chapter 10 references - information and library network...

27
© D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013 Chapter 10 References

Upload: truongnhi

Post on 09-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

© D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Chapter 10

References

References

192 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Adlercreutz, P.

Alcalde, M.; Ferrer, M.; Plou, F. J.; Ballesteros, A. Environmental biocatalysis: from

remediation with enzymes to novel green processes. Trends Biotechnol., 2006, 24,

281-287.

Immobilization and application of lipases in organic media. Chem. Soc.

Rev.[Online early access], DOI: 10.1039/C3CS35446F. Published Online;Feb-

12,2013. http://pubs.rsc.org/en/content/articlelanding/2013/cs/c3cs35446f

(accessed Jun 16, 2013).

Alexander, A; Choudhary, R. K. Process for preparation of cinnamate sunscreen agents. U

S. Patent 5527947, 1996. European patent office web site.

http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacen

et.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=19960618&CC

=US&NR=5527947A&KC=A (accessed on Jun 15, 2013)

Allen, D. T.; Shonnard, D. R., Ed. Green Engineering: Environmentally Conscious Design

of Chemical Processes, Prentice Hall; New Jersey, U.S.A., 2002.

Anastas, P.; Eghbali, N. Green Chemistry: principles and practice. Chem. Soc. Rev., 2010,

39, 301–312.

Anastas, P.; Warner, J. C., Ed. Green Chemistry: Theory and Practice; Oxford University

Press: Oxford, U.K., 1998.

Andrade, L. H.; Utsunomiya, R. S.; Omori, A. T.; Porto, A. L. M.; Comasseto, J. V. Edible

catalysts for clean chemical reactions: Bioreduction of aromatic ketones and

biooxidation of secondary alcohols using plants. J. Mol. Catal. B: Enzym., 2006,

38, 84–90.

Arcil, J.; Vincente, M.; Martinez, M.; Poulina, M. Biocatalytic processes for the

production of fatty acid esters. J. Biotechnol., 2006, 124, 213-223.

Arcos, J. A.; Hill, C. G.; Otero, C. Kinetics of the lipase-catalyzed synthesis of glucose

esters in acetone. Biotech. Bioeng., 2001, 73, 104–110.

Ariza, X.; Garcia, J.; Georges, Y.; Vicente, M. 1-Phenylprop-2-ynyl acetate: A useful

building block for the stereoselective construction of polyhydroxylated chains.

Org. Lett., 2006, 8, 4501-4504.

Arroniz, C.; Escolano, C. Strategies for the synthesis of enantiopure compounds focused

on organocatalysis. In Recent advances in pharmaceutical sciences II; Torrero, D.

References

193 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

M.; Haro, D; Valles, J., Eds.; Transworld Research network: Trivandrum, India,

2012; pp 115-143.

Baldassarre, F.; Bertoni, G.; Chiappe, C.; Marioni, F. Preparative synthesis of chiral

alcohols by enantioselective reduction with Daucus carota root as biocatalyst. J.

Mol. Catal. B Enzym., 2000, 11, 55-58.

Ball, A. J.; Corr, S.; Micklefield, J. Lipase-catalysed kinetic resolutions of secondary

alcohols in pressurised liquid hydrofluorocarbons. Tetrahedron Lett., 2009, 50,

3543–3546.

Baskar, B.; Ganesh, S.; Lokeswari, T. S.; Chadha, A. Highly stereoselective reduction of

4-Aryl-2-oxo but-3-enoic carboxylic esters by plant cell culture of Daucus carota.

J. Mol. Catal. B: Enzym., 2004, 27, 13–17.

Bassyouni, F. A.; Abu-Bakr, S. M.; Rehim, M. A. Evolution of microwave irradiation and

its application in green chemistry and biosciences. Res. Chem. Intermed., 2012, 38,

283-322.

Belien, J. V.; Li, Z. Enzyme technology: an overview. Curr. Opin. Biotechnol., 2002, 13,

338-344.

Berg, O. G.; Cajal, Y.; Butterfoss, G. L.; Grey, R. L.; Alsina, M. A.; Yu, B. Z.; Jain, M .

K. Interfacial activation of triglyceride lipase from Thermomyces (Humicola)

lanuginosa: Kinetic parameters and a basis for control of the lid. Biochemistry,

1998, 37, 6615–6627.

Berger, R. G.; De Bont, J. A. M.; Eggink, G.; Da Fonseca, M. M. Biotransformations in

the flavour industry. In: Current topics in flavours and fragrances, Towards a new

millennium of discovery; Swift, K. A. D., Ed.; Kluwer Academic Publishers:

London, U.K. 1999, pp. 139-170.

Berglund, P. Controlling lipase enantioselectivity for organic synthesis. Biomol. Eng.,

2001, 18, 13-22.

Betschinger, F., Hintzer, K.; Leyrer, U.; Schurig, V. Kinetic resolution of oxiranes by

chiral molybdenum (vi) (oxodiperoxo) α-hydroxy acid amide/diol reagents. Stud.

Surf. Sci. Catal., 1991,

Bhandarkar, S. V.; Neau, S. H. Lipase catalysed enantioselective esterification of

flurbiprofen with n-butanol. Electron. J. Biotechnol., 2000, 3, 195-201.

66, 513-520.

References

194 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Bhatia, S. P.; Wellington, G. A.; Cocchiara, J.; Lalko, J.; Letizia, C. S.; Api, A. M.

Fragrance material review on cinnamyl acetate. Food Chem. Toxicol., 2007, 45,

S53–S57.

Bhattacharyya, M. S.; Banerjee, U. C. Improvement of carbonyl reductase production of

Geotrichum candidum for the transformation of 1-acetonaphthone to S (−) -1-(1′-

napthyl) ethanol. Bioresour. Technol., 2007, 98, 1958–1963.

Bhattacharyya, M. S.; Singh, A.; Banerjee, U. C. Immobilization of intracellular carbonyl

reductase from Geotrichum candidum for the stereoselective reduction of 1-

naphthyl ketone. Bioresour. Technol., 2010, 101, 1581–1586.

Bhushan, I.; Kumar, A.; Modi, G.; Jamwal, S. Chiral resolution of differently substituted

racemic acetyl-1-phenyl ethanol using lipase from Bacillus subtilis. J. Chem.

Technol. Biotechnol., 2011, 86, 315-318.

Bianchi, D.; Cesti, P.; Battistel, E. Anhydrides as acylating agents in lipase-catalyzed

stereoselective esterification of racemic alcohols. J. Org. Chem., 1988, 53, 5531-

5534.

Bizerra, A. M. C.; de Gonzalo, G.; Lavandera, I.; Fernandez, V. C.; de Mattos, M. C.; de

Oliveira, M. C. F.; Lemos, T. L. G.; Gotor, V. Reduction processes biocatalyzed by

Vigna unguiculata. Tetrahedron Asymm., 2010, 21, 566-570.

Blanchard, N.; Weghe, P. V. Daucus Carota L. Mediated bioreduction of prochiral

ketones. Org. Biomol. Chem., 2006, 4, 2348–2353.

Blaschke, G.; Kraft, H. P.; Fickentscher, K.; Kohler, F. Chromatographic separation of

racemic thalidomide and teratogenic activity of its enantiomers. Arneiz.-Forsch.,

1979, 29, 1640 - 1642.

Blaser, H. U. The chiral pool; as a source of enantioselective catalysts and auxillaries.

Chem. Rev., 1992, 92, 935–952

Borisova, A.S.; Guppi, R.S.; kim, J. H.; Wu, B.; Penn, H. J.; Liu, H.; O’Doherty, A. G. A

denovo approach to synthesis of glycosylated methymycin analogues with

structural and stereochemcial diversity. Org Lett., 2010, 12, 5150-5153.

Borkar, I. V. Insight into industrially relevant biocatalytic processes. Ph. D. Thesis.

University of Bombay, University institute of chemical technology, Mumbai, June

2008.

References

195 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis; Wiley-VCH:

Weinheim, Germany, 1999.

Bouzemi, N.; Debbeche, H.; Zouioueche, L. A.; Fiaud, J. C. On the use of succinic

anhydride as acylating agent for practical resolution of aryl-alkyl alcohols through

lipase-catalyzed acylation. Tetrahedron Lett., 2004, 45, 627-630.

