chapter 1 probability distribution

Upload: mfy

Post on 08-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Chapter 1 Probability Distribution

    1/26

    Probability Distribution

    Contents

    Random variablesDiscrete Probability DistributionSpecial Discrete Probability Distribution:  Binomial Distribution  Poisson DistributionContinuous Probability DistributionSpecial Continuous Probability Distribution:

    Normal Distribution

    Chapter 1 : PROBABII!" DIS!RIB#!ION !opic 1$1 :!able o% Contents eave blan&

  • 8/19/2019 Chapter 1 Probability Distribution

    2/26

    Random Variables

    A random variable is a quantitative variable whose values is determined by the outcome of arandom experiment. A random e'periment is a process that result in di%%erent outcomes (hen the e'periment is carriedout in the same manner several times$Example : Random Experiment: !estin) three electrical items$  Random variable: Number o% de%ective items$

    et N denotes non de%ective item and D denotes de%ective item$

    In this example the random variable is denoted b X.X can assumes any of the four possible values !"!#!$ . Random variables are represented by capital alphabets such as X and % while their valuesare represented by lower case alphabets such as x and y.

    Chapter 1 : PROBABII!" DIS!RIB#!ION  !opic 1$* : Random variables eave blan&

    Outcomes of testing 3 electrical items Number of defective items, X

    NNN 0NND 1

    NDN 1

    NDD 2

    DNN 1

    DND 2

    DDN 2

    DDD 3

  • 8/19/2019 Chapter 1 Probability Distribution

    3/26

    Chapter 1 : PROBABII!" DIS!RIB#!ION !opic 1$* : Random variables eave blan&

    Random variables are classified accordin& to the set of values that they can ta'e.

    (iscrete random variable assumes values that can be counted.

    )ontinuous random variable assumes values contain in one or more intervals.+'amples o% discrete random variables: Number o% times a machine brea&s do(n in a month, Numbero% accidents occur in a %actory yearly, Number o% appointments scheduled in a month to see aconsultant$+'amples o% continuous random variables: !ime ta&en by a )ara)e to service a car, the resistance o%an electrical component, len)th o% iron bars produced by a machine$

  • 8/19/2019 Chapter 1 Probability Distribution

    4/26

    *he +ean and ,tandard (eviation of a (iscrete Random Variable

    *he mean of a discrete random variable! denoted by -! is the value that is expected tooccur if an experiment is repeated a lar&e number of times. *he mean is also called the expected value and is denoted by EX/.

    *he standard deviation of a discrete random variable! denoted by 0! measures thespread of its probability distribution.

    1et X be a discrete random variable with probability distribution px/ .

    Chapter 1 : PROBABII!" DIS!RIB#!ION !opic 1$- : Probability Distributions o% a discrete random variableseave blan&

    *

    **** 'p''p'

    ''p

    σ=σ

    µ−∑=µ−∑=σ

    ∑=µ

     :deviationStandard 

     )(  )(  )( :Variance

     )( :Mean

  • 8/19/2019 Chapter 1 Probability Distribution

    5/26

    Example*he probability distribution of X! the number of defective li&ht bulbs purchased by ashop'eeper is shown below.

    2ind the mean and the standard deviation of the number of defective li&ht bulbs purchasedby the shop'eeper.

    Chapter 1 : PROBABII!" DIS!RIB#!ION !opic 1$- : Probability distribution o% a discrete random variableseave blan&

    Number o% de%ective bulbs, . / 1 * - 0

    P.2'3 /$41 /$/4 /$15 /$/6 /$/1

    ' / 1 * - 0

    P'3 /$41 /$/4 /$15 /$/6 /$/1

    ' P'3 / /$/4 /$-* /$16 /$/0 7 ' P'32/$68

    '* P'3 / /$/4 /$50 /$06 /$15 7 '* P'321$-*

    9918$/98-5$/:deviation Standard   ==σ

    9836.0)(,var   222

    =−∑=   µ σ    x p xiance68$/3''p,mean   =∑=µ9836.0)58.0(32.1,var    22 =−=σ iance

  • 8/19/2019 Chapter 1 Probability Distribution

    6/26

    ,pecial (iscrete 3robability (istribution

    *he 4inomial (istribution

    !he binomial distribution is applied to e'periments that satis%y the conditions o% abinomial e'periment$

    Conditions o% a Binomial +'periment

     !he e'periment consists o% a %i'ed number o% trials, n$  +ach trial results in one o% t(o outcomes classi%ied as a success and a %ailure $

    !he trials are independent$!he probability o% success, p must be the same in each trial$ !heprobability o% %ailure in a sin)le trial is denoted by ; and ; 2 1 < p$

    Some terminolo)y:

     A trial is an action (hich results in one o% several outcomes

    =hen one trial does not a%%ect the outcome o% another trial, they are said to be independent$

    Chapter 1 : PROBABII!" DIS!RIB#!ION !opic 1$0 : Binomial Distribution eave blan&

  • 8/19/2019 Chapter 1 Probability Distribution

    7/26

    Examples of the 4inomial Experiment

    +'ample 1$

    !hro( a dice 0 times and record the random variable . , the number o% times a 5 isobtained$!he conditions o% a binomial e'periment are satis%ied since!here is a %i'ed number o% trials, n20  thro( a die 0 times3+ach trial has t(o outcomes$  )ettin) a 5 is a success and any other outcome is a %ailure3

    !he trials are independent$  !he result o% a thro( does not a%%ect the outcome o% the ne't thro(3$!he probability o% )ettin) a 5 is the same %or all the thro(s, p21>5

    +'ample *$Suppose a multiple choice ;ui? has */ ;uestions and each ;uestion has 0 possibleans(ers$  et .2 number o% correct ans(ers obtained by a student (ho ans(er all the */;uestions$!here is a %i'ed number o% trials, n2*/+ach trial has t(o outcomes$  )ettin) a correct ans(er is a success and a (ron) ans(er is a %ailure3!he trials are independent$  !he result o% a ;uestion does not a%%ect the result o% the other ;uestions3$!he probability o% )ettin) a correct ans(er in each ;uestion is the same, p2 @ $

    Chapter 1 : PROBABII!" DIS!RIB#!ION eave blan&!opic 1$0 : Binomial Distribution

  • 8/19/2019 Chapter 1 Probability Distribution

    8/26

    *he 4inomial (istribution

    !he discrete random variable, . that represents the number o% successes in n trials o% a binomiale'periment is called a binomial random variable$

    I% . %ollo(s a binomial distribution, (e (rite X54in n!p/ (here p is the probability of a success in asin&le trial and n is the fixed number of trials.

    !he probability o% ' successes in n trials is )iven by

    P.2'3 can also be obtained %rom the table o% cumulative binomial probabilities$

    Chapter 1 : PROBABII!" DIS!RIB#!ION eave blan&!opic 1$0 : Binomial Distribution

    .1!0 and 1)2)...(2)(1(! with

     )!(!

    ! Recall

    .,...2,1,0for

    )1()(

    ≡−−=

    −=

    =

    −    

      ===   −−

    nnnn

     xn x

    nC 

    n x

     p p xnq pC  x X  P 

     x

    n

     xn x xn x x

    n

  • 8/19/2019 Chapter 1 Probability Distribution

    9/26

    *he +ean and ,tandard (eviation of the 4inomial (istribution

     or a binomial e'periment (ith n trials and probability o% success, p in a sin)letrial, the mean and standard deviation o% the binomial distribution is )iven by

    Chapter 1 : PROBABII!" DIS!RIB#!ION eave blan&

    np;:deviation Standardnp;

    *

     :Bariance

    np:Cean

    =σ=σ

    np;:deviation Standard

    np;* :Bariance

    np:Cean

    !opic 1$0 : Binomial Distribution

  • 8/19/2019 Chapter 1 Probability Distribution

    10/26

    Example

    !he probability that a patient recovers %rom a rare %lu disease is /$0$ It is &no(n that */ peoplehave contracted this disease, (hat is

    a3the probability that e'actly 6 survive

    b3the probability that at least - survive

    c3the probability that %rom - to 8 survive

    d3the probability that at most - do not survive

    e3 the e'pected number o% survivors and thestandard deviation

    Note:!he problem can be modeled by a binomial distribution becausei3!here are * outcomes: success2a patient survive recover3 %ailure2a patient did not survive$

    ii3i'ed number o% trials, n2 */ patientsiii3!he trials are independent and probability o% success is the same %or each trial patient3, p2/$0

    eave blan&!opic 1$0 : Binomial DistributionChapter 1 : PROBABII!"DIS!RIB#!ION

  • 8/19/2019 Chapter 1 Probability Distribution

    11/26

    2indin& 3robabilities 6sin& )umulative 4inomial 3robabilities *able

    !able 1 )ive the cumulative probabilities

    %or selected values of n and p$

    +'ample 1#se !able 1 to %ind P.E*3 (here n26 p2/$/5

    ind column mar&ed p2/$/5$

    ind the ro( mar&ed n26 and r2*Fence obtain the value /$/-19$ So P.E*32/$/-19$

    R61E, for usin& 4inomial and 3oisson *able 3 X 7 r /

    a3P . E r 3 2 table

    b3 P . G r 3 2 1 H P . E r 1 3 c3 P r G . G s 3 2 P . E r 3 H P . E s 1 3 d3 P . 2 r 3 2 P . E r 3 H P . E r 1 3

