chapter 10: noise in analog modulation a. bruce carlson

33
Communication Systems, 5e Chapter 10: Noise in Analog Modulation A. Bruce Carlson Paul B. Crilly © 2010 The McGraw-Hill Companies

Upload: others

Post on 22-Jan-2022

23 views

Category:

Documents


0 download

TRANSCRIPT

Communication Systems, 5e

Chapter 10: Noise in Analog Modulation

A. Bruce CarlsonPaul B. Crilly

© 2010 The McGraw-Hill Companies

Chapter 10: Noise in Analog Modulation

• Bandpass Noise• Linear CW Modulation With Noise• Exponential CW Modulation With Noise• Comparison Of CW Modulation Systems• Phase-locked Loop Noise Performance• Analog Pulse Modulation With Noise

© 2010 The McGraw-Hill Companies

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 10.2-1

Model of receiver for SNR

• Select the noise model that best fits the receiver and demodulator operations– Quadrature (good for mixing)– Magnitude-phase (good for envelope detection)

4

Synchronous Demodulation DSB (1)

• DSB

• Synchronous Detector: mix to baseband and LPF

tftntftntxAtv cqcic 2sin2cos

thtftftntftntxAty LPFccqcic 2cos2sin2cos

thtftntftntxAty LPFc

qc

ic

2

222sin2

222cos21

tntxAty iic 21

tntxtv c

5

Synchronous Demodulation DSB (2)

• DSB Pre-D SNR (RF BPF bandwidth BT=2W)

22

21 tntxAEtyE iic

22 tntxEtvE c

TRc BNStnEtxEtvE 0222

21

2 000

2

Pr T

R

TT

R

T

xc

De BW

WNS

BW

BNS

BNSA

NS

• DSB Post-D SNR (BB LPF bandwidth BLPF=W)

LPFRLPFxc BNSBNSAtyE 0022 22

412

41

WNS

BNSA

NS R

LPF

xc

DPost 00

2

2

2

2xc

RSASwhere

WNSAwhere xc

0

2

2

Synchronous Demodulation DSB (3)

• Pre-D vs. Post-D SNR

6

21

2 000

2

Pr T

R

TT

R

T

xc

De BW

WNS

BW

BNS

BNSA

NS

WNS

BNSA

NS R

LPF

xc

DPost 00

2

2

2

21

Pr

De

DPost

NSNS

• A factor of 2 improvement in the SNR!

MATLAB DSB Complex Downconversion

• Complex mixing, filtering and LPF

7

tftntftntxAtv cqcic 2sin2cos

thjtfjjtf

tftntftntxAty

LPFcc

cqcicComplex

2sin2cos

2sin2cos

th

tftntftnj

tftntxAjtftntxAty LPF

cq

cq

cic

cic

Complex

2222sin

2222cos

21

2222sin

2222cos

21

tntxAtyty iicComplex 21Re

tnjtntxAty qqiicComplex 21

WNWNS

NS X

DeComplex

00Pr WNS

NS X

DPost

0

MATLAB Note

• The simulation was adjusted for an equivalent Bandpass Filter.– It is not every applied, just the LPF after mixing– The complex noise output is 2x the real noise power

• The simulation SNR estimation is based on knowing the processing so that the result, if perfect, matches the SNR estimation value.– The result is slightly different than the “theory” …

why?• Think about theory vs. using actual filters on the signal power.

8

9

Synchronous Demodulation AM (1)

• AM

• Synchronous Detector: mix to baseband, DC block and and LPF

tftntftntxAtv cqcic 2sin2cos1

thtftftntftntxAty ccqcic 2cos2sin2cos1

thtftntftntxAty cqq

ciic

2

222sin2

222cos211

tntxAty iic 21

tntxtv c

10

Synchronous Demodulation AM (2)

• AM Pre-D SNR (RF BPF bandwidth BT=2W) 2

c2 tntxEtvE

TXC

c BNSAtnEtxEtvE 02

2222 1

2

T0

X2

2c

T0

R

DePr BN

S12

A

BNS

NS

• AM Post-D SNR (BB LPF bandwidth BLPF=W)

22

21 tntxAEtyE iic

LPFXc BNSAtyE 0222 2

41

DeX

X

DeLPF

T

Xc

Xc

LPF

Xc

DPost NS

SS

NS

BB

SASA

BNSA

NS

Pr2

2

Pr22

22

0

22

12

1222

Synchronous Demodulation AM (3)

• Pre-D vs. Post-D SNR ( definition change)

11

• A change of the SNR!