Bradoo, S.; Rathi, P.; Saxena, R. K.; Gupta, R. Microwave assisted rapid characterization

of lipase selectivities. J. Biochem. Biophys. Methods, 2002, 51, 115-120.

Bruni, R.; Fantin, G.; Medici, A.; Pedrini, P.; Sacchetti, G. Plants in organic synthesis: an

alternative to baker's yeast. Tetrahedron Lett., 2002, 43, 3377-3379.

Brzozowski, A. M.; Derewenda, U.; Derewenda, Z. S.; Dodson, G. G.; Lawson, D. M.;

Turkenburg, J. P.; Bjorkling, F.; Huge-Jensen, B.; Patkar, A.; Thim, L. A model for

interfacial activation in lipases from the structure of a fungal lipase-inhibitor

complex. Nature, 1991, 351, 491–494.

Cabrera, Z.; Lorente, G. F.; Lafuente, R. F.; Palomo, J. M.; Guisan, J. M. Enhancement of

Novozym-435 catalytic properties by physical or chemical modification. Process

Biochem., 2009, 44, 226–231.

Cammenberg, M.; Hult, K.; Park, S. Molecular basis for the enhanced lipase-catalyzed N-

acylation of 1-phenylethanamine with methoxyacetate. Chem. Bio. Chem., 2006, 7,

1745-1749.

Cantone, S.; Hanefeld, U.; Basso, A. Biocatalysis in non-conventional media-ionic liquids,

supercritical fluids and the gas phase. Green Chem., 2007, 9, 954-971.

Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Analysis of the reactions used for

the preparation of drug candidate molecules. Org. Biomol. Chem., 2006, 4, 2337–

2347.

Caron, D.; Coughlan, A. P.; Simard, M.; Bernier, J.; Piche, Y.; Chenever, R.

Stereoselective reduction of ketones by Daucus carota hairy root cultures.

Biotechnol. Lett., 2005, 27, 713-716.

Carvalho, C. C. C. R. Enzymatic and whole cell catalysis: Finding new strategies for old

processes. Biotechnol. Adv., 2011, 29, 75-83.

Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave material processing - a review.

AIChE J., 2012, 58, 330-363.

References

196 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Chaubey, A.; Parshad, R.; Gupta, P.; Taneja, S. C.; Qazi, G. N.; Rajan, C. R.; Ponrathnam,

S. Arthrobacter sp. lipase immobilization for preparation of enantiopure masked β-

amino alcohols. Bioorg. Med. Chem., 2009, 17, 29–34.

Chen, C. S.; Wu, S. H.; Girdaukas, G.; Sih, C. J. Quantitative analyses of biochemical

kinetic resolution of enantiomers. 2. Enzyme-catalyzed esterifications in water-

organic solvent biphasic systems. J. Am. Chem. Soc., 1987, 109, 2812–2817.

Christine, S. V.; Rohan, K. G.; Ian, B. R. The effect of food preservatives on ph

homeostasis in Escherichia coli. J. Gen. Microbiol., 1984, 130, 2845 - 2850.

Chuanfa, Y.; Ruhui, Z.; Miaomiao, Y.; Lingfei, R.; Haohao, H. Method for preparing

cinnamyl acetate. CN Patent 101260042. Apr 17, 2008. European patent office web

site.

http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacen

et.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20080910&CC

=CN&NR=101260042A&KC=A (accessed on Sep 24, 2011)

Chulalaksananukul, W.; Condoret, J. S.; Delorme, P.; Willemot, R. M. Kinetic study of

esterification by immobilized lipase in n-hexane. FEBS Lett., 1990, 276, 181–184.

Clapes, P.; Garrabou, X. Current trends in asymmetric synthesis with aldolases. Adv.

Synth. Catal., 2011, 353, 2263-2283.

Comasseto, J. V.; Omori, A. T.; Porto, A. L. M.; Andrade, L. H. Preparation of chiral

organochalcogeno-a-methylbenzyl alcohols via biocatalysis. The role of Daucus

carota root. Tetrahedron Lett., 2004, 45, 473–476.

Cooper, T. W. J.; Campbell, I. B.; Macdonald, S. J. F. Factors determining the selection of

organic reactions by medicinal chemists and the use of these reactions in arrays

(small focused libraries). Angew. Chem., Int. Ed., 2010, 49, 8082–8091.

Cordell, G. A.; Lemos, T. L. G.; Monte, F. J. Q.; de Mattos, M. C. Vegetables as Chemical

Reagents. J. Nat. Prod., 2007, 70, 478-492.

Dabkowska, K.; Szewczyk, K. W. Influence of temperature on the activity and

enantioselectivity of Burkholderia cepacia lipase in the kinetic resolution of

mandelic acid enantiomers. Biochem. Eng. J.

Derewenda, U.; Brzozowski, A. M.; Lawson, D. M.; Derewenda, Z. S. Catalysis at the

interface: the anatomy of a conformational change in a triglyceride lipase.

Biochemistry, 1992a, 31, 1532–1541.

, 2009, 46, 147-153.

References

197 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Derewenda, U.; Swenson, L.; Green, R.; Wei, Y.; Yamaguchi, S.; Joerger, R.; Haas, M. J.;

Derewenda, Z. S. Current progress in crystallographic studies of new lipases from

filamentous fungi. Protein Eng., 1994, 7, 551–557.

Derewenda, Z. S.; Derewenda, U. Relationships among serine hydrolases: evidence for a

common structural motif in triacylglyceride lipases and esterases . Biochem. Cell

Biol., 1991, 69, 842–851.

Derewenda, Z. S.; Derewenda, U.; Dodson, G. G. The crystal and molecular structure of

the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J. Mol. Biol.,

1992b, 227, 818–839.

Devulapelli, V. G.; Weng, H. S. Synthesis of cinnamyl acetate by solid–liquid phase

transfer catalysis: Kinetic study with a batch reactor. Catal Commun., 2009, 10,

1638–1642.

Dhake, K. P.; Deshmukh, K. M.; Wagh, Y. S.; Singhal, R. S.; Bhanage, B. M.

Investigation of steapsin lipase for kinetic resolution of secondary alcohols and

synthesis of valuable acetates in non aqueous medium. J. Mol. Catal. B Enzym.,

2012, 77, 15-23.

Drayer, D. E. Pharmacodynamic and pharmacokinetic differences between drug

enantiomers in human: an overview. Clin. Pharmacol. Ther.,

Dubouch, M. P. B.; Graber, M.; Sousa, N.; Lamare, S.; Legoy, M. D. Alcoholysis

catalyzed by Candida antarctica lipase B in a gas/solid system obeys a Ping Pong

Bi Bi mechanism with competitive inhibition by the alcohol substrate and water.

1986, 40, 125-133.

Biochim. Biophys. Acta:

Ebner, D. C.; Trend, R. M.; Genet, C.; McGrath, M. J.; O’Brien, P.; Stoltz, B. M.

Palladium-catalyzed enantioselective oxidation of chiral secondary alcohols:

Access to both enantiomeric series. Angew. Chem. In. Ed., 2008, 47, 6367-6370.

Protein Struct. Mo.l Enzymol., 2001, 1550, 90-99.

Edegger, K.; Mang, H.; Faber, K.; Gross, J.; Kroutil, W. Biocatalytic oxidation of sec-

alcohols via hydrogen transfer. J. Mol. Catal. A- Chemical, 2006, 251, 66-70.

Eidamshaus, C.; Reissig, H. U. A chiral pool strategy for the synthesis of enantiopure

hydroxymethyl-substituted pyridine derivatives. Eur. J. Org. Chem., 2011, 6056–

6069.

References

198 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Ema, T.; Maeno, S.; Takaya, Y.; Sakai, T.; Utaka, M. Significant effect of acyl groups on

enantioselectivity in lipase-catalyzed transesterifications. Tetrahedron Asymm.,

1996, 7, 625-628.

England, R. A. biotage company brochure, available from:

data.biotage.co.jp/pdf/literature/2154.pdf.

Ergan, F.; Trani, M.; André, G. Production of glycerides from glycerol and fatty acid by

immobilized lipases in non-aqueous media. Biotechnol. Bioeng., 1990, 35, 195–

200.

Fantin, G.; Fogagnolo, M.; Guerzoni, M. E.; Medici, A.; Pedrini, P.; Poli, S.

Stereochemical control in baker’s yeast redox biotransformation of aryl methyl

ketones and carbinols. J. Org. Chem., 1994, 59, 924-925.

