cdx, wnt signalling and anterior hox genes in the regulation of the

58
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Cdx, Wnt signalling and anterior Hox genes in the regulation of the posterior growth zone in the mouse embryo. Ana Rita Soares Monteiro Dissertação Mestrado em Biologia Evolutiva e do Desenvolvimento 2012

Upload: hoangtram

Post on 08-Jan-2017

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

UNIVERSIDADE  DE  LISBOA  FACULDADE  DE  CIÊNCIAS  

DEPARTAMENTO  DE  BIOLOGIA  ANIMAL    

       

               

 Cdx,  Wnt  signalling  and  anterior  Hox  genes  in  the  regulation  of  the  posterior  growth  zone  

in  the  mouse  embryo.      

   

Ana  Rita  Soares  Monteiro      

 Dissertação  

Mestrado  em  Biologia  Evolutiva  e  do  Desenvolvimento  2012  

   

Page 2: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

 

   

Page 3: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

 

UNIVERSIDADE  DE  LISBOA  FACULDADE  DE  CIÊNCIAS  

DEPARTAMENTO  DE  BIOLOGIA  ANIMAL    

       

           

   

 Cdx,  Wnt  signalling  and  anterior  Hox  genes  in  the  regulation  of  the  posterior  growth  zone  

in  the  mouse  embryo.          

Ana  Rita  Soares  Monteiro      

Dissertação  Mestrado  em  Biologia  Evolutiva  e  do  Desenvolvimento  

 Orientadores:  Doutora  Jacqueline  Deschamps  e  Doutora  Sólveig  Thorsteinsdóttir  

   

2012  

Page 4: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

 

   

Page 5: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

 

   

Page 6: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  V  

Abstract    

The   Cdx   gene   family   plays   a   fundamental   role   in   the   regulation   of   the   posterior  

growth   zone   during   mouse   development.   This   region   contains   populations   of   long–term  

neuromesodermal  progenitors  that  contribute  to  axis  elongation  [1].    Cdx2+/-­‐Cdx4-­‐/0  (Cdx2/4)  

mutants   have   a   truncation   of   the   axis   and   defects   in   the   placental   labyrinth   leading   to  

embryonic  lethality.  Rescuing  experiments  showed  that  Wnt  signalling  and  Hox  trunk  genes  

interact  with  Cdx  genes  in  the  regulation  of  axial  extension  [2].  In  the  first  part  of  this  work  

we  studied  the   lethality   in  mutants  that   lack  one  allele  of  Cdx2  and  both  alleles  of  Wnt3a.  

We  show  that  Wnt3a   and  Cdx2   interact   in   the   regulation  of  placental   labyrinth  precursors  

and  act  upstream  of  Cdx4.    

Previous   findings   revealed   that   trunk  Hox   genes   and  Hox13   differentially   regulate  

posterior  axial  growth  [2].  Here  we  tested  the  role  of  an  anterior  Hox  gene   (Hoxb1)   in   the  

regulation   of   axial   elongation.  We   showed   that   overexpression   of  Hoxb1   under   the   Cdx2  

promoter   in  a  genetic  background  of  Cdx2/4  mutants  aggravates  the  phenotype   instead  of  

rescuing  it.  Cdx2/4  Cdx2PHoxb1  transgenic  embryos  present  embryonic  lethality  and  a  more  

severe  truncation  of  the  axis  compared  to  their  Cdx2/4   littermates.  Therefore,  we  propose  

that   anterior   Hox   genes   are   epistatic   over   the   trunk   Hox   genes.   To   assure   the   right  

regulation  of  axis  extension  Cdx  genes  would  interact  in  a  positive  way  with  trunk  Hox  genes.  

However,   the  presence  of  anterior  Hox  genes  would  disrupt   the  balance  between  anterior  

and  trunk  Hox  genes.  

 Keywords:  Axial  extension,  mouse,  Cdx  ,  Hox,  Wnt                                      

Page 7: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  VI  

Resumo    

Durante   o   processo   de   gastrulação   as   camadas   germinativas   do   embrião   são  

formadas  e  o  plano  corporal  do  organismo  é  estabelecido.  Após  a  gastrulação  o  crescimento  

do  eixo  em  ratinho  ocorre  por  um  processo  designado  de  extensão  axial.  A  parte  posterior  

do   eixo   do   ratinho   cresce   através   da   adição   de   tecidos   provenientes   de   populações   de  

progenitores   residentes   na   linha   primitiva   e   tecidos   adjacentes,   mais   tarde   no   “botão   da  

cauda”  [1].  Esta  região  é  por  esse  motivo  denominada  de  “zona  de  crescimento  posterior”.  

Nesta   região   estão   presentes   progenitores   da   mesoderme   extraembrionária,   células  

germinais   primordiais,   mesoderme   somítica,   neuroectoderm,   progenitores   neuro-­‐

mesodérmicos  de  longo  termo  e  precursores  de  endoderme.  A  ordem  referida  é  a  ordem  da  

sua  localização  dos  mais  posteriores  para  os  a  mais  anteriores  na  linha  primitiva.  A  regulação  

e   manutenção   destes   progenitores   é   essencial   para   extensão   do   eixo,   manutenção   das  

células  germinais  primordiais  e  desenvolvimento  da  mesoderme  extraembrionária  que  dará  

origem   ao   alantoide.   Esta   regulação   é   assegurada   pela   acção   de   factores   de   transcrição,  

como   Cdx   (Caudal   related   homeobox)   que   actua   como   regulador   dos   genes  Hox   e   via   de  

sinalização  Wnt/Beta-­‐catenina  [2].  A  família  de  genes  Cdx  é  constituída  por  três  genes  (Cdx1,  

Cdx2   e   Cdx4).   Mutantes   de   Cdx   apresentam   o   eixo   antero-­‐posterior   truncado,   cuja  

severidade  depende  dos  genes  ou  do  número  de  alelos  mutados.  Alguns  destes  mutantes  

apresentam   defeitos   nos   tecidos   extraembrionários,   ausência   de   alantoide   no   caso   mais  

extremo   e   malformações   no   labirinto   vascular   da   placenta.   Os   defeitos   nos   tecidos  

extraembrionários  provocam  letalidade  embrionária  uma  vez  que  os  embriões  são  incapazes  

de   estabelecer   correctamente   contacto   com   o   sangue  materno   e   assim   prosseguir   com   a  

troca  de  nutrientes.  Mutantes  de  Cdx  também  apresentam  defeitos  na  padronização  do  eixo  

axial   com   algumas   transformações   ao   nível   da   identidade   vertebral.   Um  dos  mutantes   de  

Cdx   mais   estudado   é   o   de   Cdx2+/-­‐Cdx4-­‐/0   (Cdx2/4)   [2-­‐4].   O   fenótipo   destes   mutantes  

apresentam  diferentes  penetrâncias  ,  o  nível  de  truncamento  varia  (  no  caso  mais  severo  o  

eixo  termina  ao  nível  do  sacro)  assim  como  os  defeitos  que  causam  letalidade  embrionária.  

Em  alguns  embriões  o  alantóide  não  se  funde  com  o  córion,  noutros  casos  os  defeitos  são  ao  

nível  do  labirinto  placentário.  Apenas  uma  pequena  percentagem  de  embriões  nasce  [4].    

