césar domingo pardo gsi helmholtzzentrum für schwerionenforschung gmbh

136
César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH Status of AGATA@GSI Status of AGATA@GSI and and Expected Performance Expected Performance AGATA ISTANBUL WORKSHOP AGATA ISTANBUL WORKSHOP 5.5.2010 5.5.2010

Upload: keanu

Post on 12-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Status of AGATA@GSI and Expected Performance. César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH. AGATA ISTANBUL WORKSHOP 5.5.2010. Outline. Summary of the Meeting on AGATA@GSI setup (30.4.2010) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

César Domingo Pardo

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Status of AGATA@GSIStatus of AGATA@GSI

and and

Expected PerformanceExpected Performance

AGATA ISTANBUL WORKSHOP 5.5.2010AGATA ISTANBUL WORKSHOP 5.5.2010

Page 2: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• Summary of the Meeting on AGATA@GSI setup (30.4.2010)

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 3: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Set-up at the FRS final focal plane (S4):

Page 4: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

Set-up at the FRS final focal plane (S4):

Page 5: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Liquid Hydrogen Target

Chamber

Set-up at the FRS final focal plane (S4):

Page 6: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Plunger + DSSD + Plastic TOF Start

Chamber

Set-up at the FRS final focal plane (S4):

Page 7: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

Set-up at the FRS final focal plane (S4):

Page 8: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

LY

CC

A

Products

Set-up at the FRS final focal plane (S4):

Page 9: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

LY

CC

A

Products

AGATA

Set-up at the FRS final focal plane (S4):

Page 10: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

LY

CC

A

Products

AGATA

Set-up at the FRS final focal plane (S4):

+/- 15 cm

Page 11: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

LY

CC

A

Products

AGATA

HECTOR

Set-up at the FRS final focal plane (S4):

Page 12: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

RIB beam

Sec. Target + DSSD + Plastic TOF Start

Chamber

LY

CC

A

Products

AGATA

HECTOR

Set-up at the FRS final focal plane (S4):

Page 13: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

AGATA S2' = 10 ATC + 5 Double Cluster Detectors

• S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

Geometry cases

+ =

10 triple Cluster + 5 double Cluster

AGATA S2 GeometryAGATA S2' Geometry

Page 14: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

Geometry cases

Beam pipe diameter = 9 - 12 cm

AGATA S2' = 10 ATC + 5 Double Cluster Detectors

Page 15: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

beam

AGATA S2' = 10 ATC + 5 Double Cluster Detectors

Page 16: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

beam

Blue crystals are at diameter = 17 cm Room for a chamber 46cm diameter

AGATA S2' = 10 ATC + 5 Double Cluster Detectors

Page 17: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• S2’ Geometry + Spherical Chamber

46 cm

AGATA S2' = 10 ATC + 5 Double Cluster Detectors

Page 18: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 19: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Performance comparison: general aspects

• Systematic study of efficiency and resolution vs. distance for all geometries

• “Reference physics case”: (GEANT4 AGATA code from E.Farnea et al.)

E,o = 1 MeV, recoil nucleus at = 0.43 (E = 100 MeV/u), M = 1

Systematic study several distances sec. target – detector

GSI FRS Spatial Beam Profile FWHMx = 6 cm FWHMy = 4 cmdistance

TargetDetector

Beam

Active target DSSSD

distance

Page 20: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S1

S3

S-Geometries Performance comparison: Efficiency

S2

S1

S3

S2

S2

S1

S3

S2’

S3’

S2’

S3’

S2’

S3’

Page 21: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S1

S3

S-Geometries Performance comparison: Resolution

S2

S1

S3

S2

S2

S1

S3

S2’

S3’

r = 2 mm (fwhm)

r = 5 mm (fwhm)

S2’

S3’

S2’

S3’

Page 22: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

0

5

10

15

20

25

30 S1S2S3S2'S3'

0

2

4

6

8

10

12

14

16

18 S1S2S3S2'S3'

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

-Sensitivity

(Rising Units)

r = 5 mm

r = 2 mm

Shell Geometries performance comparison: Summary

S1

S3

S2

S2’

S3’

Page 23: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

Geometry cases

Beam pipe diameter = 12 cm

AGATA S2' Performance Summary

-EFFICIENCY -EFFICIENCY RESOLUTION

Page 24: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 25: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

AGATA S2' @ GSI: angular dependence of the efficiency

Page 26: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 27: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

