chappert-tutorial magnetic memories-expsites.science.oregonstate.edu/.../ppt/claude-chappert.pdf ·...

37
1 Magnetic memories: from magnetic storage to MRAM and magnetic logic Claude CHAPPERT, CNRS Département "Nanospintronique" Institut d'Electronique Fondamentale Université Paris Sud, Orsay, FRANCE [email protected] WIND WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 2 Back to the basics h r 2 1 : ± s Electrons carry a charge Î electronics … and a spin - + - + - + - + - + - + transfer of information storage quantum mechanics: Î projection of angular momentum Î dipolar magnetic moment s g m B s r h r μ =

Upload: others

Post on 29-Jul-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

1

Magnetic memories:from magnetic storage

to MRAM and magnetic logic

Claude CHAPPERT, CNRSDépartement "Nanospintronique"

Institut d'Electronique FondamentaleUniversité Paris Sud, Orsay, FRANCE

[email protected]

WIND

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 2

Back to the basics

hr

21: ±s

Electrons carry a charge electronics

… and a spin

-

+

-

+

-

+

-

+

-

+

-

+

transfer of information storage

quantum mechanics: projection of angular momentum

dipolar magnetic moment sgm Bs

r

h

r μ−=

Page 2: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

2

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 3

Back to the basics

Electrons carry a charge electronics

e-

lmrsmr

magnetic moments

… and a spin magnetism

-

+

-

+

-

+

-

+

-

+

-

+

transfer of information storage

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 4

Back to the basics

Electrons carry a charge electronics

e-

lmrsmr

“localized” atomic magnetic moments

magnetic storage

… and a spin magnetism

-

+

-

+

-

+

-

+

-

+

-

+

transfer of information storage

Page 3: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

3

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 5

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the magnetic tunnel junction

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 6

Basics: magnetic energies for storage

“localized” atomic magnetic moment picture + basic magnetic energies

Exchange interaction

"magnetization" M in ferromagnets= magnetic moment per unit volume

Magnetic anisotropy energy

tends to keep parallel the atomic moments

total energy changes with the orientation of M

-90° 0° 90° 180° 270°

TkVKE

B>>=Δ

magnetic storage of the information

"0" "1"VM=μr

Page 4: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

4

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 7

Basics : exchange interaction and magnetization

I

HOerstedt

Zeeman energy: interaction with a magnetic field

MHVErr

⋅−=

coil

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 8

Basics : exchange interaction and magnetization

Zeeman energy: interaction with a magnetic field

MHVErr

⋅−=

coil

+ Magnetic anisotropy energy: preserves orientation of magnetization after writing

Page 5: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

5

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 9

Magnetic recording

1953: Magnetic core memory 1956: First HDD - IBM RAMAC

1898: V. Poulsen’s Drum Telegraphone

1928-35s: Magnetic tape:F. Pfleumer / BASF-AEG

1933: Ring type headE. Schuller

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 10

The Landau-Lifshitz-Gilbert (LLG) equation

Speed: the natural dynamics of the magnetization

( )effHMdtMd rrr

×−= 0μγ

Heff

M

⎟⎟⎠

⎞⎜⎜⎝

⎛×+

dtMdM

M

rr

f0 = 28 MHz / mT ( = 2.8 GHz / kOe )

Damped precession of the magnetization M around its equilibrium axis

Precession frequency: f = f0 Heff

Effective field Heff : all the magnetic energies

damping torque

Page 6: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

6

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 11

Precessional dynamics in thermally activated reversal

Néel - Brown reversal =thermally activated precessional behavior within the energy well

attempt frequency function of α , KU , …

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 12

Non volatility: thermally excited switching

τt

eP−

=

long term stability of the magnetic storage :spontaneous reversal of the magnetization due to thermal activation

Néel – Brown modelprobability P for no reversal

after a time t :

( )TkE B/exp0 Δ= τττ0 ~ 1 nskBT = thermal energyT = temperature

VKE =Δ

ex : stability on 10 years = 3 108 s1-P = 10-6 KV ~ 54 kBT1-P = 10-12 KV ~ 68 kBT"soft" error

The "magnetic non volatility"

