chapter 08: calculus with analytics geometryย ยท mathematics calculus with analytic geometry by sm....

15
Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 1 In each of โˆ’, find parametric equations, direction ratios, direction cosines and measures of the direction angles of the straight line through P and Q: Q#1: , โˆ’, , (, โˆ’, ) Solution: Given points are 1, โˆ’2,0 (5, โˆ’10,1) Let (, , ) is another point on the straight line then equation of straight line will be written as โˆ’1 5โˆ’1 = + 2 โˆ’10+2 = โˆ’0 1โˆ’0 โŸน โˆ’1 4 = + 2 โˆ’8 = 1 = Parametric equations of given straight line can be written as โˆ’1 4 = โŸน =1+4 +2 โˆ’8 = โŸน = โˆ’2 โˆ’ 8 1 = โŸน =0+1 Direction ratios of straight line PQ are 4, โˆ’8,1. Let is the direction vector , =4 โˆ’ 8 + โŸน = 4 2 + โˆ’8 2 +1 2 = 81 =9 Direction cosines of line through P & Q are cos = 4 9 , cos = โˆ’8 9 , cos = 1 9 Directional angles of line PQ are = cos โˆ’1 4 9 , = cos โˆ’1 โˆ’8 9 , = cos โˆ’1 1 9 โŸน = 63 37 โ€ฒ , = 152 44 โ€ฒ , = 83 37 โ€ฒ Q#2: , , โˆ’, (, , ) Now do yourself as above Q#3: , โˆ’, , (, โˆ’, ) Do yourself as above Exercise #8.2

Upload: others

Post on 13-Feb-2021

30 views

Category:

Documents


7 download

TRANSCRIPT

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 1

    In each of ๐๐ซ๐จ๐›๐ฅ๐ž๐ฆ ๐Ÿ โˆ’ ๐Ÿ’, find parametric equations, direction ratios, direction cosines and measures of the direction angles of the straight line through P and Q:

    Q#1: ๐‘ท ๐Ÿ, โˆ’๐Ÿ, ๐ŸŽ , ๐‘ธ(๐Ÿ“, โˆ’๐Ÿ๐ŸŽ, ๐Ÿ)

    Solution:

    Given points are ๐‘ƒ 1, โˆ’2,0 ๐‘Ž๐‘›๐‘‘ ๐‘„(5, โˆ’10,1)

    Let ๐‘…(๐‘ฅ, ๐‘ฆ, ๐‘ง) is another point on the straight line then equation of straight line will be written as

    ๐‘ฅ โˆ’1

    5โˆ’1=

    ๐‘ฆ + 2

    โˆ’10+2=

    ๐‘งโˆ’0

    1โˆ’0โŸน

    ๐‘ฅ โˆ’1

    4=

    ๐‘ฆ + 2

    โˆ’8=

    ๐‘ง

    1 = ๐‘ก

    Parametric equations of given straight line can be written as

    ๐‘ฅโˆ’1

    4= ๐‘ก โŸน ๐‘ฅ = 1 + 4๐‘ก

    ๐‘ฆ + 2

    โˆ’8= ๐‘ก โŸน ๐‘ฆ = โˆ’2 โˆ’ 8๐‘ก

    ๐‘ง

    1 = ๐‘ก โŸน ๐‘ง = 0 + 1๐‘ก

    Direction ratios of straight line PQ are 4, โˆ’8,1.

    Let ๐‘‘ is the direction vector , ๐‘‘ = 4๐‘– โˆ’ 8๐‘— + ๐‘˜ โŸน ๐‘‘ = 42 + โˆ’8 2 + 12 = 81 = 9

    Direction cosines of line through P & Q are

    cos ๐›ผ =4

    9 , cos ๐›ฝ =

    โˆ’8

    9 , cos ๐›พ =

    1

    9

    Directional angles of line PQ are

    ๐›ผ = cosโˆ’14

    9 , ๐›ฝ = cosโˆ’1

    โˆ’8

    9 , ๐›พ = cosโˆ’1

    1

    9

    โŸน ๐›ผ = 63๐‘œ37โ€ฒ , ๐›ฝ = 152๐‘œ44โ€ฒ , ๐›พ = 83๐‘œ37โ€ฒ

    Q#2: ๐ ๐Ÿ”, ๐Ÿ“, โˆ’๐Ÿ‘ , ๐(๐Ÿ’, ๐Ÿ, ๐Ÿ)

    Now do yourself as above

    Q#3: ๐ ๐Ÿ, โˆ’๐Ÿ“, ๐Ÿ , ๐(๐Ÿ’, โˆ’๐Ÿ“, ๐Ÿ’)

    Do yourself as above

    Exercise #8.2

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 2

    Q#4: ๐ ๐Ÿ‘, ๐Ÿ“, ๐Ÿ• , ๐(๐Ÿ”, โˆ’๐Ÿ–, ๐Ÿ๐ŸŽ)

    Solution:

    Given points are ๐‘ƒ 3,5,7 & ๐‘„(6, โˆ’8,10)

    Let ๐‘…(๐‘ฅ, ๐‘ฆ, ๐‘ง) is another point on the straight line then equation of straight line will be written as

    ๐‘ฅ โˆ’ 3

    6 โˆ’ 3=

    ๐‘ฆ โˆ’ 5

    โˆ’8 โˆ’ 5=

    ๐‘ง โˆ’ 7

    10 โˆ’ 7

    โŸน ๐‘ฅ โˆ’ 3

    3=

    ๐‘ฆ โˆ’ 5

    โˆ’13=

    ๐‘ง โˆ’ 7

    3 = ๐‘ก

    Parametric equations of given straight line can be written as

    ๐‘ฅ โˆ’ 3

    3= ๐‘ก โŸน ๐‘ฅ = 3 + 3๐‘ก

    ๐‘ฆ โˆ’ 5

    โˆ’13= ๐‘ก โŸน ๐‘ฆ = 5 โˆ’ 13๐‘ก

    ๐‘ง โˆ’ 7

    3= ๐‘ก โŸน ๐‘ง = 7 + 3๐‘ก

    Direction ratios of straight line PQ are 3, โˆ’13,3.

    Let ๐‘‘ is the direction vector

    ๐‘‘ = 3๐‘– โˆ’ 13๐‘— + 3๐‘˜ โŸน ๐‘‘ = 32 + โˆ’13 2 + 32 = 187

    Direction cosines of line through P & Q are

    cos ๐›ผ =3

    187 , cos ๐›ฝ =

    โˆ’13

    187 , cos ๐›พ =

    3

    187

    Directional angles of line PQ are

    ๐›ผ = cosโˆ’13

    187 , ๐›ฝ = cosโˆ’1

    โˆ’13

    187 , ๐›พ = cosโˆ’1

    3

    187

    โŸน ๐›ผ = 77๐‘œ19โ€ฒ , ๐›ฝ = 159๐‘œ19โ€ฒ , ๐›พ = 77๐‘œ19โ€ฒ

    Q#5: Find the direction cosines the coordinate axis.

    Solution:

    We want to find the direction cosine of x-axis , y-axis and z- axis.

    (I) Let x-axis makes angles 0๐‘œ , 90๐‘œ , 90๐‘œ with x-axis ,y-axis and z- axis

    So direction cosines of x-axis are

    cos 0๐‘œ = 1 , cos 90๐‘œ = 0 , cos 90๐‘œ = 0

    (II) Let y-axis makes angles 90๐‘œ , 0๐‘œ , 90๐‘œ with x-axis ,y-axis and z- axis

    So direction cosines of y-axis are

    cos 90๐‘œ = 0 , cos 0๐‘œ = 1 , cos 90๐‘œ = 0

    (III) Let z-axis makes angles 90๐‘œ , 90๐‘œ , 0๐‘œ with x-axis ,y-axis and z- axis

    So direction cosines of z-axis are

    cos 90๐‘œ = 0, cos 90๐‘œ = 0 , cos 0๐‘œ = 1

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 3

    Q#6: Prove that if measures of the direction angles of a straight line are ๐›‚, ๐›ƒ and ๐›„, then ๐ฌ๐ข๐ง๐Ÿ ๐›‚ + ๐ฌ๐ข๐ง๐Ÿ ๐›ƒ + ๐ฌ๐ข๐ง๐Ÿ ๐›„ = ๐Ÿ. Solution: Let ๐›ผ, ๐›ฝ and ๐›พ be the directional angles of a straight line then direction cosines of line are cos ๐›ผ , cos ๐›ฝ & cos ๐›พ.

    As we know that

    cos2 ๐›ผ + cos2 ๐›ฝ + cos2 ๐›พ = 1

    1 โˆ’ sin2 ๐›ผ + 1 โˆ’ sin2 ๐›ฝ + 1 โˆ’ sin2 ๐›พ = 1

    3 โˆ’ sin2 ๐›ผ + sin2 ๐›ฝ + sin2 ๐›พ = 1

    3 โˆ’ 1 = sin2 ๐›ผ + sin2 ๐›ฝ + sin2 ๐›พ

    โŸน sin2 ๐›ผ + sin2 ๐›ฝ + sin2 ๐›พ = 2 Hence proved.

    Q#7: If measures of two of the direction angles of a straight line are ๐Ÿ’๐Ÿ“๐จ and ๐Ÿ”๐ŸŽ๐จ, find measure of the third direction angle.

