cephalopods of the world vol 1 nautilus, sepioids

Upload: biomarx

Post on 23-Feb-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    1/294

    FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

    ISSN 1020-8682

    CEPHALOPODS OF THE WORLD

    AN ANNOTATED AND ILLUSTRATED CATALOGUE OF

    SPECIES KNOWN TO DATE

    Volume 1. Chambered Nautiluses and Sepioids(Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae)

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    2/294

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    3/294

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    4/294

    The designations employed and the presentation of materialin this information product do not implythe expression of anyopinion whatsoever on the part of the Food and AgricultureOrganization of the United Nations concerning the legalstatus of any country, territory, city or area or of itsauthorities, or concerning the delimitation of its frontiers orboundaries.

    All rights reserved. Reproduct ion and dissemination of material in this

    information product for educational or other non-commercial purposes are

    authorized without any prior written permission from the copyright holders

    provided the source is fully acknowledged. Reproduction of material in this

    information product for resale or other commercial purposes is prohibited

    without written permission of the copyright holders. Applications for such

    permission should be addressed to the Chief, Publishing Management

    Service, Information Division, FAO, Viale delle Terme di Caracalla, 00100

    Rome, Italy by e-mail to [email protected]

    FAO 2005

    ISBN 92-5-105383-9

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    5/294

    The First Volume of this New Edition of the Cephalopods of the World Catalogue

    is warmly dedicated to the memory of

    Kir N. Nesis

    an accomplished scientist and teuthologist,

    a true gentleman

    and a cherished friend and colleague.

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    6/294

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    7/294

    PREPARATION OF THIS DOCUMENT

    This document has been prepared by the Marine Resources Service, Fishery Resources Division, FAO FisheriesDepartment. It is part of the regular programme activities and a partial fulfilment of the Organization's role with regards

    to the marine fisheries resources identification and biodata (FAO Programme Element 232A3). It received support throughcontributions from the Ministry of Agriculture and Forestry Policies of the Government of Italy and from the Ministry of

    Foreign Affairs of the Kingdom of Norway to the FAO Global Partnerships for Responsible Fisheries (FISCODE).This publication is the first of three volumes of the second edition of the original FAO Catalogue of Cephalopods of theWorld (Roperet al., 1984), and it constitutes Volume I of Number 4 in the new series:FAO Species Catalogue for FisheriesPurposes, that evolved as an independent series in 2001 from the formerFAO Fisheries SynopsisNo. 125.

    Because the new Catalogue has expanded apace with recent research and fisheries information and revisions, it now isnecessary to publish it as three free-standing volumes. Each volume has separate pagination, terminology/glossary,systematic sections, list of species and a volume-specific bibliography. This allows readers to use each volumeindependently without having to consult the other volumes for technical terms, measurements or bibliographic purposes.We hope that this added flexibility will provide convenience and utility for users of the Catalogue.

    Programme managers: Jordi Lleonart and Michel Lamboeuf (FAO, Rome).

    Scientific and technical editors: Patrizia Jereb (ICRAM, Rome) and Clyde F.E. Roper (Smithsonian Institution, NMNH,Washington DC, USA).

    Scientific reviser:Nicoletta De Angelis (FAO, Rome).

    Technical, editorial assistance: Ingrid Roper (Smithsonian Institution, NMNH, Volunteer, Washington DC, USA).

    Scientific assistance:Michael J. Sweeney (New Mexico State University, Las Cruces, New Mexico, USA).

    Scientific illustrator:Emanuela DAntoni (FAO, Rome).

    Page composition and indexing:Michle S. Kautenberger-Longo (FAO, Rome).

    Digitization of distribution maps:Fabio Carocci (FAO, Rome) and Elena V. Orlova (St Petersburg, Russia).

    Cover illustration:Emanuela DAntoni (FAO, Rome).

    Distribution

    Authors

    FAO Fisheries OfficersRegional Fisheries Councils and CommissionsSelector SC

    Cephalopods of the World v

    Jereb, P.; Roper, C.F.E.(eds)

    Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1.Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae).

    FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 1. Rome, FAO. 2005. 262p. 9 colour plates.

    ABSTRACT

    This is the first volume of the entirely rewritten, revised and updated version of the original FAO Catalogue ofCephalopods of the World (1984). The present Volume is a multiauthored compilation that reviews six families:Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidaeand Spirulidae, with 23 genera and the 201 speciesknown to the date of the completion of the volume. It provides accounts for all families and genera, as well as

    illustrated keys to all taxa. Information under each species account includes: valid modern systematic name andoriginal citation of the species (or subspecies); main synonyms; English, French and Spanish FAO names for thespecies; illustrations of dorsal and ventral aspect of the whole animal (as necessary) and other distinguishingillustrations; field characteristics; diagnostic features; geographic and vertical distribution, including GIS map; size;habitat; biology; interest to fishery; local names when available; a remarks section (as necessary) and literature. Thevolume is fully indexed and also includes sections on terminology and measurements, an extensive glossary, anintroduction with an updated review of the existing biological knowledge on cephalopods (including fisheriesinformation and catch data for recent years) and a dedicated bibliography.

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    8/294

    vi FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

    For bibliographic reference the different sections should be quoted as follows:

    Jereb, P.2005. Family Nautilidae. InP. Jereb & C.F.E. Roper, eds. Cephalopods of the world. An annotated and illustrated

    catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae,Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. No. 4,

    Vol. 1. Rome, FAO. pp. 5155.

    Jereb, P., Roper, C.F.E. & Vecchione, M.2005. Introduction.InP. Jereb & C.F.E. Roper, eds.Cephalopods of the world. Anannotated and illustrated catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids

    (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for FisheryPurposes. No. 4, Vol. 1. Rome, FAO. pp. 119.

    Reid, A. 2005. Family Sepiadariidae. In P. Jereb & C.F.E. Roper, eds. Cephalopods of the world. An annotated and illustratedcatalogue of species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae,

    Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. No. 4,

    Vol. 1. Rome, FAO. pp. 204207.

    Reid, A.2005. Family Idiosepiidae. InP. Jereb & C.F.E. Roper, eds.Cephalopods of the world. An annotated and illustrated

    catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae,Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. No. 4,

    Vol. 1. Rome, FAO. pp. 208210.

    Reid, A.2005. Family Spirulidae.In P. Jereb & C.F.E. Roper, eds. Cephalopods of the world. An annotated and illustrated

    catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae,

    Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes. No. 4,Vol. 1. Rome, FAO. pp. 211212.

    Reid, A. & Jereb, P.2005. Family Sepiolidae.InP. Jereb & C.F.E. Roper, eds. Cephalopods of the world. An annotated andillustrated catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae,

    Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery Purposes.

    No. 4, Vol. 1. Rome, FAO. pp. 153203.

    Reid, A., Jereb, P. & Roper, C.F.E.2005. Family Sepiidae.In P. Jereb & C.F.E. Roper, eds.Cephalopods of the world. An

    annotated and illustrated catalogue of species known to date. Volume 1. Chambered nautiluses and sepioids(Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). FAO Species Catalogue for Fishery

    Purposes. No. 4, Vol. 1. Rome, FAO. pp. 57152.