Page 7: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

7

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 13

The necessary compromise in magnetic recording

increase recording density

redu

cebit v

olum

e V

reducew

ritingpow

er

thermal stability :ΔE = K V

increase K

writing :Hwriting ~ K

reduce KX

Research / Innovation

+ reading : sensitivity, speed

-90° 0° 90° 180° 270°

TkVKE

B>>=Δ

"0" "1"

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 14

Storing : scalability of solid state magnetic recording

-90° 0° 90° 180° 270°

TkVKE B60≈=Δ

"0" "1"

10-9 soft error rate in 10 years

today's best : FePt (L10) 2 nm

5.4 nm

non volatility :

A potential for non volatile « nano »- spin electronics… but Hswitching ~ 12 Teslas !

field induced writing impossiblespin transfer writing requires high currentsprecession speed ~ 33 GHz !!!!

Page 8: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

8

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 15A “bridge” between magnetic storage and electronics ?

1988: a major step into “Spin Electronics”

1988: The giant magnetoresistance (GMR)in magnetic multilayers

~ 80%

Fe/Crmultilayers

FeCrFe

R/R(H=0)

1988: GMR discovered simultaneously by Fert et al. (Orsay) and Grünberg et al. (Jülich)

NOBEL 2007

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 16

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the magnetic tunnel junction

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

Page 9: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

9

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 17

The foundation of spin electronics

"spin flip" scattering event

<> : mean free path λrelaxation time τ

spin diffusion length ∑ =sf

sf

τ

λλ0

: spin mean free pathsfsdl λλ∝

weak spin flip scattering rate ( lsd >> λ ) "two channels" conduction model

R

electrons traveling inside conductors

normal metals

or

R↑

R↓

R↑

R↓ferromagnetic metals:

spin dependent λ

N. Mott, Adv. Phys 13, 325 (1964)Fert+Campbell, PRL 1967

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 18

The foundation of spin electronics

To directly « see » the « two-channel » conduction, one must make a material with internal structuration at the same scale as the λ↑ et λ↓mean free path:

the spin valve

F ferromagnetic layer

F ferromagneticlayer

NM non magnetic layer (Cu, ..)

λ↑ > ecouches > λ↓“nano” input:

Page 10: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

10

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 19

Giant magnetoresistance in multilayers

I

parallel configuration antiparallel configurationRP < RAP

λ↑, λ↓ >> tlayers (a few nm )• λ↓ << λ↑ ρ↓ >> ρ↑

( )↓↑

↓↑+= ρρ

ρρρP( )

4↓↑ += ρρρAP

Also: spin dependant "interface" scattering, reflection, …

F

FNM

F

FNM

“nano” input !!!!

1988: Fert et al. (Orsay) and Grünberg et al. (Jülich)

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 20

I"free" ferromagnetic layer (NiFe, CoFe,..)

"pinned" ferromagnetic layer

metallic (Cu) interlayer

θ

current in plane(CIP)

A first useful device : the "spin valve"

R = R0 – ΔR/2 cos (θ) ΔR/R↑↑ ~ 6 à 20 %

B. Dieny et al., PRB 1991

A convenient, compact, high sensitivity magnetic sensor !

… but low resistance, low signal amplitudeplanar geometry

not well adapted to solid state electronics

Page 11: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

11

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 21

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the magnetic tunnel junction

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 22

The tunnel junction

Metal 1

Metal 2

eVEF

0EF

M1 M2

insulator

insulating barrier (Al2O3, …)

transmission by tunnel effect through a very thin (~1nm) barrier

electron spin is not affected by the tunneling

Page 12: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

12

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 23

The magnetic tunnel junction

Ferromagnetic metal 1

Ferromagnetic metal 2

tunnel barrier (Al2O3, …)

Jullière,Phys. Lett. A54 225 (1975)

parallel state antiparallel state

eVEF

0EF

F1 F2

insulator

eVEF

0EF

F1 F2

insulator

spin dependant tunneling, MR = (RAP-RP) / RP >> 1

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 24

The magnetic tunnel junction

)()()()(

FF

FF

ENENENEN

P↓↑

↓↑

+−

=21

21

12

PPPP

RRTMRAP +

=

Jullière,Phys. Lett. A54225 (1975)

parallel state antiparallel state

EF

eVEF

eV

Ferromagnetic metal 1

Ferromagnetic metal 2

tunnel barrier (Al2O3, …)