Fatima, Y.; Kansal, H.; Soni, P.; Banerjee, U. C. Enantioselective reduction of aryl

ketones using immobilized cells of candida viswanathii. Process Biochem., 2007,

42, 1412-1418.

Fernandez, V. G.; Brieva, R.; Gotor, V. Lipases: useful biocatalysts for the preparation of

pharmaceuticals. J. Mol. Catal. B Enzym., 2006, 40, 111-120.

France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Nucleophilic chiral amines as catalysts in

asymmetric synthesis. Chem. Rev., 2003, 103, 2985-3012

Franken, B.; Eggert, T.; Jaeger, K. E.; Pohl, M. Mechanism of acetaldehyde-induced

deactivation of microbial lipases. BMC Biochem., 2011, 12, 10.

Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S. J.; Mingos, D. M. P. Dielectric

parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27,

213-223

Gal, J. Single isomer science: The phenomenon and its terminology. CNS Spectrums.,

2002, 7, 8-13.

Gayet, A.; Andersson, P. G. Kinetic resolution of racemic epoxides using a chiral diamine

catalyst. Tetrahedron lett., 2005, 46, 4805-4807.

Ghanem, A. The utility of cyclodextrins in lipase-catalyzed transesterification in organic

solvents: enhanced reaction rate and enantioselectivity. Org. Biomol.Chem., 2003,

1, 1282-1291.

References

199 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Ghanem, A.; Aboul-Enein, H. Y. Application of lipases in kinetic resolution of racemates.

Chirality, 2005, 17, 1-15.

Ghanem, A.; Aboul-Enein, H. Y. Lipase mediated chiral resolution of racemates in organic

solvents. Tetrahedron Asymm., 2004, 15, 3331–3351.

Giri, A.; Dhingra, V.; Giri, C. C.; Singh, A.; Ward, O. P.; Narasu, M. L.

Biotransformations using plant cells, organ cultures and enzyme systems: current

trends and future prospects. Biotechnol. Adv., 2001, 19, 175-199.

Golberg, K.; Schroer, K.; Lutz, S.; Liese, A. Biocatalytic ketone reduction- a powerful tool

for the production of chiral alcohols-part I: processes with isolated enzymes. Appl.

Microbiol. Biotechnol., 2007, 76, 237-248.

Gong, L.; Mulcahy, S. P.; Harms, K.; Meggers, E. Chiral-auxiliary-mediated asymmetric

synthesis of tris-heteroleptic ruthenium polypyridyl complexes. J. Am. Chem. Soc.,

2009, 131, 9602–9603.

Gorman L. U. S.; Dordick, J. S. Organic solvents strip water off enzymes. Biotechnol.

Bioeng., 1992, 39, 392-397.

Gou, L.; Lorenz, H.; Morgenstern, A. S. Investigation of a chiral additive used in

preferential crystallization. Cryst. Growth Des., 2012, 12, 5197−5202.

Grabowski, E. J. J. Enantiopure drug synthesis: From methyldopa to imipenem to

efavirenz. Chirality, 2005, 17, S249 – S259.

Gubitz, G.; Schmid, M. G. Chiral separation by chromatographic and electromigration

techniques. A review. Biopharm. Drug Dispos., 2001, 22, 291–336.

Gupta, M. N. Enzyme function in organic solvents. Eur. J. Biochem., 1992, 203, 25-32.

Habulin, M.; Sabeder, S.; Paljevac, M.; Primo, M. Lipase-catalyzed esterification of

citronellol with lauric acid in supercritical carbon dioxide/co-solvent media. J.

Supercrit. Fluids, 2007, 43, 199–203.

Halling, P. J. Solvent selection for biocatalysis in mainly organic systems: Predictions of

effects on equilibrium position. Biotechnol. Bioeng., 1990, 35, 691–701.

Hanefeld, U. Reagents for (ir)reversible enzymatic acylations. Org. Biomol. Chem., 2003,

1, 2405-2415.

Hasan, F.; Shah, A. A.; Hameed, A. Industrial applications of microbial lipases. Enzyme

Microb. Technol., 2006, 39, 235-251.

References

200 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Hayes, B. L., Ed., Microwave synthesis: chemistry at the speed of light; CEM Publishing;

Matthews, N.C., 2002.

Heinsman, N. W. J. T.; Orrenius, S. C.; Marcelis, C. L. M.; Teixeira, A. D. S.; Franssen,

M. C. R.; Padt, A. V.; Jongejan, J. A.; Groot, A. D. Lipase mediated resolution of

γ-branched chain fatty acid methyl esters. Biocatal. Biotransform., 1998, 16, 145–

162.

Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds. Stereoselective

Synthesis, Methods of Organic Chemistry (Houben-Weyl); Georg Thieme Verlag:

Stuttgart, Germany, 1996.

Herbst, D.; Peper, S.; Niemeyer, B. Enzyme catalysis in organic solvents: influence of

water content, solvent composition and temperature on Candida rugosa lipase

catalyzed transesterification. J. Biotechnol., 2012, 162, 398– 403.

Hietanen, A. Studies on chemoenzymatic synthesis: lipase-catalyzed acylation in

multistep organic synthesis. Ph. D Thesis. University of Turku. Turku, Finland.

2012.

Hoff, B. H.; Anthonsen, H. W.; Anthonsen, T. The enantiomer ratio strongly depends on

the alkyl part of the acyl donor in transesterification with lipase B from Candida

antarctica. Tetrahedron Asymm., 1996, 7, 3187-3192.

Hoffmann, I.; Silva, V. D.; Nascimento, M. G. Enantioselective resolution of (RS) -1-

phenyletanol catalysed by lipases immobilized in starch films. J. Braz. Chem. Soc.,

2011, 22, 1559-1567.

Hollmann, F.; Arends, I. W. C. E.; Holtmann, D. Enzymatic reductions for the chemist.

Green Chem., 2011, 13, 2285-2314.

Holmberg, E.; Hult, K. Temperature as an enantioselective parameter on enzymatic

resolutions of racemic mixtures. Biotechnol. Lett., 1991, 13, 323–326.

Holmquist, M.; Clausen, I. G.; Patkar, S.; Svendsen, A.; Hult, K. Probing a functional role

of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase through

transesterification reactions in organic solvent. J. Protein Chem., 1995,14, 217–

224.

Homenko, A.; Kapilevich, B.; Kornstein, R.; Firer, M. A. Effects of 100 GHz radiation on

alkaline phosphatase activity and antigen–antibody interaction.

Bioelectromagnetics, 2009, 30, 167-175.

References

201 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Hudlicky, T.; Reed, J. W. Application of biotransformation and biocatalysis to complexity

generation in organic synthesis. Chem. Soc. Rev., 2009, 38, 3117–3132.

Ikunaka, M. Biocatalysis from the perspective of an industrial practitioner: let a biocatalyst

do a job that no chemocatalyst can. Catal. Today, 2004, 96, 93-102.

Ishihara, K.; Hamada, H.; Hirata, T.; Nakajima, N. Biotransformation using plant cultured

cells. J. Mol. Catal. B: Enzym., 2003, 23, 145–170.

Itoh, N.; Matsuda, M.; Mabuchi, M.; Dairi ,T.; Wang, J. Chiral alcohol production by

NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration

of NADH. Eur. J. Biochem., 2002, 269, 2394-2402.

Jaeger, K. E. Protein technologies and commercial enzymes: White is the hype –

biocatalysts on the move. Curr. Opin. Biotechnol., 2004, 15, 269-271.

Jaeger, K. E.; Reetz, M. T. Microbial lipases form versatile tools for biotechnology.

Trends Biotechnol., 1998, 16, 396-403.

Jakubas, W. J.; Shah, P. S.; Mason, J. R.; Norman, D. M. Avian repellency of coniferyl

and cinnamyl derivatives. Ecol. Appl., 1992, 2, 147–156.

Jayaprakasha, G. K.; Rao, L. J. M.; Sakariah, K. K. Chemical composition of the flower

oil of Cinnamomum zeylanicum blume. J. Agric. Food Chem., 2000, 48, 4294-

4295.

Jha, B. K.; Svensson, M.; Kronberg, B.; Holmberg, K. Titration microcalorimetry studies

of the interaction between Humicola lanuginosus lipase and ionic surfactants. J.

Colloid Interface Sci., 1999, 213, 262–264.