    Chapter 1 : Study (or& order instructions !opic 1$* : Computer system unit components eave blan&

    ∑=

    −−  

     

     

     

     =≥

    n

    r  x

     xn x  p p

     x

    nr  X  P    )1()(

  • 8/19/2019 Chapter 1 Probability Distribution

    12/26

    +'ample *

    Consider .JBin 1/, /$/43 and usin) !able 1, (e can %ind the %ollo(in)probabilities:

    a3P.E-3b3P.K-3c3P.L-3d3P.G-3e3P.2-3%3P1L.G 03

    Chapter 1 : Study (or& order instructions !opic 1$* : Computer system unit components eave blan&

  • 8/19/2019 Chapter 1 Probability Distribution

    13/26

    Chapter 1 : Study (or& order instructions !opic 1$* : Computer system unit components eave blan&

  • 8/19/2019 Chapter 1 Probability Distribution

    14/26

    *he 3oisson 3robability(istribution

    Suitable to model data that represent the number o% occurrenceso% a speci%ied event in a )iven unit o% time or space$

    +'amples o% Poisson variable

    a3number o% accidents per year in a %actory$

    b3 number o% cars per hour passin) throu)h a brid)e$

    c3 number o% %aults in a meter lon) o% cable

    d3 number o% typin) errors made in one pa)e$

    eave blan&!opic 1$0 : Poisson DistributionChapter 1 : PROBABII!"DIS!RIB#!ION

  • 8/19/2019 Chapter 1 Probability Distribution

    15/26

    *he 3oisson 3robability(istribution

    I% an event is randomly scattered in time or space3 andI% an event is randomly scattered in time or space3 andhas a mean number o% occurrences, M in a )iven intervalhas a mean number o% occurrences, M in a )iven intervalo% timeor space3 and i% .2no o% occurrences in the )iveno% timeor space3 and i% .2no o% occurrences in the )iveninterval then (e (rite .JPoM3 $interval then (e (rite .JPoM3 $

    !he probability that the number o% occurrence e;uals ' is!he probability that the number o% occurrence e;uals ' is)iven by)iven by

    !he Poisson distribution hasean2 MMStandard deviation2 MM

    P.2'3 can also be obtained %rom the table o% cumulative

    Poisson probabilities$

    eave blan&!opic 1$0 : Poisson DistributionChapter 1 : PROBABII!"DIS!RIB#!ION

    MM 21

    MM 2-

    MM 25

    '

    p'3arious Poisson Distributions

    ( ) /,1,*,$$$$ '

    '

    e'.P'

    ==   µ−

  • 8/19/2019 Chapter 1 Probability Distribution

    16/26

    )umulative 3oisson 3robabilities *able

    !he tabulated values in !able * are the probabilities

    %or various values o% m, the mean number o%occurrence o% the event per interval$

    2indin& 3robabilities usin& )umulative 3oisson

    3robabilities *able

    Consider .JPo/$83$!o obtain P.E*3 usin) !able *:oo& up column m2/$8 and ro( r2* (e obtain/$191*Fence P.E*32/$191*

    Chapter 1 : Study (or& order instructions !opic 1$* : Computer system unit components eave blan&

    ( ) /,1,*,$$$$'%or '

    mer .P

    r '

    'm ==≥   ∑

    =

  • 8/19/2019 Chapter 1 Probability Distribution

    17/26

    eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

    !opic 1$0 : Poisson Distribution

  • 8/19/2019 Chapter 1 Probability Distribution

    18/26

    3oisson distribution as an approximation to the 4inomial distribution

    =hen n is lar)e nK 6/3 and p is small pL/$13the binomial distribution .JBinn,p3 can be appro'imated usin)a Poisson distribution (ith the mean M2np$

    !he appro'imation )ets better as n )ets lar)er and p )ets smaller$

    +'ample $

     A lar)e lot o% items is &no(n to contain 0Q de%ective items$ I% a sample o% 1// is randomly dra(n %rom

    the lot, use the Poisson appro'imation to %ind the probability it (ill containa3 no de%ectiveb3 more than 6 de%ectives$

    Solutionet . 2 number o% de%ective items in a sample o% 1// items$  .JBin1//, /$/03#sin) Poisson appro'imation, M21// ' /$/0 2 0 .JPo03

    a3

    b3 P.K63 2P.E532/$*109 usin) Poisson table3

    eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

    !opic 1$0 : Poisson Distribution

    ( ) //18-$/

    0e/.P/0 ===   −

  • 8/19/2019 Chapter 1 Probability Distribution

    19/26

    )ontinuous 3robability (istribution

     A smooth curve describes the probability distribution o% acontinuous random variable$