Page 13: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

13

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 25

Coherent tunneling through single crystal MgO tunnel junctions

S. Yuasa et al. Nature Mat. 3, 868 (2004)

giant ΔR/R : 250% at 20K186% at 293 K

(also: Parkin et al., Nat. Mat 3 (2004)

origin: different attenuation for spin up and spin down electrons due to symmetry matching between metal and MgO states: up to 6000% predicted ! [Butler et al, PRB63 (2001); Mathon et al., PRB 63 (2001) ; Butler & Gupta, Nat. Mat. 3, 845 (2004) ; Zhang et al., PRB 172407 (2004)]

Fe(001)

MgO(001)

Fe(001)

H (Oe)

RA

(kΩ

.µm

2 )

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 26

The magnetic tunnel junction M. Jullières, 1975J. Moodera, 1995

"free" ferromagnetic layer (NiFe, FeCo, FeCoB,…)

"pinned" ferromagnetic layer (NiFe, FeCo, FeCoB, …)

tunnel barrier (ex: Al2O3, MgO ) ~ 1 nm thick

ΔR/R↑↑ > 600 % @ RT !!!I

(MgO single crystal tunnel barrier)

practical value: ΔR/R ~ 100-180 % for RA ~ 3-50 Ω.µm2

A "vertical", high signal device for high density electronics !

Page 14: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

14

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 27

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the magnetic tunnel junction

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 28

The magnetic RAM (M-RAM)

"0"

"1"

Principle :- store binary information on arrays of magnetic tunnel junctionsconnected by conducting lines, - that serve to address each cell individually for reading and writing

+

"cross point" architecture

Magnetic Random Access Memory (M-RAM) (IBM, NVE, … > 1996)

Page 15: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

15

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 29

The magnetic RAM: practical implementation

"0"

"1"

+

"cross point" architecture

Transistor

practical MRAM cell:"1T1MTJ" architecture for “reading”

incomplete integration of the writing function :needs magnetic field created by independent line for writing

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 30

MRAM: writing / Stoner-Wohlfarth scheme

H X (bit line)

HY(digit line)

HK

HK

M

OR …

Page 16: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

16

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 31

Magnetic RAM : "Savtchenko" toggle writing mode

F1

F2Ru

• free layer = synthetic antiferromagnet• current lines at 45 deg. of easy axis

toggle switching mode

B. N. Engel et al., IEEE Trans. Magn. 41, 132 (2005)

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 32

Magnetic RAM : "Savtchenko" toggle writing mode

• excellent immunity to program errors(cf Korenivski, APL 86 (2005))

• 4 Mbits Freescale demo :- 0.18 µm CMOS- ~47 F2 cell size- 25 ns read/write cycle time- 3.3 V

(Andre et al., IEEE JSSC 40, 301 (2005))

But : high currents (several mA) needed for writing !!!

Page 17: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

17

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 33

Magnetic RAM : reducing Iwriting

channeling the magnetic field using magnetic "cladding"

Sending a current in a conducting line is not a very efficient way of creating a magnetic field on a nano-element !!!!

gain of a factor of ~2 on the field/current rationlimits the stray field on half-addressed cells

I

other "tricks" can help gain additional factors, up to ????

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 34

Freescale: 1rst MRAM product in 2006

Named "Product of the Year" [Electronics Products Magazine, Jan. 2007]

Above CMOS technology

in 2007 : achieved army specifications automotive applicationsNEW in Nov. 2008: - spin off company EVERSPIN

- new products, target : battery backed SRAM

4 Mbit standalone memoryToggle switching reliability, speed (30ns), cyclability

Page 18: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

18

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 35

"Field induced magnetic switching" : downscaling prospect

F

field induced switching :• requires a current in a conducting line• electromigration limit 107 A/cm2 ~ 100 mA/µm2

@ constant j : available Hwrite decreases ~ as F

Ito ensure required non volatility (Neel's model)

energy barrier KV >40 kBT , if V ↓ as F2, then K ↑ ~ 1/F2

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 20 40 60 80 100F (nm)

I (m

A)

Imax (electromigration limit)I for switching - W= (4/3) FI for switching - W= 2 F

realistic estimation for 2 different width W of

magnetic element:W = 4/3 F

and 2 F

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 36

A "conventional" answer: the thermally assisted writing in TAS-MRAM

From a "0" ….. … to a "1"