A  primeira  parte  deste  trabalho  tem  como  objectivo  estudar  a   interacção  de  genes  

Cdx   e   a   via   de   sinalização  Wnt   através   do   estudo   de  mutantes  Wnt3a-­‐/-­‐Cdx2+/-­‐.   Trabalhos  

anteriores   demonstraram   que   Wnt   actua   tanto   a   jusante   como   a   montante   de   Cdx   no  

processo   de   extensão   axial,   Lef1   (mediador   da   via  Wnt   canónica)   foi   capaz   de   resgatar   o  

fenótipo   de   Cdx2/4   [2].   O   objectivo   deste   projecto   foi   desvendar   mais   acerca   da   relação  

Page 8: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  VII  

entre  Cdx  e  a  via  de  sinalização  Wnt.  Os  mutantes  gerados,  Wnt3a-­‐/-­‐Cdx2+/-­‐  sofrem  letalidade  

embrionária.  Este   fenótipo   não   era   espectável   uma   vez   que  mutantes  Cdx2+/-­‐     e  mutantes  

Wnt3a-­‐/-­‐    não  apresentam  qualquer  letalidade  embrionária.  Colocámos  a  hipótese  de  que  a  

causa  da  letalidade  destes  mutantes  seria  a  mesma  que  a  observada  em  mutantes  Cdx2/4,  e  

portanto  que  a  mesma  via  de   regulatória  estaria  a  ser  afectada.  Para   testar  esta  hipótese,  

analisaram-­‐se  alantóides  de  embriões  de  dia  embrionário  8.5  (E8.5)  e  placentas  de  embriões  

de  E10.5.  Alantóides  dos  mutantes  desenvolvem-­‐se  correctamente  e  a  maioria  funde  com  o  

córion.   Cortes   de   placentas   mostraram   defeitos   na   ramificação   dos   vasos   sanguíneos  

embrionários,   mas   menos   severos   que   os   descritos   em   mutantes   Cdx2/4.   Devido   à  

semelhança   com   Cdx2/4   foi   testada   a   hipótese   da   expressão   de   Cdx4   estar   afectada   em  

mutantes  Cdx2+/-­‐Wnt3a-­‐/-­‐  .  Os  baixos  níveis  de  expressão  de  Cdx4  observados  em  mutantes  

confirmou  esta  hipótese.  Estes  resultados   levaram  nos  a  concluir  que  genes  Cdx  e  a  via  de  

sinalização  Wnt  actuam  em  conjunto  na  regulação  da  população  de  progenitores  dos  tecidos  

que  darão  origem  ao  labirinto  placentário.  

No   segundo   projecto   foi   explorada   a   função   de   genes  Hox   anteriores   (Hox1-­‐3)   na  

regulação  da  extensão  axial.  Os  genes  Hox   têm  um  papel  fundamental  no  estabelecimento  

da  identidade  dos  segmentos  ao  longo  do  eixo  anterio-­‐posterior.  No  entanto,  os  genes  Hox  

do   tronco   (Hox5-­‐9)   também   estão   envolvidos   na   extensão   do   eixo.   Este   papel   é  

desempenhado   em   paralelo   com   os   genes   Cdx.   Os   genes  Hox   e   genes   Cdx   têm   um   gene  

ancestral   em   comum   e   durante   o   desenvolvimento   partilham   domínios   de   expressão   na  

região  posterior  do  embrião  [6].  Sobrexpressão  de  Hoxb8  e  Hoxa5  sob  o  promotor  de  Cdx2  

levou   ao   resgate   do   fenótipo   de   mutantes   Cdx2/4,   demonstrando   assim   uma   função   na  

regulação  da  extensão  do  eixo.  Estes  embriões  transgénicos  (Cdx2/4  Cdx2PHoxb8  e  Cdx2/4  

Cdx2PHoxa5)  apresentaram  menor   letalidade  e  o  eixo  axial  apresenta   truncamento  menos  

severo,   relativamente   aos   embriões   Cdx2/4   [2].   Neste   projecto   propusemos   testar   se   a  

sobreexpressão  de  Hoxb1  (gene  Hox  anterior)  sob  o  mesmo  promotor,  resgataria  o  fenótipo  

de   Cdx2/4.     Foram   criadas   diferentes   linhas   transgénicas   com   a   construção   Cdx2PHoxb1  

expressa  no   fundo  genético  de  mutantes  Cdx2/4.  A   sobrevivência  e  esqueleto  axial  destes  

indivíduos   foram   analisados.   A   presença   do   transgene   Hoxb1   não   resgatou   a   letalidade  

embrionária  de  mutantes  Cdx2/4  e  em  algumas  linhas  transgénicas  aumentou  a   letalidade.  

De  todas  as  linhas  obteve-­‐se  apenas  um  recém-­‐nascido  com  o  genótipo  Cdx2/4  Cdx2PHoxb1  

o   que   indica   que   a   presença   de  Hoxb1   está   a   agravar   o   fenótipo   de  Cdx2/4.   A   análise   do  

esqueleto  axial  dos  mutantes  com  e  sem  o  transgene  mostrou  que  em  todos  os  mutantes  de  

Cdx  (Cdx4+/-­‐,Cdx4-­‐/0,Cdx2+/-­‐Cdx4+/-­‐  e  Cdx2/4)  a  presença  do  transgene  agrava  o  fenótipo.  Com  

Page 9: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  VIII  

base  nestes  resultados  propomos  que  Hoxb1  interage  com  genes  Cdx/Hox  centrais  de  forma  

antagonísitca  no  processo  de  extensão  axial.  Os  genes  Hox  mais  afastados  de  genes  centrais  

do   cluster   actuam   de   forma   epistática   sobre   estes,   o   que   explicaria   o   agravamento   do  

fenótipo   de   Cdx2/4   Cdx2PHoxb1.   Em   suma,   ao   longo   do   processo   de   extensão   axial   é  

necessário   um   balanço   entre   genes  Hox   anteriores   e   posteriores,   estabelecido   através   de  

interacções  epistásticas.    

     Palavras  chave:  Genes  Cdx,  extensão  axial,  sinalização  Wnt,  genes  Hox                                      

Page 10: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  IX  

Abbreviation  List    AP   Anterior-­‐posterior  C   Celsius  ADH   Alcohol  dehydrogenase  AP   Alkaline  phosphatase  Cdx2/4   Cdx2+/-­‐  Cdx4  null  CHAPS   3[(3-­‐Cholamidopropyl)dimethylammonio]-­‐propanesulfonic  acid  Cyp26a1   Cytochrome  P450,  family  26,  subfamily  A,  polypeptide  1  DEPC   Diethylpyrocarbonate  DIG   Digoxigenin  DNA   Deoxyribonuclease  acid  DNAse   Deoxyribonuclease  dNTP   Deoxyribonucleotide  triphosphate  DTT   Dithiothreitol  E   Embryonic  day  EDTA   Ethylene  diamine  tetraacetic  acid  et  al.   et  alii  (and  others)  EtOH   Ethanol  FGF   Fibroblast  growth  factor  FGFR   Fibroblast  growth  factor  receptor  H   Hour  ICM   Inner  cell  mass  LB   Lysogeny  broth  Lef1   Lymphoid  enhancer-­‐binding  factor  1  LiCl   Lithium  Chloride  M   Molar  MetOH   Methanol  MgCl2   Magnesium  dochloride  min   Minutes  ml   Milliliter  

mM   Millimolar  

MAB   Maleic  acid  buffer  NaAC   Sodium  Acetate  ng   Nanogram  NTMT   Alkaline  phosphatase  buffer  PBS0   Phosphate  buffered  saline  (without  calcium  and  magnesium)  PCR   Polymerase  Chain  Reaction  PFA   Paraformaldehyde  PGC   Primordial  germ  cell  PSM   Presomitic  mesoderm  RA   Retinoic  acid  RALDH   Retinaldehyde  dehydrogenase    Raldh2   Retinaldehyde  dehydrogenase  type  2  RAR   Retinoic  acid  receptor  

