cell communication chapter 9. please note that due to differing operating systems, some animations...

35
Cell Communication Chapter 9

Upload: christiana-dean

Post on 03-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

Cell Communication

Chapter 9

Page 2: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the “Normal” or “Slide Sorter” views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

Page 3: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

3

Communication between cells requiresLigand – signaling molecule

Receptor protein – molecule to which the receptor binds

Interaction of these two components initiates the process of signal transduction, which converts the information in the signal into a cellular response

Page 4: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

4

Four basic mechanisms for cellular communication1. Direct contact

2. Paracrine signaling

3. Endocrine signaling

4. Synaptic signaling• Some cells send signals to themselves (autocrine

signaling)

Important in early development

Page 5: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

5

Signal transduction

• Events within the cell that occur in response to a signal

• When a ligand binds to a receptor protein, the cell has a response

• Different cell types can respond differently to the same signal– Epinephrine example

Page 6: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

6

Phosphorylation

• Addition of phosphate group• A cell’s response to a signal often involves

activating or inactivating proteins• Phosphorylation is a common way to

change the activity of a protein• Protein kinase – an enzyme that adds a

phosphate to a protein• Phosphatase – an enzyme that removes a

phosphate from a protein

Page 7: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

7

Page 8: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

8

Receptor Types

• Receptors can be defined by their location

1. Intracellular receptor – located within the cell

2.Cell surface receptor or membrane receptor

1).located on the plasma membrane to bind a ligand outside the cell

2). Transmembrane protein in contact with both the cytoplasm and the extracellular environment

Page 9: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

9

3 subclasses of membrane receptors

1. Chemically gated ion channels – channel-linked receptors that open to let a specific ion

pass in response to a ligand

• Enzymatic receptors – receptor is an enzyme that is activated by the ligand– Almost all are protein kinases

1. G protein-coupled receptor – a G-protein (bound to GTP) assists in transmitting the

signal from receptor to enzyme (effector)

Page 10: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

10

Page 11: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

11

Intracellular Receptors

• Steroid hormones – Common nonpolar, lipid-soluble structure– Can cross the plasma membrane to a steroid

receptor– Binding of the hormone to the receptor

causes the complex to shift from the cytoplasm to the nucleus

– Act as regulators of gene expression

Page 12: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

12

Page 13: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

13

• A steroid receptor has 3 functional domains

1.Hormone-binding domain

2.DNA-binding domain

3.Domain that interacts with coactivators to affect level of gene transcription

• In its inactive state, the receptor typically cannot bind to DNA because an inhibitor protein occupies the DNA binding site

• Binding of ligand changes conformation

Page 14: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

14

Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the “Normal” or “Slide Sorter” views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at http://get.adobe.com/flashplayer.

Page 15: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

Coactivators

• Target cell’s response to a lipid-soluble cell signal can vary enormously, depending on the nature of the cell

• Even the same type of cell may have different responses

• Depends on coactivators present • Estrogen has different effects in uterine tissue

than mammary tissue– Not presence or absence of receptor– Presence or absence of coactivator

15

Page 16: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

16

Receptor Kinases

• Protein kinases phosphorylate proteins to alter protein function

• Receptor tyrosine kinases (RTK)– Influence cell cycle, cell migration, cell

metabolism, and cell proliferation• Alteration to function can lead to cancer

– Membrane receptor– Plants possess receptors with a similar overall

structure and function

Page 17: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

• RTKs have – A single transmembrane domain

• Anchors them in membrane

– Extracellular ligand-binding domain– Intracellular kinase domain

• Catalytic site of receptor acts as protein kinase

• When a ligand binds, dimerization and autophosphorylation occur

• Cellular response follows – depends on cellular response proteins

17

Page 18: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

18

Page 19: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

• Insulin receptor• Activated receptor

has phosphorylated sites that allow docking

• Insulin is a hormone that helps to maintain a constant blood glucose level

• Lowers blood glucose

19

Page 20: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

20

Kinase cascade

• Mitogen-activated protein (MAP) kinases– Important class of cytoplasmic kinases– Mitogens stimulate cell division– Activated by a signaling module called a

phosphorylation cascade or kinase cascade– Series of protein kinases that phosphorylate

each other in succession– Amplifies the signal because a few signal

molecules can elicit a large cell response

Page 21: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

21

Page 22: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

22

Page 23: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

Scaffold proteins

• Thought to organize the components of a kinase cascade into a single protein complex

• Binds to each individual kinase such that they are spatially organized for optimal function

• Benefit in efficiancy• Disadvantage in reducing

amplification effect

23

Page 24: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

24

G-Protein Coupled Receptors

G-protein – protein bound to GTP

G-protein-coupled receptor (GPCRs) – receptors bound to G proteins

G-protein is a switch turned on by the receptorG-protein then activates an effector protein

(usually an enzyme)

Page 25: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

Ras proteins

• Small GTP-binding protein (G protein)• Link between the RTK and the MAP kinase

cascade• Ras protein is mutated in many human tumors,

indicative of its central role in linking growth factor receptors to their cellular response

• Ras can regulate itself – stimulation by growth factors is short-lived

25

Page 26: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

26

Page 27: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

27

G-Protein Coupled Receptors

• Single largest category of receptor type in animal cells is GPCRs

• Receptors act by coupling with a G protein• G protein provides link between receptor that

receives signal and effector protein that produces cellular response

• All G proteins are active when bound to GTP and inactive when bound to GDP

• Effector proteins are usually enzymes

Page 28: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

28

Page 29: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

• Often, the effector proteins activated by G proteins produce a second messenger

• 2 common effectors

1.Adenylyl cyclase– Produces cAMP– cAMP binds to and activates the enzyme protein

kinase A (PKA)– PKA adds phosphates to specific proteins

2.Phospholipase C– PIP2 is acted on by effector protein phospholipase C

– Produces IP3 plus DAG

– Both act as second messengers29

Page 30: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

30

Adenylyl cyclase

Page 31: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

31

Page 32: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

• Calcium

• Ca2+ serves widely as second messenger

• Intracellular levels normally low

• Extracellular levels quite high

• Endoplasmic reticulum has receptor proteins that act as ion channels to release Ca2+

• Most common receptor binds IP3

32

Page 33: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

33

Cell-to-Cell Interactions

Cells can identify each other by cell surface markers

-Glycolipids are commonly used as tissue-specific markers

-Major histocompatibility complex (MHC) proteins are used by cells to distinguish “self” from “nonself”

• Different receptors can produce the same second messengers

• Hormones glucagon and epinephrine can both stimulate liver cells to mobilize glucose– Different signals, same effect– Both act by same signal transduction pathway

Page 34: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

34

Page 35: Cell Communication Chapter 9. Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in

• Single signaling molecule can have different effects in different cells

• Existence of multiple forms of the same receptor (subtypes or isoforms)

• Receptor for epinephrine has 9 isoforms– Encoded by different genes– Sequences are similar but differ in their cytoplasmic

domains

• Different isoforms activate different G proteins leading to different signal transduction pathways

35