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    9/294

    Acknowledgements

    The authors are pleased to heartily acknowledge the contributions of colleagues who have supplied information or readdrafts of this Second Edition of the Cephalopod Catalogue. Without their good efforts this work would have been a lesscomprehensive, and consequently a less useful tool.

    In particular, for this Volume, we want to thank: Eero Aro (Finnish Game and Fisheries Research Institute, Helsinki,Finland), Eduardo Balguerias (Centro Oceanografico de Canarias-IEO, Santa Cruz de Tenerife, Spain), GiambattistaBello(Acquario Provinciale, Bari, Italy),Alexei Birkun (Crimean State Medical University, Simferopol, Ukraine), TeresaBorges (Centre of Marine Sciences, University of Algarve, Lisbon, Portugal),Julia Filippova (Russian Federal Institute ofMarine Fisheries and Oceanography, Moscow, Russia),Ian Gleadall(Tohoku Bunka Gakuen University, Sendai, Japan),Angel Guerra (Instituto de Investigaciones Marinas, Vigo, Spain), Eugenia Lefkaditou (Institute of Marine BiologicalResources-NCMR, Athens, Greece),Marek Lipinski (Marine and Coastal Management-DEAT, Cape Town, South Africa),Piero Mannini(Marine Resources Services-FIR, FAO, Rome, Italy), Joanne Murphy(University of Aberdeen, Aberdeen,Scotland, UK), Chingiz Nigmatullin (Atlantic Research Institute of Fisheries and Oceanography, Kaliningrad, Russia),Joo Pereira(Instituto Nacional de Investigao Agrria e das Pescas, Lisbon, Portugal), Sergio Ragonese(Istituto perlAmbiente Marino CostieroCNR, Mazara del Vallo, Italy), Francisco Rocha (Instituto de Investigaciones Marinas, Vigo,Spain), Alp Salman (Ege University, Izmir, Turkey), Bruce Saunders (Bryn Mawr College, Bryn Mawr, Pennsylvania,USA), Ignacio Sobrino (Centro Oceanografico de Cdiz-IEO, Cadiz, Spain), Tooraj Valinassab (Iranian FisheriesResearch Organization, Teheran, Iran),Peter Ward (University of Washington, Seattle, USA).

    Very special thanks are due to: Sigurd von Boletzky(Observatoire Ocanologique de Banyuls-CNRS, Banyuls-sur-Mer,France) for his knowledgeable help in solving some systematic problems; Peter Boyle, for his valuable editing of ourIntroductory Review;Renata Boucher(Musum National dHistoire Naturelle-CNRS, Paris, France) and Pilar Sanchez(Instituto de Ciencias del Mar, Barcelona, Spain) for their help with the French and Spanish vernacular names;NeethirajanNeethiselvan (Fisheries College and Research Institute, Tamil Nadu, India) who so kindly provided information andphotographic material on some Indian species;Mark Norman (Museum Victoria, Melbourne, Australia) for his invaluablehelp and support during many phases of this work; Takashi Okutani (Japan Marine Science and Technology, Yokouka City,Japan) for his knowledgeable support in reviewing and completing the sections on Japanese species; Martina Roeleveld(South African Museum, Cape Town, South Africa) who so kindly supplied information, data and photographic material onsome southern African species; Michael J. Sweeney (New Mexico State University, Las Cruces, New Mexico, USA) fortechnical support, nomenclatural listings, sources of information and literature searches.

    Pere Oliver(Instituto Espaol de Oceanografa, Palma de Mallorca, formerly of FAO, Rome) initiated this revised edition,followed by Michel Lamboeuf (FAO, Rome) and Jordi Lleonart (FAO, Rome), who were our contacts at FAO. This

    publication would not have been forthcoming without their very much appreciated support and encouragement. Weespecially thankMichel Lamboeuf for his help with the use of the FAO FISHSTAT database and for his revision of thegraphic sections thereafter.

    Of course, a compilation of this nature must rely heavily on already-published works; we acknowledge these publicationswith gratitude. In particular, we acknowledge here that many illustrations from these works have been used for thepurposes of this Catalogue, for which we are most appreciative.

    We also acknowledge with deep thanks the members of the FAO technical staff who so efficiently contributed to thepreparation of this Volume: Emanuela DAntoni for her excellent job in creating the many illustrations needed for theCatalogue and for greatly enhancing many illustrations from the literature; Nicoletta De Angelis and MichleKautenbergerfor their skilful collaboration in completing this highly technical and complex document andFabio Caroccifor his help in preparing the distribution maps.

    Colour photographs are included in this new version of the Catalogue to enrich the quality and utility of the book. Thereforewe acknowledge with gratitude those who contributed with great generosity by offering photographic material:M. Demestre,J.W. Forsythe,M. Lamboeuf,J. Lleonart,M. Norman,W.F. Rathjen,P. Sanchez and W.B. Saunders.

    Last, but not least, very special thanks are due to Ingrid H. Roper, for her technical and editorial assistance and invaluablesupport during many stages of the preparation of this Catalogue.

    Cephalopods of the World vii

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    10/294

    viii FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

    TABLE OF CONTENTS

    PREPARATION OF T HIS DOCUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

    1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 Plan of the Catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.2 General R emarks o n Cephalopods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.3 Interest to Fishery a nd Role in the Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.4 IllustratedGlossary ofTechnicalTerms and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    1.5 Key t o R ecent C ephalopod G roups and Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    2. CHAMBERED NAUTILUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    Family N AUTILIDAE d e Blainville, 1 825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    Nautilus macromphalus Sowerby, 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    Nautilus pompilius Linnaeus, 1 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Nautilus belauensis Saunders, 1981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Nautilus repertus Iredale, 1 944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Nautilus stenomphalus Sowerby, 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Allonautilus scrobiculatus (Lightfoot, 1 786) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Allonautilus perforatus (Conrad, 1 847) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    3. CUTTLEFISHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Family S EPIIDAE K eferstein, 1 866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    Key t o genera i n the f amily S epiidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Metasepia pfefferi (Hoyle, 1885) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Metasepia tullbergi (Appellf, 1 886) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    SepiaaculeataVan Hasselt, 1835 (in Frussac and dOrbigny, 18341848) . . . . . . . . . . . . . . . . . 63

    SepiaandreanaSteenstrup, 1875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    SepiaapamaGray, 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    Sepiaarabica Massy, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    SepiaaustralisQuoy and G aimard, 1 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    SepiabandensisAdam, 1939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    SepiaberthelotidOrbigny, 1835 (in Frussac and dOrbigny 18341848) . . . . . . . . . . . . . . . . . . 73