    !he probability distribution o% a continuous random variable,. is described by a mathematical %ormula %'3 &no(n as theprobability density %unction or simply density %unction$

    !he %unction %'3 is the probability density %unction o% acontinuous random variable . i%

    1$ %or all real values o% '$

    *$

    !he probability that . assumes values in the interval a to b is

    )iven by

    Note:!here is no probability attached to any sin)le value o% '$+'ample: P. 2 a3 2 /$

    !opic 1$6 : Continuous Probability Distribution eave blan&

    0≥)( x f  

    ∫ ∞

    ∞−

    = 1dx x f     )(

    ∫ =

  • 8/19/2019 Chapter 1 Probability Distribution

    20/26

    *he 8ormal (istribution

    One important continuous random variable is thenormal random variable$!he normal or aussian distribution has a probabilitydensity %unction

    !he parameters o% the normal distribution are itsmean µ and standard deviation σ  $I% the random variable . has a normal distribution(ith parameters M and , (e (rite . J N M, * 3$

    2eatures of the 8ormal curve

    1$Bell shaped curve and is symmetric about the

    mean$*$!otal area under the curve is 1$-$!he curve never touches the ' a'is$0$!he mean, median and mode are e;ual$

    !opic 1$5 : Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

    ( )   ∞

  • 8/19/2019 Chapter 1 Probability Distribution

    21/26

    *he 8ormal(istribution

    !he shapeand locationo% the normalcurvechan)es asthe meanand standarddeviation

    chan)e$

    !opic 1$5 : Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

  • 8/19/2019 Chapter 1 Probability Distribution

    22/26

    *he ,tandard 8ormal (istribution

    !o %ind Pa L . L b3, (e need to evaluate (here

    !his inte)ral is di%%icult to evaluate$

    !o simpli%y the evaluation o% the inte)ral, (e trans%orm

    variable ' to ? (here $

    T is &no(n as the standard normal variable$

    !he probability distribution o% T is the standard normaldistribution (ith mean, M2/ and standard deviation 21 $ =e

    (rite T J N /,1 3$

    !opic 1$5 : !he Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

    ∫ b

    a

    dx x f     )(

    ( )   ∞

  • 8/19/2019 Chapter 1 Probability Distribution

    23/26

    *he ,tandard 8ormal (istribution

    !he probability %unction o% T is

    2eatures of the standard normal curve

    1$Bell shaped curve and is symmetric about ?2/$*$!otal area under the curve is 1$-$alues o% ? to the le%t o% the centre is ne)ative and tothe ri)ht o% the centre is positive$0$ean2/, standard deviation 21$

    *he ,tandard 8ormal *able

     Areas under the standard normal curve aretabulated in a standard normal table$

    Fence to %ind Pa L . L b3, (e use standardnormal table$

    !opic 1$5 : Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

    ( )   ∞

  • 8/19/2019 Chapter 1 Probability Distribution

    24/26

    *he ,tandard 8ormal *able

    !able - )ives the values o% PTK?3 %or ?K/(hich is the area under the ? curve to theri)ht o% a particular value o% T$

    !o %ind P T K 1$*0 3 %rom the !able -, (e )oto the ro( in the table (ritten 1$* and loo& atthe value in the column headed /$/0, soP T K 1$*0 3 2 /$1/46

    !opic 1$5 : Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

  • 8/19/2019 Chapter 1 Probability Distribution

    25/26

    2indin& 3robabilities 6sin& *he ,tandard 8ormal *able

    +'ample

    1$ et T be a standard normal random variable$ ind the %ollo(in) :

    a3PTLH1$563b3PTL1$563c3P1$8LTL *$-3d3 PH1$8LTL *$-3 

    *$ et T be a standard normal random variable$ ind the constant & such thata3 PT L &32/$10*-  b3 PT K &32/$9/8*  c3 PH/$6 L T L &32 /$68**

    !opic 1$5 : Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION

  • 8/19/2019 Chapter 1 Probability Distribution

    26/26

    3roblem ,olvin& involvin& *he 8ormal (istribution

    +'ample

    1$Suppose the len)ths o% iron rods produced by a %actory are normally distributed (ith a meano% 1*/ cm and a standard deviation o% 1/ cm$

    a3 =hat is the probability that an iron rod (ill have a len)th (ithin 6 cm o% the meanb3 Rods shorter than & cm are reUected$ +stimate the value o% & i% 9 Q are reUectedc3 In a sample o% 6// rods, estimate the number havin) a len)th over 1*5cm

     

    !opic 1$5 : Normal Distribution eave blan&Chapter 1 : PROBABII!"DIS!RIB#!ION