ce 530 molecular simulationkofke/ce530/lectures/lecture12.ppt.pdf5 approaches to evaluating...

28
1 CE 530 Molecular Simulation Lecture 12 Dynamical Properties David A. Kofke Department of Chemical Engineering SUNY Buffalo [email protected]

Upload: others

Post on 16-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

1

CE 530 Molecular Simulation

Lecture 12 Dynamical Properties

David A. Kofke

Department of Chemical Engineering SUNY Buffalo

[email protected]

Page 2: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

2

Review

¡ Several equivalent ways to formulate classical mechanics •  Newtonian, Lagrangian, Hamiltonian •  Lagrangian and Hamiltonian independent of coordinates •  Hamiltonian preferred because of central role of phase space to

development ¡ Molecular dynamics

•  numerical integration of equations of motion for multibody system •  Verlet algorithms simple and popular

Page 3: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

3

Dynamical Properties

¡ How does the system respond collectively when put in a state of non-equilibrium?

¡ Conserved quantities •  mass, momentum, energy •  where does it go, and how quickly? •  relate to macroscopic transport coefficients

¡ Non-conserved quantities •  how quickly do they appear and vanish? •  relate to spectroscopic measurements

¡ What do we compute in simulation to measure the macroscopic property?

Page 4: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

4

Macroscopic Transport Phenomena ¡ Dynamical behavior of conserved quantities

•  densities change only by redistribution on macroscopic time scale ¡ Differential balance

¡ Constitutive equation

¡ Our aim is to obtain the phenomenological transport coefficients by molecular simulation •  note that the “laws” are (often very good) approximations that

apply to not-too-large gradients •  in principle coefficients depend on c, T, and v

( , ) 0c tt

∂ +∇ ⋅ =∂r j ( , ) 0p

T tct

∂ +∇ ⋅ =∂r q ( , ) 0D t

Dtρ τ+∇ ⋅ =v r

D c= − ∇j k T= − ∇q ( )xy y xτ ν ρ= − ∇ vFick’s law Fourier’s law Newton’s law

Mass Energy Momentum

Page 5: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

5

Approaches to Evaluating Transport Properties ¡ Need a non-equilibrium condition ¡ Method 1: Establish a non-equilibrium steady state

•  “Non-equilibrium molecular dynamics” NEMD •  Requires continuous addition and removal of conserved quantities •  Usually involves application of work, so must apply thermostat •  Only one transport property measured at a time •  Gives good statistics (high “signal-to-noise ratio”) •  Requires extrapolation to “linear regime”

¡ Method 2: Rely on natural fluctuations •  Any given configuration has natural inhomogeneity of mass,

momentum, energy (have a look) •  Observe how these natural fluctuations dissipate •  All transport properties measurable at once •  Poor signal-to-noise ratio

Page 6: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

6

Mass Transfer ¡ Self-diffusion

•  diffusion in a pure substance •  consider tagging molecules and watching how they migrate

¡ Diffusion equations •  Combine mass balance with Fick’s law

•  Take as boundary condition a point concentration at the origin

¡ Solution

¡ Second moment

2 ( , ) 0c D c tt

∂ − ∇ =∂

r

( , ) ( )c t δ=r r

2/ 2( , ) (2 ) exp

2d rc t Dt

Dtπ − ⎛ ⎞

= −⎜ ⎟⎝ ⎠

r

2 2( ) ( , )

2

r t r c t d

dDt

=

=∫ r r RMS displacement increases as t1/2

Compare to ballistic r ~ t

For given configuration, each molecule represents a point of high concentration (fluctuation)

Page 7: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

7

Interpretation ¡ Right-hand side is macroscopic property

•  applicable at macroscopic time scales

¡ For any given configuration, each atom represents a point of high concentration (a weak fluctuation)

¡ View left-hand side of formula as the movement of this atom •  ensemble average over all initial conditions

•  asymptotic linear behavior of mean-square displacement gives diffusion constant

•  independent data can be collected for each molecule

2( ) 2r t dDt=

r2(t) = dpN drNr12(t) δ (r1)π (r

N ,pN )⎡⎣

⎤⎦∫∫ t=0

2r

t

Slope here gives D

2 21( ) ( )iNr t r t= ∑

Einstein equation

Page 8: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

8

Time Correlation Function ¡ Alternative but equivalent formulation is possible ¡ Write position r at time t as sum of displacements