    Sepiabraggi Verco, 1 907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Sepia brevimanaSteenstrup, 1 875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    SepiacultrataHoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    Sepiaelegans Blainville, 1827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    SepiaellipticaHoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    SepiaelobyanaAdam, 1941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    SepiaesculentaHoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    Sepia grahamiReid, 2001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    Sepiahedleyi Berry, 1 918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    Sepia hierreddaRang, 1835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    SepiakobiensisHoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    Sepia latimanusQuoy a nd G aimard, 1 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Sepia longipesSasaki, 1913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    Sepia lorigera Wlker, 1910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    Sepia lycidas Gray, 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    SepiamadokaiAdam, 1939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    Sepia murrayiAdam and Rees, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    Sepiaofficinalis Linnaeus, 1758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    SepiaomaniAdam and Rees, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    Sepiaopipara (Iredale, 1926) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    11/294

    SepiaorbignyanaFrussac in dOrbigny, 1 826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    SepiapapuensisHoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    SepiapharaonisEhrenberg, 1 831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    Sepiaplangon Gray, 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    Sepiaprabahari Neethiselvan and Venkataramani, 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    SepiaprashadiWinckworth, 1 936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Sepiaramani Neethiselvan, 2 001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    Sepia recurvirostraSteenstrup, 1 875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    Sepiarozella (Iredale, 1 926) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    SepiasavignyiBlainville, 1827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    Sepia smithi Hoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    Sepia stelliferaHomenko and Khromov, 1984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    Sepiasulcata Hoyle, 1 885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    Sepia trygonina (Rochebrune, 1 884) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    Sepia vermiculata Quoy and G aimard, 1 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    SepiavietnamicaKhromov, 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    Sepia vossi Khromov, 1 996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127Sepiawhitleyana (Iredale, 1926) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    Sepiazanzibarica Pfeffer, 1884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    Sepiella inermis (Van Hasselt, 1835) (in Frussacand dOrbigny, 18341848) . . . . . . . . . . . . . . . 130

    Sepiella japonicaSasaki, 1 929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    Sepiella ornata (Rang, 1837) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    SepiellaweberiAdam, 1939 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    SepiaacuminataSmith, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    SepiaadamiRoeleveld, 1972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    SepiaangulataRoeleveld, 1972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    SepiaappellofiWlker, 1910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    Sepia aureomaculataOkutani and H orikawa, 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Sepiabartletti (Iredale, 1954) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    SepiabathyalisKhromov, Nikitina and Nesis, 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Sepia baxteri (Iredale, 1940) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Sepiabidhaia Reid, 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    SepiaburnupiHoyle, 1904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    SepiacarinataSasaki, 1 920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    Sepia chirotremaBerry, 1 918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    Sepiaconfusa Smith, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    SepiacottoniAdam, 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    SepiadollfusiAdam, 1941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    SepiadubiaAdam and Rees, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    SepiaelongatadOrbigny, 18391842 (in Frussacand dOrbigny18341848). . . . . . . . . . . . . . . 141

    Sepia erostrataSasaki, 1929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    Sepia faurei Roeleveld, 1972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    Sepia foliopezaOkutani and Tagawa, 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    SepiagibbaEhrenberg, 1 831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    Sepiahieronis (Robson, 1924) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    Sepia incerta Smith, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    Sepia insignisSmith, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    Sepia irvingiMeyer, 1 909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Sepia ivanovi Khromov, 1982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Sepia joubini Massy, 1927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Sepiakiensis Hoyle, 1885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    Cephalopods of the World ix

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    12/294

    x FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

    SepiakoiladosReid, 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    Sepia limata (Iredale, 1926) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    Sepia mascarensis Filippova a nd K hromov, 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    Sepiamestus Gray, 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    Sepia mira (Cotton, 1932) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    SepiamirabilisKhromov, 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Sepia novaehollandiaeHoyle, 1909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    SepiapapillataQuoy a nd G aimard, 1 832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    SepiapardexSasaki, 1913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    Sepia peterseniAppellf, 1886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    SepiaplanaLu and Reid, 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    Sepia plathyconchalisFilippova a nd Khromov, 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    Sepiapulchra Roeleveld and Liltved, 1985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Sepia reesiAdam, 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Sepiarhoda (Iredale, 1 954) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Sepiarobsoni (Massy, 1927) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    SepiasayaKhromov, Nikitina and Nesis, 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148SepiasentaLu and Reid, 1 997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    SepiasewelliAdam and Rees, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    SepiasimonianaThiele, 1920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Sepiasokotriensis Khromov, 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    SepiasubplanaLu and Boucher-Rodoni, 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    Sepiasubtenuipes Okutani and H orikawa, 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    Sepia talaKhromov, Nikitina and N esis, 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    Sepia tanybracheia Reid, 2 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    Sepia tenuipes Sasaki, 1929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    Sepia thurstoniAdam and Rees, 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    Sepia tokioensisOrtmann, 1888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    Sepia tuberculata Lamarck, 1 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    Sepia typica (Steenstrup, 1 875) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    SepiavercoiAdam, 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    Sepiella cyanea Robson, 1924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    SepiellamangkangungaReid and Lu, 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Sepiella ocellataPfeffer, 1884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Sepia filibrachia Reid and Lu, 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    Family S EPIOLIDAE L each, 1 817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Keyto subfamiliesand genera in the familySepiolidae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    Subfamily S EPIOLINAE Appellf, 1898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    Sepiola affinis Naef, 1912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158Sepiola atlanticaOrbigny, 1 8391842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    Sepiola birostrataSasaki, 1 918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    Sepiola intermediaNaef, 1912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    Sepiola ligulata Naef, 1912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    Sepiola parvaSasaki, 1913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

    Sepiola robusta Naef, 1912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    Sepiola rondeletiLeach, 1834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    Sepiola trirostrataVoss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    Euprymnaberryi Sasaki, 1929 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

    Euprymnamorsei (Verrill, 1 881) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

    Euprymna tasmanica (Pfeffer, 1 884) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173Rondeletiola minor(Naef, 1912) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

    Sepietta neglectaNaef, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

    Sepietta obscuraNaef, 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    Sepietta oweniana (Orbigny, 18391841) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    13/294

    SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Sepiola aurantiacaJatta, 1 896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Sepiola knudseniAdam, 1984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Sepiola pfefferi Grimpe, 1921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Sepiola rossiaeformisPfeffer, 1884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Sepiola steenstrupianaLevy, 1912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Euprymna albatrossaeVoss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    EuprymnahoyleiAdam, 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    Euprymna hyllebergiNateewathana, 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    Euprymnapenares (Gray, 1849) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    EuprymnaphenaxVoss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    Euprymna scolopesBerry, 1913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    Euprymna stenodactyla (Grant, 1833) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Sepietta petersi (Steenstrup, 1 887) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Inioteuthis capensis Voss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Inioteuthis japonica (Orbigny, 1 845) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Inioteuthis maculosa Goodrich, 1 896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Subfamily R OSSIINAE Appellf, 1898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    Rossia macrosoma (Delle C hiaie, 1 830) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    Rossia pacifica pacifica Berry, 1 911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    Rossia tortugaensis Voss, 1956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    Semirossia equalis (Voss, 1950) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

    Semirossia tenera (Verrill, 1880) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    Neorossia caroli (Joubin, 1 902) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Austrorossia antillensis (Voss, 1955) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    Austrorossia australis Berry, 1 918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

