sC s R C R C R R C C

    += = = =

    + ++ + + +

    ( )m

    1 1 2 2

    100 F 500 FPick 1000 so that the scaled capacitances will be 0.1 F and 0.5 F.

    1000 1000

    Before scaling 20 , 100 F, = 10 and 500 F

    k

    R C R C

    = =

    = = =

    =

    ( ) 2 5-100700 10

    s H s

    s s=

    + +

    ( )1 1 2 2After scaling 20000 20 k , 0.1 F, 10000 10 k , 0.5 F R C R C = = = = = =

    ( ) 2 5100

    700 10s

    H ss s

    =+ +

    P16.4-9

    This is the frequency response of a bandpass filter, so

    ( )

    0

    02 20

    k sQ H s

    s sQ

    =+ +

    From peak of the frequency response

    6 60 2 10 10 62.8 10 rad/s and =10 dB 3.16k = = =

    Next6 6 6 60 BW (10.1 10 9.9 10 ) 2 (0.2 10 )2 1.26 10 rad/s

    Q

    = = = =

    So the transfer function is

    6 6

    2 6 2 12 2 6

    3.16(1.26)10 (3.98)10( )

    (1.26)10 62.8 10 (1.26)10 3.944 10s s

    H ss s s s

    = =+ + + + 15

    5

  • 8/9/2019 Chapter 16 - Filter Circuits

    10/26

    P16.4-10

    (a)( ) ( )( )

    2220

    1 1 2s 1 1

    22

    1

    = where and1

    R j C j

    RC R

    j C

    = = =

    +

    ZVH Z Z

    V Z

    ( ) 2 1 1 21 1 2 2

    1 2

    1 1= where ,

    1+ 1+

    j R C

    R C R j j

    = =

    HC

    (b) 1 21 1 2 2

    1 1,

    R C R = =

    C

    (c)

    ( )( )

    2 1 22 11 2 1

    1

    11

    =

    0+ 1+0

    R C R j R C R C R j

    = =

    H =

    P16.4-11

    Voltage division:

    ( ) ( ) ( ) ( )0 1 1

    1

    s , (1 )1

    C sV s V V s s RC V s

    RC s

    = = ++

    0

    KCL:( )1 s 1 0 1 0+ + 0

    V V V V V V nC s

    m R R

    =

    Combining these equations gives:

    2 20

    1 s

    V s C V s C s n R C

    m R m m R

    + + + =

    6

  • 8/9/2019 Chapter 16 - Filter Circuits

    11/26

    Therefore( )( ) ( )

    022 2 2

    0 0

    V 1 1( ) =

    V 1 1s1

    s m R C n m R C s j

    Q

    = =+ + +

    +

    H

    01where and

    1m nQ

    mmn RC = = +

    P16.4-12

    22

    2 2 2 1 20

    1 1S 21

    11 1 1 2 2 1 2 1 2

    1 11( )

    ( ) = 1 1( ) 1 1 1

    R R s

    C s R C s R C V s H s R C sV s R s sC s C s R C R C R R C C

    +

    = = =+ + + + +

    Substituting the element values ,1 100 R = 2 200 R = , 1 0.02 FC = and wedetermine the center frequency and bandwidth of the filter to be

    2 50 pFC =

    ( )

    ( )

    01 2 1 2

    0

    1 1 2 2

    170.7 krad sec= 2 11.25 kHz

    1 1150 k rad =2 23.9 kHz

    R R C C

    BW sQ R C R C

    = =

    = = + =

    7

  • 8/9/2019 Chapter 16 - Filter Circuits

    12/26

    P16.4-13

    ( ) a 01 a s1 2 20

    2a s2 0

    1 1 1 2 1 22

    1= 0 s( )

    ( )=1 1( ) ss 0

    V V C s V V R R C V s H s

    V V s sC V R C R R C C R

    +

    =

    + + =

    Comparing this transfer function to the standard form of the transfer function of a second orderbandpass filter and substituting the element values 1 1 k R = , 2 100 R = , 1 1 FC = and

    2 0.1 FC = gives:

    40

    1 2 1 2

    3

    1 1

    0

    110 rad sec

    1BW = 10 rad/sec

    10BW

    R R C C

    R C

    Q

    = =

    =

    = =

    8

  • 8/9/2019 Chapter 16 - Filter Circuits

    13/26

    P16.4-14

    Node equations:

    ( )( ) ( ) ( )

    c s c 0c

    s cs 0

    ( ) ( ) ( ) ( )( ) 0

    ( ) 0

    V s V s V s V sa C sV s

    R R

    V s V sC s V s V sa R

    + + =

    + =

    Solving these equations yields the transfer function:

    ( )( )

    ( )

    ( )

    22

    0

    2s2

    2 1 1

    ( )2 1 1

    s a sa R C V s R C

    H sV s s s

    a R C R C

    + + +

    = = + +

    We require 51

    10 RC

    = . Pick 0.01 F then 1000C R = = . Next at 0s j =

    ( )2

    0

    2

    12 2

    a aa

    a

    += = +H

    The specifications require

    ( )2

    0201 1 202a

    a = = + =H

    9

  • 8/9/2019 Chapter 16 - Filter Circuits

    14/26

    P16.4-15

    Node equations:

    ( )

    a a 0

    2 1

    a ba

    b s b ab 0

    =0

    0

    + +

    V V V

    R RV V

    C sV R

    V V V V C s V V 0

    R R

    +

    + =

    =

    Solving the node equation yields:

    ( )( )

    12 2

    20

    s 122 2

    2

    11

    1 12

    R

    R R C V s

    V s Rs s

    R R C R C

    +

    = + +

    ( ) ( )0 3 91 1

    41.67 k rad sec1.2 10 20 10 RC

    = = =

    10

  • 8/9/2019 Chapter 16 - Filter Circuits

    15/26

    Section 16.5: High-Order Filters

    P16.5-1This filter is designed as a cascade connection of a Sallen-Key low-pass filter designed asdescribed in Table 16.4-2 and a first-order low-pass filter designed as described in Table 16.5-2.

    Sallen-Key Low-Pass Filter:

    MathCad Spreadsheet (p16_5_1_sklp.mcd)

    A 2=Calculate the dc gain.

    R A 1( ) 1.592 10 4=R 1.592 10 4=A 31

    Q:=R

    1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 1=0 628=Q0b

    :=0 a:=Determine the Filter Specifications:

    b 628:=a 6282

    :=Enter the transfer function coefficitents:

    c----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    1

  • 8/9/2019 Chapter 16 - Filter Circuits

    16/26

    First-Order Low-Pass Filter:

    MathCad Spreadsheet (p16_5_1_1stlp.mcd)

    The transfer function is of the form H(s) =-k

    -------- .s + p

    Enter the transfer function coefficitents: p 628:= k 0.5p:=

    Pick a convenient value for the capacitance: C 0.1 10 6

    :=

    Calculate resistance values: R21

    C:= R1

    1

    C k := R1 3.185 10 4= R2 1.592 10 4=

    P16.5-2This filter is designed as a cascade connection of a Sallen-key high-pass filter, designed asdescribed in Table 16.4-2, and a first-order high-pass filter, designed as described in Table 16.5-2.

    The passband gain of the Sallen key stage is 2 and the passband gain of the first-order stage is2.5 So the overall passband gain is 2 2.5 = 5

    Sallen-Key High-Pass Filter:

    2

  • 8/9/2019 Chapter 16 - Filter Circuits

    17/26

    MathCad Spreadsheet (p16_5_2_skhp.mcd)

    A 2=Calculate the passband gain.

    R A 1( ) 1 105=R 1 10 5=A 31

    Q:=R

    1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 1=0 100=Q0b

    :=0 a:=Determine the Filter Specifications:

    b 100:=a 10000:=Enter the transfer function coefficitents:

    A s^2----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    First-Order High-Pass Filter:

    MathCad Spreadsheet (p16_5_2_1sthp.mcd)

    The transfer function is of the form H(s) =-ks

    -------- .s + p

    Enter the transfer function coefficitents: p 100:= k 2.5:=

    Pick a convenient value for the capacitance: C 0.1 106

    :=

    Calculate resistance values: R11

    C p:= R2 k R1:= R1 1 10 5= R2 2.5 10 5=

    3

  • 8/9/2019 Chapter 16 - Filter Circuits

    18/26

    P16.5-3This filter is designed as a cascade connection of a Sallen-key low-pass filter, a Sallen-key high-pass filter and an inverting amplifier.

    Sallen-Key Low-Pass Filter:

    MathCad Spreadsheet (p16_5_3_sklp.mcd)

    A 1.586=Calculate the dc gain.

    R A 1( ) 2.93 10 3=R 5 10 3=A 31

    Q:=R

    1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 0.707=0 2 103=Q

    0

    b

    :=0 a:=Determine the Filter Specifications:

    b 2828:=a 4000000:=Enter the transfer function coefficitents:

    c----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    4

  • 8/9/2019 Chapter 16 - Filter Circuits

    19/26

    Sallen-Key High-Pass Filter:

    MathCad Spreadsheet (p16_5_3_skhp.mcd)

    A 1.586=Calculate the passband gain.

    R A 1( ) 5.86 10 4=R 1 10 5=A 31

    Q

    :=R1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 0.707=0 100=Q0b

    :=0 a:=Determine the Filter Specifications:

    b 141.4:=a 10000:=Enter the transfer function coefficitents:

    c s^2----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    Amplifier: The required passband gain is61.6 10

    4.00141.4 2828

    = . An amplifier with a gain equal to

    4.01.59

    2.515= is needed to achieve the specified gain.

    5

  • 8/9/2019 Chapter 16 - Filter Circuits

    20/26

    P16.5-4This filter is designed as the cascade connection of two identical Sallen-key bandpass filters:

    Sallen-Key BandPass Filter:

    MathCad Spreadsheet (p16_5_4_skbp.mcd)

    A Q 2=Calculate the pass-band gain.