Page 11: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  X  

RDH   Retinol  dehydrogenase  RNA   Ribonucleic  acid  RNAse   Ribonuclease  rpm   Revolutions  per  minute  RT   Room  temperature  RXR   Retinoic  X  receptor  sec   Seconds  SDS   Sodium  dodecyl  sulphate  SRY   Sex-­‐determining  region  Y  SSC   Saline  Sodium  Citrate  Taq  polymerase   Thermicus  aquaticus  polymerase  TBS   Tris  buffered  Saline  TCF   T  cell  factor  TE   Tris  EDTA  tRNA   Transfer  ribonucleic  acid  VE   Visceral  endoderm  VEGF   Vascular  endothelial  growth  factor    μg   Microgram  μl   Microliter  μm   Micrometer  

Page 12: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  XI  

Table  of  contents  

ABSTRACT   V  

RESUMO   VI  

ABBREVIATION  LIST   IX  

TABLE  OF  CONTENTS   XI  

GENERAL  INTRODUCTION   1  Early  mouse  development   1  Axis  elongation  and  axial  progenitor  cells   1  Wnt  signalling   2  Retinoic  acid  signalling   2  FGF  signalling   3  Cdx  genes   3  Cdx  null  mutants  and  the  genetic  control  of  axial  extension   5  

AIM  OF  THIS  THESIS   7  

CHAPTER  I  -­‐  INVOLVEMENT  OF  THE  CANONICAL  WNT  PATHWAY  DOWNSTREAM  OF  CDX  GENES  IN  THE  FORMATION  OF  THE  PLACENTAL  LABYRINTH   9  

Introduction   9  Placental  labyrinth  development   9  Cdx  genes  and  Wnt  signalling  pathway  in  placenta  formation   9  

Methods   11  Mice   11  Isolation  embryos  and  processing   11  Genotyping   11  Histological  analysis   11  In  situ  hybridization   12  

Results   14  Wnt3a-­‐/-­‐  Cdx2+/-­‐  embryos  have  defects  in  placental  labyrinth  similar  to  Cdx2/4  mutants   14  Cdx4  is  downregulated  in  Wnt3a-­‐/-­‐Cdx2+/-­‐  mutants   14  

Discussion   16  

CHAPTER  II  –  ANTERIOR  HOX  GENES  AND  AXIAL  ELONGATION   17  

Introduction   17  The  vertebrate  axis   17  Hox  genes  and  vertebrate  axis   17  Hox  genes  expression  and  regulation   18  

Methods   21  

Page 13: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Table of contents

  XII  

Generation  of  transgenic  constructs  and  mice   21  Isolation  of  embryos   21  Bone  and  cartilage  staining   21  Genotyping   21  RNA  isolation   22  DNAse  treatment   22  cDNA  synthesis   23  Quantitative  RT-­‐PCR  analysis   23  

Results   24  Hoxb1  is  overexpressed  in  the  Cdx2PHoxb1  transgenic  mice   24  Hoxb1  transgene  does  not  recue  defects  from  the  placental  labyrinth  of  Cdx2/4  mutants.   25  Hoxb1  does  not  rescue  the  axial  defects  of  Cdx  mutants   26  Analysis  of  the  phenotype  of  Hoxb1  transgenic  embryos   31  

Discussion   33  

CONCLUDING  REMARKS   35  

REFERENCES   37  

ANNEXES   43  

Annex  I   43  

Annex  II   44          

                                 

Page 14: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

1  

General  Introduction          

Early  mouse  development  

The   early   patterning   of   the   embryo   and   the   onset   of   subsequent   morphogenesis  

occurs   during   what   could   be   considered   the   most   important   process   in   development,  

gastrulation.   Gastrulation   is   characterized   by  morphogenetic  movements   accompanied   by  

cell   proliferation   and   differentiation   which   will   eventually   convert   the   embryo   into   three  

germ   layers,   the   ectoderm,   mesoderm   and   endoderm   [7].   The   mouse   gastrulates   by   the  

ingression  of  cells  from  the  epiblast  through  the  primitive  streak,  a  structure  that  emerges  in  

the  posterior  region  of  the  embryo  at  embryonic  day  (E)  6.2  [8].  During  gastrulation,  nodal-­‐

dependent  signals  from  the  VE  have  a  role  in  the  regionalization  in  the  primitive  streak,  with  

the   node   in   the  most   anterior   region   [9].   Fate  maps   provided   by   clonal   analysis   of   single  

epiblast  cells  show  that  the  epiblast  is  regionalized;  however  individual  cells  can  contribute  

to  multiple  germ  layers  [10].  The  node  organizes  the  ingression  of  epiblast  cells  through  the  

primitive   streak.   Once   ingressed,   mesodermal   tissues   differentiate   in   lateral   mesoderm  

(circulatory   system,   limb  bud  mesenchyme  and  wall  of   the  digestive  organs),   intermediate  

mesoderm   (urogenital   system)   or   paraxial  mesoderm   (presomitic  mesoderm   and   somites)  

[8].    

 

Axis  elongation  and  axial  progenitor  cells    

By   the   end   of   gastrulation,   only   the   most   rostral   tissues   are   formed   and   the  

elongation  of  the  anterior-­‐posterior  (AP)  axis  continues  by  the  addition  of  tissues  from  the  

primitive  streak  and  adjacent  epiblast,  and  later  from  the  tail  bud  [1,11].  The  source  of  these  

axial  tissues  is  a  pool  of  progenitors,  some  of  which  have  stem  cell  properties  [1].  These  axial  

structures   are   added   in   an   rostral-­‐to-­‐caudal   sequence   as   the   embryo   grows   [11].   For   this  

reason  both   the   primitive   streak   plus   the   adjacent   epiblast,   together  with   tail   bud   can   be  

called  “posterior  growth  zone”.  This  region  comprises  the  border  region  between  the  node  

and  anterior  primitive  streak  and  the  epiblast  adjacent  to  the  streak   [1,12,13].  Cell   lineage  

tracing   studies   revealed   the   relative  positions  of   the  different  progenitor  populations,   and  

they  indicate  a  temporal  order  of  cell  emergence  that  corresponds  to  the  building  of  the  AP  

axis   [7].   More   recently   clonal   analysis   showed   that   the   stem   cell-­‐like   precursors   are  

neuromesodermal   progenitors   which   persist   after   the   segregation   of   endodermal   and  

Page 15: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

General Introduction

  2  

surface  ectoderm  layers  [14],  suggesting  that  neurectoderm  and  mesoderm  are  more  closely  

related  than  mesoderm  and  endoderm.    

As  mentioned  above  some  of   these  progenitors  of   the  posterior  growth  zone  have  

stem  cell  characteristics.  Therefore  an  equilibrium  between  the  generation  of  differentiated  

axial   tissues   and   the   maintenance   of   a   posterior   progenitors   is   required   [1].   The   genetic  

control   of   the   process   of   axial   elongation   and  maintenance   of   the   posterior   growth   zone  

involves   a   series   of   highly   conserved   genes   and   signalling   pathways.   Among   the   known  

signalling  pathways  involved  are  Wnt,  Retinoic  acid  (RA)  and  Fgf  [1,2,15,16]  and  among  the  

transcription  factor-­‐encoding  genes  are  Cdx  [3,17]  and  T  brachyury  [2,3,17,18].    