    Austrorossia bipapillata (Sasaki, 1920) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia brachyura Verrill, 1883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia bullisi Voss, 1956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia glaucopis Loven, 1845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia megaptera Verrill, 1 881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia moelleri Steenstrup, 1 856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia mollicella Sasaki, 1920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Rossia pacifica diegensis Berry, 1 912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Rossia palpebrosa Owen, 1 834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Austrorossia enigmatica (Robson, 1 924) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Austrorossia mastigophora (Chun, 1915) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Semirossia patagonica (Smith, 1881) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    Neorossia leptodons Reid, 1992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    SubfamilyHETEROTEUTHINAE Appellf, 1898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    Heteroteuthis (Heteroteuthis) dispar(Rppell, 1 844) . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

    Stoloteuthis leucoptera (Verrill, 1878) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    Sepiolina nipponensis (Berry, 1911) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Heteroteuthis (Heteroteuthis) weberi Joubin, 1 902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Heteroteuthis (Stephanoteuthis) dagamensis Robson, 1 924 . . . . . . . . . . . . . . . . . . . . . . . 203

    Heteroteuthis (Stephanoteuthis) hawaiiensis (Berry, 1 909) . . . . . . . . . . . . . . . . . . . . . . . . 203

    Heteroteuthis (Stephanoteuthis) serventyiAllan, 1945 . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Nectoteuthis pourtalesi Verrill, 1 883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Cephalopods of the World xi

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    14/294

    Iridoteuthis iris (Berry, 1909) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    Iridoteuthis maoria Dell, 1959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

    FamilySEPIADARIIDAE Fischer, 1882 in 18801887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    Key t o g enera i n t he family S epiadariidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    SepiadariumaustrinumBerry, 1921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

    Sepiadarium kochii Steenstrup, 1 881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    SepiadariumauritumRobson, 1 914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    Sepiadariumgracilis Voss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    SepiadariumnipponianumBerry, 1932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    Sepioloidea lineolata (Quoy a nd G aimard, 1832) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    Sepioloidea pacifica (Kirk, 1882) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    Family I DIOSEPIIDAE A ppellf, 1 898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

    SPECIES OF NO CURRENT INTEREST TO FISHERIES, OR RARE SPECIES FOR WHICH ONLYFEW RECORDS EXIST TO DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Idiosepius biserialis Voss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209Idiosepius macrocheirVoss, 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Idiosepius minimus (Orbigny, 1835) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Idiosepius notoides Berry, 1921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Idiosepius paradoxus (Ortmann, 1 888) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Idiosepius picteti (Joubin, 1894) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    Idiosepius pygmaeus Steenstrup, 1 881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

    Idiosepius thailandicus Chotiyaputta, Okutani and Chaitiamvong, 1991 . . . . . . . . . . . . . . . . . . 210

    Family S PIRULIDAE O wen, 1 836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    Spirula spirula (Linnaeus, 1 758) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    4. LIST OF NOMINAL SPECIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    5. LIST OF SPECIES BY MAJOR FISHING AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

    6. REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

    7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

    8. LIST OF COLOUR PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

    xii FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    15/294

    1. INTRODUCTION

    by Patrizia Jereb, Clyde F.E. Roper and Michael Vecchione

    W

    ith the increasing exploitation of finfish resources,and the depletion of a number of major fish stocks

    that formerly supported industr ial-scale f isheries,increasing attention continues to be paid to the so-calledunconventional marine resources, which includenumerous species of cephalopods. Cephalopod catcheshave increased steadily in the last 30 years, from about1 million metric tonnes in 1970 to more than 3 million tonnesin 2001. This increase confirms a potential development ofthe fishery predicted by G.L. Voss in 1973, in his firstgeneral review of the worlds cephalopod resourcesprepared for FAO. The rapid expansion of cephalopodfisheries in the decade or so following the publication ofVosss review, meant that a more comprehensive andupdated compilation was required, particularly for cephalopod fishery biologists, zoologists and students. TheFAO Species Catalogue, Cephalopods of the World byC.F.E. Roper, M.J. Sweeney and C.E. Nauen was publishedin 1984 to meet this need.

    The number of cephalopod species that enter commercialfisheries has continued to grow significantly since 1984, asa result of a still-growing market demand and the expansionof fisheries operations to new fishing areas and to deeperwaters. It has been suggested that the cephalopod l i fe - s tr a te g y m a y g u ar a n te e s u r vi v a l a g ai n s tenvironmentally stressful conditions, including thosecaused by heavy fishing. However, as cephalopod fisheriesexperienced further extensive development, parallelconcern developed regarding potential overexploitation.

    Thus, a broad consensus developed among fisherybiologists to apply the experience gained from errors madein finfish management to avoid possible failures incephalopod exploitation. To help prevent potential failures,refined species identification capabilities are required, aswell as a more detailed and accurate compilation ofinformation on cephalopod species, distribution, biology,f isheries and catch statist ics. Consequently, FAOrecognized that a new edition of the Cephalopods of theWorld catalogue was needed. To achieve this expandedgoal, several authors with particular areas of specializationwere assembled to enhance the accuracy, coverage andutility of this revised catalogue.

    In our attempt to make this document as comprehensiveand as useful as possible, the taxonomic coverage of thisedition of the catalogue is organized into 3 levels of interest:

    Level 1 : species of cephalopods currently exploitedcommercially and species utilized at the subsistence andartisanal levels;

    Level 2 : species of occasional and fortuitous interest tofisheries; this includes species considered to have apotential value to fisheries, based on criteria such asedibility, suspected abundance, accessibility, marketability,etc.;

    Level 3 :species with no current interest to fisheries, which

    are listed only with the basic information available.

    The inclusion of such a wide range of species is necessaryto provide the most comprehensive inventory of species

    possibly useful to mankind, regardless of their currentcommercial status. For example, this work should be usefulfor the ever-expanding search for development andutilization of natural products, pharmaceuticals, etc.

    The catalogue is based primarily on information available inpublished literature. However, yet-to-be-published reportsand working documents also have been used whenappropriate, especially from geographical areas where alarge body of published information and data are lacking,and we are particularly grateful to colleagues worldwidewho have supplied us with fisheries information, as well asbibliographies of local cephalopod literature.

    The fishery statistics presented herein are taken from theFAO official database, FISHSTAT, now available on the

    Worldwide web (FISHSTAT Plus 2000). This information issupplemented by field observations made by the authors inmany parts of the world, both in preparation of the 1984volume, as well as for the current edition. These field visitsprovided opportunities to examine fresh material at landingsites, markets and laboratories, as well as to obtainfirst-hand information about local cephalopod fisheries fromregional fisheries workers.

    During the 20-plus years separating the two editions, therapid development of cephalopod fisheries worldwide andthe simultaneous increase in the population of fisheriesscientists, their research and publications, made availablean enormous amount of new data and research results.