Jin, X.; Liu, B.; Ni, Z.; Wu, Q.; Lin, X. A novel control of enantioselectivity through the

racemic temperature influenced by reaction media. Enzyme Microb. Technol.,

2011, 48, 454–457.

Joubioux, F.; Henda, Y. B.; Bridiau, N.; Achour, O.; Graber, M.; Maugard, T. The effect

of substrate structure on the chemoselectivity of Candida antarctica lipase B-

catalyzed acylation of amino-alcohols. J. Mol. Catal. B-enzym., 2013, 85-86, 193-

199.

Kagan, H. B. Various aspects of the reaction of a chiral catalyst or reagent with a racemic

or enantiopure substrate. Tetrahedron, 2001, 57, 2449-2466.

Kamaruddin, A. H.; Uzir, M. H.; Aboul-Enein, H. Y.; Halim, H. N. Chemoenzymatic and

microbial dynamic kinetic resolution. Chirality, 2009, 21, 446-467.

References

202 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Kamat, S. V.; Beckman, E. J.; Russell, A. J. Enzyme activity in supercritical fluids. Crit.

Rev. Biotechnol. 1995, 15, 41-71.

Kastle, J. H.; Loevenhart, A. S. Concerning lipase, the fat-splitting enzyme, and the

reversibility of its action. Am. Chem. J., 1900, 24, 491–525.

Kaul, R. H.; Tornvall, U.; Gustafsson, L.; Borjesson, P. Industrial biotechnology for the

production of bio-based chemicals – a cradle-to-grave perspective. Trends

Biotechnol., 2007, 25, 119-125.

Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, L. A. A rule to predict

which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by

cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida

rugosa. J. Org. Chem., 1991, 56, 2656-2665.

Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Practical consideration in kinetic resolution

reactions. Adv. Synth. Catal., 2001, 343, 5-26.

Khmelnitsky, Y. L.; Mozhaev, V. V.; Belova, A. B.; Sergeeva, M. V.; Martinek, K.

Denaturation capacity: a new quantitative criterion for selection of organic solvents

as reaction media in biocatalysis. Eur. J. Biochem., 1991, 198, 31–41.

Kim, J.; Suri, J. T.; Cordes, D. B.; Singaram, B. Asymmetric reductions involving

borohydrides:  A practical asymmetric reduction of ketones mediated by (L)-

TarB−NO2

Kim, M. J.; Kim, H. W.; Han, K.; Choi, K. Y.; Park. J.; Dynamic kinetic resolution of

primary amines with a recyclable Pd nanocatalyst for racemization. Org. Lett.,

2007, 9, 1157-1159.

:  A chiral lewis acid. Org. Process Res. Dev., 2006, 10, 949-958.

Klibanov, A. M. Improving enzymes by using them in organic solvents. Nature, 2001,

409, 241-246.

Ko, S. B.; Baburaj, B.; Kim, M. J.; Park, J. Air-stable racemization catalysts for the

dynamic kinetic resolution of secondary alcohols. J. Org. Chem., 2007, 72, 6860-

6864.

Kobayashi, Y.; Kumar, B. G.; Kurachi, T.; Acharya, P. H.; Yamazaki, T.; Kitazume, T.

Furan ring oxidation strategy for the synthesis of macroshelides A and B. J. Org.

Chem., 2001, 66, 2011-2018.

Koskinen, A. M. P.; Klibanov, A. M., Eds. Enzymatic Reactions in Organic Media;

Blackie: Glasgow, Scotland, 1996.

References

203 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Kowalska, T.; Sherma, J., Ed, Thin layer chromatography in chiral separations and

analysis; CRC press: Florida, U.S.A., 2007.

Krishna, S. H.; Divakar, S.; Prapulla, S. G.; Karanth, N. G. Enzymatic synthesis of

isoamyl acetate using immobilized lipase from Rhizomucor miehei. J. Biotechnol.,

2001a, 87, 193–201.

Krishna, S. H.; Karanth, N. G. Lipase-catalyzed synthesis of isoamyl butyrate: A kinetic

study. Biochim. Biophys. Acta., 2001b, 1547, 262-267.

Kumar, S; Arya, P.; Mukherjee, C.; Singh, B. K.; Singh, N.; Parmar, V. S.; Prasad A. K.;

Ghose, B. Novel Aromatic Ester from Piper longum and Its Analogues Inhibit

Expression of Cell Adhesion Molecules on Endothelial Cells. Biochemistry, 2005,

44, 15944.

Kumaraswamy, G.; Ramesh, S. Soaked Phaseolus aureus L: an efficient biocatalyst for

asymmetric reduction of prochiral aromatic ketones. Green Chem., 2003, 5, 306-

308.

Kurbanoglu, E. B.; Zilbeyaz, K.; Kurbanoglu, N. I.; Kilic, H. Asymmetric reduction of

acetophenone analogues by Alternaria alternata using ram horn peptone.

Tetrahedron Asymm., 2007, 18, 2332-2335.

Kurbanoglu, E. B.; Zilbeyaz, K.; Kurbanoglu, N. I.; Taskin, M.; Kilic, H. Production of

(S)-(-)-1-(1´-Napthyl) Ethanol by Rhodotorula glutinis Isolate Using Ram Horn

Peptone. Turk. J. Chem., 2008, 32, 685 – 692.

Kurbanoglu, E. B.; Zilbeyaz, K.; Ozdal, M.; Taskin, M.; Kurbanoglu, N. I. Asymmetric

reduction of substituted acetophenones using once immobilized Rhodotorula

glutinis cells. Bioresour. Technol., 2010, 101, 3825 - 3829.

Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Rules for optimization of biocatalysis in

organic solvents. Biotechnol. Bioeng., 2009, 102, 1–8.

Lafuente, R. F. Lipase from Thermomyces lanuginosus: Uses and prospects as an

industrial biocatalyst. J. Mol. Catal. B Enzym., 2010, 62, 197-212.

Li, B.; Haynie, D. T. Chiral drug separation. Encyclopedia of Chemical Processing

[online]; Taylor & Francis, Posted 2006.

http://www.tandfonline.com/doi/abs/10.1081/E-ECHP-120039232#.Ub_0Dpz9XFs

(accessed June 17, 2013).

References

204 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Li, N.; Ma, D.; Zong, M. Enhancing the activity and regioselectivity of lipases for 3’-

benzoylation of floxuridine and its analogs by using ionic liquid-containing

systems. J. Biotechnol., 2008, 133, 103–109.

Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Asymmetric transfer

hydrogenation in water with a supported noyori-lkariya catalyst. Org. Lett., 2004,

6, 3321-3324.

Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis -

a review. Tetrahedron, 2001, 57, 9225-9283.

Liese, A.; Filho, M. V. Production of fine chemicals using biocatalysis Curr. Opin.

Biotechnol., 1999, 10, 595-603.

Liljeblad, A.; Lindborg, J.; Kanerva, A.; Katajisto, J.; Kanerva, L. T. Enantioselective

lipase-catalyzed reactions of methyl pipecolinate: transesterification and N-

acylation. Tetrahedron Lett., 2002, 43, 2471-2474.

Liu, K. J.; Huang, Y. Lipase-catalyzed production of a bioactive terpene ester in

supercritical carbon dioxide. J Biotechnol., 2010, 146, 215-220.

Liu, W.; Wang, P. Cofactor generation for sustainable enzymatic biosynthesis. Biotechnol.

Adv., 2007, 25, 369-384.

López, C. C.; Godoy, C.; de las Rivas, B.; Fernández-Lorente, G.; Palomo, J. M.; Guisán,

J. M.; Lafuente, R. F.; Ripoll, M. M.; Hermoso, J. A. Activation of bacterial

thermoalkalophilic lipases is spurred by dramatic structural rearrangements. J.

Biol. Chem., 2009, 284, 4365–4372.

Lou, W. Y.; Wang, W.; Smith, T. J.; Zong, M. H. Biocatalytic anti - Prelog stereoselective

reduction of 4′ -methoxyacetophenone to (R)-1-(4-methoxyphenyl)ethanol with

immobilized Trigonopsis variabilis AS2.1611 cells using an ionic liquid-

containing medium. Green Chem., 2009, 11, 1377-1384.

Loupy, A., Ed. Microwaves in organic synthesis; Wiley-VCH: Weinheim, Germany, 2006.