 

Wnt  signalling  

Wnt  signalling  is  essential  during  vertebrate  development  and  is  associated  with  the  

regulation  of  many  processes.  Wnt  is  the  ligand  that  activates  the  canonical  pathway  and  the  

other  main  components  are  the  transmembrane  receptor  Frizzled  (Fz),  and  the  downstream  

effectors  of  the  pathway,  Dishevelled  (Dsh),  β-­‐catenin  and  T  cell  factor/Lymphoid  enhancer-­‐

binding   factor   1   (Tcf/Lef1)   [19].   During   early   development   the  Wnt   pathway   controls   cell  

proliferation,   stem   cell   maintenance,   cell   fate   decisions,   organized   cell   movements   and  

establishment  of  tissue  polarity  [20].  Wnt3  and  Wnt3a  have  been  shown  to  be  essential  for  

axis   formation   and   elongation   of   vertebrate   embryos,   respectively.  Wnt3a   is   expressed   in  

the   presumptive   mesoderm   in   the   posterior   region   of   the   developing   embryo   [5].   Null  

mutants   for  Wnt3a   have   a   severe   axial   truncation,   a   disrupted   notochord   and   a   deficient  

tailbud  [21].  Galceran  et  al.  showed  that  Wnt3a  acts  trough  Lef1/Tcf1  since  Lef1-­‐/-­‐Tcf1-­‐/-­‐  mice  

have   a   phenotype   similar   to   that   of  Wnt3a-­‐/-­‐   mice   [22].  Wnt3a   is   also   involved   in   the  

regulation  of  somitogenesis  acting  on  the  presomitic  mesoderm  (PSM)  [23].  Wnt3-­‐/-­‐  mice  do  

not  develop  a  primitive  streak  and  therefore  lack  mesoderm  and  node  [24],  and  thus  Wnt3  is  

required  in  a  much  earlier  developmental  stage  compared  to  Wnt3a.  

 

Retinoic  acid  signalling  

Retinoic   acid   (RA)   signalling   is   involved   in  a   range  of  developmental  processes,   for  

example  the  control  of  progenitor  cell  populations,  including  the  axial  precursors  [25].  RA  is  

a  vitamin  A-­‐derived  compound  and  its  biological  action  is  restricted  by  the  localization  of  its  

synthesis   regulated   by   retinol   and   alcohol   dehydrogenase   (RDHs   and   ADHs)   and  

Page 16: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

General Introduction

  3  

retinaldehyde   dehydrogenases   (RALDHs)   and   the   presence   of   enzymes   that   degrade   it,  

cytochrome  P450s  (CYP26s)  [25].    

Raldh2-­‐/-­‐  embryos  die  during  development  from  defective  heart  morphogenesis  and  

have  severe  developmental  defects  like  body  axis  truncation  [26].  Cyp26a-­‐/-­‐  mutant  embryos  

show   several   defects   among   which   a   truncation   of   the   posterior   body   region,   posterior  

transformations  of  cervical  vertebrae  and  abnormal  hindbrain  patterning  [27,28].  

 

FGF  signalling  

Fibroblast   growth   factors   (FGFs)   are   a   family   of   ligands   that   bind   tyrosine   kinase  

receptors,  the  FGF  receptors  (FGFRs).  FGF  ligands  bind  the  extracellular  domain  of  the  FGFRs  

to   form   a   complex   leading   to   the   transphosphorylation   of   specific   intracellular   tyrosine  

residues  [29].  

Fgf  signalling  is  required  for  ingression  of  epiblast  cells  through  the  primitive  streak  

[30,31].   During   axial   elongation   Fgf8   is   expressed   in   the   primitive   streak   and   posterior  

mesoderm  [1,4,32-­‐34].  A  caudal-­‐to-­‐rostral  gradient  of  Fgf8   is  formed  from  the  node  region  

where  low  Fgf8  levels  allow  mesoderm  to  differentiate  and  high  concentrations  maintain  the  

stemness  of  the  progenitors  in  the  posterior  growth  zone  [1,16].  Fgf  signalling  is  confined  to  

the  posterior  region  of  the  embryo  as  a  result  of  the  antagonistic  interaction  with  RA.    

 

Cdx  genes  

The  vertebrate  Cdx  genes  (Cdx1,  Cdx2  and  Cdx4)  are  the  homologs  of  the  Drosophila  

caudal   (cad)  gene   [35]   ,  which   is   known   for  playing  a   role   in  patterning   the  AP  axis  of   the  

early  fly  embryo  and  acts  as  a  posterior  homeotic  gene  [36].  Both  Cdx  and  Hox  gene  families  

arose   from   a   common   ancestor,   the   ProtoHox   cluster   thought   to   confer   anteroposterior  

identity   to   axial   tissues   in   all   bilatarians   [6].   Given   their   common   origin,   high   similarities  

between  these  two  families  exist.  The  three  Cdx  genes  are  initially  expressed  in  the  primitive  

streak  at  the  late  primitive  streak  stage.  Slightly  later,  Cdx1  has  the  most  anterior  expression  

boundary   whilst   the   expression   of   Cdx2   and   Cdx4   is   more   posteriorly   restricted.   This  

situation  is  transient  and  at  E9.0  all  three  Cdx  genes  are  expressed  in  the  posterior  growth  

zone.    

Expression  of  Cdx1  is  initiated  at  E7.2  in  the  ectodermal  and  mesodermal  cells  of  the  

primitive   streak   [37].   Cdx1-­‐/-­‐  mutant   mice   have   anterior   homeotic   transformations   of   the  

Page 17: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

General Introduction

  4  

cervical   region  accompanied  by  a  caudal  shift   in   the  expression  domain  of  Hox  genes   [38].  

This  shows  the  role  of  Cdx  genes  in  regulating  Hox  genes  expression.  

In  addition  to  its  expression  in  the  primitive  streak,  Cdx2  is  already  expressed  at  E3.5  

in   the   trophectoderm.   At   the   blastocyst   stage   Cdx2   has   an   essential   function   in   assuring  

segregation   of   the   inner   cell   mass   (ICM)   and   trophectoderm   and   is   necessary   for   the  

implantation   into  the  uterus  wall  at  E4.5  [39-­‐42].  At  E7.2  expression  of  Cdx2   is  detected   in  

the   embryo   in   the   posterior   primitive   streak,   in   the   allantois   and   the   chorion.   The   gene  

remains   expressed   at   later   stages   in   the   posterior   neural   tube   and   presomitic  mesoderm.  

The   lethality   of   Cdx2-­‐/-­‐   mutants   at   E3.5   can   be   bypassed   by   tetraploid   rescue,   and   the  

resulting  embryos  eventually  die  at  E10.5  because  of  defects  in  the  allantois  [40].  In  addition,  

the  absence  of   the  allantois   leads   to  agenesis  of   the  placental   labyrinth.  Around  E10.5   the  

mouse   embryo   becomes   dependent   on   the   correct   formation   of   the   placental   labyrinth,  

which   will   allow   exchanges   of   nutrients   and   gases   between   the  mother   and   the   embryo.  