    Sometimes it is difficult to evaluate the reliability ofpublished data, especially with regard to the identification ofspecies in areas where the cephalopod fauna has not beensufficiently studied. It is entirely understandable that fieldworkers isolated from good library and museum/collectionfacilities have difficulties in correctly identifying the speciesthey encounter in the field. Moreover, the discovery of newspecies, the more accurate delimitation of known species,or even the introduction of nomenclatural changes, maycause confusion and lead to the use of scientific names thatare incorrect by modern standards. Although great carewas exercised to evaluate and correct such publishedinformation used in the catalogue, some incorrectinterpretations may have occurred. Another difficulty, in the

    taxonomic literature especially, is that information on theeconomic importance of species is rather scarce or of avery general nature. Also, we may have overlookedimportant information published only in relevant localfisheries literature that is unavailable on a broader scale. Allof these potential difficulties, however, have beensignificantly mitigated during the preparation of the newedition because of the availability on-line of fisheriesdatabases and bibliographic search capabilities.

    With regard to the limitations mentioned above, we heartilyrequest that readers who detect any errors in theinformation presented, or who have any additionalinformation and data that will enhance the accuracy andutility of this book, please contact and inform one of theauthors or the Species Identification and Data Programme(SIDP) of the Marine Resources Service, FisheriesResources Division, Fisheries Department, FAO Rome.

    Cephalopods of the World 1

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    16/294

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    17/294

    1.2 General Remarks on Cephalopods

    The group known as cephalopods (class Cephalopoda) isthe most complex in the phylum Mollusca, and indeed, in allof the invertebrate phyla. It includes exclusively marineanimals that live in all oceans of theworld with theexceptionof the Black Sea, from the Arctic Sea to the Antarctic Ocean

    and from the surface waters down into the deep sea.

    Cephalopods first appeared as a separate molluscantaxonomic entity, the nautiloids, in the Upper Cambrianperiod (over 500 million years ago), but more than half ofthese ancestors were already extinct by the end of theSilurian, 400 million years ago, when only the nautilusessurvived. Meanwhile, other forms arose in the latePalaeozoic (between 400 and 350 million years ago),including those of the Subclass Coleoidea, but most ofthem became extinct by the end of the Mesozoic, about150 million years ago. The only members of the subclassColeoidea that exist today are the forms that developed inthe Upper Triassic and Lower Jurassic (between 200 and

    150 million years ago).Although there is a long fossil record of many differentgroups, all living cephalopods belong to two subclasses:the Coleoidea, which includes the major groups known assquids, cuttlefishes sensu lato, octopods and vampires,and the Nautiloidea, containing two genera, Nautilusand

    Allona utilus, the only surviving cephalopods with anexternal shell.

    At the present time the status and understanding of theS y s te m a t ic s a n d C l a s si f i c at i o n o f t h e R e c e n tCephalopoda is under considerable discussion. Thefamilies of living cephalopods are, for the most part, wellresolved and relatively well accepted. Species-level taxa

    usually can be placed in well-defined families. The higherc l a s s i f i c a t i o n , h o we v e r , s t i l l i s n o t r e s o l v e d . T h eclassification above the family level is controversial and abroad consensus still needs to be achieved. This situationis not unexpected for a group of organisms that hasundergone explosive research attention in recent decades.

    Consequently, rather than accept and promote anyparticular scheme of classification, before consensus andstabil ity are achieved, we will use an operationalbreakdown that is satisfactory for the objectives of thisCatalogue. For practical purposes we separate thecephalopods into several groups, without assigning orimplying taxonomic relationships. Figure 1 diagrams

    several of the classification schemes currently underdiscussion.

    In this work the following groups are used, as illustrated inFigure 2

    1/:

    Nautiluses

    Cuttlefishes

    Bobtail squids

    Bottletail squids

    Pygmy squids

    Rams horn squid

    Myopsid squids

    Oegopsid squids

    Vampires

    Cirrate octopodsIncirrate octopods

    Unresolved taxa:

    Spirula

    Idiosepius

    Bathyteuthis

    Chtenopteryx

    Sepiadariidae

    Plural versus singular usage of cephalopod common groupnames is standardized as follows:

    squid, cuttlefish, octopod, octopus, vampire, nautilusrefer to one individual or one species;

    squids, cuttlefishes, octopods, octopuses, vampires,nautilusesrefer to two or more individuals and/or species.These terms are also used to indicate the major groups.

    The termcuttlefishesis also used sensu lato to indicatethe following groups: Cuttlefishes, Bobtail squids, Bottletailsquids, Pygmy squids and the Rams horn squid.

    We differentiate between the members of the family

    Octopodidae, which are calledoctopus/octopuses and themembers of the whole group (Incirrate and Cirrate or anycombination of non-Octopodidae taxa), which are calledoctopod/octopods.

    Cephalopods occur in all marine habitats of the world:benthic forms are found on coral reefs, grass flats, sand,mud and rocks; epibenthic, pelagic and epipelagic speciesoccur in bays, seas; and epipelagic, mesopelagic,bathypelagic and benthopelagic species are all present inthe open ocean. Salinity is considered to be a limiting factorin cephalopod distribution; they are generally restricted tosalinity concentrations between 27 and 37. However,

    Lolliguncula brevis, which lives and reproduces in watersof 17, demonstrates a capacity for a higher degree of

    salinity tolerance (Hendrix et al ., 1981). Some speciesinhabit the Red Sea and the southern coasts of the IberianPeninsula (Guerra, 1992), where the salinity is higher than37 and other species have been found in waters wheresalinity ranges between 25 and 18 (Sea of Marmara;Unsal et al., 1999). The habitat depth range extends fromthe intertidal to over 5 000 m. Many species of oceaniccephalopods undergo diel vertical migrations: they occur atdepths of about 200 to 700 m during the day, then at theonset of twilight and increasing darkness, they ascend intothe uppermost 200 m for the night. A deeper-living layer ofdiel migrators occurs from about 1 000 m to 600 m duringthe daytime. The abundance of cephalopods varies,depending on group, habitat and season, from isolated,

    territorial individuals (primarily benthic octopods andsepioids), through small schools of squids with a few dozenindividuals, to huge schools of neritic and oceanic specieswith millions of specimens.

    The size of adultcephalopods ranges from less than 1 cm(Jackson, 1989) to the giant squid at approximately 20 m intotal length, including the tentacles. The largest specimensmay weigh well over 500 kg, but the average size ofcommercial species is 20 to 40 cm mantle length and about0.1 to 2.0 kg total weight.

    Cephalopods are soft-bodied, bilaterally symmetricalanimals with a well-developed head and a body thatconsists of the muscular mantle, the mantle cavity that

    houses the internal organs, and, when present, the externalfins. The head bears an anterior circumoral (surrounding

    Cephalopods of the World 3

    1/ The endings used in the group names do not imply any level ofclassification.