= 0.43

= 0

AGATA S2' @ GSI: relativistic dependence of the efficiency

Page 28: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 29: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S2’ Configuration = 10 ATC + 5 ADC

ATC (Agata Triple Cluster)

ADC (Agata Double Cluster)

AGATA S2' @ GSI: efficiency vs. # triple (double) clusters

Page 30: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S2’ Configuration = 10 ATC + 5 ADC

ATC (Agata Triple Cluster)

ADC (Agata Double Cluster)

AGATA S2' @ GSI: efficiency vs. # triple (double) clusters

Page 31: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S2’ Configuration = 10 ATC + 5 ADC

ATC (Agata Triple Cluster)

ADC (Agata Double Cluster)

AGATA S2' @ GSI: efficiency vs. # triple (double) clusters

Page 32: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S2’ Configuration = 10 ATC + 5 ADC

ATC (Agata Triple Cluster)

ADC (Agata Double Cluster)

AGATA S2' @ GSI: efficiency vs. # triple (double) clusters

Page 33: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S2’ Configuration = 10 ATC + 5 ADC

ATC (Agata Triple Cluster)

ADC (Agata Double Cluster)

AGATA S2' @ GSI: efficiency vs. # triple (double) clusters

Page 34: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dependence of the efficiency on the number of triple (double) clusters

• In the "high-efficiency" configuration (d=8.5cm) one losses 2% for each Double Cluster missing, and 1% for each Triple Cluster missing.

• In the "standard" configuration (d=23.5cm) one losses 1% for each Double or Triple Cluster missing.

AGATA S2' @ GSI: efficiency vs. # triple (double) clusters

Page 35: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 36: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dependence of the efficiency on the g-ray multipolarity (Isotropic vs. pure E2)

E2

Isotropic

AGATA S2' @ GSI: efficiency for pure E2 transitions (full align.)

Page 37: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dependence of the efficiency on the g-ray multipolarity (Isotropic vs. pure E2)

E2

Isotropic

AGATA S2' @ GSI: efficiency for pure E2 transitions (full align.)

Page 38: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dependence of the efficiency on the g-ray multipolarity (pure E2)

E2

Isotropic

Isotropic

AGATA S2' @ GSI: efficiency for pure E2 transitions (full align.)

Page 39: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dependence of the efficiency on the g-ray multipolarity (pure E2)

E2

Isotropicpure E2

Isotropic

AGATA S2' @ GSI: efficiency for pure E2 transitions (full align.)

Page 40: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Dependence of the efficiency on the g-ray multipolarity (pure E2)

E2

Isotropicpure E2

Isotropic

?

AGATA S2' @ GSI: efficiency for pure E2 transitions (full align.)

Page 41: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 42: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

MC Simulation of a reference fragmentation experiment

Realistic MC Simulation of a fragmentation experiment

Primary Event Generator

• fragmentation

• (coulex)

(by Pieter Doornenbal)

Event Builder

• Detector AGATA response (list of hits) + Ancillaries

(by Enrico Farnea)

Event Reconstruction

• Detectors resolution

• Doppler-correction

• Tracking

Page 43: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation of a fragmentation experiment

Primary Event Generator

• fragmentation

• g-ray decay

(by Pieter Doornenbal)

54Ni @ 150 MeV/u

Be Target (700mg/cm2)

50Fe

0+

2+

4+

6+

8+

10+

765 keV

1087 keV

1308 keV

1627 keV

1581 keV

50Fe

Fragmentation Experiment Benchmark: 54Ni -> 50Fe*

Page 44: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation of a fragmentation experiment

Primary Event Generator

• fragmentation

• g-ray decay

(by Pieter Doornenbal)

54Ni

@ 150 MeV/uBe Target (700mg/cm2)

50Fe

before after

-ray vertex spatial distribution

Fragmentation Experiment Benchmark: 54Ni -> 50Fe*

Page 45: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation of a fragmentation experiment

Be Target (700mg/cm2)

Event Builder

• Detector (AGATA) response (list of hits)

(by Enrico Farnea)

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874.....

Fragmentation Experiment Benchmark: 54Ni -> 50Fe*

Page 46: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation of a fragmentation experiment

Event Reconstruction

• Detectors resolution

• Doppler-correction

• Tracking

0+

2+

4+

6+

8+

10+

765 keV

1087 keV

1308 keV

1627 keV

1581 keV

Low Statistics

High Statistics

50Fe

Raw

Doppler Corr.