Cdx2  mutants  obtained  by  tetraploid  rescue  are  severely  truncated  in  all  three  germ  layers  

posteriorly  to  the  forelimb  bud,  and  they  form  a  maximum  of  17  somites  [40].  Heterozygous  

mutants   for   Cdx2   get   born   but   they   have   a   subtle   shorter   axis   and   occasionally   exhibit   a  

short  and  kinky  tail  and  skeletal  analysis  showed  anterior  homeotic  transformations  of  some  

of   the   cervical   and   thoracic   vertebrae   [41].   Although  Cdx2   is   not   expressed   in   the   somitic  

mesoderm  at  cervical   levels,  Cdx2  mutations  do  alter  egene  expression  and  the   identity  of  

vertebrae  at  this  cervical  levels  which  implies  that  the  interactions  of  Cdx  as  Hox  regulators  

occur   early   in   the   presomitic   mesoderm   [43].   The   phenotypes   of   Cdx1   and   Cdx2   loss   of  

function  mutants  may   result   from  the   fact   that  Cdx  proteins  are  positive   regulators  of   the  

Hox  genes   in  embryonic  tissues  [44].  Although  the  possibility  that  Cdx  genes  play  a  role  on  

their  own  in  the  processes  of  axial  extension  and  patterning  should  also  be  consider.    

Cdx4  located  on  the  Y  chromosome,  is  first  expressed  at  E7.2  in  the  allantoic  bud  and  

in  the  posterior  primitive  streak.  Cdx4  remains  expressed  in  the  neuroectoderm,  presomitic  

and   lateral   plate   mesoderm   in   the   posterior   embryo,   and   in   the   hindgut   endoderm   until  

around   E10.5   [45,46].   Hemizygous   mutants   for   Cdx4   have   a   very   mild   axial   defect,   an  

anterior  transformation  of  vertebra  15,  with  very  low  penetrance  [4].    

The  Cdx  mutant  phenotypes  discussed  so  far  show  that  Cdx  genes  have  a  crucial  role  

in   patterning   the   anteroposterior   axis   (together   with   Hox   genes)   and   in   supporting   the  

process   of   axial   elongation   of   the   mouse.   Besides   the   failure   of   Cdx2   null   mutants   in  

generating  a  functional  allantois,  the  role  of  Cdx  genes  in  extraembryonic  tissues  was  shown  

in   the   compound   mutant   Cdx2+/-­‐/Cdx4-­‐/-­‐   (Cdx2/4).   These   embryos   also   have   an   axial  

Page 18: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

General Introduction

  5  

truncation  at  the  sacral  level  and  only  15%  survive  until  birth.  The  embryonic  lethality  is  due  

to  defects  in  placental  development,  in  some  cases  a  failure  of  chorio-­‐allantoic  fusion  ,  and  

most  often  deficiencies  in  extension  and  branching  of  the  allantoic  vascular  network  into  the  

chorionic  ectoderm  [4].  

Cdx  null  mutants  and  the  genetic  control  of  axial  extension  

Cdx  triple  null  mutants  were  generated  with  mice  carrying  null  alleles  for  Cdx1,  Cdx4  

and  conditional  alleles  for  Cdx2  [47].  These  mutants  present  the  most  severe  axial  truncation  

of  all  the  Cdx  mutants  described:  only  5  somites  are  generated.  The  posterior  growth  zone  of  

Cdx   null   embryos   severely   lost   its   activity   of   generating   nascent   mesoderm   and  

neuroectoderm.  The  complete  absence  of  Cdx  alleles  in  these  mutants  permits  a  more  clear  

study  of   the  genetic  pathways  associated  with  Cdx  and  axial  elongation.  The  expression  of  

Wnt3a   is   downregulated   in   these   mutants,   reinforcing   that   the   Wnt   pathway   acts  

downstream  of  Cdx   genes.  Hox   gene  expression  was  also  affected,  Hox   anterior  genes  are  

well   induced   but   posterior   Hox   genes   show   no   expression   in   these   mutants.   Cdx   genes  

regulate   the  gene  encoding   the  enzyme   that  degrades  RA,  Cyp26a1   directly  and  positively  

[2,48].   Cyp26a1   is   absent   from   the   posterior   region   of   Cdx   null   mutants   resulting   in   the  

deficiency  of  RA  clearance.  The  persistence  of  RA  in  the  posterior  region  is  further  accounted  

for   the   high   level   of  Raldh2   expression   in   this   region   of   the  Cdx   null  mutants.   Due   to   the  

higher  levels  of  RA  in  the  posterior  region  of  Cdx  null  embryos,  Fgf8  expression  is  completely  

absent   in   these   mutants.   Interestingly,   re-­‐induction   of   Fgf   signalling   was   able   to   partially  

Figure  1     -­‐  Genetic   interactions   involved  in   the  maintenance  of  the  posterior  growth  zone  in  Wild-­‐type  and  Cdx   null   embryos.   Left:   Schematic   dorsal   view   of   E8.5   wild-­‐type   and   Cdx   null   embryos.   Right:   Schematic  representation   of   the   signalling   cascades   downstream   of   Cdx   in   the   growth   zone   of   wild-­‐type   and   Cdx   null  embryos.  Not  the  absence  of  Fgf8  in  the  Cdx  null  mutants  that  lead  to  failure  of  RA  clearance  from  the  posterior  region  of  the  embryo.  Orange  represents  the  expression  domain  of  Fgf8  and  in  blue  the  presence  of  RA.  From:  Van  Rooijen  et  al.,  2012  

Page 19: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

General Introduction

  6  

rescue   the   Cdx2   mutant   truncation   [47].   The   rescued   embryos   regain   the   expression   of  

Cyp26a1   also   absent   in  Cdx2   null  mutants.   The   generation   of   embryos   totally   deprived   of  

Cdx   activity   allowed   a   better   understanding   of   the   mechanisms   and   genetic   interaction  

involved  in  axial  extension.  The  model  in  figure  1  was  proposed.  

Page 20: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

7  

Aim  of  this  thesis    

 This  work  will  focus  on  the  role  of  Cdx  genes  and  the  interaction  with  other  factors  

in   the   regulation   of   the   posterior   growth   zone   in   the  mouse   embryo.   This   thesis   has   two  

aims;  the  first  is  to  study  the  interaction  of  Cdx2  and  canonical  Wnt  signalling  (Wnt3a)  and  

the  second  is  to  test  the  role  of  Hoxb1  in  the  regulation  of  axis  extension  and  the  interaction  

with  Cdx  genes.  The  results  of  these  two  projects  will  be  described  in  two  separate  chapters  

in  this  thesis.  

The  project  described  in  Chapter  I  results  from  previous  observations  that  Wnt3a-­‐/-­‐  

Cdx2+/-­‐   mutant   embryos   were   not   recovered   at   E15.5.   The   aim   of   this   project   was   to  

investigate  the  origin  of  early  lethality  of  the  Wnt3a-­‐/-­‐Cdx2+/-­‐  mutant  embryos.  Neither  Cdx2  

heterozygote   mutants   nor  Wnt3a   null   mutants   are   arrested   in   their   development.   Cdx2  

heterozygotes  only  present   some  alterations   in  vertebrate  patterning  and  a  mild  defect   in  

the   posterior   embryonic   axis,   missing   a   few   caudal   vertebrae   [41].  Wnt3a   homozygous  

mutants  have  a   severe   truncation  of   the  embryonic   axis   [5],     very   similar   to   the  posterior  

body   truncations   of   Cdx2   mutants   [49].   Both   Wnt   signaling   and   Cdx/Hox   genes   have  

important  roles  during  axis  elongation  and  Wnt  exerts  a  positive  feedback  loop  on  Cdx  that  

maintains  Wnt  signalling   to  sustain  progenitor   self-­‐renewing  and   tissue  elongation   [2].  We  

wanted  to  test  whether  the  loss  of  Wnt3a  in  Cdx2  heterozygotes  was  causing  early  lethality  

of  the  compound  mutant  embryos  by  compromising  placental  development.  