"0" state

OFF ON

Heat Field cool

OFF

"1" state

OFF

Switch

ON

Word line

MTJ

addressingtransistor

From a "0" ….. … to a "1"

"0" state

OFF

"0" state

OFF ON

Heat

ON

Heat Field cool

OFF

Field cool

OFF

"1" state

OFF

"1" state

OFF

Switch

ON

Switch

ON

Word line

MTJ

addressingtransistor

Altis Semicoductors, Quimonda: demo at IEDM Dec 2006 with 2 bits/cell

Exchange biasedstorage layer

is SAF/AF multilayer

high TB

low TBbarrier

Page 19: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

19

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 37

CMOS integration of TAS-MRAM

0

100

200

300

400

500

600

0 20 40 60 80 100

F (nm)

pow

er (µ

W)

required writing power for bit dia.=(4/3)F

available power with Wt=(4/3)F

available power with Wt= 3 F

becomes more favorable when F decreasescondition much relaxed by using bipolar transistor (cf PC RAM)issues remaining:

- match thermal stability with heat sensitivity in the cell- still needed: a magnetic field from a conducting line

required switching current for MTJ width WMTJ= 4/3 F

available current for 2 transistor widths:WT = 3 F

WT = 4/3 F

analytical model for 2ns pulse and 140K temperature rise

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 38

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the magnetic tunnel junction

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

Page 20: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

20

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 39

J. C. Slonczewski, JMMM 159, L1 (1996)L. Berger, PRB 54, 9353 (1996)

The Spin Transfer Torque mechanism

the incoming electronsloose their transverse spin angular momentum to the magnetization M of the ferromagnetic layer

+conservation of total angular momentum

torque applied on M

switching beyond a threshold Jc in current density : scalable

e-

transversecomponent

~1 nm

ferromagneticlayer F2

in the ferromagnetic layer: exchange interaction between e- spin and M

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 40

Writing: Spin Transfer Torque switching

sd exchangeinteraction

F1 thicklayer

F2 thinlayer

e-

e-

J. C. Slonczewski, JMMM 159, L1 (1996)

Writing “0”

Writing “1”

Writing by a bipolar current density with Jc+ and Jc

-

Page 21: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

21

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 41

Magnetization switching by spin transferin MgO tunnel junctions

J. Hayakawa et al., Jap.JAP 44, L1267 (2005)

ex. of good compromise:TMR ~ 80% for Tanneal ~ 300°C

<JC> ~ 8 105 A/cm2

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 42

spin torque MRAM by SONY

SONY, IEDM Conference, Dec. 2005

A way towards very high density, fast MRAM, with potential for downscaling down to 20nm or less !

A true "solid state" integration of R/W and magnetic media !

Page 22: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

22

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 43

From conventional MRAM…to "spin transfer" MRAM

• can we reach high operation speed ? • will it be reliable ?

Demo chips of « Spin »-RAM:SONY, IEDM Dec. 2005 HITACHI, ISSCC March 2007)

simple “ integrated ” architecture, above CMOS technology, “ high “ density ( <16 F2 ), potential for downscaling down to 20nm “ fast ” (40-100 ns) M-RAM: main advantage of M-RAM

versus other NVM RAM….)

Freescales’s MRAM (2006)

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 44

the Landau-Lifshitz-Gilbert (LLG) equation

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛×+×−=

dtMdM

MHM

dtMd

eff

rr

rrr

rαμγ 0

Heff

M

Precession of the magnetization and spin transfer

( )pMMjG rrr××−

+ the "spin transfer torque"

friction torque (damping)

"negative friction" torque induced by spin transfer

f0 ~ 2.8 GHz / kOe

p

≠ 0 only if M and p are non colinear

switching threshold Jc :~ when negative friction

overcomesdamping

Page 23: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

23

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 45

Macrospin dynamics of spin transfer writing

M

pmY

mZ

filmplane

thermal excitation spreads the initial orientation

( )pMMjG rrr××−

= 0 if M and p are colinear

+

wide distribution of switching time

Devolder et al., PRB75, 64402 (2007)

J.Sun, PRB 62, 570 (2000)The case of a platelet magnetized in plane:

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 46

Field(Energy-gradient driven switching)