    R A 1( ) 4 104=2 R 8 104=R 4 10 4=

    A 31

    Q:=R

    1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 1=0 250=Q0b

    :=0 a:=Determine the Filter Specifications:

    b 250:=a 62500:=Enter the transfer function coefficitents:

    cs----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    6

  • 8/9/2019 Chapter 16 - Filter Circuits

    21/26

    P16.5-5This filter is designed using this structure:

    Sallen-Key Low-Pass Filter:

    MathCad Spreadsheet (p16_5_5_sklp.mcd)

    A 1.586=Calculate the dc gain.

    R A 1( ) 5.86 10 4=R 1 10 5=A 31

    Q:=R

    1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 0.707=0 100=Q

    0b

    :=0 a:=Determine the Filter Specifications:

    b 141.4:=a 10000:=Enter the transfer function coefficitents:

    c----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    7

  • 8/9/2019 Chapter 16 - Filter Circuits

    22/26

    Sallen-Key High-Pass Filter:

    MathCad Spreadsheet (p16_5_5_skhp.mcd)

    A 1.586=Calculate the passband gain.

    R A 1( ) 2.93 10 3=R 5 10 3=A 31

    Q

    :=R1

    C 0:=Calculate resistance values:

    C 0.1 106

    :=Pick a convenient value for the capacitance:

    Q 0.707=0 2 103=Q

    0b

    :=0 a:=Determine the Filter Specifications:

    b 2828:=a 4000000:=Enter the transfer function coefficitents:

    c s^2----------------- .s^2 + bs + a

    The transfer function is of the form H(s) =

    Amplifier: The required gain is 2, but both Sallen-Key filters have passband gains equal to 1.586.

    The amplifier has a gain of 2

    1.261.586

    = to make the passband gain of the entire filter equal to 2.

    8

  • 8/9/2019 Chapter 16 - Filter Circuits

    23/26

  • 8/9/2019 Chapter 16 - Filter Circuits

    24/26

    P16.5-7

    (a) Voltage division gives: ( )( )( )

    1 1 1a

    s 11

    1 1

    V s R R C s H s

    V s R C s RC s

    = = =++

    (b) Voltage division gives: ( ) ( )( )2

    b1 2

    V s L s H sV s R L s

    = = +

    (c) Voltage division gives:

    Doing some algebra:

    ( ) ( )( )

    ( )( )

    1 22c

    s 21 2

    ||

    1||

    R R L sV s L s H s

    V s R L s R R L sC s

    += =

    ++ +

    ( ) ( )( )

    ( )( )

    ( )

    ( )

    ( )( )

    ( )

    1 2

    1 22c

    s 21 2

    1 22

    1 2 12

    1 2 1 1 2 2

    1 2

    221 1 2 1 2

    21

    21 1 2 1 2

    1

    R R L s

    R R L sV s L s H s

    V s R L s R R L s

    C sR R L s R R C s R L C s L s

    R R C s R LC s R R L s R L s

    R C s R L s L s R L s R LC s R R C L s R R

    R L C s

    R LC s R R C L s R R

    +

    + += =

    + ++

    + +

    +=

    + + + + +

    +=

    ++ + + +

    =+ + + +

    (d) ( ) ( ) ( )c a b H s H s H s because the 2 , R L s voltage divider loads the 11 , RC svoltage

    divider.

    10

  • 8/9/2019 Chapter 16 - Filter Circuits

    25/26

    P16.5-8

    ( ) 100 20

    1 1 1 1200 20,000 20 4000

    20001 1 1 1

    20 200 4000 20,000

    H ss s s s

    s s s s

    =

    + + + +

    = + + + +

    P16.5-9(a) The transfer function of each stage is

    ( )

    2

    2 2

    2 22 1

    i1 1 1

    1

    1 1||

    1

    1

    RC s

    R R R R

    R C s RC s C s H s

    2 R R R R

    + += = = =

    + C s

    The specification that the dc gain is 0 dB = 1 requires 2 1 R R= .

    The specification of a break frequency of 1000 rad/s requires2

    11000

    R C = .

    Pick 0.1 FC = . Then 2 10 k R = so 1 10 k R = .

    (b)( ) ( )

    2

    2

    1 1 1 110, 000 40.1 dB

    1011 101 11000 1000

    j j

    = = = = + + +

    H H

    11

  • 8/9/2019 Chapter 16 - Filter Circuits

    26/26

    Section 16.7 How Can We Check?

    P16.7-1

    0

    0

    100

    10000 100 rad and 25 4 525s Q

    Q

    = = = = =

    This filter does not satisfy the specifications.

    P16.7-2

    00

    100 7510000 100 rad , 25 4 and 3

    25 25s Q k

    Q

    = = = = = = =

    This filter does satisfy the specifications.

    P16.7-3

    00

    20 600400 20 rad s, 25 0.8 and 1.5

    25 400Q k

    Q

    = = = = = = =

    This filter does satisfy the specifications.

    P16.7-4

    00

    25 750625 25 rad s , 62.5 0.4 and 1.2

    62.5 625Q k

    Q

    = = = = = = =

    This filter does satisfy the specifications.

    P16.7-5

    00

    12144 12 rad/s and 30 0.4

    30Q

    Q

    = = = = =

    This filter does not satisfy the specifications.