cgc inifal$ glasma$ hadron$gas singularity$ qgp$ strongly ... filethe$glasma$ 1/qs% random typical...

21
The Ridge in pp and pA Collisions: CGC? Hydro? Larry McLerran, February 2012, EMMI, Darmstadt, Germany CGC Glasma IniFal Singularity Thermalized QGP Hadron Gas Strongly Interacting QGP !

Upload: others

Post on 30-Aug-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

The  Ridge  in  pp  and  pA  Collisions:    CGC?    Hydro?  

Larry  McLerran,  February  2012,  EMMI,  Darmstadt,  Germany  

CGC   Glasma  IniFal  Singularity  

Thermalized    QGP  

Hadron  Gas  

Strongly Interacting QGP!

Page 2: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

The  Glasma  

1/Qs  

random

Typical configuration of a single event just after the collision

Highly  coherent  colored  fields:  Stringlike  in  longitudinal  direcFon  

StochasFc  on  scale  of  inverse  saturaFon  momentum  in  transverse  direcFon  MulFplicity  fluctuates  as  negaFve  binomial  distribuFon    

Page 3: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

LHC  Results  

Page 4: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Can  this  be  due  to  Hydrodynamic  Flow?  

These  are  high  mulFplicity  events  so  it  is  not  impossible  to  have  significant  final  state  results  

Bozek  and  Broniowski  in  pA  Collisions:        

Glauber  Monte  Carlo  Model  with  no  fluctuaFons  in  mulFplicity  for  pp  colisions    

 “Typically,  the  size  and  life-­‐Fme  of  the  collecFve  source  formed  in  central  p-­‐Pb  

collisions  is  3-­‐4  fm  [31].”    

FluctuaFons  are  generated  by  fluctuaFons  in  posiFons  of  nucleons  in  target.  

What  is  the  transverse  size  of  region  where  there  is  ma[er  produced?  

In  pp  collisions:    The  proton  size  R  <  1  Fm.  

Is  this  reasonable?  

Page 5: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

If  there  are  no  fluctuaFons  in  pp  interacFons,  the  only  way  one  can  have  high  mulFplicity  is  by  interacFons  with  many  nucleons.    The  highest  mulFplicity  events  are  generated  by  

interacFons  with  nucleons  over  the  enFre  nucleus.    This  requires  either  that  the  interacFons  are  at  distances  much  larger  than  the  range  of  nucleon  interacFons  or  that  all  the  nucleons  in  the  nucleus  fluctuate  so  that  they  sit  on  top  of  one  another.    The  la[er  is  

not  likely  because  of  short  distance  nucleon-­‐nucleon  repulsion.  

STAR  data  show  that  one  MUST  include  negaFve  binomial  fluctuaFons  in  mulFplicity  of  pp  interacFons  

0.1

1

0.5 1 1.5 2 2.5 3

�Nch� P(Nch)

Nch(|d|<0.5) / �Nch�

MC-rcBK, p+Pb 3s=4.4 TeVMC-rcBK NBD off, p+Pb 3s=5 TeV

MC-rcBK, p+p 3s=0.9 TeVMC-rcBK, p+p 3s=2.36 TeV

MC-rcBK, p+p 3s=7 TeV

Page 6: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Understand  source  of  fluctuaFons:        

Decay  of  color  electric  and  color  magneFc  fields.    On  a  subatomic  

size  scale  

Including  fluctuaFons  makes  a  big  difference:  

 Size  of  region  is    

   

dN/dy  ~  30-­‐50      

R ⇠ 1 Fm

�r ⇠ 1/Qsat ⇠ .1� .3Fm

Physics  of  the  flucutaFons  in  both  pp  and  pA  is  on  the  subatomic  scale  size  

Page 7: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

When  compuFng  eccentriciFes,  it  makes  a  difference:  

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P(¡ 3)

¡3

CGC, loc. NBDPoisson

Glauber, glob. NBD

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P(¡ 1)

¡1

CGC, loc. NBDPoisson

Glauber, glob. NBD

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P(¡ 2)

¡2

CGC, loc. NBDPoisson

Glauber, glob. NBD

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P(¡ 4)