Spin-Transfer Torque(friction-gradient driven switching)

enhancedfriction

« negative »friction

Switching by spin-transfer torque vs field

Page 24: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

24

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 47

Routes towards fast spin transfer writing

Thermally assisted spin transfer switching :

• J ~ Jc

• tpulse ~ 10 – 100 ns (cf demos)

enhancedfriction

« negative »friction

Precessional spin transfer switching :

• J > Jc

• tpulse ≤ 1 ns

• control thermal fluctuations non zero initial torque

- T. Devolder et al., APL 88, 152502 (2006) + PRB 75, 064402-1,5 (2007) + PRB 75, 224430-1,10 (2007) + PRL100, 057206 (2008)- Ito et al., APL89, 252509 (2006)- Serrano-Guisan et al., PRL101 (2008) 087201; Garzon et al., PRB78, R180401 (2008)- etc..

M

p

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 48

STT MRAM main configurations

free layer

fixed layer(reference)

tunnel barrier

2nd tunnel barrier

spin polarizingfixed layer

(a) (b) (c)

free layer

fixed layer(reference)

tunnel barrier

2nd tunnel barrier

spin polarizingfixed layer

(a) (b) (c)

© Y. Suzuki

M

p

mX

mY

mZ

filmplane

Page 25: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

25

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 49

CMOS integration of spin–RAM: writing

24.724.020.221.618.9Rn = Vn/Id,sat for Wt=F (kΩ)20.2424.9634.6537.0547.7

Max current (µA) at 25°C for transistor width Wt=F

0.50.60.70.80.9Nominal voltage (Vn)2232456590Node (F in nm)

20162013201020072004LOW POWER-NMOS Year

compatibility with ITRS roadmap

bipolar use of the NMOS transistor

RMTJ

VDD

(NMOStransistor)

Vd

Id

(MTJ)

Vs

Vg

RMTJ

GND

Vs

Id

Vd

Vg

VDDGND

RMTJ

VDD

(NMOStransistor)

Vd

Id

(MTJ)

Vs

Vg

RMTJ

GND

Vs

Id

Vd

Vg

VDDGND

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 50

CMOS integration of STT MRAM

RMTJ

VDD

(NMOStransistor)

Vd

Id

(MTJ)

Vs

Vg

RMTJ

GND

Vs

Id

Vd

Vg

VDDGND

RMTJ

VDD

(NMOStransistor)

Vd

Id

(MTJ)

Vs

Vg

RMTJ

GND

Vs

Id

Vd

Vg

VDDGND

requires a "bipolar" use of the NMOS transistor

large variation of resistance during the write process (Sony)

within ITRS 2003 roadmap

in planemagn.

Page 26: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

26

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 51

CMOS integration of STT MRAM

⎟⎠⎞

⎜⎝⎛ +⎟

⎠⎞

⎜⎝⎛=≈ K

SSFONaSW HMMtejj 0

0//)( 2

2 μμη

αh

approximate switching current density for in plane magnetization

thermal stabilityfactor

in plane shape anisotropy

>>

current density should not depend much on size !!!!

in planemagn.

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 52

IWR (SONY, IEDM 2005)

IWR (lab's best, 2006)

transistor's limit

Scalability of Spin-RAM : writing

spin transfer writing

(4/3) F (min)

2 nm

transistor width: (4/3) F for high density memory

R↑↑ ~ Rtransistor / 2

magnetic element:

tunnel junction :

RA ~ 1-20 Ω.µm2, within reach also good for reading

writing speed:~ 20-40 ns

in planemagn.

Page 27: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

27

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 53

CMOS integration of STT MRAM

approximate switching current density for out of plane magnetization

thermal stabilityfactor

available current for 2 transistor widths:WT = 3 F

WT = 4/3 F

more favorable than in plane case, if similar values of α/η are obtained

out of planemagn.