    Solution: Let ๐›ผ, ๐›ฝ and ๐›พ be the directional angles of a straight line ๐›ผ = 45๐‘œ , ๐›ฝ = 60๐‘œ , ๐›พ =?

    As we know that

    cos2 ๐›ผ + cos2 ๐›ฝ + cos2 ๐›พ = 1

    cos2 45๐‘œ + cos2 60๐‘œ + cos2 ๐›พ = 1

    1

    2

    2+

    1

    2

    2+ cos2 ๐›พ = 1 โŸน

    1

    2+

    1

    4+ cos2 ๐›พ = 1

    cos2 ๐›พ = 1 โˆ’3

    4 โŸน cos2 ๐›พ =

    1

    4 โŸน cos ๐›พ =

    1

    4 โŸน cos ๐›พ =

    1

    2 โŸน ๐›พ = cosโˆ’1(

    1

    2 )

    โŸน ๐›พ = 60๐‘œ is required direction angle.

    Q#8: The direction cosines ๐’, ๐’Ž, ๐’ of two straight lines are given by the equations ๐’ + ๐’Ž + ๐’ = ๐ŸŽ and ๐’๐Ÿ + ๐’Ž๐Ÿ โˆ’ ๐’๐Ÿ = ๐ŸŽ. Find measure of the angle between them. Solution: We have to find the angle between two straight lines.

    Let ๐‘™1 , ๐‘š1 , ๐‘›1 be the direction cosines of line L and ๐‘™2 , ๐‘š2 , ๐‘›2 be the direction cosines of line M.

    Let ๐œƒ be the angle between line L and M then it is described as

    cos ๐œƒ = ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2 -------- (A)

    ๐‘™ + ๐‘š + ๐‘› = 0 -------------------------------- (1)

    ๐‘™2 + ๐‘š2 โˆ’ ๐‘›2 = 0 ------------------------------- (2)

    1 โŸน ๐‘› = โˆ’(๐‘™ + ๐‘š) --------------------- (3)

    Putting in eq.(2)

    ๐‘™2 + ๐‘š2 โˆ’ โˆ’(๐‘™ + ๐‘š) 2 = 0

    ๐‘™2 + ๐‘š2 โˆ’ ๐‘™2 + ๐‘š2 + 2๐‘™๐‘š = 0

    ๐‘™2 + ๐‘š2 โˆ’ ๐‘™2 โˆ’ ๐‘š2 โˆ’ 2๐‘™๐‘š = 0

    โˆ’2๐‘™๐‘š = 0 โŸน ๐‘™๐‘š = 0

    Either ๐‘™ = 0 or ๐‘š = 0

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 4

    Put ๐‘™ = 0 in eq. (3) โŸน ๐‘› = โˆ’๐‘š

    โŸน๐‘›

    1=

    ๐‘š

    โˆ’1

    ๐‘™

    0=

    ๐‘›

    1=

    ๐‘š

    โˆ’1 โŸน

    ๐‘™2 + ๐‘š2 + ๐‘›2

    02 + 12 + (โˆ’1)2=

    1

    2

    So direction cosines of line L are

    ๐‘™1 = 0 , ๐‘š1 =โˆ’1

    2 , ๐‘›1 =

    1

    2

    Put ๐‘š = 0 in eq. (3) โŸน ๐‘› = โˆ’๐‘™

    โŸน๐‘›

    1=

    ๐‘™

    โˆ’1

    ๐‘™

    โˆ’1=

    ๐‘›

    1=

    ๐‘š

    0 โŸน

    ๐‘™2 + ๐‘š2 + ๐‘›2

    โˆ’1 2 + 12 + 02=

    1

    2

    So direction cosines of line M are

    ๐‘™2 =โˆ’1

    2 , ๐‘š2 = 0 , ๐‘›2 =

    1

    2

    Using in equation (A)

    cos ๐œƒ = 0 โˆ’1

    2 +

    โˆ’1

    2 0 +

    1

    2

    1

    2 โŸน cos ๐œƒ = 0 + 0 +

    1

    2 โŸน cos ๐œƒ =

    1

    2 โŸน ๐œƒ = cosโˆ’1

    1

    2 โŸน ๐œƒ =

    ๐œ‹

    3

    Q#9: The direction cosines ๐’, ๐’Ž, ๐’ of two straight lines are given by the equations ๐’ + ๐’Ž + ๐’ = ๐ŸŽ and ๐Ÿ๐’๐’Ž + ๐Ÿ๐’๐’ โˆ’ ๐’Ž๐’ = ๐ŸŽ. Find measure of the angle between them. Solution: We have to find the angle between two straight lines.

    Let ๐‘™1 , ๐‘š1 , ๐‘›1 be the direction cosines of line L and ๐‘™2 , ๐‘š2 , ๐‘›2 be the direction cosines of line M.

    Let ๐œƒ be the angle between line L and M then it is described as cos ๐œƒ = ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2 -------- (A)

    ๐‘™ + ๐‘š + ๐‘› = 0 -------------------------------- (1)

    2๐‘™๐‘š + 2๐‘™๐‘› โˆ’ ๐‘š๐‘› = 0 -------------------------------- (2)

    1 โŸน ๐‘› = โˆ’ ๐‘™ + ๐‘š ------------------------------ (3)

    Putting in eq. (2) 2๐‘™๐‘š + 2๐‘™ โˆ’ ๐‘™ + ๐‘š โˆ’ ๐‘š โˆ’ ๐‘™ + ๐‘š = 0

    2๐‘™๐‘š โˆ’ 2๐‘™ ๐‘™ + ๐‘š + ๐‘š ๐‘™ + ๐‘š = 0

    2๐‘™๐‘š โˆ’ 2๐‘™2 โˆ’ 2๐‘™๐‘š + ๐‘™๐‘š + ๐‘š2 = 0

    โˆ’2๐‘™2 + ๐‘™๐‘š + ๐‘š2 = 0

    2๐‘™2 โˆ’ ๐‘™๐‘š โˆ’ ๐‘š2 = 0

    2๐‘™2 โˆ’ 2๐‘™๐‘š + ๐‘™๐‘š โˆ’ ๐‘š2 = 0

    2๐‘™ ๐‘™ โˆ’ ๐‘š + ๐‘š ๐‘™ โˆ’ ๐‘š = 0 โŸน ๐‘™ โˆ’ ๐‘š 2๐‘™ + ๐‘š = 0

    ๐‘™ โˆ’ ๐‘š = 0

    ๐‘œ๐‘Ÿ ๐‘™ = ๐‘š โŸน๐‘™

    1=

    ๐‘š

    1

    Putting in eq. (3)

    ๐‘› = โˆ’2๐‘™ ๐‘›

    โˆ’2=

    ๐‘™

    1

    ๐‘†๐‘œ ๐‘™

    1=

    ๐‘š

    1=

    ๐‘›

    โˆ’2 โŸน

    ๐‘™2 + ๐‘š2 + ๐‘›2

    12 + 12 + โˆ’2 2=

    1

    6

    So direction cosines of line L are

    ๐‘™1 =1

    6 , ๐‘š1 =

    1

    6 , ๐‘›1 =

    โˆ’2

    6

    2๐‘™ + ๐‘š = 0

    ๐‘œ๐‘Ÿ ๐‘š = โˆ’2๐‘™ โŸน๐‘™

    1=

    ๐‘š

    โˆ’2

    Putting in eq. (3)

    ๐‘› = ๐‘™ ๐‘™

    1=

    ๐‘›

    1

    ๐‘†๐‘œ ๐‘™

    1=

    ๐‘š

    โˆ’2=

    ๐‘›

    1 โŸน

    ๐‘™2 + ๐‘š2 + ๐‘›2

    12 + 12 + (โˆ’2)2=

    1

    6

    So direction cosines of line M are

    ๐‘™2 =1

    6 , ๐‘š2 =

    โˆ’2

    6 , ๐‘›2 =

    1

    6

    Using in equation (A)

    cos ๐œƒ = 1

    6

    1

    6 +

    1

    6

    โˆ’2

    6 +

    โˆ’2

    6

    1

    6 =

    1

    6โˆ’

    2

    6โˆ’

    2

    6 =

    1โˆ’2โˆ’2

    6= โˆ’

    3

    6 โŸน cos ๐œƒ = โˆ’

    1

    2

    โŸน ๐œƒ = cosโˆ’1 โˆ’1

    2 โŸน ๐œƒ = 60๐‘œ

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 5

    Find equations of the straight line L and M in symmetric forms. Determine whether the pairs of lines intersect.

    Find the point of intersection if it exists.