Loupy, A.; Perreux, L.; Marion, L.; Burle, K.; Moneuse, M. Reactivity and selectivity

under microwaves in organic chemistry. Relation with medium effects and reaction

mechanisms. Pure Appl. Chem., 2001, 73, 161–166.

Lu, Y.; Wang, X.; Ching, C. B. Application of preferential crystallization for different

types of racemic compounds. Ind. Eng. Chem. Res., 2009, 48, 7266–7275.

References

205 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Maczka, W. K.; Mironowicz, A. Enantioselective hydrolysis of 1-aryl ethyl acetates and

reduction of aryl methyl ketones using carrot, celeriac and horseradish enzyme

systems. Tetrahedron Asymm., 2002, 13, 2299 – 2302.

Mamaghani, M.; Mahmoodi, N. O.; Moghisseh, A. A.; Pourmohamad, L. Synthesis and

kinetic resolution of furyl substituted secondary carbinols by procine pancreatic

lipase under solvent free conditions. J. Iran Chem. Soc., 2008, 5, 238-243.

Martinelle, M.; Hult, K. Kinetics of acyl transfer reactions in organic media catalysed by

Candida antarctica lipase B. Biochim. Biophys. Acta:

Mateo, C.; Palomo, J. M.; Lorente, G. F.; Guisan, J. M.; Lafuente, R. F. Improvement of

enzyme activity, stability and selectivity via immobilization techniques. Enzyme

Microb. Technol., 2007, 40, 1451–1463.

Protein Struct. Mo.l

Enzymol., 1995, 1251, 191-197.

Matsuda, T.; Yamanaka, R.; Nakamura, K. Recent progress in biocatalysis for asymmetric

oxidation and reduction. Tetrahedron. Asymm., 2009, 20, 513-557.

Matsumoto, T.; Tanaka, T.; Kondo, A. Enzyme-mediated methodologies for protein

modification and bioconjugate synthesis. Biotechnol. J., 2012, 7, 1137–1146.

Matsuo, K.; Kawabe, S.; Tokuda, Y.; Eguchi, T.; Yamanada, R.; Nakamura, K.

Asymmetric reduction of ketones with a germinated plant. Tetrahedron Asymm.,

2008, 19, 157-159.

Matute, B. M.; Edin, M.; Bogar, K.; Kaynak, F. B.; Backvall, J. E. Combined

ruthenium(ii) and lipase catalysis for efficient dynamic kinetic resolution of

secondary alcohols. Insight into the racemization mechanism. J. Am. Chem. Soc.,

2005, 127, 8817-8825.

May, O.; Verseck, S.; Bommarius, A.; Drauz, K. Development of dynamic kinetic

resolution processes for biocatalytic production of natural and nonnatural l-amino

acid. Org. Process Res. Dev., 2002, 6, 452-457.

May, S. W.; Phillips, R. S. Enzymatic sulfur oxygenation reactions. Enzyme Microb.

Technol., l981, 3, 9-18.

Mazczka, W. K.; Mironowicz, A. Enantioselective reduction of bromo- and methoxy-

acetophenone derivatives using carrot and celeriac enzymatic system. Tetrahedron

Asymm., 2004, 15, 1965–1967.

References

206 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Mazo, P.; Rios, L.; Estenoz, D.; Sponton, M. Self-esterification of partially maleated

castor oil using conventional and microwave heating. Chem. Eng. J., 2012, 185–

186, 347-351.

Mccabe, R. W.; Rodger, A.; Taylor, A. A study of the secondary structure of Candida

antarctica lipase B using synchrotron radiation circular dichroism measurements.

Enzyme Microb. Tech., 2005, 36, 70-74.

Mccabe, R. W.; Taylor, A. An investigation of the acyl-binding site of Candida antarctica

lipase B. Enzyme Microb. Tech., 2004, 35, 393-398.

Mcconathy, J.; Nemeroff, C. B.; Owens, M. J. Chiral antidepressents: single enantiomers

versus mixture of enantiomers. Essent. Psychopharmacol., 2004, 5, 297-306.

Melo, L. L. M. M.; Pastore, G. M.; Macedo, G. A. Optimized synthesis of citronellyl

flavour esters using free and immobilized lipase from Rhizopus sp. Process

Biochem., 2005, 40, 3181-3185.

Menger, F.M. Enzyme reactivity from an organic perspective. Acc. Chem. Res., 1993, 26,

206–212

Meyer H. P.; Werbitzky, O. How green can the industry become with biotechnology. In

Biocatalysis for green chemistry and chemical process development; Junhua, T.;

Kazlauskas, R., Ed; John willey & sons: Newyork, U.S.A., 2011; pp 23-43.

Meyer, H. P.; Turner, N. J. Biotechnological manufacturing options for organic chemistry.

Min. Rev. Org. Chem., 2009, 6, 300-306.

Mikhailine, A. A.; Morris, R. H. Effect of the structure of the diamine backbone of

P−N−N−P ligands in Iron(II) complexes on catalytic activity in the transfer

hydrogenation of acetophenone. Inorg. Chem., 2010, 49, 11039-11044.

Milner S. E. M.; Maguire, A. R. Recent trends in whole cell and isolated enzymes in

enantioselective synthesis. Arkivoc, 2012, 321-282.

Miyazawa, T.; Kurita, S. S.; Ueji, S.; Yamadaa, T.; Kuwataa, S. Resolution of mandelic

acids by lipase-catalysed transesterifications in organic media: inversion of

enantioselectivity mediated by the acyl donor. J. Chem. Soc. Perkin. Trans. 1,

1992, 2253-2255.

Mohan, S. J.; Mohan, E. C.; Reddy, S.; Manda, S.; Yamsani, M. R. Chiral interactions and

chiral inversions - new challenges to chiral scientist. Pharmacie. Globale., 2011, 2,

1-9.

References

207 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Molinari, F.; Marianelli, G.; Aragozzini, F.; Production of flavour esters by Rhizopus

oryzae. Appl. Microbiol. Biotechnol., 1995, 43, 967-973.

Moris, F.; Gotor, V. A useful and versatile procedure for the acylation of nucleosides

through an enzymatic reaction. J. Org. Chem., 1993, 58, 653-660.

Nagaoka, H. Ability of different biomaterials to enantioselectively catalyze oxidation and

reduction reactions. Biotechnol. Prog., 2004, 20, 128-133.

Nakamura, K.; Takebe, Y.; Kitayama, T.; Ohno, A. Effect of solvent structure on

enantioselectivity of lipase-catalysed transesterification. Tetrahedron Lett., 1991,

32, 4941-4944.

Neas E. D.; Collins, M. J. Introduction to microwave sample preparation theory and

practice. Am. Chem. Soc., 1998, 2, 7-32.

Nguyen, L. A.; He, H.; Huy, C. P. Chiral drugs. An overview. Int. j. biomed. sci., 2006, 2,

85-100.

Ni, Y.; Xu, J. H. Biocatalytic ketone reduction: A green and efficient access to enantiopure

alcohols. Biotechnol. Adv., 2012, 30, 1279-1288.

Norin, M.; Olsen, O.; Svendsen, A.; Edholm, O.; Hult, K. Theoretical studies of

Rhizomucor miehei lipase activation. Protein Eng., 1993, 6, 855–863.

Oliver, T., Alfonso, I., Gotor, V., Lipase catalysed Michael addition of secondary amines

to acrylonitrile. Chem. Commun. 2004, 1724-1725.

Orden, A. A.; Noguera, C. M.; Agostini, E.; Sanz, M. K. Anti-Prelog reduction of ketones

by hairy root cultures. J. Mol. Catal B Enzym., 2009, 61, 216-220.

Orlando, A. R.; Arcovito, C.; Palombo, A.; Serafino, A. L.; Mossa, G. Enzymatic kinetic

change of ascorbate oxidase loaded into liposomes induced by microwave field’s

exposure. J. Liposome Res., 1993, 3, 717 - 724.

Orrenius, C.; Hæffner, F.; Rotticci, D.; Öhrner, N.; Norin, T.; Hult, K. Chiral recognition

of alcohol enantiomers in acyl transfer reactions catalysed by Candida antarctica

lipase B. Biocatal. Biotransform., 1998, 16, 1–15.

Ottosson, J.; Rotticcimulder, J. C.; Rotticci, D.; Hult, K. Rational design of

enantioselective enzymes requires considerations of entropy. Protein Sci., 2001,

10, 1769-1774.