Raw

Fragmentation Experiment Benchmark: 54Ni -> 50Fe*

Doppler Corr.

Page 47: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 48: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Another example: line shape analysis on first 2+ of 74NiRealistic MC Simulation of a fragmentation experiment: DSAM Analysis

76Zn @ 150 MeV/u

Fe Target (500mg/cm2)

74Ni

0+

2+

1024 keV

74Ni

= 0.5 to 1.5 ps

= ?

Zoom

Page 49: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• AGATA Geometry for experiments at GSI FRS (PRESPEC)

• Performance in terms of efficiency and resolution

• Angular dependence of the g-ray efficiency for several distances

• Relativistic dependence of the efficiency on • Performance vs. number of double and/or triple cluster available

• Efficiency performance for pure E2 transitions

• MC Simulation of a Fragmentation experiment

• MC Simulation of the line-shape for DSAM analysis

• First steps towards implementation of background in the simulations

• Outlook

• Conclusion

Page 50: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

Page 51: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

Bremsstrahlungs Bkg

Page 52: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

Bremsstrahlungs Bkg

Beam Halo of charged particles

Page 53: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

Bremsstrahlungs Bkg

Beam Halo of charged particles

Page 54: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Degrader

Target

Realistic MC Simulation: Background

Background Events courtesy of Pavel Detistov,

See e.g. (Acta Phys. Pol. B, No4, 2007)

Bremsstrahlungs Bkg

Page 55: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

0+2+

4+

6+

8+

10+

765 keV1087 keV1308 keV

1627 keV

1581 keV

50Fe

Raw

Doppler CorrectedNo Background

Page 56: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

0+2+

4+

6+

8+

10+

765 keV1087 keV1308 keV

1627 keV

1581 keV

No Background

With BS Background

Raw

Doppler Corrected

Raw

Doppler Corrected

50Fe

Bremsstrahlungs Bkg

Page 57: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

0+2+

4+

6+

8+

10+

765 keV1087 keV1308 keV

1627 keV

1581 keV

Zoom

No Background Doppler Corrected

Bremsstrahlungs Bkg

With BS Background

Page 58: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic MC Simulation: Background

Degrader

Target

A. Banu et al. PRC 72, 2005 T. Saito et al. PLB, 2008

Bremsstrahlungs Bkg

Page 59: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outlook & Conclusion

• The AGATA S2' configuration (10 ATC + 5 ADC) shows the best performance in terms of efficiency (11% to 17.5%) and -ray resolution (6 keV to 10 keV FWHM).

• Such performance represents an improvement of more than one order of magnitude in g-ray sensitivity, when compared to the present RISING-EUROBALL array.

• The angular range between 15deg and 90deg can be effectively covered for target-array distances between 43.5 cm and 8.5 cm, respectively. Such distances are compatible with an spherical target-chamber, 46cm in diameter.

• The maximum efficiency (distance = 8.5 cm) decreases (in absolute terms) by about 2% (1%) for each Double (Triple) Cluster missing from the S2' configuration (10 ATC + 5 ADC). The "nominal" efficiency (distance = 23.5 cm) decreases about 1% for each missing Double or Triple cluster.

• For pure E2 transitions, the efficiency seems to remain constant at about 16% in the distance range from 10 cm to 23.5 cm (preliminary result).

• The present code allows one to simulate easily fragmentation experiments, and study line-shape effects and optimize the setup accordingly.

• Still to do, the simulation of a representative Coulex experiment, and to include properly background events and gamma-ray and particle tracking (LYCCA).

• A lot of work has been made for plunger and DSAM experiments (M. Reese TU-Darmstadt; Group of A. Dewald, C. Fransen, Uni. Koeln; E.Farnea, C.Michelagnoli, LNL). This needs to be combined yet, with the GSI aspects of the simulation.

Page 60: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

End

Page 61: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Summary on the

AGATA@GSI Meeting on set-up, detectors and mechanics, 30.4.2010

• The Lund-Cologne-York Calorimeter responsability of the LYCCA collaboration, will be already set-up for the forthcoming PRESPEC campaign with Euroball detectors (2010).

• The HECTOR detectors will be setup by the Milano group (also by the next PRESPEC commissioning and experiments).

• Beam pipes and lead shielding responsability of GSI.

• The spherical target chamber needs to be designed and contructed (some volunteer?).

• The H2-Target responsability of the CEA Group (A.Obertelli, W. Korten).