0 0

( ) ( )t tdt d ddt

τ τ τ= =∫ ∫rr v

dt

dt

dt

r(t) v

Page 9: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

9

Time Correlation Function ¡ Alternative but equivalent formulation is possible ¡ Write position r at time t as sum of displacements ¡ Then 0 0

( ) ( )t tdt d ddt

τ τ τ= =∫ ∫rr v

1

1

21 1 2 2

0 0

1 2 2 10 0

1 2 2 10 0

1 2 1 20 0

10 0

0

( ) ( ) ( )

( ) ( )

2 ( ) ( )

2 (0) ( )

2 (0) ( )

2 2 (0) ( )

t t

t t

t

t

t t

t

r t d d

d d

d d

d d

d d

dDt t d

τ

τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ τ

τ τ τ

τ τ

= ⋅

= ⋅

= ⋅

= ⋅ −

= ⋅

= ⋅

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

v v

v v

v v

v v

v v

v v

r2 in terms of displacement integrals

rearrange order of averages

1 2 1 2 1 2( ) ( ) 2 ( )τ τ τ τ τ τ< + > = >∫ ∫ ∫ ∫ ∫ ∫

correlation depends only on time difference, not time origin

1 2substitute τ τ τ= −

0

1 (0) ( )D dd

τ τ∞

= ⋅∫ v v Green-Kubo equation

t→∞

Page 10: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

10

Velocity Autocorrelation Function

0

1 (0) ( )D dd

τ τ∞

= ⋅∫ v v

( ) (0) ( )C t t≡ ⋅v v

Backscattering

¡ Definition

¡ Typical behavior Zero slope (soft potentials)

Diffusion constant is area under the curve

Asymptotic behavior (t à ∞) is nontrivial (depends on d)

2(0) /C v dkT m= =

Page 11: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

11

Other Transport Properties

¡ Diffusivity

¡ Shear viscosity

¡ Thermal conductivity

0

1 ( ) (0)xy xydt tVkT

η σ σ∞

= ∫ 12

1( )

Nyxy x

i i ij y ijii i jm v v x f rσ

= ≠

⎡ ⎤= +⎢ ⎥

⎢ ⎥⎣ ⎦∑ ∑

20

1 ( ) (0)T dt q t qVkT

λ∞

= ∫ 21 12 2

1( )

N

i i iji i j

dq m v u rdt = ≠

⎡ ⎤= +⎢ ⎥

⎢ ⎥⎣ ⎦∑ ∑

0

1 (0) ( )D dt tVdρ

∞= ⋅∫ v v [ ]

1

N

ii=

=∑v v

Page 12: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

12

Evaluating Time Correlation Functions ¡ Measure phase-space property A(rN,pN) for a sequence of time

intervals

¡ Tabulate the TCF for the same intervals •  each time in simulation serves as a new time origin for the TCF

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

A0A1 A1A2 A2A3 A3A4 A4A5 A5A6 A6A7 A7A8 A8A9

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

+ + + + + + + + +... ( ) (0)A t AΔ

A0A2 A1A3 A2A4 A3A5 A4A6 A5A7 A6A8 A7A9

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

+ + + + + + + +... (2 ) (0)A t AΔ

A0A5 A1A6 A2A7 A3A8 A4A9

A(t0) A(t1) A(t2) A(t3) A(t4) A(t5) A(t6) A(t7) A(t8) A(t9)

+ + + +(5 ) (0)A t AΔ +...

Dt ∆t

Page 13: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

13

Direct Approach to TCF

¡ Decide beforehand the time range (0,tmax) for evaluation of C(t) •  let n be the number of time steps in tmax

¡ At each simulation time step, update sums for all times in (0,tmax) •  n sums to update •  store values of A(t) for past n time steps •  at time step k:

¡ Considerations •  trade off range of C(t) against storage of history of A(t) •  requires n2 operations to evaluate TCF

ci+ = Ak−i Ak i = 1,…,n

k k-n

Page 14: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

14

Fourier Transform Approach to TCF

¡ Fourier transform

¡ Convolution

¡ Fourier convolution theorem

¡ Application to TCF

ˆ ( ) ( ) i tf f t e dtωω+∞

−∞

= ∫

( ) ( ) ( )C t A B t dτ τ τ+∞

−∞

= +∫

!C(ω ) = !A(ω ) !B(ω )

12

ˆ( ) ( ) i tf t f e dωπ ω ω+∞

+

−∞

= ∫

0

0 0( ) ( ) ( )t

C t t t t= ⋅ +∑v v Sum over time origins

[ ]2ˆ ˆ( ) ( )C ω ω= v With FFT, operation scales as n ln(n)

Page 15: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

15

Coarse-Graining Approach to TCF 1.

