cells by improving heterojunction interface quality ... · enkhjargal enkhbayar,b jin hyeok kim,a...

14
ESI-1 Electronic supplementary information (ESI) for Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar Cells by Improving Heterojunction Interface Quality Jae Yu Cho, a SeongYeon Kim, b Raju Nandi, a Junsung Jang, a Hee-Sun Yun, c,d Enkhjargal Enkhbayar, b Jin Hyeok Kim, a Doh-Kwon Lee, c,d Choong-Heui Chung, e JunHo Kim, b,* and Jaeyeong Heo a,* a Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea b Department of Physics, Incheon National University, Incheon 22012, Republic of Korea c Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea d Division of Nano and Information Technology, KIST School Korea University of Science and Technology, Seoul 02792, Republic of Korea e Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea * Corresponding author E-mail: [email protected] (Prof. J. Kim) E-mail: [email protected] (Prof. J. Heo) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • ESI-1

    Electronic supplementary information (ESI) for

    Achieving Over 4% Efficiency for SnS/CdS Thin-Film Solar

    Cells by Improving Heterojunction Interface Quality

    Jae Yu Cho,a SeongYeon Kim,b Raju Nandi,a Junsung Jang,a Hee-Sun Yun,c,d

    Enkhjargal Enkhbayar,b Jin Hyeok Kim,a Doh-Kwon Lee,c,d Choong-Heui Chung,e

    JunHo Kim,b,* and Jaeyeong Heoa,*

    aDepartment of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of KoreabDepartment of Physics, Incheon National University, Incheon 22012, Republic of Korea

    cPhoto-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

    dDivision of Nano and Information Technology, KIST School Korea University of Science and Technology, Seoul 02792, Republic of Korea

    eDepartment of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

    * Corresponding authorE-mail: [email protected] (Prof. J. Kim)E-mail: [email protected] (Prof. J. Heo)

    Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2020

    mailto:[email protected]:[email protected]

  • ESI-2

    2.0 2.5 3.0 3.5 4.0

    (h

    )2

    Energy (eV)

    RT (3.49 eV) 100 oC (3.63 eV) 200 oC (3.76 eV) 300 oC (3.71 eV) 400 oC (3.65 eV)

    0 100 200 300 40010-4

    10-3

    10-2

    Deposition temperature (oC)

    Resistivity (.cm)

    0.0

    2.0x1020

    4.0x1020

    6.0x1020

    8.0x1020

    1.0x1021

    Carrier concentration (cm-3)

    5

    10

    15

    20

    25

    Carrier mobility (cm2.V-1.s-1)

    300 400 500 600 700 8000

    20

    40

    60

    80

    100 T

    rans

    mitt

    ance

    (%)

    Wavelength (nm)

    RT (87.8%) 100 oC (89.9%) 200 oC (91.0%) 300 oC (93.2%) 400 oC (93.4%)

    (a) (b) (c)

    Fig. S1. (a) Transmittance spectra, (b) bandgap extraction, and (c) electrical properties of the AZO films

    grown at different temperatures from room temperature to 400 °C.

  • ESI-3

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25Cu

    rrent

    den

    sity

    (mA

    cm2

    )

    Voltage (V)

    (a)

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Curre

    nt d

    ensit

    y (m

    A cm

    2)

    Voltage (V)

    (b)

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Curre

    nt d

    ensit

    y (m

    A cm

    2)

    Voltage (V)

    (c)

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Curre

    nt d

    ensit

    y (m

    A cm

    2)

    Voltage (V)

    (d)

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Curre

    nt d

    ensit

    y (m

    A cm

    2)

    Voltage (V)

    (e)

    Fig. S2. J–V characteristics of the SnS/CdS TFSCs at different AZO film deposition temperatures of (a)

    150 °C, (b) 200 °C, (c) 250 °C, (d) 300 °C, and (e) 350 °C.