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    18/294

    4 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

    Roperet al.(1984) Order Suborder

    Teuthoidea Myopsida

    Oegopsida

    Sepioidea

    Vampyromorpha

    Octopoda

    Cirrata

    Incirrata

    Engeser and Bandel (1988) Superorder Order Suborder

    Decapoda

    Spirulida

    higher decapods(name not given)

    Teuthina

    Sepiina

    Vampyromorphoidea

    Vampyromorpha

    Octopoda Cirrata

    Incirrata

    Clarke (1988) Order Suborder

    Sepioidea

    Sepiolioidea

    Teuthoidea Myopsida

    Oegopsida

    Vampyromorpha

    Octopoda

    Sweeney and Roper (1998) Superorder Order Suborder

    Decabrachia

    Spirulida

    Sepiida

    Sepiolida

    Teuthida Myopsina

    Oegopsina

    Octobrachia

    Vampyromorphida

    Octopodida Cirrina

    Incirrina

    Younget al.(1998) Division Superorder Order Suborder

    Neocoleoidea

    Decapodiformes

    Oegopsida

    Myopsida

    Sepioidea

    Sepiida

    Sepiolida

    Spirulida

    Incertae sedis

    Octopodiformes

    Vampyromorpha

    Octopoda Cirrata

    Incirrata

    Boletzky (1999) Grade Superorder Order

    Decabrachia

    Spirulida

    Sepiida

    Sepiolida

    Idiosepiida

    Teuthida

    Vampyropoda

    Pseudooctobrachia Vampyromorpha

    Octobrachia Cirroctopoda

    Octopoda

    Haas (2002)ranks not given

    1 2 3 4 5

    Neocoleoidea

    Decabrachiomorpha

    Oegopsida

    UniductiaSpirulida

    Myopsida Loliginida

    Sepiida

    Octobrachiomorpha

    Vampyromorpha

    Octopoda Cirrata

    Incirrata

    Fig. 1 Some conflicting suprafamilial classifications of living coleoid cephalopods

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    19/294

    Cephalopods of the World 5

    Fig. 2 Living cephalopods

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    20/294

    the mouth) crown of mobile appendages (arms, tentacles).This characteristic feature reflects the origin of the nameCephalopoda, which derives from the union of the twoGreek words: kefale, head, and pous, feet. The namewas erected by Schneider in 1784, and i t becamepermanently in use within the scientific context with thepublication of Cuviers work (1798). Arms and tentacles

    bear suckers and/or hooks (except inNautilus), which arepowerful tools to seize prey. The mouth has a pair ofchitinous jaws (the beaks) and, as in other molluscs, achitinous tongue-like radula (band of teeth) occurs in mostcephalopod species. The ancestral mollusc shell isvariously modified, reduced, or absent in living coleoids. Itis a calcium carbonate structure in cuttlefishes (thecuttlebone of sepiids and the rams horn shell ofSpirula),reduced to a rigid structure composed of chitin in squids(the gladius or pen, sometimes quite flexible) and to acartilaginous structure in finned octopods. In somesepiolids no vestige of shell is found. A true external shelloccurs only in the primitive nautiluses (restricted to theIndo-Pacific), although a shell-like egg case is produced

    and carried by female argonauts (pelagic octopods oftenmisnamed paper nautilus).

    The loss of the external shell allowed the development of apowerful muscular mantle that became the mainlocomotory organ for fast swimming, via water jetting fromthe funnel. The funnel (siphon) is a unique, multifunctional,muscular structure that aids in respiration and expulsion ofmaterials in addition to locomotion. Oxygenated water isdrawn through the mantle opening around the head (neck)into the mantle cavity, where it bathes the gills forrespiration. Mantle muscular contraction expels thedeoxygenated water from the mantle cavity through theventrally located funnel. The discharge jet serves to

    eliminate nephridial and digestive wastes, as well as tocomplete the respiratory cycle and for locomotion. Femalereproductive products (eggs, egg masses) also aredischarged through the funnel. Most coleoids produce ink,a dark, viscous fluid also expelled through the funnel. Theink may take the form of a mucoidal pseudomorph (falsebody) to decoy potential predators, or of a cloud to obscurethe escaping cephalopod.

    One pair of gills (ctenidia) is present, except inNautilus andAllonautilus, which have two pairs for respiration, i.e. toextract the oxygen from the water. However, in contrastwith coleoids,Nautilusmakes use of anaerobic respirationduring periods of high activity and can survive in water withvery low oxygen content. Coleoids also use anerobicmuscle layers. Cutaneous respiration also occurs in somecephalopods.

    The cephalopodcirculatory system is distinctive within theMollusca. It is a closed system (blood contained withinvessels), similar in many respects to that of vertebrates andfulfilling the demand for the more efficient circulationrequired by an active locomotory system. There is aprincipal, or systemic, heart, two branchial hearts anddeveloped arterial, venous and capillary systems supplyingblood to the muscles and organs. From the gills, theoxygenated blood goes through the efferent branchialvessels to the systemic heart, where it is expelled from theventricle through three aortas: the cephalic or dorsal aorta,

    which supplies the head and the anterior part of the gut; theposterior, minor or abdominal aorta that supplies the mantleand fins along with the posterior part of the gut and thefunnel; and the gonadal aorta that develops gradually with

    sexual maturation of the animal. The blood is collectedthrough sinuses and capillaries into the veins, throughwhich it goes to the branchial hearts that pump it throughthe filaments of the gills. The circulating respiratory pigmentu s e d f o r o x y g e n t r a n s p o r t i s c o p p e r - c o n t a i n i n ghaemocyanin, a system of rather lower efficiency than theiron-containing haemoglobin of vertebrates. In living

    cephalopods blood sinuses are much reduced andreplaced functionally by muscles. The circulatory systemt he re f or e h as t o w or k a ga in s t t h e p er i ph er almuscle-induced pressure, which increases with increasingactivity (maximum during jet-swimming). It also has to copewith the resistance of the small diameter of the finalcapillary blood vessels, and the low oxygen carryingcapacity of the blood (less than 4.5% by volume). In spite ofthese l imitat ions, the system has other functionalmodifications (see for example Wells and Smith, 1987;Martin and Voight, 1987) that achieve the capacity to deliveroxygen at a rate comparable to that of active fishes,enabling cephalopods to accomplish extraordinaryperformances.

    The excretory system also differs markedly from that ofother molluscs and, along with the closed circulatorysystem and the branchial circulation, enables uniquerelationships between blood and the final secretion, theurine. The excretory system differs between livingnautiloids and coleoids and also among coleoids, but thegeneral organization is similar, consisting basically of therenal sac with the renal appendages (organs comparable tovertebrate kidneys), the pericardial glands, the branchialhearts and the gills. Cephalopods are ammoniotelic, andammonium ions are continuously released by the gillepithelium and by renal appendages into the surroundingwater. Ammonium ions are used by buoyant squids to

    replace denser chloride ions in fluids in the coelom and inthe body tissues. Because this solution is less dense (andhence more buoyant) than seawater, it provides lift.