    Q#10: ๐‹ โˆถ ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐€ ๐Ÿ, ๐Ÿ, ๐Ÿ‘ , ๐ โˆ’๐Ÿ, ๐Ÿ, โˆ’๐Ÿ’ ๐Œ โˆถ ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐ ๐Ÿ“, ๐Ÿ, โˆ’๐Ÿ , ๐ ๐ŸŽ, ๐Ÿ’, ๐Ÿ‘ Solution:

    The equation of the straight line L through ๐ด 2,1,3 & ๐ต โˆ’1,2, โˆ’4

    ๐‘ฅโˆ’2

    2+1=

    ๐‘ฆโˆ’1

    1โˆ’2=

    ๐‘งโˆ’3

    3+4 โŸน

    ๐‘ฅโˆ’2

    3=

    ๐‘ฆโˆ’1

    โˆ’1=

    ๐‘งโˆ’3

    7

    The equation of the straight line M through ๐‘ƒ 5,1, โˆ’2 & ๐‘„ 0,4,3

    ๐‘ฅโˆ’5

    5โˆ’0=

    ๐‘ฆโˆ’1

    1โˆ’4=

    ๐‘ง+2

    โˆ’2โˆ’3 โŸน

    ๐‘ฅโˆ’5

    5=

    ๐‘ฆโˆ’1

    โˆ’3=

    ๐‘ง+2

    โˆ’5

    Which are the required equations in symmetric form of L & M.

    Now we write the equations of L & M in parametric forms.

    ๐ฟ๐‘’๐‘ก ๐‘ฅ โˆ’ 2

    3=

    ๐‘ฆ โˆ’ 1

    โˆ’1=

    ๐‘ง โˆ’ 3

    7 = ๐‘ก ๐‘ ๐‘Ž๐‘ฆ

    ๐‘™๐‘’๐‘ก ๐‘ฅ โˆ’ 5

    5=

    ๐‘ฆ โˆ’ 1

    โˆ’3=

    ๐‘ง + 2

    โˆ’5 = ๐‘  ๐‘ ๐‘Ž๐‘ฆ

    Now parametric equations of lines L & M are

    ๐‘ฅ โˆ’ 2

    3= ๐‘ก

    ๐‘ฆ โˆ’ 1

    โˆ’1 = ๐‘ก โŸน ๐ฟ โˆถ

    ๐‘ฅ = 2 + 3๐‘ก๐‘ฆ = 1 โˆ’ 1๐‘ก๐‘ง = 3 + 7๐‘ก

    ๐‘ง โˆ’ 3

    7 = ๐‘ก

    ๐‘ฅ โˆ’ 5

    5= ๐‘ 

    ๐‘ฆ โˆ’ 1

    โˆ’3 = ๐‘  โŸน ๐‘€ โˆถ

    ๐‘ฅ = 5 + 5๐‘ ๐‘ฆ = 1 โˆ’ 3๐‘ 

    ๐‘ง = โˆ’2 โˆ’ 5๐‘ 

    ๐‘ง + 2

    โˆ’5 = ๐‘ 

    Let the lines L & M intersect at P ๐‘ฅ, ๐‘ฆ, ๐‘ง so this point will lie on both lines L & M.

    Comparing above equations

    โŸน 2 + 3๐‘ก = 5 + 5๐‘  โŸน 3๐‘ก โˆ’ 5๐‘  = 3 ------------ (1)

    1 โˆ’ ๐‘ก = 1 โˆ’ 3๐‘  โŸน ๐‘ก โˆ’ 3๐‘  = 0 ------------ (2)

    3 + 7๐‘ก = โˆ’2 โˆ’ 5๐‘  โŸน 7๐‘ก + 5๐‘  = โˆ’5 ----------- (3)

    Now multiply eq. (2) by 3 and subtracting

    4๐‘  = 3 โŸน ๐’” =๐Ÿ‘

    ๐Ÿ’

    Put in eq. (2)

    ๐‘ก โˆ’ 3 3

    4 = 0 โŸน ๐’• =

    ๐Ÿ—

    ๐Ÿ’

    Now putting these values in equation (3) we have

    7 9

    4 + 5

    3

    4 = โˆ’5 โŸน

    63

    4+

    15

    4= โˆ’5 โŸน

    78

    4โ‰  โˆ’5

    We see that these values of t & s do not satisfy equation (3)

    Hence, given straight lines L & M do not intersect. So point of intersection doesnโ€™t exist.

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 6

    Q#11: ๐‹ โˆถ ๐ซ = ๐Ÿ‘๐ข + ๐Ÿ๐ฃ โˆ’ ๐ค + ๐ญ ๐Ÿ”๐ข โˆ’ ๐Ÿ’๐ฃ โˆ’ ๐Ÿ‘๐ค

    ๐Œ โˆถ ๐ซ = ๐Ÿ“๐ข + ๐Ÿ’๐ฃ + ๐Ÿ•๐ค + ๐ฌ ๐Ÿ๐Ÿ’๐ข โˆ’ ๐Ÿ”๐ฃ + ๐Ÿ๐ค

    Solution:

    For given straight line L

    ๐‘Ÿ = (3 + 6๐‘ก)๐‘– + 2 โˆ’ 4๐‘ก ๐‘— + (โˆ’1 โˆ’ 3๐‘ก)๐‘˜

    For given straight line M

    ๐‘Ÿ = (5 + 14๐‘ )๐‘– + 4 โˆ’ 6๐‘  ๐‘— + (โˆ’7 + 2๐‘ )๐‘˜

    Now parametric equations for line L are

    ๐‘ฅ = 3 + 6๐‘ก ๐‘ฆ = 2 โˆ’ 4๐‘ก ---------(A)

    ๐‘ง = โˆ’1 โˆ’ 3๐‘ก

    Parametric equations for given line M are

    ๐‘ฅ = 5 + 14๐‘  ๐‘ฆ = 4 โˆ’ 6๐‘  -------- (B)

    ๐‘ง = 7 + 2๐‘ 

    Now equations of straight lines L & M are in symmetric form

    ๐‘ฅ โˆ’ 3

    6=

    ๐‘ฆ โˆ’ 2

    โˆ’4=

    ๐‘ง + 1

    โˆ’3 โˆ’ โˆ’ โˆ’ โˆ’ ๐ฟ

    ๐‘ฅ โˆ’ 5

    14=

    ๐‘ฆ โˆ’ 4

    โˆ’6=

    ๐‘ง โˆ’ 7

    2 โˆ’ โˆ’ โˆ’ โˆ’ ๐‘€

    Let the lines L & M intersect at ๐‘ฅ, ๐‘ฆ, ๐‘ง so this point will lie on both lines L & M.

    Comparing equations (A) & (B)

    โŸน 3 + 6๐‘ก = 5 + 14๐‘  โŸน 6๐‘ก โˆ’ 14๐‘  = 2 โŸน 3๐‘ก โˆ’ 7๐‘  = 1 ------------- (1)

    2 โˆ’ 4๐‘ก = 4 โˆ’ 6๐‘  โŸน 4๐‘ก โˆ’ 6๐‘  = โˆ’2 ------------ (2)

    โˆ’1 โˆ’ 3๐‘ก = 7 + 2๐‘  โŸน 3๐‘ก + 2๐‘  = โˆ’8 ------------- (3)

    Subtracting eq. (1) & (3)

    โˆ’9๐‘  = 9 โŸน ๐’” = โˆ’๐Ÿ

    Putting value of s in equation (1)

    3๐‘ก โˆ’ 7 โˆ’1 = 1 โŸน 3๐‘ก = 1 โˆ’ 7 โŸน 3๐‘ก = โˆ’6 โŸน ๐’• = โˆ’๐Ÿ

    Now putting values of s & t in equation (2)

    4 โˆ’2 โˆ’ 6 โˆ’1 = โˆ’2 โŸน โˆ’8 + 6 = โˆ’2 โŸน โˆ’2 = โˆ’2

    We see that these values of s & t satisfy equation (2)

    Hence given straight lines L & M intersect.

    For point of intersection we put ๐‘  = โˆ’1 in equation (B)

    Hence point of intersection of given straight line is ๐‘ฅ, ๐‘ฆ, ๐‘ง = โˆ’9,10,5 .

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 7

    Q#12: ๐‹ โˆถ ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐€ ๐Ÿ, โˆ’๐Ÿ, ๐ŸŽ and parallel to๐› = ๐Ÿ’, ๐Ÿ‘, ๐Ÿ ๐Œ โˆถ ๐ญ๐ก๐ซ๐จ๐ฎ๐ ๐ก ๐ โˆ’๐Ÿ, ๐Ÿ‘, ๐Ÿ“ and parallel to๐œ = ๐Ÿ, ๐Ÿ•, ๐Ÿ‘ Solution:

    Symmetric form of given straight line L through the point ๐ด 2, โˆ’1,0 and parallel to ๐‘ = 4,3, โˆ’2

    ๐‘ฅโˆ’2

    4=

    ๐‘ฆ+1

    3=

    ๐‘งโˆ’0

    2

    ๐‘™๐‘’๐‘ก ๐‘ฅโˆ’2

    4=

    ๐‘ฆ+1

    3=

    ๐‘ง

    โˆ’2 = ๐‘ก

    Symmetric form of given straight line M through

    the point ๐‘ƒ โˆ’1,3,5 and parallel to ๐‘ = 1,7,3 .