¡4

CGC, loc. NBDPoisson

Glauber, glob. NBD

Physically:    A  high  mulFplicity  pp  or  pA  collisions  in  hydro  should  have  similar  trends  for  eccentriciFes,  v_N  as  for  AA.    This  is  born  out  in  modeling  of  iniFal  state  where  sub-­‐nucleonic  

substructure  is  included  

Page 8: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

A  two  parFcle  correlaFon  at  large  rapidity  should  include  a  contribuFon  from  a  jet,  which  will  be  asymmetric  in  azimuthal  angle  and  an  underlying  non-­‐jet  piece  

How  to  subtract  jet  contribuFon?    If  we  assume  ma[er  is  hydrodynamical  at  transverse  momentum  of  interest,  cannot  subtract  an  unmodified  jet.    Jet  would  be  strongly  modified  by  media.    Would  need  to  simulate  jet  producFon  in  a  medium  

where  most  jets  would  stop,  and  to  model  the  enFre  jet!  

 If  the  there  are  not  significant  final  state  interacFons,  then  

can  subtract  the  jet  component,  and  are  lei  with  an  underlying  correlaFon.  

Inconsistent  to  subtract  jet  and  assume  remainder  arises  from  perfect  fluid!  

Page 9: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

But  for  fun  of  it,  plug  one’s  nose  and  ask  what  results    (You  go*a  believe):  

Generically:        

eccentriciFes  are  typical  of  those  for  central  heavy  ion  collisions  and  rather  weakly  decrease  upon  increasing  centrality  for  head  on  collisions  

 V_2  and  v_3  are  both  large  and  their  raFo  is  slowly  varying  funcFon  of  increasing  

centrality  for  head  on  collisions    

V_2  for  pPb  is  4-­‐5  Fmes  larger  than  in  pp  at  same  mulFplicity!  

Alice:    

In  pPb:    increse  of  v_2  with  increasing  centrality  

 v_3  is  small  and  slowly  varying  

 Inconsistent  with  expecta9ons  of  

perfect  fluid  hydro  and  reasonable  ini9al  condi9ons  

Page 10: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Let  us  now  go  to  the  opposite  limit:      Small  final  state  interacFons  =>      subtracFon  of  jet  contribuFon  is  sensible.    Maybe  

some  small  effects  of  the  subtracFon  which  make  it  not  quite  perfect,  but  should  be  a  good  approximaFon  

CorrelaFon  seen  must  arise  from  intrinsic  correlaFon  of  the  Glasma  flux  lines  as  they  decay:  

RG  evolu9on  of  two  par9cle  correla9ons  C(p,q)  expressed  in  terms  of  “unintegrated  gluon  distribu9ons”  in  the  proton  

Dumitru,Dusling,Gelis,Jalilian-­‐Marian,Lappi,RV,  arXiv:1009.5295  

 Contribu9on  ~  αS6/Nc

2  in  min.  bias,      High  mult.  -­‐>    1/αS2  Nc

2  

                                         –  enhancement  of  1/αS8    ~  factor  of  105  !  

   

Proton  1  

Proton  2  

Page 11: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Dusling,  RV:  1201.2658                                                1210.3890  

CGC-­‐Glasma  DescripFon  of  pp    angular  correlaFon:  

Page 12: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Exci9ng  first  results  on  proton  lead  collisions  

Key  observa9on:  Ridge  much  bigger    than  p+p  for  the    same  mul9plicity  !  

CMS  coll.  arXiv:1210.5482,  Phys.  Le*.  B  

Previous  2  and  remaining  slides  courtesy  of  R.  Venugopalan  

Page 13: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Exci9ng  results  on  proton  lead  collisions  

Page 14: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Systema9cs  of  p+Pb  data  explained  Dusling,  RV:  1211.3701  

Q02(lead)=NPart

Pb  *  Q02(proton)  

#  of  “wounded”  nucleons  in  Lead  nucleus  

Glasma  signal  is  ~  Npart  *  Ntrack    

Page 15: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

 p+Pb  data  explained  Dusling,  RV:  1211.3701  

Q02(lead)=NPart

Pb  *  Q02(proton)  

#  of  “wounded”  nucleons  in  Lead  nucleus  

Large  “ridge”  seen  in  Color  Glass  Condensate    by  varying  satura9on  scale  in  proton  and    #  of  wounded  nucleons  

Page 16: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

CMS  p+Pb  data  explained  Dusling,  RV:  1211.3701  

Smoking  gun  for  gluon  satura9on  and  BFKL  dynamics  ?    

