Chapter 10 - Nuclear 10 - Nuclear Physics The Nucleus Radioactive Decay Nuclear Fission Nuclear Fusion Chapter 10 - Nuclear Physics “The release of atomic energy

Download Chapter 10 - Nuclear   10 - Nuclear Physics The Nucleus Radioactive Decay Nuclear Fission Nuclear Fusion Chapter 10 - Nuclear Physics “The release of atomic energy

Post on 19-Mar-2018

219 views

Category:

Documents

7 download

Embed Size (px)

TRANSCRIPT

<ul><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Chapter 10 - Nuclear Physics</p><p>The release of atomic energyhas not created a newproblem. It has merely mademore urgent the necessity ofsolving an existing one. </p><p>-Albert Einstein</p><p>David J. StarlingPenn State Hazleton</p><p>PHYS 214</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Ernest Rutherford proposed and discovered the</p><p>nucleus in 1911.</p><p>Alpha particles are positively charged helium nuclei 4He.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Ernest Rutherford proposed and discovered the</p><p>nucleus in 1911.</p><p>Alpha particles are positively charged helium nuclei 4He.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Their scattering angle theory matched</p><p>predictions!</p><p>Geiger and Marsden conducted the experiments with Radongas.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Their scattering angle theory matched</p><p>predictions!</p><p>Geiger and Marsden conducted the experiments with Radongas.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Protons (Z) and Neutrons (N) combine to give the</p><p>mass number (A) of the atom.</p><p>Note how the masses are not whole number multiples ofHydrogen.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Protons (Z) and Neutrons (N) combine to give the</p><p>mass number (A) of the atom.</p><p>Note how the masses are not whole number multiples ofHydrogen.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Atoms tend to have more neutrons than protons,</p><p>and can have multiple stable isotopes.</p><p>Bismuth (Z = 83) is the largest stable nucleus.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Atoms tend to have more neutrons than protons,</p><p>and can have multiple stable isotopes.</p><p>Bismuth (Z = 83) is the largest stable nucleus.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Stable nuclides have different abundances;</p><p>radionuclides have different half-lives.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>The radius of nuclides can be roughly</p><p>approximated.</p><p>r = r0 A1/3</p><p>with r0 = 1.2 fm and A the mass number.</p><p>This only applies to spherical nuclides and not to unstablehalo nuclides (e.g., 113 Li).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>The radius of nuclides can be roughly</p><p>approximated.</p><p>r = r0 A1/3</p><p>with r0 = 1.2 fm and A the mass number.</p><p>This only applies to spherical nuclides and not to unstablehalo nuclides (e.g., 113 Li).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Atomic masses are reported in atomic mass unitswith Carbon-12 defined to be 12 u.</p><p>1 u = 1.660538 1027 kg</p><p>mp = 1.672623 1027 kgmn = 1.674929 1027 kg</p><p>Therefore, the mass number of an atom and its atomic massare very similar (e.g., 197Au has a mass of 196.966522 u).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Atomic masses are reported in atomic mass unitswith Carbon-12 defined to be 12 u.</p><p>1 u = 1.660538 1027 kgmp = 1.672623 1027 kgmn = 1.674929 1027 kg</p><p>Therefore, the mass number of an atom and its atomic massare very similar (e.g., 197Au has a mass of 196.966522 u).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Atomic masses are reported in atomic mass unitswith Carbon-12 defined to be 12 u.</p><p>1 u = 1.660538 1027 kgmp = 1.672623 1027 kgmn = 1.674929 1027 kg</p><p>Therefore, the mass number of an atom and its atomic massare very similar (e.g., 197Au has a mass of 196.966522 u).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>It takes energy to pull protons and neutrons apart;</p><p>therefore, they lose energy when they come</p><p>together.</p><p>This change in energy is equivalent to a change in mass (viaE = mc2).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>It takes energy to pull protons and neutrons apart;</p><p>therefore, they lose energy when they come</p><p>together.</p><p>This change in energy is equivalent to a change in mass (viaE = mc2).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>It takes energy to pull protons and neutrons apart;</p><p>therefore, they lose energy when they come</p><p>together.</p><p>This change in energy is equivalent to a change in mass (viaE = mc2).