    ๐‘ฅ + 1

    1=

    ๐‘ฆ โˆ’ 3

    7=

    ๐‘ง โˆ’ 5

    3

    ๐‘™๐‘’๐‘ก ๐‘ฅ + 1

    1=

    ๐‘ฆ โˆ’ 3

    7=

    ๐‘ง โˆ’ 5

    3 = ๐‘ 

    Now parametric equations of lines L & M are

    ๐‘“๐‘œ๐‘Ÿ ๐‘™๐‘–๐‘›๐‘’ ๐ฟ ๐‘ฅ โˆ’ 2

    4= ๐‘ก โŸน ๐‘ฅ = 2 + 4๐‘ก

    ๐‘ฆ+1

    3= ๐‘ก โŸน ๐‘ฆ = โˆ’1 + 3๐‘ก

    ๐‘ง

    โˆ’2 = ๐‘ก โŸน ๐‘ง = 0 โˆ’ 2๐‘ก

    ๐‘“๐‘œ๐‘Ÿ ๐‘™๐‘–๐‘›๐‘’ ๐‘€ ๐‘ฅ + 1

    1= ๐‘  โŸน ๐‘ฅ = โˆ’1 + 1๐‘ 

    ๐‘ฆโˆ’3

    7= ๐‘  โŸน ๐‘ฆ = 3 + 7๐‘ 

    ๐‘งโˆ’5

    3= ๐‘  โŸน ๐‘ง = 5 + 3๐‘ 

    NOW DO YOURSELF AS ABOVE

    Find the distance of the given point P from the given line L.

    Q#13: ๐ = ๐Ÿ‘, โˆ’๐Ÿ, ๐Ÿ , ๐‹ โˆถ ๐ฑ = ๐Ÿ + ๐ญ๐ฒ = ๐Ÿ‘ โˆ’ ๐Ÿ๐ญ

    ๐ณ = โˆ’๐Ÿ + ๐Ÿ๐ญ

    Solution: Given point and given line are

    ๐‘ƒ = 3, โˆ’2,1 , ๐ฟ โˆถ ๐‘ฅ = 1 + ๐‘ก๐‘ฆ = 3 โˆ’ 2๐‘ก

    ๐‘ง = โˆ’2 + 2๐‘ก

    A point on the line L is ๐ด = (1,3, โˆ’2)

    Now ๐ด๐‘ƒ = ๐‘ƒ 3, โˆ’2,1 โˆ’ ๐ด 1,3, โˆ’2 = 3 โˆ’ 1, โˆ’2 โˆ’ 3,1 + 2

    ๐ด๐‘ƒ = 2๐‘– โˆ’ 5๐‘— + 3๐‘˜

    Now direction vector of the given line L is ๐‘ = 1๐‘– โˆ’ 2๐‘— + 2๐‘˜

    Let d be the required distance of a point from a line L then by using formula

    ๐‘‘ = ๐ด๐‘ƒ ร—๐‘

    ๐‘ โˆ’ โˆ’ โˆ’ โˆ’ ๐ด

    โˆด ๐ด๐‘ƒ ร— ๐‘ = ๐‘– ๐‘— ๐‘˜

    2 โˆ’5 31 โˆ’2 2

    = โˆ’10 + 6 ๐‘– โˆ’ 4 โˆ’ 3 ๐‘— + โˆ’4 + 5 ๐‘˜ โŸน ๐ด๐‘ƒ ร— ๐‘ = โˆ’4๐‘– โˆ’ ๐‘— + ๐‘˜

    ๐ด๐‘ƒ ร— ๐‘ = โˆ’4 2 + โˆ’1 2 + 12 = 16 + 1 + 1 = 18 & ๐‘ = 12 + โˆ’2 2 + 22 = 1 + 4 + 4 = 9 = 3

    Putting in equation (A) ๐‘‘ = 18

    3 ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 8

    ๐#๐Ÿ๐Ÿ’: ๐ = ๐ŸŽ, โˆ’๐Ÿ, ๐Ÿ , ๐‹ โˆถ ๐ฑ โˆ’ ๐Ÿ

    ๐Ÿ’=

    ๐ฒ + ๐Ÿ‘

    โˆ’๐Ÿ=

    ๐ณ + ๐Ÿ

    ๐Ÿ“

    Solution: A point on the line L is ๐ด = (1, โˆ’3, โˆ’1)

    ๐ด๐‘ƒ = ๐‘ƒ 0, โˆ’2,1 โˆ’ ๐ด 1, โˆ’3, โˆ’1 = 0 โˆ’ 1, โˆ’2 + 3,1 + 1

    ๐ด๐‘ƒ = โˆ’๐‘– + ๐‘— + 2๐‘˜

    Now direction vector of the given line L is ๐‘ = 4๐‘– โˆ’ 2๐‘— + 5๐‘˜

    DO YOURSELF AS ABOVE

    Q#15: If the edges of a rectangular parallelepiped are ๐š, ๐›, ๐œ; show that the angles between the four diagonals are given by

    ๐š๐ซ๐œ๐œ๐จ๐ฌ ยฑ๐š๐Ÿ ยฑ ๐›๐Ÿ ยฑ ๐œ๐Ÿ

    ๐š๐Ÿ + ๐›๐Ÿ + ๐œ๐Ÿ

    Solution:

    Consider a parallelepiped as shown in the figure.

    Here the lengths of the edges OA, OB & OC are a, b, c respectively.

    The coordinates of the vertices of parallelepiped are

    ๐‘‚ = 0,0,0 , ๐‘‚โ€ฒ = ๐‘Ž, ๐‘, ๐‘ , ๐ด = ๐‘Ž, 0,0 , ๐ดโ€ฒ = 0, ๐‘, ๐‘

    ๐ต = 0, ๐‘, 0 , ๐ตโ€ฒ = ๐‘Ž, 0, ๐‘ , ๐ถ = 0,0, ๐‘ , ๐ถโ€ฒ = ๐‘Ž, ๐‘, 0

    The four diagonals of given parallelepiped are

    ๐‘‚๐‘‚โ€ฒ , ๐ด๐ดโ€ฒ , ๐ต๐ตโ€ฒ , ๐ถ๐ถ โ€ฒ

    Now

    ๐‘‚๐‘‚โ€ฒ = ๐‘Ž๐‘– + ๐‘๐‘— + ๐‘๐‘˜

    ๐ด๐ดโ€ฒ = โˆ’๐‘Ž๐‘– + ๐‘๐‘— + ๐‘๐‘˜

    ๐ต๐ตโ€ฒ = ๐‘Ž๐‘– โˆ’ ๐‘๐‘— + ๐‘๐‘˜

    ๐ถ๐ถ โ€ฒ = ๐‘Ž๐‘– + ๐‘๐‘— โˆ’ ๐‘๐‘˜

    So direction cosines of

    ๐‘‚๐‘‚โ€ฒ โŸน ๐‘™1 =๐‘Ž

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘š1 =

    ๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘›1 =

    ๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2

    ๐ด๐ดโ€ฒ โŸน ๐‘™2 =โˆ’๐‘Ž

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘š2 =

    ๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘›2 =

    ๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2

    ๐ต๐ตโ€ฒ โŸน ๐‘™3 =๐‘Ž

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘š3 =

    โˆ’๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘›3 =

    ๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2

    ๐ถ๐ถ โ€ฒ โŸน ๐‘™4 =๐‘Ž

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘š4 =

    ๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2 , ๐‘›4 =

    โˆ’๐‘

    ๐‘Ž2 + ๐‘2 + ๐‘2

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 9

    Let ๐›ผ be the angle between ๐‘‚๐‘‚โ€ฒ ๐‘Ž๐‘›๐‘‘ ๐ด๐ดโ€ฒ

    cos ๐›ผ = ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2

    = ๐‘Ž

    ๐‘Ž2+๐‘2+๐‘2

    โˆ’๐‘Ž

    ๐‘Ž2+๐‘2+๐‘2 +

    ๐‘

    ๐‘Ž2+๐‘2+๐‘2

    ๐‘

    ๐‘Ž2+๐‘2+๐‘2 +

    ๐‘

    ๐‘Ž2+๐‘2+๐‘2

    ๐‘

    ๐‘Ž2+๐‘2+๐‘2

    cos ๐›ผ =โˆ’๐‘Ž2+๐‘2+๐‘2

    ๐‘Ž2+๐‘2+๐‘2 โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ (1)

    Let ๐›ฝ be the angle between ๐ด๐ดโ€ฒ ๐‘Ž๐‘›๐‘‘ ๐ต๐ตโ€ฒ

    cos ๐›ฝ = ๐‘™2๐‘™3 + ๐‘š2๐‘š3 + ๐‘›2๐‘›3

    ๐‘๐‘œ๐‘ ๐›ฝ =โˆ’๐‘Ž2 โˆ’ ๐‘2 + ๐‘2

    ๐‘Ž2 + ๐‘2 + ๐‘2 โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ (2)

    Let ๐›พ be the angle between ๐ต๐ตโ€ฒ ๐‘Ž๐‘›๐‘‘ ๐ถ๐ถ โ€ฒ

    cos ๐›พ = ๐‘™3๐‘™4 + ๐‘š3๐‘š4 + ๐‘›3๐‘›4

    cos ๐›พ =๐‘Ž2 โˆ’ ๐‘2 โˆ’ ๐‘2

    ๐‘Ž2 + ๐‘2 + ๐‘2 โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’(3)

    Let ๐œƒ be the angle between ๐‘‚๐‘‚โ€ฒ ๐‘Ž๐‘›๐‘‘ ๐ถ๐ถ โ€ฒ

    cos ๐œƒ = ๐‘™1๐‘™4 + ๐‘š1๐‘š4 + ๐‘›1๐‘›4

    cos ๐œƒ =๐‘Ž2 + ๐‘2 โˆ’ ๐‘2

    ๐‘Ž2 + ๐‘2 + ๐‘2 โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ (4)

    From (1),(2),(3) & (4) we see that the angles between four diagonals are

    cos ๐‘Ž๐‘›๐‘”๐‘™๐‘’ =ยฑ๐‘Ž2ยฑ๐‘2ยฑ๐‘2

    ๐‘Ž2+๐‘2+๐‘2 โŸน ๐‘Ž๐‘›๐‘”๐‘™๐‘’ = cosโˆ’1

    ยฑ๐‘Ž2ยฑ๐‘2ยฑ๐‘2

    ๐‘Ž2+๐‘2+๐‘2 ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’๐‘‘.