Cdx  genes  are  key  regulators  of  the  process  of  axial  extension  as  they  regulate  the  

niche  of  the  axial  progenitors  in  the  posterior  growth  zone.  Previous  work  showed  that  trunk  

Hox   genes   collaborate  with  Cdx   genes   to   stimulate   posterior   axial   growth  while   posterior  

Hox   genes   promote   growth   termination   by   interfering  with  Cdx/trunk  Hox   genes   [2].   The  

second  question  of  this  work  concerns  the  role  of  anterior  Hox  genes  in  the  process  of  axial  

elongation   and   how   they   interact   with   Cdx   in   this   regulation;   this   work   is   described   in  

Chapter   II.   In   this  project  we  propose   to   test  whether  Hoxb1,   like  Hoxb8  and  Hoxa5   [2],   is  

able  to  rescue  the    Cdx2/4  mutant  phenotype.  

Page 21: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

 

Page 22: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  9  

Chapter  I  -­‐  Involvement  of  the  canonical  Wnt  pathway  downstream   of   Cdx   genes   in   the   formation   of   the  placental  labyrinth  

Introduction  

Placental  labyrinth  development  

Mice   have   a   chorioallantoic   placenta,   which   means   that   it   is   formed   from   two  

extraembryonic   components,   the   chorion   and   the   allantois.   The   allantois   is   first   visible   at  

E7.0/E7.25  [50,51]  as  a  bud  of  extraembryonic  mesoderm  arising  from  the  posterior  part  of  

the   primitive   streak   [10,52].   The   outer   cells   of   the   bud   will   differentiate   into   a   layer   of  

mesothelium  that  surrounds  an  inner  core  of  extraembryonic  mesoderm  [53]  .  The  next  step  

in  the  development  of  the  allantois  is  its  growth  into  the  exocoelomic  cavity  in  the  direction  

of   the   chorion   [53].   The   allantois   vascularizes   intrinsically,   rather   than   by   angiogenesis.   It  

arises   independently   from   the   vessel   network   of   the   yolk   sac   or   the   fetus   and   is   not  

accompanied  by  erythropoiesis  [54].  The  allantoic  vasculature  is  formed  by  vasculogenesis,  a  

process   characterized   by   the   differentiation   of   mesodermal   cells   into   endothelial   cell  

precursors  or  angioblasts.  The  vascularization  starts  in  the  most  distal  cells  of  the  inner  core  

of   the   allantois   which   start   to   flatten   and   then   coalesce   to   form   the   blood   vessels   [54].  

Expression  of  Flk1,  a  tyrosine  kinase  receptor  for  vascular  endothelial  growth  factor  (VEGF)  

and  a  marker  for  endothelial  cells,  follows  the  morphological  appearance  of  vascularization,  

first   in   the  distal  part  of   the  allantois  and   later  at   the  proximal  part   [54].  The   first   signs  of  

vascularization  occur  before  the  fusion  of  the  allantois  with  the  chorion.  

 

Cdx  genes  and  Wnt  signalling  pathway  in  placenta  formation  

The  role  of  Cdx  in  the  development  of  extraembryonic  tissues  was  mentioned  above.  

Cdx2   null   mutations   impair   the   generation   of   embryonic   and   extra-­‐embryonic   mesoderm  

and   Cdx2   null   allantois   does   not   fuse   with   the   chorion   [40].   This   reveals   the   early   Cdx  

dependence   of   placental   ontogeny,   reflected   by   the   fact   that   one   active   Cdx2   allele   is  

required  for  outgrowth  of  the  early  allantoic  bud.  In  Cdx2+/-­‐  and  Cdx2+/-­‐Cdx4+/-­‐  mutants  the  

allantois   reaches   a   normal   size.  Cdx  mutants   exhibit   subsequent   defects   that   compromise  

the  ontogenesis  of   a  proficient   chorio-­‐allantoic  placenta,  with  a  penetrance   that   increases  

with  the  decrease  in  Cdx  dosage  [4].  In  the  case  of  Cdx2/4  mutants,  the  majority  of  mutant  

Page 23: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter I – Introduction  

  10  

allantoises  undergoes  chorio-­‐allantoic  fusion  but  exhibit  a  later  defect,  being  impaired  in  the  

establishment   of   a   functional   endothelial   network   in   the   labyrinth.   The   allantoic   vessel  

branching  fails  to  occur  in  the  placental  labyrinth,  preventing  the  necessary  proximity  of  the  

embryonic  and  maternal  blood  [4].  The  role  of  Cdx  genes  in  placentogenesis  is  an  early  one  

acting   on   the   progenitors   of   endothelial   cells   in   the   early   allantois   since   Cdx   genes   are  

downregulated  in  the  allantois  at  E8.5.  

Wnt   signaling   is   also   involved   in   the   development   and   differentiation   of   the  

placental   tissues   in   the  mouse   embryo   [55].   Several   studies   showed   that  Wnt   signaling   is  

crucial   for   extraembryonic   development,   particularly   in   chorion-­‐allantois   fusion,   placental  

vascularization  and  labyrinth  function.  Embryos  null  for  both  Tcf-­‐1  and  Lef-­‐1  display  severe  

defects  in  placenta  formation  due  to  absence  of  chorionic-­‐allantois  fusion  [56].  Fzd5  knock-­‐

out  embryos  do  not  survive  beyond  E10.0  since  their  placentae  were   less  vascularized[57].    

Labyrinths   of  Wnt2   null   embryos   exhibit   different   defects   such   as   edema   and   decreased  

numbers   of   capillaries   [58].   Deletion   of   Wnt7b   results   in   embryonic   death   around  

midgestation  due  to  placental  abnormalities  [59].    

   

Objective  

Previous  experiments  in  the  lab  showed  that  Wnt3a-­‐/-­‐  Cdx2+/-­‐  mutant  embryos  suffer  

early  lethality  during  development.  The  objective  of  this  project  is  to  investigate  the  cause  of  

this  lethality,  by  analysing  mutant  embryos  at  earlier  stages.  Our  hypothesis  is  that,  similarly  

to   Cdx   mutants,   the   early   lethality   resulted   from   impairment   of   the   allantoic   and/or  

placental  labyrinth  development.  

 

 

 

 

 

Page 24: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  11  

Methods    

Mice  

All  mice  were   in   the  C57Bl6j/CBA  background.  Cdx2+/-­‐  mice  were  obtained   from  F.  

Beck   (Beck  et  al.,  1995)  and  Wnt3a  mice   from  S.Takada   (Takada  et  al.,  1994).  To  generate  

the   mutants  Wnt3a-­‐/-­‐   Cdx2+/-­‐,   Wnt3a+/-­‐   females   were   crossed   with  Wnt3a+/-­‐Cdx2+/-­‐  males.  