24

1

0

22

Pr

WNSA

NS Xc

De

X

X

XX

Xc

DPost SS

SS

WNSA

NS

2

2

22

0

22

112

DeX

X

DPost NS

SS

NS

Pr2

2

21

WN

SANS Xc

De

0

22

Pr 212

12

Synchronous Demodulation AM (4)

• Defining

• Textbook use of for AM

WNSA xc

0

22

2

X

X

T

Xc

De SS

BN

SA

NS

2

2

0

22

Pr 211

2

WNSA

NS Xc

DPost 0

22

2

X

X

DeX

X

DPost SS

NS

SS

NS

2

2

Pr2

2

112

WN

SANS Xc

De

0

22

Pr 212

If defined variable is Post-D SNR then

13

Synchronous Demodulation AM (5)

• For example values: = 1 and Sx = 0.5

WN

AWN

ABN

SA

BNS

NS cc

T

Xc

T

R

De

0

2

0

2

0

22

0Pr 835.01

4

12

WNA

WNA

BNSA

NS cc

LPF

Xc

DPost

0

2

0

2

0

22

425.0

2

DeDeDeX

X

DPost NS

NS

NS

SS

NS

PrPrPr2

2

32

5.015.02

12

14

AM vs DSB Demod Comparison

WNSA

BNSA

NS xc

T

xc

De

0

2

0

2

Pr 42

WNSA

NS xc

DPost

0

2

2 WNSA

NS Xc

DPost

0

22

2

WN

SANS Xc

De

0

22

Pr 41

DeX

X

DPost NS

SS

NS

Pr2

2

12

DSB AM

DeDPost NS

NS

Pr

2

DPost

xcDSB N

SWN

SA

0

2

2

De

XcAM N

SWN

SA

Pr0

22

22

1

15

AM Conclusions

• 67% or more of the Pre-D signal power comes from the carrier (therefore CNR).– There is only 33% of the “signal” SNR for AM as

compared to DSB

• The Post-D SNRs for DSB and AM can be made the same.

• If the signal powers (SX) are identical, AM is transmitting 3 or more time the power of DSB to achieve the same output, Post-D SNR.

16

Envelope Demodulation AM

• AM Envelope Detection (non-coherent demod)

– where

tf2sintntf2costntx1tAtv cqcic

tntxtv c

ttf2costAtv vcv

2q2

icv tntntx1AtA

tntx1tA

tnarctant

ic

qv

A Phaser representation of the Signal + Noise

tf2jexptjexptARetv cvv

tfjtxtAtx ccc 2exp1Re tjtfjtAtn ncn 2expRe

17

Envelope Demodulation AM

• Envelope Detection is the magnitude with a DC block

– Carrier dominate

tAEtAty vvD

The same as a coherent demodulator!

tAEtntntx1Aty v2

q2

icD

tAEtntxA

tntntxAty v

ic

qicD

2

2

111

22c nEA

tntxAty icD

tAEtntxA

tntntxAty v

ic

qicD

2

2

12111

18

Envelope Detector Threshold Effect

• The demodulator required the assumption

• If the condition is not met, the modulation process degrades into signal modulated noise which is not intelligible.– Rule of thumb: Pre-D SNR > 8-10 dB

– For “normal” signal (not DSSS) you need to have the signal above the noise floor … 8 dB is a useful starting point.

22c nEA

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 10.3-1

Model for detection of exponential modulation plus noise

20

Demodulation of FM/PM

• Phase Isolation and Processing

– Where

• Apply a limiter to remove the AM and apply coherent downconversion to isolate the phase

ttftAttfAtv ncncc 2cos2cos

tntxtv c

ttcostAAttsintAarctant

nnc

nn

A Phaser representation of the Signal + Noise

2n

2c AEA

tttf2costtcostAAtv cnnc

Note: A good derivation can be found in Gagliardi, “Introduction to Communication Engineering”, p. 123-125.

21

Demodulation of FM/PM

• After Limiting (and bandpass filtering)

• Perform phase discrimination

– where

tttf2costtcostAAtv cnnc

tttf2cosAtpred cL

ttty

c

nn

nnc

nn

AtsintAarctan

ttcostAAttsintAarctant

2n

2c AEA

c

q

c

nn

Atn

AttAttt

sinsintan

22

Demodulation of FM/PM

• After Extracting the Phase

• The noise PSD, when filtered by BW=B becomes

– PM post-detection noise is rectangular

• Apply appropriate filters for PM or FM– PM: include a post detection low pass filter (BW=W)– FM: a derivative and low pass filter