References

208 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Palomo, J. M.; Lorente, G. F.; Guisán, J. M.; Lafuente, R. F. Modulation of immobilized

lipase enantioselectivity via chemical amination. Adv. Synth. Catal., 2007a, 349,

1119–1127.

Palomo, J. M.; Segura, R. L.; Lorente, G. F.; Lafuente, R. F.; Guisán, J. M. Glutaraldehyde

modification of lipases adsorbed on aminated supports: A simple way to improve

their behaviour as enantioselective biocatalyst. Enzyme Microb. Technol., 2007b,

40, 704–707.

Palomo, J. M.; Segura, R. L.; Mateo, C.; Terreni, M.; Guisan, J. M.; Lafuente, R. F.

Synthesis of enantiomerically pure glycidol via a fully enantioselective lipase-

catalyzed resolution. Tetrahedron Asymm., 2005, 16, 869–874.

Pan, S.; Liu, X.; Xie, Y.; Yi, Y.; Li, C.; Yan, Y.; Liu, Y. Esterification activity and

conformation studies of Burkholderia cepacia lipase in conventional organic

solvent, ionic liquids and their co-solvent mixture media. Bioresour Technol.,

2010, 101, 9822-9824.

Parker, M. C.; Brown, S. A.; Robertson, L.; Turner, N. J. Enhancement of

enantioselectivity in lipase-catalyzed resolution of N-(2-ethyl-6-methylphenyl)

alanine by additives. Chem. Commun., 1998, 2247–2248.

Pedro, L. G.; Santos, P. A. G.; Silva, J. A.; Figueriredo, A. C.; Barroso, J. G.; Deans, S.

G.; Looman, A.; Scheffer J. J. C. Essential oils from Azorean Laurus azorica.

Phytochem., 2001, 57, 245-250.

Peng, S.; Wang, L.; Wang, J. Iron-catalyzed ene-type propargylation of diarylethylenes

with propargyl alcohols. Org. Biomol. Chem., 2012, 10, 225-228.

Perry, R.H.; Green, D.W., Eds. Perry’s Chemical Engineers’ Handbook; McGraw-Hill:

New York, U.S.A. 1984.

Peters, G. H.; Svendsen, A.; Langberg, H.; Vind, J.; Patkar, S. A.; Toxvaerd, S.; Kinnunen,

P. K. J. Active serine involved in the stabilization of the active site loop in the

Humicola lanuginosa lipase. Biochemistry, 1998, 37, 12375–12383.

Pham, V. T.; Phillips, R. S.; Ljungdahl, L .G. Temperature-dependent enantiospecifity of

secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus. J. Am.

Chem. Soc., 1989, 111, 1935–1936.

References

209 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Philips, R. S. Temperature effects on stereochemistry of enzymatic reactions. Enzyme

Microb. Technol., 1992, 14, 417-419.

Pilissao, C.; Carvalho, P. O.; Nascimento, M. G. Enantioselective acylation of (RS)-

phenylethylamine catalysed by lipases. Process Biochem., 2009, 44, 1352-1357.

Ponrasu, T.; Manohar, B.; Divakar, S. A response surface methodological study on

prediction of glucosylation yields of thiamin using immobilized β-glucosidase.

Process Biochem., 2009, 44, 251–255.

Prathumpai, W.; Flitter, S. J.; McIntyre, M.; Nielsen, J. Lipase production by recombinant

strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces

lanuginosus. Appl. Microbiol. Biotechnol., 2004, 65, 714–719.

Prelog, V. Specification of the stereospecificity of some oxido-reductases by diamond

lattice sections. Pure Appl. Chem., 1964, 9, 119–130.

Priya, K.; Chadha, A. Synthesis of hydrocinnamic esters by Pseudomonas cepacia lipase.

Enzyme Microb. Technol., 2003, 32, 485–490.

Puskas, J. E.; Chiang, C. K.; Sen, M. Y. Green cationic polymerizations and polymer

functionalization for biotechnology. In Green polymerization methods: renewable

starting materials, catalysis and waste reduction; Mathers, R. T.; Meier, M. A. R.,

(Eds.); Wiley-VCH: Weinheim, Germany, 2011; pp 313–347.

Ramsden, J. A.; Garner, C. M.; Gladysz, J. A. Facile separations of enantiomers of chiral

organometalic compounds with a bakerbond chiralcel HPLC column.

Organometallics, 1991, 10, 1631-1633.

Rejasse, B.; Lamare, S.; Legoy, M. D.; Besson, T. Influence of microwave irradiation on

enzymatic properties: applications in enzyme chemistry. J. Enzym. Inhib. Med.

Chem., 2007, 22, 518-526.

Rejasse, B.; Lamare, S.; Legoy, M. D.; Besson, T. Stability improvement of immobilized

Candida antarctica lipase B in an organic medium under microwave radiation. Org.

Biomol. Chem., 2004, 2, 1086-1089.

Rentsch, K. M. The importance of stereoselective determination of drugs in the clinical

laboratory. J. Biochem. Biophys. Methods, 2002, 54, 1-9.

Rocha, J.; Gil, M.; Garcia, F. Optimization of the enzymatic synthesis of n-octyl oleate

with immobilized lipase in the absence of solvents. J. Chem. Technol. Biotechnol.,

1999, 74, 607–612.

References

210 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Rodrigues, R . C.; Lafuente, R. F. Lipase from Rhizomucor miehei as a biocatalyst in fats

and oils modification. J. Mol. Catal. B Enzym., 2010, 66, 15-32.

Rodrigues, R. C.; Ayub, M. Z. Effects of the combined use of Thermomyces lanuginosus

and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean

oil. Process Biochem., 2011, 46, 682–688.

Rodrigues, R. C.; Godoy, C. A.; Volpato, G.; Ayub, M. A. Z.; Lafuente, R. F.; Guisan, J.

M. Immobilization-stabilization of the lipase from Thermomyces lanuginosus:

Critical role of chemical amination. Process Biochem., 2009, 44, 963–968

Romero, M. D.; Calvo, L.; Alba, C.; Daneshfar, A.; Ghaziaskar, H. S. Enzymatic synthesis

of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane.

Enzyme Microb. Technol., 2005, 35, 42–48.

Rouhi, A. M. Chiral roundup. Chem. Eng News, 2002, 80, 43-50.

Roush, W. R.; Sciotti, R. J. Enantioselective total synthesis of (-)-Chlorothricolide. J. Am.

Chem. Soc., 1994, 116, 6457-6458.

Sanchez, J. M.; Mata, M. R.; Busto, E.; Fernandez, V. G., Gotor, V. Chemoenzymatic

synthesis of rivastigmine based on lipase catalyzed processes. J. Org. Chem., 2009,

74, 5304 - 5310.

Scarpi, D.; Occhiato, E. G.; Guarna, A. Selectivity of Daucus carota roots and baker’s

yeast in the enantioselective reduction of c-nitroketones. Tetrahedron Asymm.,

2005, 16, 1479–1483.

Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Withold, B. Industrial

biocatalysis today and tomorrow. Nature, 2001, 409, 258-268.

Schoemaker, H. E.; Mink, D.; Wubbolts, M. G. Dispelling the myths--biocatalysis in

industrial synthesis.

Secundo, F.; Carrea, G. Lipase activity and conformation in neat organic solvents. J. Mol.

Catal. B Enzym., 2002, 19-20, 93-102.

Science, 2003, 299, 1694-1697.

Secundo, F.; Philips, R. S. Effects of pH on enantiospecificity of alcohol dehydrogenases

from Thermoanaerobacter ethanolicus and horse liver. Enzyme Microb. Tech.,

1996, 19, 487-492.

Segel, I. H. Enzyme Kinetics. In Behaviour and analysis of rapid equilibrium and steady-

state enzyme systems; Wiley: New York, U.S.A, 1975; pp 309–319

References

211 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Serri, N. A.; Kamaruddin, A. H.; Long, W. S. Studies of reaction parameters on synthesis

of citronellyl laurate ester via immobilized Candida rugosa lipase in organic

media. Bioprocess Biosyst. Eng., 2006, 29, 253–260.

Shan, M.; O’Doherty, A. G. De novo asymmetric syntheses of SL0101 and analogues via a

palladium catalyzed glycosylation. Org. Lett., 2006, 8, 5149-5152.