    Q#16: A straight line makes angles of measure ๐›‚, ๐›ƒ, ๐›„, ๐›… with the four diagonals of a cube. Prove that

    ๐œ๐จ๐ฌ๐Ÿ๐›‚ + ๐œ๐จ๐ฌ๐Ÿ๐›ƒ + ๐œ๐จ๐ฌ๐Ÿ๐›„ + ๐œ๐จ๐ฌ๐Ÿ๐›… =๐Ÿ’

    ๐Ÿ‘

    Solution:

    Let โ€˜โ€™๐‘Žโ€™โ€™ be the length of each side of a cube

    Points of the each corner of the cube are

    ๐‘‚ = 0,0,0 , ๐‘ƒ = ๐‘Ž, ๐‘Ž, ๐‘Ž , ๐ด = ๐‘Ž, 0,0 , ๐ต = 0, ๐‘Ž, 0 , ๐ถ =(0,0, ๐‘Ž)

    ๐ดโ€ฒ = 0, ๐‘Ž, ๐‘Ž , ๐ตโ€ฒ = ๐‘Ž, 0, ๐‘Ž , ๐ถโ€ฒ = ๐‘Ž, ๐‘Ž, 0

    Now ๐‘‚๐‘ƒ , ๐ด๐ดโ€ฒ , ๐ต๐ตโ€ฒ , ๐ถ๐ถ โ€ฒ are the diagonals of a cube

    ๐‘‚๐‘ƒ = ๐‘Ž, ๐‘Ž, ๐‘Ž โˆ’ 0,0,0 = ๐‘Ž๐‘– + ๐‘Ž๐‘— + ๐‘Ž๐‘˜

    ๐ด๐ดโ€ฒ = 0, ๐‘Ž, ๐‘Ž โˆ’ ๐‘Ž, 0,0 = โˆ’๐‘Ž๐‘– + ๐‘Ž๐‘— + ๐‘Ž๐‘˜

    ๐ต๐ตโ€ฒ = ๐‘Ž, 0, ๐‘Ž โˆ’ 0, ๐‘Ž, 0 = ๐‘Ž๐‘– โˆ’ ๐‘Ž๐‘— + ๐‘Ž๐‘˜

    ๐ถ๐ถ โ€ฒ = ๐‘Ž, ๐‘Ž, 0 โˆ’ 0,0, ๐‘Ž = ๐‘Ž๐‘– + ๐‘Ž๐‘— โˆ’ ๐‘Ž๐‘˜

    Length of each diagonal is ๐‘Ž2 + ๐‘Ž2 + ๐‘Ž2 = 3๐‘Ž2 = 3๐‘Ž

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 10

    Now direction cosines of each diagonals are

    ๐‘‚๐‘ƒ โŸน ๐‘™1 =๐‘Ž

    3๐‘Ž , ๐‘š1 =

    ๐‘Ž

    3๐‘Ž , ๐‘›1 =

    ๐‘Ž

    3๐‘Ž

    ๐‘‚๐‘ƒ โŸน ๐‘™1 =1

    3 , ๐‘š1 =

    1

    3 , ๐‘›1 =

    1

    3

    ๐ด๐ดโ€ฒ โŸน ๐‘™2 =โˆ’1

    3 , ๐‘š2 =

    1

    3 , ๐‘›2 =

    1

    3

    ๐ต๐ตโ€ฒ โŸน ๐‘™3 =1

    3 , ๐‘š3 =

    โˆ’1

    3 , ๐‘›3 =

    1

    3

    ๐ถ๐ถ โ€ฒ โŸน ๐‘™4 =1

    3 , ๐‘š4 =

    1

    3 , ๐‘›4 =

    โˆ’1

    3

    Let ๐‘™, ๐‘š, ๐‘› be the direction cosines of line L which makes angles ๐›ผ, ๐›ฝ, ๐›พ & ๐›ฟ with each diagonals

    ๐›ผ is the angle between line L and ๐‘‚๐‘ƒ

    cos ๐›ผ = ๐‘™๐‘™1 + ๐‘š๐‘š1 + ๐‘›๐‘›1 = ๐‘™ 1

    3 + ๐‘š

    1

    3 + ๐‘›

    1

    3 =

    ๐‘™ + ๐‘š + ๐‘›

    3 โˆ’ โˆ’ โˆ’ (1)

    ๐›ฝ is the angle between line L and ๐ด๐ดโ€ฒ

    cos ๐›ฝ = ๐‘™๐‘™2 + ๐‘š๐‘š2 + ๐‘›๐‘›2 = ๐‘™ โˆ’1

    3 + ๐‘š

    1

    3 + ๐‘›

    1

    3 =

    โˆ’๐‘™ + ๐‘š + ๐‘›

    3 โˆ’ โˆ’ โˆ’ (2)

    ๐›พ is the angle between line L and ๐ต๐ตโ€ฒ

    cos ๐›พ = ๐‘™๐‘™3 + ๐‘š๐‘š3 + ๐‘›๐‘›3 = ๐‘™ 1

    3 + ๐‘š

    โˆ’1

    3 + ๐‘›

    1

    3 =

    ๐‘™ โˆ’ ๐‘š + ๐‘›

    3 โˆ’ โˆ’ โˆ’ (3)

    ๐›ฟ is the angle between line L and ๐ถ๐ถ โ€ฒ

    cos ๐›ฟ = ๐‘™๐‘™4 + ๐‘š๐‘š4 + ๐‘›๐‘›4 = ๐‘™ 1

    3 + ๐‘š

    1

    3 + ๐‘›

    โˆ’1

    3 =

    ๐‘™ + ๐‘š โˆ’ ๐‘›

    3 โˆ’ โˆ’ โˆ’ (4)

    Squaring eq. (1),(2),(3) & (4) and adding

    ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ฝ + ๐‘๐‘œ๐‘ 2๐›พ + ๐‘๐‘œ๐‘ 2๐›ฟ = ๐‘™ + ๐‘š + ๐‘›

    3

    2

    + โˆ’๐‘™ + ๐‘š + ๐‘›

    3

    2

    + ๐‘™ โˆ’ ๐‘š + ๐‘›

    3

    2

    + ๐‘™ + ๐‘š โˆ’ ๐‘›

    3

    2

    =๐‘™2+๐‘š2+๐‘›2+2๐‘™๐‘š +2๐‘š๐‘› +2๐‘›๐‘™

    3+

    ๐‘™2+๐‘š2+๐‘›2โˆ’2๐‘™๐‘š +2๐‘š๐‘›โˆ’2๐‘›๐‘™

    3

    +๐‘™2+๐‘š2+๐‘›2โˆ’2๐‘™๐‘šโˆ’2๐‘š๐‘› +2๐‘›๐‘™

    3+

    ๐‘™2+๐‘š2+๐‘›2+2๐‘™๐‘šโˆ’2๐‘š๐‘› โˆ’2๐‘›๐‘™

    3

    ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ฝ + ๐‘๐‘œ๐‘ 2๐›พ + ๐‘๐‘œ๐‘ 2๐›ฟ =4๐‘™2 + 4๐‘š2 + 4๐‘›2

    3=

    4 ๐‘™2 + ๐‘š2 + ๐‘›2

    3

    ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ฝ + ๐‘๐‘œ๐‘ 2๐›พ + ๐‘๐‘œ๐‘ 2๐›ฟ =4

    3 ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’๐‘‘

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 11

    Q#17: Find equations of the straight line passing through the point ๐(๐ŸŽ, โˆ’๐Ÿ‘, ๐Ÿ) and parallel to the straight line joining the points ๐€(๐Ÿ‘, ๐Ÿ’, ๐Ÿ•) and ๐(๐Ÿ, ๐Ÿ•, ๐Ÿ“). Solution: Consider two lines ๐ฟ1 & ๐ฟ2

    Let ๐ฟ1 be the required equation of the straight line passing through the point ๐‘ƒ 0, โˆ’3,2

    The points ๐ด(3,4,7) and ๐ต(2,7,5) on line ๐ฟ2. So direction ratios from ๐ด(3,4,7) to ๐ต(2,7,5) are

    ๐ด๐ต = 2,7,5 โˆ’ 3,4,7 = โˆ’๐‘– + 3๐‘— โˆ’ 2๐‘˜

    Then โˆ’1,3, โˆ’2 are direction ratios of line ๐ฟ2.

    By given condition both lines are parallel so both lines having same direction ratios.

    Now required equation through the point ๐‘ƒ 0, โˆ’3,2

    ๐‘ฅ โˆ’ 0

    โˆ’1=

    ๐‘ฆ + 3

    3=

    ๐‘ง โˆ’ 2

    โˆ’2 โŸน

    ๐‘ฅ

    1=

    ๐‘ฆ + 3

    โˆ’3=

    ๐‘ง โˆ’ 2

    2 ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›.