R

q

c

nn

Stn

tA

ttAtty

2

sin

R

q

c

nnn S

tnA

ttAty

2

sin

Bfrect

AN

Bfrect

S2NfS 2

c

0

R

0yn

23

PM Post-D SNR

• PM Phase output

• Post-D SNR (BW=W)

• RF Input SNR

ttxty nPM

xPMR

xPMRxPM

R

xPM

PostD

SWN

SSWN

SS

SWNS

NS 2

0

2

0

2

0

2

22

TT0

R

eDPr BW

BNS

NS

WNSwhere R

0

eD

TxPM

PostD NS

WBS

NS

Pr

2

24

FM: Differentiation and Filter

• FM Phase output

• Noise PSD, when filtered by BW=B becomes

– Notice that the power is 0 at DC and the power spectrum increases as the square of the frequency

tdttx2ty nFM

thdt

tdtxthdt

tdy nFM

21

21

Bfrect

SNf

Bfrect

SNffS

RRyn 222

12 0202

2

t

ttxtty n

FM

2

25

FM Post-D SNR

• Noise PSD integrated to find the noise power

• SNR (with B=W)

– Note: the RF input SNR is the same as for PM!

Bfrect

SNffS

Ryn 2

02

BNSS

B3

BNS3S

NS

NS

0

Rx2

2FM

30

Rx

2FM

FM

x2

FM

PostD

RR

B

B RFM S

BNBBS

NdfS

NfN

33322

30

33002

x2

x

2FM

PostD

SD3SW

3NS

WNSwhere R

0

26

SNR Improvement Using PM & FM

• RF Input SNR

TT0

R

eDPr BW

BNS

NS

WNSwhere R

0

• PM Post-D SNR • FM Post-D SNR

x2

x

2FM

PostD

SD3SW

3NS

PreD

Tx

PostD NS

WBSD

NS

23

xPMPostD

SNS 2

eD

TxPM

PostD NS

WBS

NS

Pr

2

27

Summarizing Derivations (1)• The post-detection (demodulation) noise spectral densities

in PM and FM have out-of-band components that call for post-detection filtering– Clean up demod and limit noise with a LPF of bandwidth B=W

– The PM noise spectrum is flat, like linear modulation except for the out-of-band components.

– The FM noise spectrum increases parabolically, f2, so higher baseband signal frequencies suffer more noise contamination than lower frequencies.

Bfrect

SNffS

Ryn 2

02

Bfrect

AN

Bfrect

S2NfS 2

c

0

R

0yn

28

Summarizing Derivations (2)• Since the FM noise spectrum increases parabolically, f2, so

higher baseband signal frequencies suffer more noise contamination than lower frequencies. – De-emphasis filtering can compensates for this effect, provided

that the message has been pre-emphasized at the transmitter.(See Deemphasis and Preemphasis Filtering in Chap. 5 p. 245-247.

– That is, increase power in high frequencies prior to transmission and then decrease power in high frequencies (back to flat) after demodulation. The concept for Dolby noise reduction.

Bfrect

SNffS

Ryn 2

02

29

Summarizing Derivations (3)• The effective destination noise power in PM and FM

decreases as SR increases, a phenomenon known as noise quieting.– Gamma increases for larger SR

• There is a threshold effect before demodulation works for PM, FM and envelope detected AM.– AM ~ 6-8 dB– PM & FM see simulations ..

WNSwhere R

0

x

PostDFM

SDNS 23

xPM

PostDPM

SNS 2

30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Including 12 dB deemphasis improvement of FM: Figure 10.4-1

Performance of CW Systems

31

Comparison of Modulation Systems

Type WBT

PostDNS γ thresh Complexity Comments

Baseband 1 1 Minor No Mod

AM 2 x

2x

2

S1S

20 Minor Envelope

DSB 2 1 Major Synch Demod

PM PMM2 x2PM S 10xb Moderate Phase, Const.

Amplitude

FM DM2 x2 SD3 10xb Moderate

Freq. Disc.,Const. Amplitude

MATLAB Simulations: AM, FM, PM and FM (D=5)

32

0 5 10 15 20 25 30 35 40 45-10

0

10

20

30

40

50

60

70SNR Simulation for AM, PM, and FM D=5

Pre-D SNR (dB)

Pos

t-D S

NR

(dB

)

AM simAMDSB simDSBPM simPMFM5 simFM5

MATLAB Simulations: FM

33

0 5 10 15 20 25 30 35 40 45-40

-20

0

20

40

60

80SNR Simulation for FM D=10, 5, 1, 0.5 and 0.1

Pre-D SNR (dB)

Pos

t-D S

NR

(dB

)

simD=10simD=5simD=1simD=0.5simD=0.1