    Th e nervous system is highly developed in recentcephalopods, with a large brain and peripheral connections,contrasting with the original molluscan circumesophagealnerve ring. Among its most remarkable features is the giantfibre system of squids and cuttlefishes that connects thecentral nervous system with the mantle muscles. Thissystem consists of three orders of cells and fibres andensures the immediate and simultaneous contraction ofmantle, fins and retractor muscles of both sides, rather thanan anterior to posterior sequential contraction that would becounter-productive for water movement (expulsion). Alsoremarkable is the eye development of most coleoids, forwhich vision plays a major role in life. Their eyes are large,have a design generally similar to that of fishes and othervertebrates (e.g. a lens focuses images on the retina), andall the available evidence suggests the ocular/visualperformance to be comparable to that of vertebrates. Thecephalopods also developed a system to keep the focusedimage stationary on the retina while the animal turns, bymoving the eyes in coordination with the head/bodymovement. This is extremely important for hunters that relyon sight, and it is accomplished by connections of the eyemuscles with the statocysts, a mechanism similar to thevestibulo-optic system of fishes. The statocyst systemprovides cephalopods with information on their orientation,

    as well as changes in position and direction of movement.The statocyst system is highly developed in coleoids, whereit consists of separate cavities located in the cartilaginousskull, posteroventral to the brain. The statocysts contain

    6 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    21/294

    nervous cells and receptors differentiated to detect bothlinear acceleration, with the aid of calcareous stones calledstatoliths, and angular acceleration. Many coleoids alsohave extra-ocular photoreceptors (photosensitive vesicles)about which little is known; in mesopelagic squids theyappear to monitor light intensity in order to enable theanimals to match the counter-illumination with the ambient

    light by their own photophores (light-producing organs).Cephalopods are provided with numerous mechano- andchemoreceptors and recent evidence indicates that insome species, like Loligo vulgaris, Sepia officinalis andOctopussp., ciliate cells form lines in several parts of thebody, a system analogous to the lateral-line system infishes.

    Most Coleoidea are able to change colour by using a complexsystem of chromatophores under nervous control. Thechromatophores are pigment-filled sacs present in the skin,and capable of remarkable expansion and contraction. Thissystem responds to current situations in the environment, e.g.background coloration and threatening predators, and it is

    critical for survival, especially for shallow-water benthic forms.Coloration capabilities are variable depending on taxonomicgroup and habitat. Most species also have iridocytes(shiny,reflective platelets) in the skin. Most cephalopod behaviourincludes rapid changes in overall colour and colour patterns,as well as changes in the texture of the skin, from smooth toheavily papillate, tubercular, or with erected flaps. Whileshallow-living cephalopods are able to conceal themselves bychromatophore-produced colour patterns, chameleon-likecolour changes and textural presentations, many deep-seaforms camouflage themselves by producing bioluminescentlight from photophores which eliminate their silhouettesagainst the downwelling sunlight in the dimly-lit mid-depths.

    Locomotionis achieved by any of, or a combination of, thefollowing methods, depending on the taxonomic group:1) jet propulsion; 2) flapping or undulating the fins on themantle; 3) crawling along the bottom on the arms;4) medusoid swimming with arms and interbrachial webs.The fins on the mantle also provide balance and steeringduring jet propulsion. Many families of midwater squidshave evolved to low energy life styles and achieve neutralbuoyancy by producing and storing in tissues or in differentorgans substances/elements with specific properties, suchas oils or solutions of ammonium ions. This capabilityenabled coleoid cephalopods to inhabit open water, even inthe great depths in the ocean, the greatest volume of livingspace on earth.

    Cephalopods are voracious, active predators that feedupon crustaceans, fishes, other cephalopods and, in thecase of some benthic octopods, on bivalved molluscs. Thespeed of cephalopods, their high mobility and powerfulvisual systems, along with strongly-muscled arms andtentacles, both equipped with suckers and/or hooks, makethem extremely efficient hunters. A common huntingtechnique in sepioids and loliginids involves extremelyrapid shooting forward of the tentacles to capture the prey,while in some oegopsid squids the tentacles may be usedlike long, sucker-covered fishing lures. Some octopods usetheir web to envelop crabs and occasionally may wait untilprey touches them before attacking. The captured prey ofcephalopods is brought to the mouth and killed by bites of

    the strong, chitinous beaks, equipped with powerfulmuscles. Sometimes the prey are first paralysed with afast-acting toxin, immobilization being a strong advantagein case of large and/or very active prey such as large crabs.

    The Incirrate octopods and Sepia species usually poisontheir prey before eating them, while squids do not seemable to produce such strongly toxic secretions. Digestion incephalopods is rapid and efficient and cephalopodmetabolism is essentially proteinic: there is little or nodigestion/assimilation of carbohydrates and lipids. Foodconversion is highly efficient, especially in octopuses,

    where up to 50% of the food eaten can be converted intobody mass. More active cephalopods like squids, however,need several times the amount of food required byoctopuses and can eat from 3 to 15% of their body weighteach day.

    All cephalopods are dioecious (separate sexes) and many,though not all, exhibit external sexual dimorphism, either inmorphological or in size differences. Females frequentlyare larger than males, a phenomenon which reaches itsextreme in some pelagic octopods (such as Argonauta)where males are truly dwarf forms. Males of many speciespossess one, occasionally two, modified arm(s) (thehectocotylus) for transferring spermatophores to females

    during mating. The males of some species also exhibitmodifications to other arms, in addition to the hectocotylus.The hectocotylus may be simple or complex and canconsist of modified suckers, papillae, membranes, ridgesand grooves, flaps. The one or two limbs function to transferthe spermatophores (tubular sperm packets) from themales reproductive tract to an implantation site on thefemale. The spermatophores may be implanted inside themantle cavity(where they maypenetrate theovary), into theoviducts themselves, around the mantle opening on theneck, on the head, in a pocket under the eye, around themouth or in other locations. Females of a few species alsod e v e l o p g e n d e r - s p e c i f i c s t r u c t u r e s ( e . g . a r m - t i pphotophores) when mature. Mating is often preceded or

    accompanied by courtship behaviour that involves strikingchromatophore patterns and display. Copulatory behaviourvaries significantly among species, in colour and texturaldisplay, proximity of male and female, duration of displaya n d s p e r m a t o p h o r e t r a n s f e r , a n d t h e l o c a t i o n o f implantation of the spermatophores on the female.

    The gonadsform a single mass at the posterior end of themantle cavity, and female gonoducts may be paired (inoegopsids and incirrate octopods) or single, as in othercoleoids and in the nautiluses. Cephalopod reproductivesystems are highly complex structures with ducts, glandsand storage organs. Female octopods have oviducalglands, while decapods, in addition, have nidamentalglands and, in some families, accessory nidamental glands.S p e r m a t o p h o r e s a r e p r o d u c e d i n t h e m u l t i - u n i tspermatophoric gland and stored in the Needhams sac,from which they are released through the terminal part ofthe duct, the penis. This term is not strictlyaccurate in manygroups, because the spermatophores are passed to, ortaken by, the hectocotylized arm(s), which in turn transfer(s)the spermatophore(s) to the female. Some families do notpossess a hectocotylus. Instead, the terminal portion of themale reproductive tract forms a functional penis that can begreatly enlarged and elongated, often extending out of themantle cavity and past the head. It is likely that thesestructures directly transfer the spermatophores to thefemale. The number and size of spermatophores varygreatly, depending on the species and group (for reviews on

    spermatophore structures and function see Mann et al.,1966, 1970; Mann, 1984). Once in contact with seawater,the so called spermatophoric reaction begins. Thespermatophores evert, with the resultant extrusion of the

    Cephalopods of the World 7

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    22/294

    sperm packet caused by the penetration of water inside thespermatophoric cavity, where the osmotic pressure ishigher. The resulting extruded sperm packet is namedspermatangium (or sperm bulb or body). Sperm are able tosurvive several months once stored in the female, at least insome species, and fertilization of mature ova may takeplace either in the ovary, the oviducal glands, the mantle

    cavity or the cone formed by the outstretched arms whilethe eggs are laid. Males of the pelagic octopodArgonauta(and i ts relat ives) insert sperm into a detachablehectocotylized arm. Mating occurs by the arm severing andcrawling into the females mantle cavity.