    Q#18: Find equations of the straight line passing through the point ๐(๐Ÿ, ๐ŸŽ, โˆ’๐Ÿ) and perpendicular to each of straight lines

    ๐ฑ โˆ’ ๐Ÿ‘

    ๐Ÿ=

    ๐ฒ

    ๐Ÿ=

    ๐ณ + ๐Ÿ

    ๐Ÿ ๐š๐ง๐

    ๐ฑ

    ๐Ÿ‘=

    ๐ฒ + ๐Ÿ

    โˆ’๐Ÿ=

    ๐ณ + ๐Ÿ

    ๐Ÿ

    Solution:

    Given equations of lines are

    ๐‘ฅ โˆ’ 3

    2=

    ๐‘ฆ

    2=

    ๐‘ง + 1

    2 โˆ’ โˆ’ โˆ’ โˆ’(๐ฟ1)

    ๐‘ฅ

    3=

    ๐‘ฆ + 1

    โˆ’1=

    ๐‘ง + 2

    2 โˆ’ โˆ’ โˆ’ โˆ’ ๐ฟ2

    Direction ratios of line ๐ฟ1 are 2,2,2 โŸน ๐‘‘ 1 = 2๐‘– + 2๐‘— + 2๐‘˜

    Direction ratios of line ๐ฟ2 are 3, โˆ’1,2 โŸน ๐‘‘ 2 = 3๐‘– โˆ’ ๐‘— + 2๐‘˜

    Suppose L be the required line through the point ๐‘ƒ(2,0, โˆ’2) with

    direction ratios ๐‘1 , ๐‘2 , ๐‘3 โŸน ๐‘‘ 3 = ๐‘1๐‘– + ๐‘2๐‘— + ๐‘3๐‘˜

    Since ๐ฟ โŠฅ ๐ฟ1

    So by condition of perpendicularity

    ๐‘‘ 1 . ๐‘‘ 3 = 0 โŸน 2๐‘– + 2๐‘— + 2๐‘˜ . ๐‘1๐‘– + ๐‘2๐‘— + ๐‘3๐‘˜ = 0

    2๐‘1 + 2๐‘2 + 2๐‘3 = 0 --------------- (1)

    ๐‘‘ 2 . ๐‘‘ 3 = 0 โŸน 3๐‘– โˆ’ ๐‘— + 2๐‘˜ . ๐‘1๐‘– + ๐‘2๐‘— + ๐‘3๐‘˜ = 0

    3๐‘1 โˆ’ ๐‘2 โˆ’ 2๐‘3 = 0 -------------- (2)

    Now

    ๐‘1

    2 2

    โˆ’1 2

    =โˆ’๐‘2

    2 23 2

    =

    ๐‘3

    2 23 โˆ’1

    โŸน

    ๐‘1

    6=

    โˆ’๐‘2

    โˆ’2=

    ๐‘3

    โˆ’8 โŸน

    ๐‘1

    3=

    ๐‘2

    1=

    ๐‘3

    โˆ’4

    Hence (3,1, โˆ’4) be the direction ratios of required line L

    Now equation of required line L passing through the point ๐‘ƒ 2,0, โˆ’2 is ๐‘ฅโˆ’2

    3=

    ๐‘ฆโˆ’0

    1=

    ๐‘ง+2

    โˆ’4

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 12

    Find equations of straight line through the given point A and intersecting at right angles the given straight line:

    Q#19: ๐€ = ๐Ÿ๐Ÿ, ๐Ÿ’, โˆ’๐Ÿ” ๐š๐ง๐ ๐ฑ = ๐Ÿ’ โˆ’ ๐ญ, ๐ฒ = ๐Ÿ• + ๐Ÿ๐ญ, ๐ณ = โˆ’๐Ÿ +t.

    Solution: Let L be the required line passing through ๐ด = 11,4, โˆ’6 and perpendicular to given line.

    Suppose it meets the given line at point B.

    Now a point on given line is B 4 โˆ’ ๐‘ก, 7 + 2๐‘ก, โˆ’1 + ๐‘ก

    ๐ด๐ต = 4 โˆ’ ๐‘ก โˆ’ 11 ๐‘– + 7 + 2๐‘ก โˆ’ 4 ๐‘— + โˆ’1 + ๐‘ก + 6 ๐‘˜

    ๐ด๐ต = โˆ’๐‘ก โˆ’ 7 ๐‘– + 2๐‘ก + 3 ๐‘— + ๐‘ก + 5 ๐‘˜

    Hence direction vector of the given straight line is ๐‘‘ = โˆ’๐‘– + 2๐‘— + ๐‘˜

    Since ๐ด๐ต is perpendicular to given line.

    By perpendicular condition

    ๐ด๐ต โŠฅ ๐‘‘ = 0 โŸน ๐ด๐ต . ๐‘‘ = 0

    โˆ’๐‘ก โˆ’ 7 ๐‘– + 2๐‘ก + 3 ๐‘— + ๐‘ก + 5 ๐‘˜ . โˆ’๐‘– + 2๐‘— + ๐‘˜ = 0

    โˆ’1 โˆ’๐‘ก โˆ’ 7 + 2 2๐‘ก + 3 + 1 ๐‘ก + 5 = 0 โŸน 7 + ๐‘ก + 4๐‘ก + 6 + ๐‘ก + 5 = 0 โŸน ๐’• = โˆ’๐Ÿ‘

    Direction vector of required line will become

    ๐ด๐ต = โˆ’(โˆ’3) โˆ’ 7 ๐‘– + 2(โˆ’3) + 3 ๐‘— + โˆ’3 + 5 ๐‘˜ โŸน ๐ด๐ต = โˆ’4๐‘– โˆ’ 3๐‘— + 2๐‘˜

    Now required equation passing through the point ๐ด = 11,4, โˆ’6 having direction ratios โˆ’4, โˆ’3,2

    ๐‘ฅโˆ’11

    โˆ’4=

    ๐‘ฆโˆ’4

    โˆ’3=

    ๐‘ง+6

    2 OR

    ๐‘ฅโˆ’11

    4=

    ๐‘ฆโˆ’4

    3=

    ๐‘ง+6

    โˆ’2

    ๐#๐Ÿ๐ŸŽ: ๐€ = ๐Ÿ“, โˆ’๐Ÿ’, ๐Ÿ’ ๐š๐ง๐ ๐ฑ

    โˆ’๐Ÿ=

    ๐ฒ โˆ’ ๐Ÿ

    ๐Ÿ=

    ๐ณ

    โˆ’๐Ÿ

    Solution: Given point and line are ๐ด = 5, โˆ’4,4 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ

    โˆ’1=

    ๐‘ฆโˆ’1

    1=

    ๐‘ง

    โˆ’2 = ๐‘ก ๐‘ ๐‘Ž๐‘ฆ

    The parametric equations of given line are ๐‘ฅ = โˆ’๐‘ก, ๐‘ฆ = 1 + ๐‘ก , ๐‘ง = โˆ’2๐‘ก

    DO YOURSELF AS ABOVE

    Q#21: Find the length of the perpendicular from the point ๐(๐ฑ๐Ÿ, ๐ฒ๐Ÿ, ๐ณ๐Ÿ) to the straight line ๐ฑ โˆ’ ๐›‚

    ๐ฅ=

    ๐ฒ โˆ’ ๐›ƒ

    ๐ฆ=

    ๐ณ โˆ’ ๐›„

    ๐ง , ๐ฐ๐ก๐ž๐ซ๐ž ๐ฅ๐Ÿ + ๐ฆ๐Ÿ + ๐ง๐Ÿ = ๐Ÿ

    Solution: Given point and line are

    ๐‘ƒ ๐‘ฅ1 , ๐‘ฆ1 , ๐‘ง1 & ๐‘ฅโˆ’๐›ผ

    ๐‘™=

    ๐‘ฆโˆ’๐›ฝ

    ๐‘š=

    ๐‘งโˆ’๐›พ

    ๐‘›

    Hence ๐ด = (๐›ผ, ๐›ฝ, ๐›พ) is a point of given line

    Direction vector of given line is ๐‘ = ๐‘™๐‘– + ๐‘š๐‘— + ๐‘›๐‘˜

    Now ๐ด๐‘ƒ = ๐‘ฅ1 โˆ’ ๐›ผ ๐‘– + ๐‘ฆ1 โˆ’ ๐›ฝ ๐‘— + ๐‘ง1 โˆ’ ๐›พ ๐‘˜

    Let d be the required distance then by using formula

    ๐‘‘ = ๐ด๐‘ƒ ร—๐‘

    ๐‘ โˆ’ โˆ’ โˆ’ โˆ’ ๐ด

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 13

    โˆด ๐ด๐‘ƒ ร— ๐‘ = ๐‘– ๐‘— ๐‘˜

    ๐‘ฅ1 โˆ’ ๐›ผ ๐‘ฆ1 โˆ’ ๐›ฝ ๐‘ง1 โˆ’ ๐›พ๐‘™ ๐‘š ๐‘›

    = ๐‘› ๐‘ฆ1 โˆ’ ๐›ฝ โˆ’ ๐‘š ๐‘ง1 โˆ’ ๐›พ ๐‘– โˆ’ ๐‘› ๐‘ฅ1 โˆ’ ๐›ผ โˆ’ ๐‘™ ๐‘ง1 โˆ’ ๐›พ ๐‘— + ๐‘š ๐‘ฅ1 โˆ’ ๐›ผ โˆ’ ๐‘™ ๐‘ฆ1 โˆ’ ๐›ฝ ๐‘˜