  • ESI-4

    Mo

    SnS

    i-ZnO/AZOCdS

    1 m Mo

    SnS

    i-ZnO/AZOCdS

    1 m

    (a) (b)

    Fig. S3. Cross-sectional SEM images of the SnS/CdS TFSCs with AZO films deposited at (a) 150 °C and

    (b) 300 °C.

  • ESI-5

    0 500 1000 1500103

    104

    105

    Inte

    nsity

    (c/s

    )

    Time (s)

    Sn (250 oC) S (250 oC) Cd (250 oC) Sn (350 oC) S (350 oC) Cd (350 oC)

    103

    104

    105

    Inte

    nsity

    (c/s

    )

    Time (arb. unit)

    Sn (250 oC) S (250 oC) Cd (250 oC) Sn (350 oC) S (350 oC) Cd (350 oC)

    0 500 1000 1500 2000101

    102

    103

    104

    105

    106

    Zn Mo Cd Sn

    Inte

    nsity

    (c/s

    )

    Time (s)

    O Na Al S

    0 500 1000 1500 2000101

    102

    103

    104

    105

    106

    Zn Mo Cd Sn

    Inte

    nsity

    (c/s

    )

    Time (s)

    O Na Al S

    (a)

    (b)

    (c)

    (d)

    SSn

    Cd

    Fig. S4. Full SIMS depth profiles of the TFSCs with AZO deposited at (a) 250 and (b) 350 oC without Al

    top contact. (c) The selected profiles for Sn, S, and Cd ions. (d) The shifted profiles for matching the

    initial detection of S, Sn, and Cd signals to evaluate the Cd diffusion into SnS absorbers. Slight Cd

    diffusion into SnS absorber is noted for the 350 oC device.

  • ESI-6

    50

    60

    70

    80

    90

    100

    110

    54.7

    65.3

    80.1

    101.397.3

    350300250200

    Effi

    cien

    cy re

    tent

    ion

    (%)

    AZO deposition temperature (oC)1500.0 0.1 0.2 0.3 0.4

    0

    5

    10

    15

    20

    25

    C

    urre

    nt d

    ensi

    ty (m

    A c

    m-2)

    Voltage (V)

    150 oC 200 oC 250 oC 300 oC 350 oC

    2018.05. 2020.04.

    (a) (b)

    Fig. S5. (a) J–V characteristics and (b) the efficiency retention of SnS/CdS TFSCs at various AZO film

    deposition temperatures of 150–350 °C. To test the long-term stability of the TFSCs, the device

    performance was measured again after almost two years.

  • ESI-7

    0 50 100 150 200 250 3000.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0 V o

    c (V)

    Temperature (K)

    AZO deposition temperature 150 C 200 C 250 C 300 C 350 C

    150 200 250 300 3500.5

    0.6

    0.7

    0.8

    0.9

    EA (e

    V)

    AZO deposition temperature (C)

    (a) (b)

    Fig. S6. (a) Temperature dependence of Voc for TFSCs with various AZO deposition temperatures at 150

    to 350 °C. (b) The extracted activation energy as a function of AZO deposition temperature.

  • ESI-8

    5 m 5 m

    (a) (b)

    Fig. S7. Plan-view SEM images of the SnS absorbers annealed in (a) vacuum condition (~10-2 Torr), and

    (b) 20 Torr in Ar ambient, respectively. Partial evaporation of SnS surface is observed for (a) vacuum

    condition.

  • ESI-9

    300 400 500 600 700 8000

    20

    40

    60

    80

    100

    Tran

    smitt

    ance

    (%)

    Wavelength (nm)

    2 3 4

    (h

    )2 Energy (eV)

    3.58 eV

    Fig. S8. Transmittance spectrum of the AZO layer grown in a home-made sputter at room temperature;

    the inset shows the bandgap extraction plot (Eg = 3.58 eV). The average transmittance for 400 – 700 nm

    was 89.0%. The film thickness was ~380 nm and the sheet resistance was 28 ohm/sq. with resistivity of

    1.066 × 10-3 ohm cm.