Matings  were  timed  to  get  embryos  from  the  desired  stage.  The  day  of  the  vaginal  plug  was  

designated  as  E0.5  at  noon.  

Isolation  embryos  and  processing  

Embryos  were  isolated  in  PBS0,  for  E8.5  the  allantois  was  kept  intact  and  for  E10.5  

the   placenta   was   also   isolated.   Embryos   and   placentas   (E8.5,   E10.5)   were   fixed   in  

paraformaldehyde  (PFA)  (4%)  at  4°C  overnight.  Tissue  was  washed  twice  (10  minutes  (min))  

in  PBS0  with  Tween   (1%)   (PBT),  dehydrated   in  methanol   (10  min)   steps  of  25%,  50%,  75%  

and  twice  100%)  and  stored  at  -­‐20°C.  

 

Genotyping  

For   genotyping   of   embryos   genomic   DNA   was   isolated   from   the   yolk   sac   and  

amnion.  Tissue  was  lysed  overnight  by  a  lysis  solution  (100  mM  Tris  HCl  pH  8.5,  5  mM  EDTA,  

0.2%  SDS,  200  mM  NaCl,  100  μg/mL  proteinase  K)  at  55°C,  precipitated  with  isopropanol  and  

finally  dissolved  in  TE  buffer.  

Primer   sequences   for   genotyping   Cdx2   are   ATATTGCTGAAGAGCTTGGCGGC  

(forward)   and   TAAAAGTCAACTGTGTTCGGATCC   (reverse).   Primer   sequences   for  Wnt3a  are  

ACTACAACCCTCCTCACCTG   (forward)   and   TGGCTACCCGTGATATTGCT   (reverse).   The   PCR  

reaction  conditions  are  94°C  for  5  min,  94°C  for  30  seconds  (sec),  61°C  for  1  min,  72°C  for  1  

min  for  35  cycles,  72°C  for  5min  and  12°C  until  the  end  of  reaction.  In  10  μl  mixture  with  0.5  

μM  of   each  primer,   0.2  mM  of   each  dNTP,1.5  mM  MgCl2   and  1x  PCR  buffer   (Promega  5x  

Flexi  Green  GoTaq  Buffer)  

 

Histological  analysis  

Dehydrated  placentas   (in  100%  methanol  at   -­‐20°C)  were  put   in  paraffin   (30  min  at  

60°C)  and  paraffin  was  refreshed  twice  (2  times  30  min  at  60°C).  Placentas  were  embedded  

Page 25: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter I – Methods  

  12  

in   paraffin   and   sections   were   cut   (6   μm)   using   a   microtome.   Sections   were   afterwards  

stained  with  hematoxylin  and  eosin.  

 

In  situ  hybridization  

i. Probe  generation  

DNA  transformation  into  competent  cells  

1  μl  of  plasmid  with  Cdx4  cDNA  insert  was  added  into  25  μl  of  DH5α  competent  cells  

and  incubated  for  10  min  on  ice.  Cells  were  heat  shocked  for  45  sec  at  42°C  and  after  that  

placed   on   ice   for   2  min.   1ml   of   prewarmed   Lysogeny   Broth   (LB)  medium  was   added   and  

incubated   at   37°C   for   one   hour.   100μl   of   the   transformation  mixture  was   spread   on   a   LB  

agar  plate  (with  ampicillin).  The  plates  were  left  overnight  incubating  at  37°C.  Two  separate  

colonies  were  picked  and  grown  over  night  in  100  ml  LB  medium  with  200  μl  ampicillin.  

DNA  isolation  form  DH5α  

Overnight   bacterial   cultures   were   pelleted   by   centrifuging   10   min   at   3200   rpm.  

Plasmids   were   isolated   with   the   Invitrogen   PureLinkTM   Quick   Plasmid   Midiprep   Kit,  

following   the   manufacturer’s   protocol.   After   the   isolation   the   concentration   of   DNA   was  

determined  with  NanoDrop.  

Linearization  and  purification  

10  μg  of  DNA  was   linearised  using   restriction  enzymes   for   1  hour.   Linearised  DNA  

plasmid   was   purified   by   a   phenol/chloroform   extraction   followed   by   precipitation   with  

NaAC.  

Synthesis  of  digoxygenin-­‐labeled  (DIG-­‐labeled)  RNA  probe  

In   a   total   volume   of   20   μl,   the   following   reagents   were   mixed:   5x   Transcription  

Buffer,   0.1   M   DTT,   DIG   RNA-­‐labelling   mixture,   placental   RNAse   inhibitor   and   RNA  

polymerase  (T7)  together  with  1.5  μg  of  linearised  plasmid  DNA.  The  mixture  was  incubated  

for  2  hours  at  37°C.  The  next  step  was  to  dilute  with  5x  transcription  buffer  followed  by  the  

digestion  with   2   μl   DNAse   (RNAse   free)   for   45  min   at   37°C.   Next,   destilled   H20,   brewer’s  

yeast   tRNA,   LiCl   and   100%   ethanol   (-­‐20°C)   was   added   to   the   mixture   and   incubated  

overnight   at   -­‐20°C.   The   mixture   was   spinned   down   (15   min)   at   4°C,   washed   with   70%  

ethanol  and  centrifuged  again.  Finally,  the  probes  were  dried  under  vacuum,  redissolved  in  

TE/formamide  (1:1)  and  stored  at  -­‐80°C.  

�  

ii. Whole  mount  in  situ  hybridization  

Page 26: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter I – Methods  

  13  

For  whole  mount  in  situ  hybridization  the  embryos  were  rehydrated  (75%,  50%,  25%  

methanol,  2  times  PBT;  all  steps  for  10min)  and  permealized  with  10  μg/ml  proteinase  K  for  

15  min.  Proteinase  K  was  blocked  by  glycine  (2  mg/ml  in  PBT)  for  5  min  and  was  followed  by  

two   times  wash   (5  min)  with  PBT.   Embryos   are   refixed   in   0.2%  glutaraldehyde   in   4%  PFA,  

followed   by   two   washes   (5   min)   with   PBT.   The   embryos   were   washed   with   300   μl  

prehybridization  mix  (5  min)  and  subsequently  incubated  for  at  least  1  hour  at  70°C  in  400  μl  

prehybridization  mix.  Hybridization  takes  place  over  night  at  70°C  with  prehybridization  mix  

with  the  probes.  After  hybridization  embryos  are  washed  with  800  μl  prehybridization  mix  

(10  min  at  70°C)  and  400  μl  2x  SSC  (70°C)  was  added  three  times  (10  min).  After  2  times  30  

min  wash  with  CHAPS  (0.1%)/SSC  (2x),  the  tissue  was  incubated  at  37  °C  for  at  least  one  hour  

with   100   μg/ml   RNAse-­‐A   in   CHAPS   (0.1%)/SSC   (2x).   Afterwards   the   samples  were  washed  

twice  with  Maleic  acid  buffe  (MAB)  for  10  min  at  room  temperature  and  twice  for  30  min  at  