• Plunger, to be designed and constructed by the Cologne group (A.Dewald, C.Fransen), similar to the Plunger for experiments at LNL).

• The geometry for AGATA was decided (more on this later). • In a recent meeting (29.4.2010), Canberra Eurisys promised to deliver 24 detectors by end of 2011.

Page 62: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Choose the right one!...

Page 63: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.

Alternative geometry:

AGATA S3 + 1 Agata Double Cluster = S3'

10 triple Cluster (Asym) + 1 double Cluster

Beam pipe diameter = 10 cm

AGATA S3 Geometry AGATA S3' Geometry

Page 64: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

E2

)(cos)12)(32(

)2)(1(

56

9)(cos

12

1

14

51 42 P

II

IIP

I

I

d

dWcm

cos1

coscos

lab

2

22

0 )cos1(

1

E

E

d

dlab

cm

lab

cm

cmlab d

d

d

dW

d

dW

Page 65: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Ersatzfolien

Page 66: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

1. Basics: MC code & event reconstruction

2. Cross check of the results

3. Particular constraints for the setup at GSI

4. Geometries: shell and compact setups

5. Performance comparison

6. Viability of additional -ray detectors: RISING, HECTOR, etc

7. Gain in performance from 10 to 12 Clusters

8. Outlook and conclusion

Page 67: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

General aspects: MC code

• AGATA Code from Enrico Farnea et al. http://agata.pd.infn.it/ GEANT4

Setup geometry

Primary events,

(e.g. 1 MeV -ray @ = 43%)

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874.....

Simulation output:

list mode ascii file

Page 68: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

General aspects: MC code

• AGATA Code from Enrico Farnea et al. http://agata.pd.infn.it/ GEANT4

Setup geometry

Primary events,

(e.g. 1 MeV -ray @ = 50%)

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874.....

Simulation output:

list mode ascii file

Crystal# Edep X Y Z Segment# (time)

Page 69: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874

General aspects: event reconstruction

• Total deposited energy at each event:

• Loop over all hits/event (perfect tracking)

• mgt code

• Doppler correction:

• Angle subtended by largest Edep hit

Eγo=Eγ

1−βcosϑγ

1−β2

Setup geometryPrimary events, (e.g. 1 MeV g-ray @ b = 50%)

Page 70: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874

General aspects: event reconstruction

• Total deposited energy at each event:

• Loop over all hits/event (perfect tracking)

• mgt code

• Doppler correction:

• Angle subtended by largest Edep hit

Eγo=Eγ

1−βcosϑγ

1−β2

Edep x y z

Setup geometryPrimary events, (e.g. 1 MeV g-ray @ b = 50%)

Page 71: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874

Intrinsic energy resolution: deposited energy folded with a Gauss distribution to introduce energy resolution (2 keV @ E=1 MeV)

E

General aspects: event reconstruction

Setup geometryPrimary events, (e.g. 1 MeV g-ray @ b = 50%)

Detector response function (by hand):

Page 72: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

General aspects: event reconstruction

GAMMA 11000.0000RECOIL 0.5000 0.0000 0.0000 0.0000 1.0000 0.0000SOURCE 0 0 0.0000 0.0000 0.0000$ -1 1401.723 -0.43045 0.48009 0.76434 0 29 73.617 -142.729 141.623 234.825 52 1.053 29 39.475 -143.302 150.765 245.890 52 1.129 29 148.895 -151.199 143.686 236.472 51 1.083 29 155.373 -151.207 143.675 236.479 51 1.083 29 251.516 -129.956 144.860 230.891 41 1.007 29 166.208 -129.833 144.792 230.981 41 1.008 29 163.364 -129.791 144.692 230.949 41 1.008 29 132.162 -129.764 144.711 230.911 41 1.008 29 86.873 -129.765 144.716 230.913 41 1.008 -1 1627.135 0.23197 -0.26644 0.93552 1 1 126.640 125.339 -75.549 240.008 34 1.154 1 334.250 120.598 -82.006 265.573 43 1.065 1 71.117 120.608 -81.984 265.633 43 1.065 1 160.091 120.600 -81.997 265.637 43 1.065 1 11.067 120.642 -81.972 265.678 43 1.065 1 45.200 120.643 -81.971 265.679 43 1.065 -1 1087.822 -0.71426 -0.56881 0.40778 2 -1 1257.962 -0.08354 0.77764 0.62313 3 24 129.869 -24.004 192.131 156.311 05 0.836 24 30.817 -34.318 197.026 157.088 15 0.874

Intrinsic spatial resolution: x, y, z folded with a Gauss distribution to introduce spatial resolution of 2-5 mm FWHM

x

y

z

Setup geometryPrimary events, (e.g. 1 MeV g-ray @ b = 50%)

Detector response function (by hand):

Page 73: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

d = 23.5 cm

E = 2 keV (fwhm) @ E = 1 MeV; x = 4 mm

Eγo=Eγ

1−βcosϑγ

1−β2

Setup geometryPrimary events, (e.g. 1 MeV g-ray @ b = 50%)

General aspects: event reconstruction (example)

Raw energy spectrum

Doppler corr.

