chances and threats for natural rubber for use in …

30
10/2/12 Title: to modify choose 'View' then 'Heater and footer' 1 CHANCES AND THREATS FOR NATURAL RUBBER FOR USE IN LOW ROLLING RESISTANCE TYRES Elastomer Technology and Engineering, Enschede, the Netherlands Malaysian Rubber Board

Upload: others

Post on 11-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

10/2/12 Title: to modify choose 'View' then 'Heater and footer'

1

CHANCES AND THREATS FOR NATURAL RUBBER

FOR USE IN LOW ROLLING RESISTANCE TYRES

Elastomer Technology and Engineering,

Enschede, the Netherlands

Malaysian Rubber Board

10/2/12 Wolff, Rubber Chem. Technol., 69 (1996) 2

Performance of Silica based NR Tires

50 40 30 20 10 0 phr

phr

Rolling resistance

Treadwear

Wet traction

NR Truck Tires

Carbon Black

10/2/12 3

Tire Performance & Silica Technology

Polymer/Rubber type

Silica

Mixing technology

Coupling agent

10/2/12 4

Silica-Silane-Rubber Coupling

Silanization: silica and silane reaction

Silanization: Primary & secondary

reaction

Vulcanization

Silane-rubber coupling

H3C

H

10/2/12

5

Silica Reinforced Rubber Network

Silica-rubber coupling (silica-coupling agent-rubber bond)

Rubber–rubber bonds (sulphur crosslinks)

Silica

Rubber chain

x

Coupling agent: TESPT

10/2/12 6

NR Research topics at UT/ETE

General aim Improving the reactivity of natural rubber (NR) towards silica

in order to make NR / HD silica more efficient for

reinforcement of tire-treads

Focus of the investigations   Optimization of the mixing process of NR-silica compounds

  Influence of proteins on silica reinforcement in NR

  Modification of NR to improve tire properties

  Different types of coupling agents more suited for NR

10/2/12

7

Research questions

  Proteins versus silanes: (how) do they interfere?

  Rubber – filler: how do they interact

in a silica-filled NR compound?

  What is the influence of proteins on silica reinforcement in NR?

10/2/12

8

Natural Rubber – A strategic green material

Advantages

  Renewable resource

  Converts solar energy to raw

material

  Effective CO2 sequester

  Low energy input

  Low fertilizer demand

  Valuable source of timber Source : Hevea Brasiliensis

Outstanding Properties

  Low hysteresis

  High tensile strength

  High elasticity

  Good resilience

  Low heat build up

  Resistance to abrasion

  Resistance to crack growth

  Flexibility at low temperature

cis -1,4 polyisoprene n

C

CH3

CH2 H2C

H C

Natural Rubber

48%

Synthetic Rubber

52 %

World rubber consumption, 2008

10/2/12 Tanaka et al., Rubber Chem. Technol, 67(1993),74(2001), 81(2008), 82(2009)

Sakdapipanich et al., Kautsch. Gummi Kunst. 3/2005, 10/2008 9

Network of Linear NR Chain (associated with proteins and phospholipids)

proteins Mono- or di- phosphate group

phospholipids

cis trans

C

CH3

CH2

H2C

H C

2 ω -terminal α-terminal

C

CH3

CH3 H2C

H C

n

C

CH3

CH2 H2C

H C C

CH3

CH2 CH2OH

H C ω-terminal

Mono- or di- phosphate group phospholipids

α -terminal (trans)2 (cis)n

H-bond or Mg2+

2 trans-1,4 isoprene units 1000 – 3000 cis-1,4 isoprene units

10/2/12

Yeang et al., Methods 27 (2002)

10

Proteins in Natural Rubber

Rubber phase

C-serum

Bottom fraction

(B-serum)

Protein distribution

25%

43%

32%

Rubber N2 content

Natural Rubber 0.3 – 0.6 %

Deproteinized

NR

0.08 – 0.12%

Skim rubber 1.5 – 2.5 %

Hevea latex : 30- 45% rubber hydrocarbon 3-5% non-rubber constituents water

Removal of non-rubber constituents: •  Enzymatic deproteinisation - protein •  Transesterification - phospolipids •  Saponification - protein + phospolipids

10/2/12

11

Experimental: Compound Formulation

Ingredients phr

Natural Rubber, NR (varied) 100*

Silica, Ultrasil 7005 55

Silane, TESPT 5

Zinc Oxide 2.5

Stearic acid 1

Santoflex TMQ 2

TDAE oil 8

DPG 2

Sulphur 1.4

CBS 1.7 2nd stage mixing: two-roll mill

1st stage mixing in Brabender 350S Mixing conditions:

Mixing time: 14 minutes Rotor speed: 60 rpm Fill factor: 0.7 Dump temp. varied from 110°C till 170°C

Rubber types Nitrogen

content

( wt. % )

Protein

content

( wt. % )**

Deproteinized NR

(DPNR)

0.07 0.44

NR (SMR 20) 0.21 1.31

Skim Rubber* 2.06 12.88

**Conversion factor: 6.25

* Adjustment in Skim rubber formulation : 112 phr

10/2/12 12

Processability: Mooney viscosity

10/2/12

13

Rheological Properties

Time

Torq

ue

Flocculation

10/2/12

14

Rheological Properties at 150oC

Filler-Filler Interaction: Payne Effect

Log strain

She

ar m

odul

us G

* Silica

Silica + silane

10/2/12 15

10/2/12 16

Payne Effect versus Temperature

DPNR-no silane

NR-no silane

10/2/12 17

Payne Effect versus Protein Content

0

0,1

0,2

0,3

0,4

0,5

0,1 1 10 100

Protein content in NR, wt %

G' at

0.56

% - G

' at 1

00%

, MPa

Silane

No silane

DPNR NR Skim Rubber

10/2/12 18

Dispersion: Wolff Filler Structure Parameter

Wolff αf

DPNR

DPNR-no silane

NR-no silane NR

pmfm

f1ominDo

maxDminDmaxD

α=−−

Wolff, Kautsch. Gummi Kunst. 34, (1981)

SkimR- no silane

SkimR

Torq

ue

Temperature

0

10

20

30

40

50

60

70

80

90

100

110 120 130 140 150 160 170

Phys

ical

BRC

, %

Dump Temperature, °C

10/2/12 19

Filler-Polymer Interaction: Bound Rubber Content

0

10

20

30

40

50

60

70

80

90

100

110 120 130 140 150 160 170

Che

mic

al B

RC

, %

Dump Temperature, °C

Silica compound NO SILANE

Chem.BRC (%)

Phys. BRC (%)

NR 0 57

DPNR 0 45

Skim R 0 51

10/2/12

20

TEM Network Visualization (without silane)

NR-silica-no silane DPNR-silica-no silane

Silica

NR Network

Vacuole Vacuole

Silica

DPNR Network

Strong interface Weak interface Formation of vacuoles

10/2/12 21

TEM Network Visualization (with silane)

NR-silica-silane DPNR-silica-silane

Silica

NR Network

No vacuoles

Silica

DPNR Network

Strong rubber to filler bonding

10/2/12

22

AFM of silica vulcanizates

NR - no silane DPNR - no silane

1 x1μm

NR - silane DPNR - silane

10/2/12

23

Tensile Properties

NR-no silane

DPNR- no silane

SkimR- no silane

10/2/12 24

Reinforcing Index

10/2/12 25

Dynamic Properties (Tan delta at 60°C)

0

0.05

0.1

0.15

0.2

100 120 140 160 180

Tan δ

at 6

0°C

Dump Temperature, °C

10/2/12

26

Summary   Proteins coupling agent: antagonistic effect in silica reinforcement of NR

  Silane: enhances the properties of compound and vulcanizate in the

presence and absence of proteins

  Effect of proteins: most pronounced when no silane is used

  High amounts of proteins: disrupt the silica-silica network and improve silica

dispersion

  ….reduce the temperature sensitivity of the material

  …but do not improve final properties due to missing filler-polymer coupling

10/2/12

27

10/2/12 28

Purification of NR

Tanaka et al., Rubber Chem. Technol, 82 (2009)

Removal of non-rubber constituents from NR • Enzymatic deproteinisation – protein • Transesterification - phospolipids • Saponification - protein + phospolipids

10/2/12 29

Modification of NR

C CH

H2C

OO O

CH2 H2C

C CH

H3C

CH2 H2C

O

CH CH

H3C

CH2 H2C

CH2

CH3C C O CH3

O

Epoxidized Natural Rubber (ENR)

Maleated Natural Rubber (MNR) NR - methyl methacrylate graft copolymer

(NR-g-PMMA)

C CH

H3C

CH2 H2CNR

Modifications

grafting Graft copolymerization

Epoxidation

10/2/12

30

Summary of Properties