  • ESI-10

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Cur

    rent

    den

    sity

    (mA

    cm

    -2)

    Voltage (V)

    (a)Best cellVoc = 0.249 VJsc = 15.6 mA cm-2FF = 0.524 = 2.04%

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Cur

    rent

    den

    sity

    (mA

    cm

    -2)

    Voltage (V)

    (b)Best cellVoc = 0.217 VJsc = 14.5 mA cm-2FF = 0.512 = 1.61%

    0.0 0.1 0.2 0.3 0.40

    5

    10

    15

    20

    25

    Cur

    rent

    den

    sity

    (mA

    cm

    -2)

    Voltage (V)

    (c)

    Best cellVoc = 0.332 VJsc = 22.1 mA cm-2FF = 0.575 = 4.20%

    Fig. S9. J–V characteristics of the TFSCs with (a) as-deposited SnS/CdS without any junction annealing,

    (b) annealed SnS at 300 °C in Ar ambient and as-deposited CdS without any junction annealing, and (c)

    as-deposited SnS/CdS with additional junction annealing at 300 °C in Ar ambient. Here, the annealing

    duration and pressure was fixed at 1 h and 20 Torr, respectively, and in total, six cells were fabricated.

    The highest efficiencies achieved for these devices were 2.04%, 1.61%, and 4.20%, respectively.

  • ESI-11

    (a) (b)

    Fig. S10. (a) J–V and (b) EQE certifications of the champion cell ( = 4.225%) measured at KIER in

    Korea.

  • ESI-12

    200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100

    T,R,

    A (%

    )

    Wavelength (nm)

    T R A

    Glass/FTO

    200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100Glass/FTO/CdS

    T,R,

    A (%

    )

    Wavelength (nm)

    T R A

    200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100

    T,R,

    A (%

    )

    Wavelength (nm)

    T R A

    Glass/i-ZnO/AZO

    200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100R

    (%)

    Wavelength (nm)

    Glass/Mo/SnS/CdS/i-ZnO/AZO(a) (b)

    (c) (d)

    Fig. S11. (a) Reflectance spectrum of the full device without a top metal grid. Transmittance, reflectance,

    and absorbance spectra for (b) glass/i-ZnO/AZO, (c) glass/FTO, and (d) glass/FTO/CdS. Figure (b) was

    used for calculating absorption in the transparent electrodes (i-ZnO/AZO). Figure (c) and (d) were used

    for calculating absorption in CdS buffer layer.

  • ESI-13

    Table S1. Electrical properties of AZO thin films grown at different temperatures.

    AZO filmdeposition

    Temperature (°C)

    RT 100 200 300 400

    Thickness(nm)

    494 491 406 435 405

    Rsheet

    (Ω/sq.)

    55.1 16.0 7.8 11.7 21.9

    Resistivity(Ω cm)

    2.72 × 10-3 7.86 × 10-4 3.17 × 10-4 5.09 × 10-4 8.87 × 10-4

    Carrier concentration

    (cm-3)2.2 × 1020 5.4 × 1020 9.6 × 1020 6.2 × 1020 6.4 × 1020

    Mobility(cm2 V-1s-1)

    9.8 14.5 20.6 19.5 10.9

  • ESI-14

    Table S2. Simulated diode parameters for SnS/CdS TFSCs at various AZO film deposition temperatures

    from 150 °C to 350 °C.

    AZO film deposition temperature

    (°C)

    Gsh(mS cm-2)

    Rs(Ω cm2)

    A J0(mA cm-2)

    150 2.430 0.491 1.228 2.23 × 10-2

    200 2.795 0.534 1.215 1.27 × 10-2

    250 2.214 0.441 1.424 1.66 × 10-3

    300 1.073 0.707 1.244 3.63 × 10-3

    350 0.289 0.710 1.241 2.88 × 10-3