Page 74: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

1. Basics: MC code & event reconstruction

2. Cross check of the results

3. Particular constraints for the setup at GSI

4. Geometries: shell and compact setups

5. Performance comparison

6. Viability of additional -ray detectors: RISING, HECTOR, etc

7. Gain in performance from 10 to 12 Clusters

8. Outlook and conclusion

Page 75: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Validation analysis / event reconstruction

http://agata.pd.infn.it/documents/simulations/demonstrator.html

Page 76: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Validation analysis / event reconstruction

Empty symbols: analysis LNL

Solid symbols: analysis GSI

Page 77: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

AGATA Geometry @ GSI

Other aspects

• Background

• Atomic background (bremsstrahlung) Shielding + P. Detistov work

• Neutron induced background Nothing

• Scatt. Particle background Tests October ’09

• Mechanical constraints (holding structure)

• Technical constraints (square beam pipe, cylindrical pipe smallest size compatibel with DSSSD Sec. Target, No Chamber ?)

Page 78: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

AGATA Geometry @ GSI Diff. Photopeak Efficiency

C1

C2

C3

C2

Page 79: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

AGATA Geometry @ GSI Diff. Energy Resolution

C1

C2

C3

Page 80: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometries, Optimal Distances

S1

S3

S2

C1

C2

C3

d = 23.5 – 15 = 8.5 cm

d = 23.5 – 10 = 13.5 cm

d = 23.5 – 15 = 8.5 cm

Page 81: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Stepwise geometry optimisation

• Ideal geometry = first approach, first step

• two main dissadvantages:

1. 15 cluster detectors will not be available yet in 2011/2012

2. The beam hole (pentagonal hole) is too narrow for the GSI beam size

• Geometry constraint: triple clusters (not individual crystals)

404

Page 82: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring Geometry

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

Page 83: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring Geometry

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

# The Euler angles (degree) and shifts (mm) of the 60 clusters# cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz# 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015...# 44 0 42.906217 106.291521 -20.916343 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058# 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468# 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 51 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 52 0 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 53 0 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015# 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015# 59 0 -15.697512 158.032137 -30.350578 89.261793 -52.266136 -256.432015

A180euler.list A180eulerprespecv4.list

Page 84: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring Geometry

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

# The Euler angles (degree) and shifts (mm) of the 60 clusters# cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz# 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015...# 44 0 42.906217 106.291521 -20.916343 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058# 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468# 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 51 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 52 0 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 53 0 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015# 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015# 59 0 -15.697512 158.032137 -30.350578 89.261793 -52.266136 -256.432015

A180euler.list A180eulerprespecv4.list

Page 85: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring Geometry

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

/Agata/detector/rotateArray 175.0 30.0 -17.0

radd.rotateY( thetaShift );radd.rotateZ( phiShift );radd.rotateX( psiShift );

/Agata/detector/rotateArray Ry(theta) Rz(phi)

radd.rotateY( thetaShift );radd.rotateZ( phiShift );

/Agata/detector/rotateArray Ry(theta) Rz(phi) Rx(psi)