    ๐ด๐‘ƒ ร— ๐‘ = ๐‘› ๐‘ฆ1 โˆ’ ๐›ฝ โˆ’ ๐‘š ๐‘ง1 โˆ’ ๐›พ ๐‘– + ๐‘™ ๐‘ง1 โˆ’ ๐›พ โˆ’ ๐‘› ๐‘ฅ1 โˆ’ ๐›ผ ๐‘— + ๐‘š ๐‘ฅ1 โˆ’ ๐›ผ โˆ’ ๐‘™ ๐‘ฆ1 โˆ’ ๐›ฝ ๐‘˜

    ๐ด๐‘ƒ ร— ๐‘ = ๐‘› ๐‘ฆ1 โˆ’ ๐›ฝ โˆ’ ๐‘š ๐‘ง1 โˆ’ ๐›พ 2 + ๐‘™ ๐‘ง1 โˆ’ ๐›พ โˆ’ ๐‘› ๐‘ฅ1 โˆ’ ๐›ผ

    2 + ๐‘š ๐‘ฅ1 โˆ’ ๐›ผ โˆ’ ๐‘™ ๐‘ฆ1 โˆ’ ๐›ฝ 2

    ๐ด๐‘ƒ ร— ๐‘ = ๐‘› ๐‘ฆ1 โˆ’ ๐›ฝ โˆ’ ๐‘š ๐‘ง1 โˆ’ ๐›พ 2 & ๐‘ = ๐‘™2 + ๐‘š2 + ๐‘›2 = 1 = 1

    Putting in equation (A)

    ๐‘‘ = ๐‘› ๐‘ฆ1 โˆ’ ๐›ฝ โˆ’ ๐‘š ๐‘ง1 โˆ’ ๐›พ

    2

    1 โŸน ๐‘‘ = ๐‘› ๐‘ฆ1 โˆ’ ๐›ฝ โˆ’ ๐‘š ๐‘ง1 โˆ’ ๐›พ

    2 ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘‘๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’

    Q#22: Find equations of the perpendicular from the point ๐(๐Ÿ, ๐Ÿ”, ๐Ÿ‘) to the straight line ๐ฑ

    ๐Ÿ=

    ๐ฒ โˆ’ ๐Ÿ

    ๐Ÿ=

    ๐ณ โˆ’ ๐Ÿ

    ๐Ÿ‘

    Also obtain its length and coordinates of the foot of the perpendicular.

    Solution:

    Given point ๐‘ƒ(1,6,3) and equation of straight line is

    ๐‘ฅ

    1=

    ๐‘ฆ โˆ’1

    2=

    ๐‘ง โˆ’2

    3

    Let ๐ด๐‘ƒ be the length of perpendicular from point A to given line

    ๐‘ฅ

    1=

    ๐‘ฆโˆ’1

    2=

    ๐‘งโˆ’2

    3 = ๐‘ก

    So parametric equations of given line are

    ๐‘ฅ = ๐‘ก

    ๐‘ฆ = 1 + 2๐‘ก ๐‘ง = 2 + 3๐‘ก

    Any point on this line is ๐‘ก, 1 + 2๐‘ก, 2 + 3๐‘ก

    So coordinates of point P are ๐‘ƒ ๐‘ก, 1 + 2๐‘ก, 2 + 3๐‘ก

    Direction ratios of line ๐ด๐‘ƒ are = ๐‘ก, 1 + 2๐‘ก, 2 + 3๐‘ก โˆ’ 1,6,3

    ๐ด๐‘ƒ = ๐‘ก โˆ’ 1 ๐‘– + 2๐‘ก โˆ’ 5 ๐‘— + 3๐‘ก โˆ’ 1 ๐‘˜

    & direction vector of given line is ๐‘‘ = ๐‘– + 2๐‘— + 3๐‘˜

    ๐‘†๐‘–๐‘›๐‘๐‘’ ๐ด๐‘ƒ โŠฅ ๐‘‘ โŸน ๐ด๐‘ƒ . ๐‘‘ = 0

    ๐‘ก โˆ’ 1 ๐‘– + 2๐‘ก โˆ’ 5 ๐‘— + 3๐‘ก โˆ’ 1 ๐‘˜ . ๐‘– + 2๐‘— + 3๐‘˜ = 0

    1 ๐‘ก โˆ’ 1 + 2 2๐‘ก โˆ’ 5 + 3 3๐‘ก โˆ’ 1 = 0 โŸน 14๐‘ก โˆ’ 14 = 0 โŸน ๐’• = ๐Ÿ

    So coordinates of point P are ๐‘ƒ 1,3,5

    Length of perpendicular = ๐ด๐‘ƒ = 1 โˆ’ 1 2 + 3 โˆ’ 1 2 + 5 โˆ’ 3 2 = 0 + 9 + 4 = 13

    Now equation of perpendicular ๐ด๐‘ƒ is

    ๐‘ฅโˆ’1

    1โˆ’1=

    ๐‘ฆโˆ’6

    3โˆ’6=

    ๐‘งโˆ’3

    5โˆ’3 โŸน

    ๐‘ฅโˆ’1

    0=

    ๐‘ฆโˆ’6

    โˆ’3=

    ๐‘งโˆ’3

    2 ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘™๐‘–๐‘›๐‘’

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 14

    Q#23: Find necessary and sufficient condition that the point ๐ ๐ฑ๐Ÿ, ๐ฒ๐Ÿ, ๐ณ๐Ÿ , ๐(๐ฑ๐Ÿ, ๐ฒ๐Ÿ, ๐ณ๐Ÿ) and ๐‘(๐ฑ๐Ÿ‘, ๐ฒ๐Ÿ‘, ๐ณ๐Ÿ‘) are collinear.

    Solution: Given points are ๐‘ƒ ๐‘ฅ1 , ๐‘ฆ1 , ๐‘ง1 , ๐‘„(๐‘ฅ2 , ๐‘ฆ2 , ๐‘ง2) & ๐‘…(๐‘ฅ3 , ๐‘ฆ3 , ๐‘ง3)

    Suppose that the points P,Q &R are collinear.

    Now equation of line through ๐‘ƒ ๐‘ฅ1 , ๐‘ฆ1 , ๐‘ง1 & ๐‘„ ๐‘ฅ2 , ๐‘ฆ2 , ๐‘ง2 ๐‘–๐‘  ๐‘ฅโˆ’๐‘ฅ1

    ๐‘ฅ2โˆ’๐‘ฅ1=

    ๐‘ฆโˆ’๐‘ฆ1

    ๐‘ฆ2โˆ’๐‘ฆ1=

    ๐‘งโˆ’๐‘ง1

    ๐‘ง2โˆ’๐‘ง1

    Since points P,Q &R are collinear. So point ๐‘…(๐‘ฅ3 , ๐‘ฆ3 , ๐‘ง3) lies on line.

    ๐‘ฅ3โˆ’๐‘ฅ1

    ๐‘ฅ2โˆ’๐‘ฅ1=

    ๐‘ฆ3โˆ’๐‘ฆ1

    ๐‘ฆ2โˆ’๐‘ฆ1=

    ๐‘ง3โˆ’๐‘ง1

    ๐‘ง2โˆ’๐‘ง1 = ๐‘ก ๐‘ ๐‘Ž๐‘ฆ

    ๐‘ฅ3 โˆ’ ๐‘ฅ1 = ๐‘ก ๐‘ฅ2 โˆ’ ๐‘ฅ1

    โŸน ๐‘ฆ3 โˆ’ ๐‘ฆ1 = ๐‘ก ๐‘ฆ2 โˆ’ ๐‘ฆ1

    ๐‘ง3 โˆ’ ๐‘ง1 = ๐‘ก ๐‘ง2 โˆ’ ๐‘ง1 ๐‘œ๐‘Ÿ

    ๐‘ฅ3 โˆ’ ๐‘ฅ1 โˆ’ ๐‘ก๐‘ฅ2 + ๐‘ก๐‘ฅ1 = 0๐‘ฆ3 โˆ’ ๐‘ฆ1 โˆ’ ๐‘ก๐‘ฆ2 + ๐‘ก๐‘ฆ1 = 0๐‘ง3 โˆ’ ๐‘ง1 โˆ’ ๐‘ก๐‘ง2 + ๐‘ก๐‘ง1 = 0

    โŸน ๐‘ก โˆ’ 1 ๐‘ฅ1 โˆ’ ๐‘ก๐‘ฅ2 + ๐‘ฅ3 = 0 ๐‘ก โˆ’ 1 ๐‘ฆ1 โˆ’ ๐‘ก๐‘ฆ2 + ๐‘ฆ3 = 0 ๐‘ก โˆ’ 1 ๐‘ง1 โˆ’ ๐‘ก๐‘ง2 + ๐‘ง3 = 0

    Eliminating ๐‘ก โˆ’ 1 , โˆ’๐‘ก, 1 from above equations

    ๐‘ฅ1 ๐‘ฅ2 ๐‘ฅ3๐‘ฆ1 ๐‘ฆ2 ๐‘ฆ3๐‘ง1 ๐‘ง2 ๐‘ง3

    = 0 ๐‘œ๐‘Ÿ

    ๐‘ฅ1 ๐‘ฆ1 ๐‘ง1๐‘ฅ2 ๐‘ฆ2 ๐‘ง2๐‘ฅ3 ๐‘ฆ3 ๐‘ง3

    = 0 Which is necessary condition for three points ๐‘ƒ, ๐‘„ &๐‘… to be collinear.