( )effAONbSW HMtejj 0)(

2 μη

α⎟⎠⎞

⎜⎝⎛=≈ ⊥h

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0 20 40 60 80 100

F (nm)

curr

ent I

(µA

)

Isw - alpha=0.01Isw - alpha=0.1It,max for Wt= 4/3 FIt,max for Wt= 3 F

required switching current for MTJ width WMTJ= 4/3 F

α = 0.1

α = 0.01

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 54

Perpendicular STT RAM

Toshiba Develops MRAM Device, Opening Way to Gb CapacityNikkei Electronics Asia, November 7, 2007

TbCo alloy (?)

with TMR ~ 100% and jC ~ 3. 106 A/cm2

Page 28: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

28

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 55

Summary: Spin - RAM specifications

20 nm ?130 nmScalability

>> NAND

~SRAM

embedded RAM

>> NAND<< SRAM

Position vs CMOS

~ ns~ 40 ns (2.7 ns)Speed

~ infinite1015Endurance

> 10 yearsNon volatility

Above CMOSTechnology

< 16 F225 – 80 F2Cell size

PredictedProducts / Demos

Logi

c ci

rcui

ts ?

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 56

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

Page 29: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

29

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 57

CMOS Logic Circuits

Telecom Automobile

Medical ……

•Low power (near zero static power)•High density (45nm, 2007)•High Speed (>Some GHz)•……

Audio/video

Military/Aerospace

ASIC

Application-Specific Integrated Circuit

•High mask cost (1.4M$/Mask @ 90nm)•Long delay to correct a bug•Long time to market

+ smart cards: no internal power, cheap, robust

LEAKAGE CURRENTS

CMOS logic circuits: every where … and problems

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 58

Programmable logic devices

a

b

s

111

001

010

000

sba

ASIC Programmable Logic

a=Adr 0

b=Adr 1

s

111

010

001

000

SRAM

config.:EEPROM,

Flash

LUT: Look Up Table

Page 30: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

30

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 59

Low standby Power Programmable logic devices

100% 61% 0%14%

Active Inactive

Non volatile, multi-core logic:are powered only the core that need to operate others preserve state and start « instantly » when powered on

Towards a magnetic FPGA

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

“switches” and “logic blocs” (CLB) are made:non volatileprogrammable

by Spin- MRAM elements

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 60

FPGA

I/O

I/O

FPGA Logic Circuits

SRAM

Static RAM based FPGA •High computing speed•Infinite programming endurance

•Long latency at each start or restart•High standby power (>30% for 90nm) •Data loss in case of power failure•Uneasy dynamical reconfiguration

CMOS intrinsic memorizing constraint: Data Volatility

Flash

Configuration

High speed

transceiver

I/OI/O

Look Up Table

SRAM

Input

Flip-Flop

Output

Configurable logic block (CLB)

Clk

Page 31: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

31

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 61

FPGA

I/O

I/O

Non volatile FPGA Logic Circuits

Flash

Configuration

High speed

transceiver

I/OI/O

Look Up Table

SRAM

Input

Flip-Flop

Output

Configurable logic block (CLB)

Clk

Black & Das, JAP87, 6674(2000)

NVM

NVM

replace Flash and SRAM by a non volatile memory (NVM)directly embedded inside the look up table

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 62

FPGA

I/O

I/O

Flash

Configuration

High speed

transceiver

I/OI/O

Look Up Table

SRAM

Input

Flip-Flop

Output

Configurable logic block (CLB)

Clk

replace Flash and SRAM by a non volatile memory (NVM)directly embedded inside the look up table

NVM

replace the standard Flip-Flop by a non volatile one

NVM

Non volatile FPGA Logic Circuits

NVM

Page 32: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

32

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 63

Spin-RAM based Non-volatile Flip Flop

STREP MAGLOGW. Zhao, E. Belhaire (IEF), V. Javerliac, B. Dieny (SPINTEC)P. Mazoyer, F. Jacquet (ST Microelectronics)

master slave flip-flop based on spin transfer switching

non volatile,instant on/off record all intermediate calc. steps

if :- CMOS compatible IWR- writing speed atprocessor's rate (~3 GHz)

e-MRAM could enter the CPU !!!

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 64

Sense Amplifier

<100ps

MTJ model (V.Javerliac et al.,MMM,2006)+ STMicroelectronics 90nm design kit

Wp=0.12um

Wn=0.12um

TMR=80%

R(0)=8.9KΩRAP RP

Out

Fast sensing of MRAM status for logic circuits

W. Zhao, IEF, PhD March 2008Electrical simulation

Black & Das, JAP87, 6674(2000)

~ non volatile SRAMfast reading possiblewriting ?