Page 86: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring Geometry

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

/Agata/detector/rotateArray 175.0 30.0 -17.0

# The Euler angles (degree) and shifts (mm) of the 60 clusters# cl cl# psi(Rz) theta(Ry) phi(Rz) dx dy dz# 0 0 164.302488 21.967863 -5.649422 102.935572 -10.182573 256.432015...# 44 0 42.906217 106.291521 -20.916343 247.916020 -94.750958 -77.567377 45 0 -156.210622 134.706892 15.424027 189.440679 52.266136 -194.518058# 46 0 111.584005 131.663878 52.562301 125.572067 164.017668 -183.811468# 50 0 111.584005 131.663878 -163.437699 -197.997103 -58.883672 -183.811468 51 0 -156.210622 134.706892 -128.575973 -122.539465 -153.634630 -194.518058 52 0 111.584005 131.663878 -91.437699 -5.182770 -206.502490 -183.811468 53 0 -156.210622 134.706892 -56.575973 108.248439 -164.017668 -194.518058 54 0 111.584005 131.663878 -19.437699 194.793975 -68.741886 -183.811468 55 0 -15.697512 158.032137 41.649422 77.291461 68.741886 -256.432015 56 0 -15.697512 158.032137 113.649422 -41.493043 94.750958 -256.432015 57 0 -15.697512 158.032137 -174.350578 -102.935572 -10.182573 -256.432015# 58 0 -15.697512 158.032137 -102.350578 -22.124639 -101.044134 -256.432015# 59 0 -15.697512 158.032137 -30.350578 89.261793 -52.266136 -256.432015

Page 87: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

d = 23.5 cm

E = 2 keV (fwhm) @ E = 1 MeV; x = 4 mm

Eγo=Eγ

1−βcosϑγ

1−β2

Page 88: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters Asymmetric Ring

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

d = 23.5 cm d = 1.5 cm

E = 2 keV (fwhm) @ E = 1 MeV; x = 4 mm

Page 89: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

23.5 cm 1.5 cm 23.5 cm 1.5 cm

8 Clusters Asymmetric Ring

E = 2 keV (fwhm) @ E = 1 MeV; x = 4 mm

Page 90: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

23.5 cm 1.5 cm 23.5 cm 1.5 cm

8 Clusters Asymmetric Ring

Efficiency = 10-11% FWHM = 6-8 keV

E = 2 keV (fwhm) @ E = 1 MeV; x = 4 mm

Page 91: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

8 Clusters

Hole (11.5 cm) beam-pipe 11 cm

23.5 cm 1.5 cm 23.5 cm 1.5 cm

8 Clusters Asymmetric Ring

E = 2 keV (fwhm) @ E = 1 MeV; x = 4 mm

Page 92: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

20 cm 8 cm

Solid angle occupied and free

22 deg

C1

Page 93: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

23.4 cm5.6 cm

Solid angle occupied and free

13.45 deg

10 cm

C3

Page 94: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Other viewer’s views

Page 95: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Other viewer’s views

Page 96: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S4 focal plane room constrained by the DSSSD

Page 97: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S4 focal plane room constrained by the DSSSD

160 mm

58 mm

Page 98: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

58

S4 focal plane room constrained by the DSSSD

160 mm

58 mm

75 m

m

Page 99: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

58

S4 focal plane room constrained by the DSSSD

Page 100: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S4 focal plane constrained by the Scintillation membrane

160 mm140 mm

Page 101: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S3- and C2-Geometries + Chamber 20 cm diameter

S3 C2

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

-Sensitivity

(Rising Units)

0

2

4

6

8

10

12

14

16

18

S3

S3+Chamber

C2

C2+Chamber

dz = 3 cm dz = 15 cm

C2 performance could be improved by something like C1

Page 102: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S3- and C2-Geometries + Chamber 20 cm diameter

S3 C2

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

-Sensitivity

(Rising Units)

0

2

4

6

8

10

12

14

16

18

S3

S3+Chamber

C2

C1

dz = 3 cm dz = 15 cm

C2 performance could be improved by something like C1

C1

Page 103: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• Task 1: S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

• Task 2: S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.

• Task 3: C2 geometry, with clusters in 2nd ring pointing to target, and 3rd ring (15 Clusters total)

Geometry cases

Physics cases evaluate realistically the performance of the optimal detection system in:

• Task 1: Coulex experiment. Example: Coulex of 104Sn at 100 MeV/u on a 0.4 g/cm2 Au-target. Primary beam 124Xe.

• Task 2: Fragmentation experiment. 54Ni at 100 MeV/u + Be (0.7 g/cm2) -> 50Fe (simulate first 4 excited states up to 8+ level).

• Task 3: Plunger experiment (M. Reese TU-Darmstadt, A. Dewald, Uni. Koeln). Enfasis on angular distribution and contribution of RISING at forward angles

Realistic implementation

• Task 1: Background model or scaled background spectra from prev. experiments

• Task 2: Realistic tracking for event reconstruction (mgt, etc)

Workshop on AGATA at GSI: reference physics cases

Page 104: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

List of Tasks for the Working Group (17.07.2009)

• Task 1: S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

• Task 2: S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.