    Q#24: If ๐ฅ๐Ÿ, ๐ฆ๐Ÿ, ๐ง๐Ÿ; ๐ฅ๐Ÿ, ๐ฆ๐Ÿ, ๐ง๐Ÿ and ๐ฅ๐Ÿ‘, ๐ฆ๐Ÿ‘, ๐ง๐Ÿ‘ are direction cosines of three mutual perpendicular lines, prove that the lines whose direction cosines are proportional to ๐ฅ๐Ÿ + ๐ฅ๐Ÿ + ๐ฅ๐Ÿ‘, ๐ฆ๐Ÿ + ๐ฆ๐Ÿ + ๐ฆ๐Ÿ‘, ๐ง๐Ÿ + ๐ง๐Ÿ + ๐ง๐Ÿ‘ makes congruent angles with them.

    Solution: Suppose that ๐ฟ1 , ๐ฟ2 & ๐ฟ3 are given line such that

    Direction cosines of ๐ฟ1 are ๐‘™1 , ๐‘š1 , ๐‘›1

    Direction cosines of ๐ฟ2 are ๐‘™2 , ๐‘š2 , ๐‘›2

    Direction cosines of ๐ฟ3 are ๐‘™3 , ๐‘š3 , ๐‘›3

    Since lines ๐ฟ1 , ๐ฟ2 & ๐ฟ3 are mutually perpendicular

    So ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2 = 0๐‘™2๐‘™3 + ๐‘š2๐‘š3 + ๐‘›2๐‘›3 = 0๐‘™1๐‘™3 + ๐‘š1๐‘š3 + ๐‘›1๐‘›3 = 0

    Let L be the line having direction ratios ๐‘™1 + ๐‘™2 + ๐‘™3 , ๐‘š1 + ๐‘š2 + ๐‘š3 & ๐‘›1 + ๐‘›2 + ๐‘›3

    Let ๐›ผ be the angle between ๐ฟ & ๐ฟ1 then

    cos ๐›ผ =๐‘™1 ๐‘™1+๐‘™2+๐‘™3 +๐‘š1 ๐‘š1+๐‘š2+๐‘š3 +๐‘›1 ๐‘›1+๐‘›2+๐‘›3

    ๐‘™12+๐‘š1

    2+๐‘›12 . ๐‘™1+๐‘™2+๐‘™3

    2+ ๐‘š1+๐‘š2+๐‘š3 2+ ๐‘›1+๐‘›2+๐‘›3

    2

    = ๐‘™1

    2+๐‘š12+๐‘›1

    2 + ๐‘™1๐‘™2+๐‘š1๐‘š2+๐‘›1๐‘›2 + ๐‘™1๐‘™3+๐‘š1๐‘š3+๐‘›1๐‘›3

    ๐‘™12+๐‘š1

    2+๐‘›12 + ๐‘™2

    2+๐‘š22+๐‘›2

    2 + ๐‘™32+๐‘š3

    2+๐‘›32 +2 ๐‘™1๐‘™2+๐‘š1๐‘š2+๐‘›1๐‘›2

    cos ๐›ผ =1+0+0

    1+1+1+0+0+0 โŸน cos ๐›ผ =

    1

    3 โŸน ๐›ผ = cosโˆ’1

    1

    3 โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ (1)

  • Mathematics Calculus With Analytic Geometry by SM. Yusaf & Prof.Muhammad Amin

    Written and composed by M.Bilal ([email protected]) Mardawal Naushehra ,KHUSHAB Page 15

    Let ๐›ฝ be the angle between ๐ฟ & ๐ฟ2 then

    cos ๐›ฝ =๐‘™2 ๐‘™1 + ๐‘™2 + ๐‘™3 + ๐‘š2 ๐‘š1 + ๐‘š2 + ๐‘š3 + ๐‘›2 ๐‘›1 + ๐‘›2 + ๐‘›3

    ๐‘™22 + ๐‘š2

    2 + ๐‘›22. ๐‘™1 + ๐‘™2 + ๐‘™3

    2 + ๐‘š1 + ๐‘š2 + ๐‘š3 2 + ๐‘›1 + ๐‘›2 + ๐‘›3

    2

    = ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2 + ๐‘™2

    2 + ๐‘š22 + ๐‘›2

    2 + + ๐‘™2๐‘™3 + ๐‘š2๐‘š3 + ๐‘›2๐‘›3

    ๐‘™12 + ๐‘š1

    2 + ๐‘›12 + ๐‘™2

    2 + ๐‘š22 + ๐‘›2

    2 + ๐‘™32 + ๐‘š3

    2 + ๐‘›32 + 2 ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2

    cos ๐›ฝ =0+1+0

    1+1+1+0+0+0 โŸน cos ๐›ฝ =

    1

    3 โŸน ๐›ฝ = cosโˆ’1

    1

    3 โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ (2)

    Let ๐›พ be the angle between ๐ฟ & ๐ฟ1 then

    cos ๐›พ =๐‘™3 ๐‘™1 + ๐‘™2 + ๐‘™3 + ๐‘š3 ๐‘š1 + ๐‘š2 + ๐‘š3 + ๐‘›3 ๐‘›1 + ๐‘›2 + ๐‘›3

    ๐‘™32 + ๐‘š3

    2 + ๐‘›32 . ๐‘™1 + ๐‘™2 + ๐‘™3

    2 + ๐‘š1 + ๐‘š2 + ๐‘š3 2 + ๐‘›1 + ๐‘›2 + ๐‘›3

    2

    = ๐‘™1๐‘™3 + ๐‘š1๐‘š3 + ๐‘›1๐‘›3 + ๐‘™2๐‘™3 + ๐‘š2๐‘š3 + ๐‘›2๐‘›3 + ๐‘™3

    2 + ๐‘š32 + ๐‘›3

    2

    ๐‘™12 + ๐‘š1

    2 + ๐‘›12 + ๐‘™2

    2 + ๐‘š22 + ๐‘›2

    2 + ๐‘™32 + ๐‘š3

    2 + ๐‘›32 + 2 ๐‘™1๐‘™2 + ๐‘š1๐‘š2 + ๐‘›1๐‘›2

    cos ๐›พ =1+0+0

    1+1+1+0+0+0 โŸน cos ๐›พ =

    1

    3 โŸน ๐›พ = cosโˆ’1

    1

    3 โˆ’ โˆ’ โˆ’ โˆ’ 3

    From (1) (2) & (3) it is proved that โŸน ๐›ผ โ‰… ๐›ฝ โ‰… ๐›พ ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก

    Q#25: A variable line in two adjacent positions has direction cosines ๐’, ๐’Ž, ๐’ and ๐’ + ๐œน๐’, ๐’Ž + ๐œน๐’Ž, ๐’ + ๐œน๐’. Show that measure of the small angle ๐›…๐›‰ between the two positions is given by ๐œน๐œฝ ๐Ÿ = ๐œน๐’ ๐Ÿ + ๐œน๐’Ž ๐Ÿ + ๐œน๐’ ๐Ÿ. Solution:

    Let OA and OB be the two adjacent positions of the line. Let PQ be the arc of the circle with centre at O and radius 1.

    Then the coordinates of the points.

    P & Q are ๐‘ƒ ๐‘™, ๐‘š, ๐‘› & ๐‘„ ๐‘™ + ๐›ฟ๐‘™, ๐‘š + ๐›ฟ๐‘š, ๐‘› + ๐›ฟ๐‘› .

    Let ๐›ฟ๐œƒ be the angle between two positions of line.

    Now ๐›ฟ๐œƒ = ๐‘๐‘œ๐‘Ÿ๐‘‘ ๐‘ƒ๐‘„

    So ๐›ฟ๐œƒ = ๐‘ƒ๐‘„

    ๐›ฟ๐œƒ = ๐‘™ + ๐›ฟ๐‘™ โˆ’ ๐‘™ 2 + ๐‘š + ๐›ฟ๐‘š โˆ’ ๐‘š 2 + ๐‘› + ๐›ฟ๐‘› โˆ’ ๐‘› 2

    ๐›ฟ๐œƒ = ๐›ฟ๐‘™2 + ๐›ฟ๐‘š2 + ๐›ฟ๐‘›2

    โŸน ๐›ฟ๐œƒ2 = ๐›ฟ๐‘™2 + ๐›ฟ๐‘š2 + ๐›ฟ๐‘›2

    Checked by: Sir Hameed ullah ( hameedmath2017 @ gmail.com)

    Specially thanks to my Respected Teachers

    Prof. Muhammad Ali Malik (M.phill physics and Publisher of (www.Houseofphy.blogspot.com)

    Muhammad Umar Asghar sb (M.Sc Mathematics)

    Hameed Ullah sb ( M.Sc Mathematics)

    http://www.houseofphy.blogspot.com/