Sharma, P. Cinnamic acid derivatives: A new chapter of various pharmacological

activities, J.chem. Pharm. Res., 2011, 3, 403-423.

Sheldon, R. A. Consider the environmental quotient. Chemtech 1994, 38-47.

Sheldon, R. A. Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc.

Rev., 2012, 41, 1437-1451.

Sheldon, R. A. Green solvents for sustainable organic synthesis: state of the art. Green

Chem., 2005, 7, 267-278.

Shieh, C. J.; Lou, Y. H. Five-factor response surface optimization of the enzymatic

synthesis of citronellyl butyrate by lipase IM77 from Mucor miehei. J. Am. Chem.

Soc., 2000, 77, 521-525.

Shimoda, K.; Kubota, N.; Hamada, H.; Hamada, H. Diastereoselective reduction of b-keto

carbonyl compounds by cultured plant cells. Tetrahedron Lett., 2006, 47, 1541–

1544.

Silva, J. M. R.; Nascimento, M. G. Chemo-enzymatic epoxidation of citronellol catalysed

by lipases. Process Biochem., 2012, 47, 517-522

Singer, S. J. The properties of proteins in nonaqueous solvents. Adv. Protein. Chem., 1963,

17, 1–68.

Singh, A.; Chisti, Y.; Banerjee, U. C. Stereoselective biocatalytic hydride transfer to

substituted acetophenones by the yeast Metschnikowia koreensis. Process

Biochem., 2012, 47, 2398-2404.

Söderlund, T.; K. Zhu, K.; A. Jutila, A.; P.K.J. Kinnunen, P. K. J. Effects of betaine on the

structural dynamics of Thermomyces (Humicola) lanuginosus lipase. Colloid Surf.

B: Biointerfaces, 2002, 26, 75–83.

Solanki, H. K.; Prajapati, V. D.; Jani, G. K. Microwave technology - a potential tool in

pharmaceutical science. Int. J. Pharmtech Res., 2010, 2, 1754-1761.

References

212 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Solano, D. M.; Hoyos, P.; Hernaiz, M. J.; Alcantara, A. R.; Montero, J. M. S. Industrial

biotransformations in the synthesis of building blocks leading to enantiopure drugs.

Bioresour. Technol., 2012, 115, 196-207.

Sontakke, J. B.; Yadav, G. D. Kinetic modelling and statistical optimization of lipase

catalysed enantioselective resolution of (R, S)-2-pentanol. Ind. Eng. Chem. Res.,

2011, 50, 12975-12983.

Steiner, T. J.; Ahmed, F.; Findley, L. J.; Macgregor, E. A.; Wilkinson, M. S-fluoxetine in

the prophylaxis of migraine: A phase II double-blind randomized placebo

controlled study. Cephalalgia., 1998, 18, 283-286.

Stepanenko, V.; Jesús, M. D.; Correa, W.; Bermúdez, L.; Vázquez, C.; Guzmán, I.;

Marciales, M. O. Chiral spiroaminoborate ester as a highly enantioselective and

efficient catalyst for the borane reduction of furyl, thiophene, chroman, and

thiochroman-containing ketones. Tetrahedron Asymm., 2009, 20, 2659-2665.

Stewart, J. D. Organic transformations catalyzed by engineered yeast cells and related

systems. Curr. Opin. Biotechnol., 2000, 11, 363-368.

Stinson, S. C. Chiral drugs. Chem. Eng. News, 2000, 78, 55-78.

Stottmeister, U.; Aurich, A.; Wilde, H.; Andersch, J.; Schmidt, S.; Sicker, D. White

biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel

building blocks for subsequent chemical syntheses. J. Ind. Microbiol. Biotechnol.,

2005, 32, 651-664.

Straathof, A. J. J.; Panke, S.; Schmid, A. The production of fine chemicals by

biotransformations. Curr. Opin. Biotechnol. 2002, 13, 548-556.

Sutton, P. W. et al., Biocatalysis in the fine chemical and pharmaceutical industries. In

Practical methods for biocatalysis and biotransformation; Whittall J.; Sutton,

P.W., Ed.; John wiley & Sons ltd: Newyork, U.S.A., 2012; pp. 1-59.

Sweet, M. J. The patentability of chiral drug post-KSR; The more things change, the more

they stay the same. Berkeley Tech. L. J., 2009,

Takayama, S.; Moree, W.J.; Wong, C.H. Enzymatic resolution of amines and

aminoalcohols using pent-4-enoyl derivatives. Tetrahedron Lett., 1996, 37, 6287-

6290.

24, 128-147.

Tang, W. L.; Zhao, H. Industrial biotechnology: Tools and applications. Biotechnol. J.,

2009, 4, 1725-1739.

References

213 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Tao, J.; Lin, G.; Liese, A. Biocatalysis for the Pharmaceutical Industry: Discovery,

Development and Manufacturing; John Wiley & Sons: Singapore, 2009.

Theil, F. Enhancement of Selectivity and Reactivity of Lipases by Additives. Tetrahedron,

2000, 56, 2905–2919.

Touchard, F.; Bernard, M.; Fache, F.; Lemaire, M. Ureas and thioureas as Rh-ligands for

the enantioselective hydride transfer reduction of acetophenone. J. Mol. Catal. A

Chem., 1999, 140, 1-11.

Turcu, M. C. Lipase-catalyzed approaches towards secondary alcohols: intermediates for

enantiopure drugs. Ph. D. Thesis. University of Turku. Turku, Finland. 2010.

Uhm, K. N.; Lee, S. J.; Kim, H. K.; Kang, H. Y.; Lee, Y. Enantioselective resolution of

methyl 2-chloromandelate by Candida antarctica lipase A in a solvent-free

transesterification reaction. J. Mol. Catal. B: Enzym., 2007, 45, 34-38.

Uppenberg, J.; Trier Hansen, M.; Patkar, S.; Jones, T. A.; The sequence, crystal structure

determination and refinement of two crystal forms of lipase B from Candida

antarctica. Structure, 1994, 2, 293-308.

Vasel, B.; Hecht, H. J.; Schmid, R. D.; Schomburg, D. 3D-Structures of the lipase from

Rhizomucor miehei at different temperatures and computer modeling of a complex

of the lipase with trilaurylglycerol. J. Biotechnol., 1993, 28, 99–115.

Vasudevan, P. T.; Briggs, M. Biodiesel production—current state of the art and

challenges. J. Ind. Microbiol. Biotechnol., 2008, 35, 421–430.

Wandrey, C.; Liese, A.; Kihumbu, D. Industrial biocatalysis: Past, present, and future.

Org. Process Res. Dev. 2000, 4, 286-290.

Wang, P.; Su, H.; Sun, L.; He, J.; Lu, Y. Asymmetric bioreduction of 3,5-

Bis(trifluoromethyl) acetophenone to its corresponding alcohol by Candida

tropicalis. Chin. J. Chem. Eng., 2011, 19, 1028-1032.

Watanabe, K.; Koshiba, T.; Yasufuku, Y.; Miyazawa, T.; Ueji, S. Effects of substituent

and temperature on enantioselectivity for lipase-catalysed esterification of 2-(4-

substituted phenoxy) propionic acids in organic solvents. Bioorg. Chem., 2001, 29,

65–76.

Weber, H. K. Stecher, H.; Faber, K. Sensitivity of microbial lipases to acetaldehyde

formed by acyl-transfer reactions from vinyl esters. Biotechnol. Lett., 1995, 17,

803-808.

References

214 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Wenda, S.; Illner, S.; Mell, A.; Kragl, U. Industrial biotechnology—the future of green

chemistry. Green Chem., 2011, 13, 3007-3047.

Wolfson, A.; Dlugy, C.; Karanet, A.; Tavor, D. Sustainable one-pot synthesis of cinnamyl

acetate in triacetin. Tetrahedron Lett., 2012, 53, 4565-4567.

Woodley, J. M. New opportunities for biocatalysis: making pharmaceutical processes

greener. Trends Biotechnol., 2008, 26, 321-327.

Wurz, R.P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis. Chem. Rev.,

2007, 107, 5570 – 5595.

Xie, Y.; Xu, J. H.; Lu, W. Y.; Lin, G. Q. Adzuki bean: A new resource of biocatalyst for

asymmetric reduction of aromatic ketones with high stereoselectivity and substrate

tolerance. Bioresour. Technol., 2009, 100, 2463-2468.