¡ Evaluating long-time behavior can be expensive •  for time interval T, need to store T/δt values (perhaps for each atom)

¡ But long-time behavior does not (usually) depend on details of short time motions resolved at simulation time step

¡ Short time behaviors can be coarse-grained to retain information needed to compute long-time properties •  TCF is given approximately •  mean-square displacement can be computed without loss

Method due to Frenkel and Smit

Page 16: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

16

Coarse-Graining Approach to TCF 2.

(1) (1)v

n0 Σ

Page 17: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

17

Coarse-Graining Approach to TCF 2.

(1) (1)v

n0

(1) (2)v

Σ

Page 18: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

18

Coarse-Graining Approach to TCF 2.

(1) (1)v

n0

(1) (2)v (1) (3)v

Σ

(2) (1)v

n0 Σ

Page 19: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

19

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v

Page 20: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

20

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v (1) (5)v

Page 21: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

21

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v (1) (5)v (1) (6)v

n0 Σ

(2) (2)v

Page 22: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

22

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v (1) (5)v (1) (6)v

(2) (2)v

(1) (7)v

Page 23: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

23

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v (1) (5)v (1) (6)v

(2) (2)v

(1) (7)v (1) (8)v

Page 24: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

24

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v (1) (5)v (1) (6)v

(2) (2)v

(1) (7)v (1) (8)v (1) (9)v

n0 Σ

(2) (3)v

n0 Σ

(3) (1)v

Page 25: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

25

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

n0 Σ

(2) (1)v

(1) (4)v (1) (5)v (1) (6)v

(2) (2)v

(1) (7)v (1) (8)v (1) (9)v

(2) (3)v

(3) (1)v

(1) (10)vet cetera

Page 26: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

26

Coarse-Graining Approach to TCF 2.

(1) (1)v (1) (2)v (1) (3)v

(2) (1)v

(1) (4)v (1) (5)v (1) (6)v

(2) (2)v

(1) (7)v (1) (8)v (1) (9)v

(2) (3)v

(3) (1)v

(1) (10)v

n3 0

This term gives the net velocity over this interval

Approximate TCF 3 (3) (3)(0) ( ) (0) (1)n t⋅ Δ ≈ ⋅v v v v

Page 27: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

27

Coarse-Graining Approach: Resource Requirements

¡ Memory •  for each level, store n sub-blocks •  for simulation of length T = nkΔt requires k × n stored values

compare to nk values for direct method

¡ Computation •  each level j requires update (summing n terms) every 1/nj steps •  total

•  scales linearly with length of total correlation time compare to T2 or T ln(T) for other methods

T × nΔt

1+ 1n+ 1

n2 +…+ 1nk

⎛⎝⎜

⎞⎠⎟= t × n

Δtn− n−k

n−1

≈ T × nΔt

Page 28: CE 530 Molecular Simulationkofke/ce530/Lectures/Lecture12.ppt.pdf5 Approaches to Evaluating Transport Properties ! Need a non-equilibrium condition ! Method 1: Establish a non-equilibrium

28

Summary ¡ Dynamical properties describe the way collective behaviors

cause macroscopic observables to redistribute or decay ¡ Evaluation of transport coefficients requires non-equilibrium

condition •  NEMD imposes macroscopic non-equilibrium steady state •  EMD approach uses natural fluctuations from equilibrium

¡ Two formulations to connect macroscopic to microscopic •  Einstein relation describes long-time asymptotic behavior •  Green-Kubo relation connects to time correlation function

¡ Several approaches to evaluation of correlation functions •  direct: simple but inefficient •  Fourier transform: less simple, more efficient •  coarse graining: least simple, most efficient, approximate