• Task 3: previous + 4 Triple Clusters enlarging shell (for case one has 15 Clusters available).

• Task 4: C2 geometry, with clusters in 2nd ring pointing to target, and 3rd ring (15 Clusters total)

Geometry cases

Physics cases evaluate realistically the performance of the optimal detection system in:

• Task 1: Coulex experiment. Example: Coulex of 104Sn at 100 MeV/u on a 0.4 g/cm2 Au-target. Primary beam 124Xe.

• Task 2: Fragmentation experiment. 54Ni at 100 MeV/u + Be (0.7 g/cm2) -> 50Fe (simulate first 4 excited states up to 8+ level).

• Task 3: Plunger experiment (A. Dewald, Chr. Fransen Uni. Koeln). Enfasis on angular distribution and contribution of RISING at forward angles

Realistic implementation• Task 1: Background model or scaled background spectra from prev. experiments

• Task 2: Realistic tracking for event reconstruction (mgt, etc)

Page 105: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometry Performance, Quantitative Comparison

S3 C2

<E(S3)> = 10.3 keV

<E(C2)> = 10.6 keV

Page 106: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometry Performance, Quantitative Comparison

S3 C2

<E(S3)> = 10.3 keV

<E(C2)> = 10.6 keV

Page 107: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometry Performance, Quantitative Comparison

S3 C2

<E(S3)> = 10.3 keV

<E(C2)> = 10.6 keV

Page 108: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• Particular constraints for the setup at GSI

• Geometries: shell and compact setups

• Performance comparison

• Viability of additional -ray detectors: RISING, HECTOR, etc

• Gain in performance from 10 to 12 Clusters

• Outlook and conclusion

Page 109: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

C2

24cm 8.7cm 20 deg8.7cm

5.6cm

57 deg

Optimal target position

Beam direction

Approximate distances and angles

Page 110: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

C2

24cm 8.7cm 20 deg8.7cm

5.6cm

57 deg

Page 111: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

C2

24cm 8.7cm 20 deg8.7cm

5.6cm

57 deg 40 deg

114 deg

Page 112: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

S3

16 cm

8 cm30 deg13 cm

8.5 cm

80 deg

Page 113: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

S3

16 cm

8 cm60 deg

13 cm

8.5 cm

160 deg

Page 114: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

S3

16 cm

8 cm60 deg

160 deg

Page 115: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Solid angle occupied and free

S3

60 deg

160 deg

20 deg57 deg 40 deg

114 deg

C2

Page 116: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Compatibility with other detection systems

RISING Fast Beam Geometry at 70cm backwards

RISING Geant4 Geometry courtesy of Pavel Detistov

Free

Beam

Beam

AGATA S3 + Rising

Page 117: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Compatibility with other detection systems

RISING Fast Beam Geometry at 70 cm forwards

RISING Geant4 Geometry courtesy of Pavel Detistov

Beam

Beam

AGATA C2 + Rising

Page 118: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Compatibility with other detection systems

RISING Fast Beam Geometry at 70 cm forwards

RISING Geant4 Geometry courtesy of Pavel Detistov

At least the inner ring of RISING is visible from the target position, 1% gain in efficiency (?)

Page 119: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Outline

• Particular constraints for the setup at GSI

• Geometries: shell and compact setups

• Performance comparison

• Viability of additional -ray detectors: RISING, HECTOR, etc

• Gain in performance from 10 to 12 Clusters

• Outlook and conclusion

Page 120: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometry Performance 12 Clusters

S3 C2

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

-Sensitivity

(Rising Units)

0

2

4

6

8

10

12

14

16

18

S3

S3+2Cl

C2

C2+2Cl

S3 + 2Clusters C2 + 2 Clusters

Page 121: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometry Performance, Quantitative Comparison

S3 C2

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

- -Sensitivity

(Rising Units)

0

10

20

30

40

50

60

70

S3S3+2ClC2C2+2Cl

S3 + 2Clusters C2 + 2 Clusters

Page 122: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Realistic Tracking (mgt)

S2

50% lower efficiency

10% worse resolution

Page 123: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

List of Tasks for the Working Group (17.07.2009)

• Task 1: S2 + 5 Double Cluster detectors closing part of the central hole (15-16cm?). Remains shell with 5 crystals hole + pentagon hole

• Task 2: S3 + 1 Double Cluster detector closing part of the central hole (10-11 cm?). Remains shell with 4 crystals hole + pentagon hole.