</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>The binding energy is just</p><p>Eb =</p><p>i</p><p>mic2 Mc2 &gt; 0.</p><p>The mass excess is M A.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>The binding energy is just</p><p>Eb =</p><p>i</p><p>mic2 Mc2 &gt; 0.</p><p>The mass excess is M A.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>The binding energy is just</p><p>Eb =</p><p>i</p><p>mic2 Mc2 &gt; 0.</p><p>The mass excess is M A.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Once formed, nuclides have energy levels similar</p><p>to the electrons.</p><p>However, much more energy is required to excite thenucleus.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Once formed, nuclides have energy levels similar</p><p>to the electrons.</p><p>However, much more energy is required to excite thenucleus.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Once formed, nuclides have energy levels similar</p><p>to the electrons.</p><p>However, much more energy is required to excite thenucleus.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>The Nucleus</p><p>Lecture Question 10.1Which statement is true about the forces inside an atom?</p><p>(a) Gravity holds electrons, while the strong nuclear forceholds nuclei together.</p><p>(b) Gravity holds electrons in their orbits and nucleitogether.</p><p>(c) Gravity holds electrons, while the electromagneticforce holds nuclei together.</p><p>(d) The strong nuclear force holds electrons, while theelectromagnetic force holds nuclei together.</p><p>(e) The electromagnetic force holds electrons, while thestrong nuclear force holds nuclei together.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclei decay into other nuclei. For a</p><p>sample of N particles, the rate is proportional to</p><p>N with decay constant .</p><p>dNdt</p><p>= N</p><p>Solving for N:</p><p>dNN</p><p>= dt NN0</p><p>dNN</p><p>= t</p><p>0dt</p><p>lnNN0</p><p>= t</p><p>N = N0et</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclei decay into other nuclei. For a</p><p>sample of N particles, the rate is proportional to</p><p>N with decay constant .</p><p>dNdt</p><p>= N</p><p>Solving for N:</p><p>dNN</p><p>= dt</p><p> NN0</p><p>dNN</p><p>= t</p><p>0dt</p><p>lnNN0</p><p>= t</p><p>N = N0et</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclei decay into other nuclei. For a</p><p>sample of N particles, the rate is proportional to</p><p>N with decay constant .</p><p>dNdt</p><p>= N</p><p>Solving for N:</p><p>dNN</p><p>= dt NN0</p><p>dNN</p><p>= t</p><p>0dt</p><p>lnNN0</p><p>= t</p><p>N = N0et</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclei decay into other nuclei. For a</p><p>sample of N particles, the rate is proportional to</p><p>N with decay constant .</p><p>dNdt</p><p>= N</p><p>Solving for N:</p><p>dNN</p><p>= dt NN0</p><p>dNN</p><p>= t</p><p>0dt</p><p>lnNN0</p><p>= t</p><p>N = N0et</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclei decay into other nuclei. For a</p><p>sample of N particles, the rate is proportional to</p><p>N with decay constant .</p><p>dNdt</p><p>= N</p><p>Solving for N:</p><p>dNN</p><p>= dt NN0</p><p>dNN</p><p>= t</p><p>0dt</p><p>lnNN0</p><p>= t</p><p>N = N0et</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>The number of nuclei decays exponentially.</p><p>1 becquerel = 1 Bq = 1 decay per second1 curie = 1 Ci = 3.7 1010 Bq</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>The number of nuclei decays exponentially.</p><p>1 becquerel = 1 Bq = 1 decay per second</p><p>1 curie = 1 Ci = 3.7 1010 Bq</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>The number of nuclei decays exponentially.</p><p>1 becquerel = 1 Bq = 1 decay per second1 curie = 1 Ci = 3.7 1010 Bq</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>The decay rate is minus the derivative of N.</p><p>R = dNdt</p><p>= N0et = R0et</p><p>The half-life is the time to reduce the nuclei</p><p>number (or decay rate) by 1/2.</p><p>R = R0eT1/2 = R0/2</p><p>T1/2 = ln 2/ = ln 2</p><p>The mean life time = 1/ is when N has been reduced toN0/e.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>The decay rate is minus the derivative of N.</p><p>R = dNdt</p><p>= N0et = R0et</p><p>The half-life is the time to reduce the nuclei</p><p>number (or decay rate) by 1/2.</p><p>R = R0eT1/2 = R0/2</p><p>T1/2 = ln 2/ = ln 2</p><p>The mean life time = 1/ is when N has been reduced toN0/e.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>The decay rate is minus the derivative of N.</p><p>R = dNdt</p><p>= N0et = R0et</p><p>The half-life is the time to reduce the nuclei</p><p>number (or decay rate) by 1/2.</p><p>R = R0eT1/2 = R0/2</p><p>T1/2 = ln 2/ = ln 2</p><p>The mean life time = 1/ is when N has been reduced toN0/e.