Xie, Y.; Xu, J. H.; Xu, Y. Isolation of a Bacillus strain producing ketone reductase with

high substrate tolerance. Bioresour. Technol., 2010, 101, 1054-1059.

Xu, G.; Yu, H.; Xu, J. Facile access to chiral alcohols with pharmaceutical relevance using

a ketoreductase newly mined from Pichia guilliermondii. Chin. J. Chem., 2013, 31,

349-354.

Xu, X. Engineering of enzymatic reactions and reactors for lipid modification and

synthesis. J. Eur, Lipid Sci. Technol., 2003, 105, 289–304.

Yadav, G. D. Insight into green phase transfer catalysis. Topics in Catalysis, 2004, 29,145-

161.

Yadav, G. D.; Borkar, I. V. Kinetic and mechanistic investigation of microwave-assisted

lipase catalyzed synthesis of citronellyl acetate. Ind. Eng. Chem. Res., 2009a, 48,

7915-7922.

Yadav, G. D.; Borkar, I. V. Synthesis of n-butyl acetamide over immobilized lipase, J.

Chem. Technol. Biotechnol., 2009b, 84, 420-426.

Yadav, G. D.; Devendran, S. Lipase catalyzed synthesis of cinnamyl acetate via

transesterification in non-aqueous medium. Process Biochem., 2012a, 47, 496-502.

Yadav, G. D.; Devendran, S. Lipase catalyzed kinetic resolution of (±) 1-(1-naphthyl)

ethanol under microwave irradiation. J. Mol. Catal. B Enzym., 2012b, 81, 58-65.

Yadav, G. D., Devi, K. M., Enzymatic synthesis of perlauric acid using Novozym 435.

Biochem. Eng. J. 2002, 10, 93-101.

References

215 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Yadav, G. D.; Dhoot, S. B. Immobilized lipase-catalysed synthesis of cinnamyl laurate in

non-aqueous media. J. Mol. Catal B: Enzym., 2009, 57, 34–39.

Yadav, G. D.; Lathi, P. S. Intensification of enzymatic synthesis of propylene glycol

monolaurate from 1, 2-propanediol and lauric acid under microwave irradiation:

Kinetics of forward and reverse reactions. Enzyme Microb. Tech., 2006, 38, 814-

820.

Yadav, G. D.; Lathi, P. S. Kinetics and mechanism of synthesis of butyl isobutyrate over

immobilised lipases. Biochem. Eng. J., 2003, 16, 245–252.

Yadav, G. D.; Lathi, P. S. Synergism between microwave and enzyme catalysis in

intensification of reactions and selectivities: transesterification of methyl

acetoacetate with alcohols. J. Mol. Catal. A Chem., 2004, 223, 51-56.

Yadav, G. D.; Sajgure, A. D. Synergism of microwave irradiation and enzyme catalysis in

synthesis of isoniazid. J. Chem. Technol. Biotechnol., 2007, 82, 964-970.

Yadav, G. D.; Sajgure, A. D.; Dhoot, S. B. Enzyme catalysis in fine chemical and

pharmacuetical industries. In Enzyme Mixtures and Complex Biosynthesis;

Bhattacharya, S. K. Ed.; Landes Biosciences: Austin, U.S.A., 2007, pp. 79-108.

Yadav, G. D.; Sajgure, A. D.; Dhoot, S. B. Insight into microwave irradiation and enzyme

catalysis in enantioselective resolution of RS-( ± )-methyl mandelate. J. Chem.

Technol. Biotechnol., 2008, 83, 1145–1153.

Yadav, G. D.; Sivakumar, P. Enzyme catalyzed optical resolution of mandelic acid via R/S

(±)-methyl mandelate in non-aqueous media. Biochem. Eng. J., 2004, 19, 101-107.

Yadav, G. D.; Sowbna, P. R. Modelling of microwave irradiated liquid–liquid–liquid

(MILLL) phase transfer catalyzed green synthesis of benzyl thiocyanate. Chem.

Engg. J., 2012, 179, 221-230.

Yadav, G. D.; Trivedi, A. H. Kinetic modeling of immobilized-lipase catalyzed

transesterificatin of n-octanol with vinyl acetate in nonaqueous media. Enzyme

Microb. Technol., 2003, 32, 783-789.

Yadav, J. S.; Nanda, S.; Reddy, P. T.; Rao, A. B. Efficient enantioselective reduction of

ketones with Daucus carota root. J. Org. Chem., 2002, 67, 3900-3903.

Yadav, J. S.; Reddy, B. V. S.; Sreelakshmi, C.; Rao, A. B. Enantioselective reduction of

prochiral ketones employing sprouted Pisum sativa as biocatalyst. Synthesis, 2009,

11, 1881-1885.

References

216 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Yadav, J. S.; Reddy, G. S. K. K.; Sabitha, G.; Krishna, A. D.; Prasad, A. R.; Rahaman, H.

U. R.; Rao, K. V.; Rao, A. B. Daucus carota and baker’s yeast mediated bio-

reduction of prochiral ketones. Tetrahedron Asymm., 2007, 18, 717–723.

Yang, T.; Rebsdorf, M.; Engelrud, U.; Xu, X. Enzymatic production of monoacylglycerols

containing polyunsaturated fatty acids through an efficient glycerolysis system. J.

Agric. Food Chem., 2005, 53, 1475–1478.

Yang, Z. H.; Zeng, R.; Yang, G.; Wang, Y.; Li, L. Z.; Lv, Z. S.; Yao, M.; Lai, B.

Asymmetric reduction of prochiral ketones to chiral alcohols catalyzed by plants

tissue. J. Ind. Microbial. Biotechnol., 2008, 35, 1047-1051.

Yasufuku, Y.; Ueji, S. Effect of temperature on lipase-catalysed esterification in organic

solvent. Biotechnol. Lett., 1995, 17, 1311–1316.

Yee, L. N.; Akoh, C. C.; Phillips, R. S. Lipase PS-catalyzed transesterification of

citronellyl butyrate and geranyl caproate: Effect of reaction parameters. J. Am.

Chem. Soc., 1997, 74, 255-260.

You, P.; Su, E.; Yang, X.; Maob, D.; Wei, D. Carica papaya lipase-catalyzed synthesis of

terpene esters. J. Mol. Catal. B Enzym., 2011, 71, 152-158.

Yu, D.; Chen, P.; Wang, L.; Gu, Q.; Li, Y.; Wang, Z.; Cao, S. A chemo-enzymatic process

for sequential kinetic resolution of (R,S)-2-octanol under microwave irradiation.

Process Biochem., 2007a, 42, 1312–1318.

Yu, D.; Wang, Z.; Chen, P.; Jin, L.; Cheng, Y.; Zhou, J.; Cao, S. Microwave-assisted

resolution of (R,S)-2-octanol by enzymatic transesterification. J. Mol. Catal. B

Enzym., 2007b, 48, 51–57.

Yu, D.; Wu, H.; Zhang, A.; Tian, L.; Liu, L.; Wang, C.; Fang, X. Microwave irradiation-

assisted isomerisation of glucose to fructose by immobilized glucose isomerase.

Process Biochem., 2011, 46, 599 - 603.

Zaks, A.; Klibanov, A. M.; Enzyme-catalyzed processes in organic solvents. Proc. Natl.

Acad. Sci., 1985, 82, 3192–3196.

Zamojski, A,; Grynkiewicz, G. The total synthesis of carbohydrates 1972-1980. In The

total synthesis of natural products; Simon, J., Ed.; Wiley: New York, U.S.A.,

1984; pp. 141-235.

References

217 © D. Saravanan & Institute of Chemical Technology (ICT) Mumbai, India, 2013

Zeng, Z. Y.; Yang, G.; Wang, Y.; Li, L.; Lv, Z.; Yao, M.; Lai, B. Asymmetric reduction of

prochiral ketones to chiral alcohols catalyzed by plants tissue. J. Ind. Microbiol.

Biotechnol., 2008, 35, 1047–1051.

Zheng, G. W.; Xu, J. H. New opportunities for biocatalysis: driving the synthesis of chiral

chemicals. Curr. Opin. Biotechnol., 2011, 22, 784-792.

Zhou, H.; Chen, J.; Ye, L.; Lin, H.; Yuan, Y. Enhanced performance of lipase catalysed

kinetic resolution of secondary alcohols in monoether-functionalized ionic liquids.

Bioresour. Technol., 2011, 102, 5562-5566.