• Task 3: previous + 4 Triple Clusters enlarging shell (for case one has 15 Clusters available).

• Task 4: C2 geometry, with clusters in 2nd ring pointing to target, and 3rd ring (15 Clusters total)

Geometry cases

Conclusion:

• Provided that 10 ATC detectors and 1 “ADC” detector (or more) are available, then a shell geometry (S3’ or S2’) shows a superior performance than any other possible cylindrical geometry (e.g. C2).

• REALISTIC -ray efficiencies between 7% and 9% can be achieved, which in combination with resolutions (FWHM) of 9-10 keV will provide a -ray sensitivity of more than 5 times the RISING sensitivity.

Page 124: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

C2: Efficiency and Resolution angular dependence

C2

Photopeak Efficiency Energy Resolution

<E(C2)> = 10.6 keV

Page 125: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S3: Efficiency and Resolution angular dependence

S3

Photopeak Efficiency Energy Resolution

<E(S3)> = 10.3 keV

z

Page 126: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S-Geometries Performance comparison: Resolution

S1

S3

S2

S1S3

S2

r

= 5

mm

(fw

hm)

r

= 2

mm

(fw

hm)

S1

S3

S2

Page 127: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

0

20

40

60

80

100

120 S1

S2

S3

0

10

20

30

40

50

60 S1

S2

S3

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

- - Sensitivity

(Rising Units)

r = 5 mm

r = 2 mm

Shell Geometries performance comparison: Summary

S1

S3

S2

Page 128: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

0

10

20

30

40

50

60

70 C1

C2

C3

0

20

40

60

80

100

120

140 C1

C2

C3

r = 5 mm

r = 2 mm

C-Geometries performance comparison: Summary

C1

C2

C3

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

- - Sensitivity

(Rising Units)

Page 129: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S- and C-Geometry Performance, Quantitative Comparison

S3 C2

-Eff.

(%)

-Eff.

(%)

FWHM

(keV)

-Sensitivity

(Rising Units)

0

2

4

6

8

10

12

14

16

18

S3

C2

Page 130: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

S-Geometries Performance comparison: Efficiency

Page 131: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Performance comparison: general aspects

• Systematic study of efficiency and resolution vs. distance for all geometries

• “Reference physics case”: (GEANT4 AGATA code from E.Farnea et al.)

E,o = 1 MeV, recoil nucleus at = 0.43 (E = 100 MeV/u), M = 1

Systematic study several distances sec. target – detector

GSI FRS Spatial Beam Profile FWHM_x = 6 cm FWHM_y = 4 cmdistance

TargetDetector

Beam

Active target DSSSD

Page 132: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• Ideal geometry (first approach, first step)

• two main constraints:

1. 15 cluster detectors will not be available yet in 2011/2012 (10-12 instead)

2. The beam hole (pentagon) is too small for the GSI beam size

3.2 cm

4.8

cm

5 cm

Particular constraints for the setup at GSI

Page 133: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

• AGATA Demonstrator (5 triple cluster) + Köln Plunger

XTU-ALPI

120 MeV 40Ca-Beam 1 pnA

40Ca

40Ca(40Ca, 2p)78Sr

Ca-target 400 g/cm2

Au-Degrader 10.5 mg/cm2

AGATA Demonstrator

Köln Plunger

Ca-Target Au-Degrader

40Ca

R=0.04

E’ E

78Sr

AGATA + Plunger Simulation (Legnaro experiment)

Page 134: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Experiment (a)• AGATA Demonstrator (5 triple cluster) + Köln Plunger

= 155(19) ps

d = 0.2 mm 2 mm 4 mm

x 0.95)

= 155(19) ps

x 0.95

MC Code by E. Farnea and C. Michelagnoli

278 keV

Page 135: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Experiment (a)• AGATA Demonstrator (5 triple cluster) + Köln Plunger

= 5.1(5) ps

d = 0.03 mm 0.06 mm 0.10 mm

x 0.95)

= 5.1(5) ps x 0.95)

503 keV

MC Code by E. Farnea and C. Michelagnoli

Page 136: César Domingo Pardo GSI Helmholtzzentrum für Schwerionenforschung GmbH

Experiment (a)• AGATA Demonstrator (5 triple cluster) + Köln Plunger

d = 0.008 mm 0.01 mm 0.02 mm

+ Information from thick-target measurement

~ 1 ps

x 0.8)

~ 1 ps

x 0.8)712 keV