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Alpha decay is when a heavy nucleus emits an</p><p>alpha particle (i.e., 4He nucleus).</p><p>The alpha particle is bound within the 238U nucleus but cantunnel out with some small probability, leaving behind a234Th nuclues.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Alpha decay is when a heavy nucleus emits an</p><p>alpha particle (i.e., 4He nucleus).</p><p>The alpha particle is bound within the 238U nucleus but cantunnel out with some small probability, leaving behind a234Th nuclues.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Beta decay is when a proton or neutron decays</p><p>into the other, emitting an electron or positron to</p><p>preserve charge.</p><p>3215P 3216S + e + </p><p>6429Cu 6428Ni + e+ + </p><p>The half life for these reactions is 14.3 d and 12.7 h,respectively. The very low mass particle is a neutrino.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Beta decay is when a proton or neutron decays</p><p>into the other, emitting an electron or positron to</p><p>preserve charge.</p><p>3215P 3216S + e + </p><p>6429Cu 6428Ni + e+ + </p><p>The half life for these reactions is 14.3 d and 12.7 h,respectively. The very low mass particle is a neutrino.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Since two particles share the energy of beta</p><p>emission, the positron/electron can have a range</p><p>of energies.</p><p>For beta decay of copper to nickel, the most probablepositron emission energy is 0.15 MeV.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Since two particles share the energy of beta</p><p>emission, the positron/electron can have a range</p><p>of energies.</p><p>For beta decay of copper to nickel, the most probablepositron emission energy is 0.15 MeV.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Neutrinos interact very weakly with matter and so</p><p>large detectors are required to see even the most</p><p>massive supernova events.</p><p>This data is from the Super-Kamiokande detector in Japan,1000 m underground, holding 50,000 tons of ultra-purewater.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Neutrinos interact very weakly with matter and so</p><p>large detectors are required to see even the most</p><p>massive supernova events.</p><p>This data is from the Super-Kamiokande detector in Japan,1000 m underground, holding 50,000 tons of ultra-purewater.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclides decay toward stable ones over</p><p>time; the nuclidic chart (abbreviated) helps</p><p>understand how this works.</p><p>Radioactive nuclides transform through alpha decay, betadecay, emission of protons or neutrons, or fission intodaughter particles.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Unstable nuclides decay toward stable ones over</p><p>time; the nuclidic chart (abbreviated) helps</p><p>understand how this works.</p><p>Radioactive nuclides transform through alpha decay, betadecay, emission of protons or neutrons, or fission intodaughter particles.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Using the half-life of radioactive decay and</p><p>measurements of various nuclides, we can date</p><p>the age of objects.</p><p>Radiocarbon dating places the age of the Dead Sea Scrollsfrom the West Bank at around 2,000 years old.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>Using the half-life of radioactive decay and</p><p>measurements of various nuclides, we can date</p><p>the age of objects.</p><p>Radiocarbon dating places the age of the Dead Sea Scrollsfrom the West Bank at around 2,000 years old.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>There are two ways to measure radiation doses.</p><p>I Absorbed DoseI Independent of type of radiationI 1 gray = 1 Gy = 1 J/kgI 1 Gy = 100 rad</p><p>I Dose EquivalentI Accounts for type of radiation for biological purposesI RBE factors (relative biological effectiveness)I 1 sievert = 1 SvI 1 Sv = 100 rem</p><p>Personal monitoring devices measure Dose Equivalent.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>There are two ways to measure radiation doses.</p><p>I Absorbed DoseI Independent of type of radiationI 1 gray = 1 Gy = 1 J/kgI 1 Gy = 100 rad</p><p>I Dose EquivalentI Accounts for type of radiation for biological purposesI RBE factors (relative biological effectiveness)I 1 sievert = 1 SvI 1 Sv = 100 rem</p><p>Personal monitoring devices measure Dose Equivalent.</p></li><li><p>Chapter 10 - NuclearPhysics</p><p>The Nucleus</p><p>Radioactive Decay</p><p>Nuclear Fission</p><p>Nuclear Fusion</p><p>Radioactive Decay</p><p>There are two ways to measure radiation doses.</p><p>I Absorbed DoseI Independent...</p></li></ul>