Page 17: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

ALICE  data  on  the  p+Pb  ridge  ALICE  coll.    arXiv:1212.2001  

Different  acceptance  (|Δη|  <  1.8)  than  CMS  (2  <  |η|  <  4)  and  ATLAS  (2  <  |η|  <5).    ALICE  subtracts  away-­‐side  “jet”  contribu9on  at  40-­‐60%    centrality  from  most  central  events      –this  gives  dipole  shape  of  correla9on  

Different  analysis  technique  from    CMS/ATLAS      -­‐-­‐  same  normaliza9on  as  for    CMS/ATLAS    Curves  for  Q0,proton

2  =0.336  GeV2  

&  NpartPb  =  12  -­‐  14  

Page 18: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

ALICE  data  on  the  p+Pb  ridge  ALICE  coll.    arXiv:1212.2001  

Different  acceptance  (|Δη|  <  1.8)  than  CMS  (2  <  |η|  <  4)  and  ATLAS  (2  <  |η|  <5).    ALICE  subtracts  away-­‐side  “jet”  contribu9on  at  40-­‐60%    centrality  from  most  central  events      –this  gives  dipole  shape  of  correla9on  

 0-­‐20%  :  Q0,proton

2  =0.336  GeV2  

&  NpartPb  =  12  –  14  

 20-­‐40%  :  Q0,proton

2  =0.336  GeV2  

&  NpartPb  =  4  –  6  

 40-­‐60%:  Q0,proton

2  =0.168  GeV2  

&  NpartPb  =  3-­‐4  

     

Associated  yield  per  Δη  

Page 19: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

Comparison  to  ATLAS  p+Pb  ridge  ATLAS  coll.  arXiv:  1212.5198  

ATLAS  yields  in  asymmetric  pT  windows  compared  to  Glasma  +  BFKL:        

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.5 1 1.5 2 2.5 3

0.5 < pTtrig < 1.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 0.5 1 1.5 2 2.5 3

1.0 < pTtrig < 2.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.5 1 1.5 2 2.5 3

2.0 < pTtrig < 3.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2 2.5 3

1.0 < pTtrig < 2.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 0.5 1 1.5 2 2.5 3

2.0 < pTtrig < 3.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.10 -0.05 0.00 0.05 0.10 0.15

0.20 0.25 0.30 0.35 0.40 0.45

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.5 1 1.5 2 2.5 3

2.0 < pTtrig < 3.0 GeV; 2.0 < pT

asc < 3.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 2.0 < pT

asc < 3.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Central

ATLAS Peripheral

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 2.0 < pT

asc < 3.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 3.0 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 3.0 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

Page 20: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2 2.5 3

0.5 < pTtrig < 1.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.5 1 1.5 2 2.5 3

1.0 < pTtrig < 2.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 0.5 1 1.5 2 2.5 3

2.0 < pTtrig < 3.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 0.5 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 0.5 1 1.5 2 2.5 3

1.0 < pTtrig < 2.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 0.5 1 1.5 2 2.5 3

2.0 < pTtrig < 3.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 1.0 < pT

asc < 2.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2 2.5 3

2.0 < pTtrig < 3.0 GeV; 2.0 < pT

asc < 3.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 2.0 < pT

asc < 3.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22ATLAS Difference

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 2.0 < pT

asc < 3.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

0.00

0.01

0.01

0.01

0.02

0.03

0.03

0 0.5 1 1.5 2 2.5 3

3.0 < pTtrig < 4.0 GeV; 3.0 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

0.00

0.01

0.01

0.01

0.02

0.03

0 0.5 1 1.5 2 2.5 3

4.0 < pTtrig < 5.0 GeV; 3.0 < pT

asc < 4.0 GeV

Q20,proton =0.504 GeV2; NPart

Pb = 18-22

Glasma  graph  contribu9ons  compared  to    ATLAS  central  –  ATLAS  peripheral  

Page 21: CGC IniFal$ Glasma$ Hadron$Gas Singularity$ QGP$ Strongly ... fileThe$Glasma$ 1/Qs% random Typical configuration of a single event just after the collision Highly$coherentcolored$fields:$