    Fertilized eggs are embedded in one or more layers ofprotective coatings produced by the oviducal andnidamental glands and generally are laid as egg masses.Egg masses may be benthic or pelagic, varying among themajor taxonomic groups. Some oceanic mesopelagic anddeep-sea species, however, lay individual eggs.

    Eggs of neritic, inshore squids, except in Sepioteuthis,

    generally are very small (only a few millimetres in diameter)and frequently are laid in finger-like pods each containingfrom a few to several hundred eggs. Deposited inmultifinger masses (sometimes called sea mops), theseeggs are attached to rocks, shells or other hard substrateson the bottom in shallow waters. Many oceanic squids laytheir eggs into large sausage-shaped or sphericalgelatinous masses containing tens or even hundreds ofthousands of eggs that drift submerged in the open sea.Other pelagic species lay individual eggs, not enmeshed ingelatinous masses.

    Cuttlefishes sensu lato lay few, relatively large (around 10to 40 mm in diameter), grape-like eggs that are attached tohard substrates. Some species camouflage the eggs frompredators by making them dark using a coating of inkdeposited by the female at egg laying.

    Cirrate octopods lay rather large (from 10 to 25 mm length)single eggs, enclosed in a tough protective coating (seeBoletzky, 1982, 1986), and they are laid individually or insmall clusters of a very few eggs.

    Benthic incirrate octopods lay their eggs singly or ingrape-like clusters and strands. Most species attach theeggs to hard surfaces such as rock or shells while somecarry the eggs within their arms and webs. The eggs vary insize from a few millimetres to 40 mm long. They areattached to each other and/or to the substratum by cement

    produced by the oviducal gland. They lack the gelatinousouter matrix found in squid and cuttlefish eggs and the outershell found in the Cirrate octopod eggs: the protectivefunction has been replaced by the brooding behaviour ofthe female parent. The female of the pelagic octopod

    Argonauta constructs a thin, decorative shell-like eggcase, which encases her mantle and into which sheperiodically lays and attaches festoons of minute eggs.

    The mode of reproduction and egg-laying still is unknownfor many species, especially those of oceanic and deep-seaenvironments.

    Development of cephalopod embryos is direct, without true

    metamorphic stages. Hatchlings of species with large eggslook like miniatures of the adult, while hatchlings of specieswith small eggs undergo gradual changes in proportionsduring development. The young of some species, however,differ conspicuously from the adults. Thus, the term

    paralarva has been introduced for these early stages ofcephalopods that differ morphologically and ecologicallyfrom older stages. Hatchlings from large-egged benthicoctopods are either benthic crawl-away young or temporarily planktonic, quickly settling back to the adultbenthic habitat. Small-egged benthic octopuses produceplanktonic hatchlings with very simple skin patterns of large

    chromatophores. The paralarvae of many deep-seaspecies of squids and octopods occur in the upper 100 m ofthe open ocean; then they exhibit an ontogenetic descent,gradually descending to deeper depths with increasing sizeuntil the adult depth is attained. Time of embryonicdevelopment varies widely, from a few days to manymonths, depending on the species and the temperatureconditions. Hatching may occur synchronously from asingle clutch orbe extended over a period of 2 or 3 weeks.

    In spite of the large number of studies and research carriedout on cephalopods, especially in recent decades, the lifehistoryof the majority of species is still unknown, and ourknowledge of the life cycles of the members of this

    interesting class remains fragmentary. Information comesfrom studies in the field as well as from observations in thelaboratory. However, little is known of life history for speciesthat are not targets of regular fisheries, and only a handfulof cephalopod species have been reared successfullyin thelaboratory.

    Studies and monitoring of growth in cephalopods arecomplicated by the high variability in individual growthrates. This makes it difficult to apply conventional methods,e.g. length frequency analysis, used for more traditionalresources such as fishes and crustaceans. Determinationof age in Recent coleoids is also difficult, because theyhave few hard structures that show daily marks (rings) that

    would enable direct estimates of age. In the last 15 years,progress has been made on the study and analysis ofstatoliths that has resulted in an increased knowledge ofage, in squids at least. This has led to changes in ourperspectives about the physiology and ecology of manyteuthoids, but more research is required before a fullunderstanding is achieved (see Jereb et al., 1991; Okutaniet al., 1993; Jackson, 1994 and Lipinski and Durholtz, 1994for reviews and discussions). Principle results obtainedfrom the research generally confirm a very high growth ratein cephalopods, comparable to that of the fastest-growingfishes.

    Nautilusspecies have alife span of about 20 years, duringwhich they spawn intermittently when first mature, then

    annually when fully mature, laying a few large eggs at atime. The life expectancy of most coleoids appears to rangefrom a few months to one or two years. Many small oceanicsquids, such as pyroteuthids may complete their life cyclesin less than six months, while some minute forms ofsepioids have a life span of only 2 to 3 months. Recentevidence, however, suggests that larger species of squidsand octopods, for example the giant squid (Architeuthisspp.) and the giant octopus (Enteroctopus dofleini), as wellas those that live in coldest habitats, may live for severalyears.

    A general consensus exists that spawning is a terminalevent, in spite of the high variability in the duration of

    individual spawning periods (5 to 50% of ontogenesis;Nigmatullin, 2002) as well as the type of spawning, e.g.from one-time, total spawning, to prolonged, intermittent,multiple batches. A recent review of coleoid reproductive

    8 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1

  • 7/24/2019 Cephalopods of the World Vol 1 Nautilus, Sepioids

    23/294

    strategies (Rochaet al., 2001) defined five comprehensive,flexible strategies:

    A) Single event spawning, formerly termed semelparity,consists of synchronous ovulation, and monocyclic,simultaneous terminal spawning; Octopus vulgaris is thetypical example of this life strategy.

    B) Multiple event spawning, formerly termed iteroparity,with the following possibilities:

    1 - polycyclic spawning: egg-laying occurs in separatebatches during the spawning season and growthoccurs between production of egg batches andsubsequent spawning events (e.g.Nautilus species);

    2 - mult iple spawning, with group-synchronousovulation, monocyclic spawning and growth betweenegg batches (e.g.Sthenoteuthis oualaniensis);

    3 - i n t e r mi t t e n t t e r m i na l s p a wn i n g wi t h g r o u p-synchronous ovulation, monocyclic spawning and nogrowth between egg batches (e.g. Sepia officinalis,

    Loligo vulgaris,Illex coindetii);