Page 33: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

33

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 65

Mixed CMOS-Tunnel junctions logic

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 66

Outlook

- the basics of magnetic recording

- the basics of spin electronics

- the magnetic tunnel junction

- the principle of the “magnetic random access memory” or MRAM

- “spin angular momentum transfer” and the “Spin-RAM”

- towards magnetic logic chips

- beyond MRAM and Spin-RAM in solid state magnetic mass storage

- beyond MRAM and Spin-RAM in “spin logic”

Page 34: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

34

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 67

Another promising scientific breakthrough:current induced domain wall motion

thin wall

thick wall

electrons

DW vr

DW vrelectrons

transfer of spin angular momentum

Berger (’84,’92)Tatara & Kohno (2004)

transfer of momentum

(Grollier, APL 2004Vernier, EuroPhys. 2005Thiaville, cond-mat 407628,…)

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 68

Current induced domain wall propagation: downscaling prospect

F

writing current :Ex: w = F = 90 nm, t = 10 nm, jC= 106 A/cm2 IWR ~ 9 µA(standard transistor @ F= 90 nm : IMAX ~ 0.5 mA/µm )(?) scaling of the writing current density vs non volatile DW trapping ???

to ensure required non volatility (Neel's model)energy barrier KV > x kBT , if V ↓ as F2, then K ↑ ~ 1/F2

Tunnel barrier

e-

R↑↑

e-

R↑↓

current induced writing of a domain wall based M-RAM :

Page 35: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

35

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 69

One proposition of "Solid State Hard Disk"

Shiftable magnetic shift register and method of using the sameS.S.P. ParkinUS patent 6,834,005B1of Dec. 21, 2004

same data organization as in HD,but no moving part

fast access time !domain wall speed: up to ~100m.s

high data rates !

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 70

A new approach to magnetic storage

Shiftable magnetic shift register and method of using the sameS.S.P. Parkin - US patent 6,834,005B1 pub. Dec. 21, 2004

Submicrometer Ferromagnetic NOT Gate and Shift Register. Allwood, D. A. et al. Science 296, 2003 (2002)

Multiple layer magnetic logic memory device Cowburn, R.P. & Allwood, D.A.. UK patent GB2430318A (2007)

Information is stored in a magnetic strip, as contiguous magnetization domains.

Domains are made to migrate synchronously from programming head to reading head with either an external magnetic field or a current injected in the strip (spin transfer effect).

read headwrite head

DW propagation

wafer

magnetic stripe

Page 36: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

36

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 71

Russel Cowburn et al.

D. Allwood et al., Science 309 (2005) 1688

storage ring (shift register with one input)

3D storage

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 72

Spin electronics today:a giant move towards integration …

Spin-RAM, SONY, IEEE 2005

Longitudinal Hard Disk recordingWith spin valve head (1997)

Size ~ 100µm, separate R/W heads and media… but first spin electronics device !

size < 100nmfull « integration »

Page 37: Chappert-Tutorial Magnetic Memories-expsites.science.oregonstate.edu/.../PPT/Claude-Chappert.pdf · 2011. 1. 27. · Magnetic anisotropy energy tends to keep parallel the atomic moments

37

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 73

1988

: GMR disc

overed

1991

: "sp

in valve

"

1997

: product,

SV HD read

head (IB

M)

1990 2000 2010

2005

: product,

TMR HD read

head (Sea

gate)

1995

: "prac

tical"

TMR

2006

: product,

MRAM (F

reesc

ale)

… in a short span of time

1996

-2000

: "sp

in transfe

r" pred

icted

/observe

d

) 201

0: sp

in-RAM product

??? (RENESAS, N

EC, SONY,

Samsu

ng, CROCUS, …

)

10 years

?10 years

WIND/IMST - Memory tutorial - IMEC - 26 Nov 2008 74

Perspective: a new paradigm for “spintronics”

electron: charge + spin

magnetization

Mspin dependent transport in multilayers

controlling magnetization by “currents”(w or w/o charges)

mesoscopicspintronics

from uniformly magnetized nanostructures to non colinear magnetization structures (vortex, domain walls, …)

• spin dependant quantum transport• coherence and Quantum Information ?

materials, hybrid stacks nanotechnologies, devices

“nano”architectures, device integration

+ phase cohérence

a wide field for research !