70°C.  Subsequently  a  10  min  wash  with  PBT  and  two  washes  (10  min)  with  TBST  with  2mM  

levamisole.   Embryos  were   preblocked   by   10%   heat   inactivated   sheep   serum   (endogenous  

alkaline  phosphatase  activity  is  inactivated  beforehand  by  70°C  incubation  for  30  min)  for  2  

hours.   Beforehand   a   anti-­‐DIG   alkaline   phosphatase   mixture   was   prepared   with   15   mg  

embryo  powder   in   2,5  ml   TBST,   250  μl   10%   inactivated   sheep   serum  and  5  μl   of   anti-­‐DIG  

conjugated   with   AP;   incubated   at   4°C   for   4   hours   while   shaking.   Blocking   serum   was  

removed   and   anti-­‐DIG   mixture   was   added,   tissues   were   incubated   at   4°C   overnight   with  

gently  shaking.  Post  antibody  washes  were  done  with  TBST  with  2mM  levamisole  (3  times  5  

min  followed  by  5  times  60  min  wash).  Before  immunological  detection  with  1  ml  BM  Purple  

(with  1mM  levamisole)  starts,  the  samples  must  be  washed  3  times  with  NTMT  (with  2  mM  

levamisole).  To  stop  the  reaction  the  embryos  were  washed  twice  (10  min)  with  NTMT  (with  

2  mM  levamisole)  and  10  min  with  PBT  including  10  mM  EDTA.  Embryos  were  postfixed  with  

0.2%   glutaraldehyde   in   4%   PFA   and   finally   samples   were   washed   (30   min)   and   stored   in  

PBT/EDTA.  Embryos  were  placed  in  filtered  PBT/EDTA  for  image  acquisition.  This  protocol  is  

adapted  from  Wilkinson,  1992.  [60]    

Page 27: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  14  

Results  In   order   to   study   the   relationship   between  Cdx   genes   and  Wnt   signalling   in  more  

detail,  Wnt3a-­‐/-­‐  Cdx2+/-­‐,  embryos  were  generated  previously  to  this  work  by  crossing  Wnta3+/-­‐  

females  with  Wnt3a+/-­‐   Cdx2+/-­‐  males.   At   E15.5   these   genotypes  were  not   recovered  which  

indicated   early   lethality   during   development.   To   investigate   whether   placentation   was  

defective   in   these  mice,   embryos  were   isolated   at   earlier   stages   of   development   and   the  

phenotype  was  analysed.  

 Wnt3a-­‐/-­‐  Cdx2+/-­‐  embryos  have  defects  in  placental  labyrinth  similar  to  

Cdx2/4  mutants  

Embryos   were   isolated   at   two   different   embryonic   stages.   E8.5   embryos   were  

generated  to  observe  whether  the  allantois  was  attached  or  not  to  the  chorion.  At  E10.5  the  

umbilical   cord  and  placenta  have  normally   already  developed  and   it   is   possible   to   analyse  

their  morphology.  

At   E8.5   Wnt3a-­‐/-­‐   and   Wnt3a-­‐/-­‐Cdx2+/-­‐   show   a   narrower   posterior   region   in   the  

embryo   compared   to   wild   type.   Only   a   few  Wnt3a-­‐/-­‐Cdx2+/-­‐   embryos   had   not   undergone  

chorio-­‐allantoic  fusion.  

At  E10.5  no  defects  in  the  morphology  of  the  umbilical  cord  or  aberrant  blood  was  

observed.  Placentas  were  isolated  and  sectioned  to  analyse  the  phenotype  of  the  labyrinth.  

Figure   1.1   shows   sections   of   these   placentas,   from   both   wild-­‐type   and   Wnt3a-­‐/-­‐Cdx2+/-­‐  

embryos.  Fig1.1A  and  1.1C  show  that   the   labyrinthine  area,   containing   the  embryonic  and  

maternal   blood,   has   the   same  width   in   the  wild-­‐type   and   in   the  Wnt3a-­‐/-­‐Cdx2+/-­‐   mutants.  

However   the   embryonic   vessels   are   wider   in   the   mutants,   and   do   not   penetrate   the  

chorionic  plate  efficiently   (Fig.1.1D).  The  embryonic  blood  seems  to  be  held   in   the  base  of  

the   placenta   and   the   branching   of   the   vessels   is   underdeveloped   when   compared   to   the  

wild-­‐type  (Fig.1.1B  and  D).  As  a  result,  the  embryonic  vessels  and  the  maternal  blood  are  not  

in   direct   contact,   impairing   the   interchange   of   nutrients,   which   is   a   likely   cause   of   the  

embryonic   lethality.   The   defects   in   the   placental   labyrinth   resemble   that   in   the   Cdx2/4  

mutants,  although  it  is  less  severe.  

Cdx4  is  downregulated  in  Wnt3a-­‐/-­‐Cdx2+/-­‐  mutants  

To   investigate   whether   this   phenotype   is   reproducing   the   Cdx2/4   phenotype   we  

analysed  whether  Cdx4  was  downregulated  in  these  embryos.  In  mutants  isolated  at  E8.5  in  

situ  hybridizations  with  a  Cdx4  probe  were  performed  (Fig.1.2).  Due  to  the  differences  of  the  

Page 28: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter I – Results  

  15  

morphology   of   the   posterior   region   of   the  mutants,  Wnt3a-­‐/-­‐   embryos,  which   also   have   a  

narrow  posterior  region,  were  used  as  a  control   to  assess  differences   in  expression.  Figure  

1.2  shows  that  Cdx4   is   less  expressed  in  the  progenitors  region  of  Wnt3a-­‐/-­‐Cdx2+/-­‐  mutants.  

Together   these   results   indicate   that   in   these  mutants   the   genetic   pathway   affected   is   the  

same   as   in   the   Cdx2/4   mutants.   Wnt3a   and   Cdx2   interact   during   the   regulation   of  

progenitors  of  the  placental  labyrinth  and  have  Cdx4  as  a  downstream  target.  

   

Figure  1.1  –  Defective  placental   labyrinth  of  Wnt3a-­‐/-­‐Cdx2+/-­‐  E10.5  embryos.   (A-­‐D)  Hematoxylin  and   eosin-­‐stained   sections   of   placentas   from   wild-­‐type   (A,B;   B   is   an   enlargement   of   A)   and    Wnt3a-­‐/-­‐Cdx2+/-­‐   (C,D;   D   is   an   enlargement   of   C)   embryos.   Wild-­‐type   placentas   show   branched  vessels  that  penetrate  the  chorionic  ectoderm,  embryonic  vessels  in  close  contact  with  maternal  blood.  In  mutant  placentas  the  allantoic  vessels  start  to  penetrate  the  chorionic  ectoderm  but  the  branching  morphology  is  deficient.  In  B  and  D  the  arrow  heads  point  to  maternal  red  blood  cells  and  arrows  to  fetal  red  blood  cell.  Scale  bars  represent  500  μm  in  A  and  C  and  200  μm  in  B  and  D.    

Figure   1.2   –   Cdx4   is   downregulated   in   Wnt3a-­‐/-­‐Cdx2+/-­‐   E8.5   embryos.   Whole   mount   in   situ  hybridization   using   a   Cdx4   probe   in   wild-­‐type   (A,B),  Wnt3a-­‐/-­‐   (C,D)   Wnt3a-­‐/-­‐Cdx2+/-­‐(E,F)   in   E8.5  embryos.   A,C   and   E   represent   dorsal   views   and   B,D   and   F   lateral   views.   Comparison   between  compound   mutant   and  Wnt3a-­‐/-­‐   indicates   that   Cdx4   expression   is   downregulated   in   the   first.  Posterior  region  of  the  embryo  to  the  left.  Scale  bars  represent  500  μm.  

Page 29: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  16  

Discussion  The   results   of   this  work   do   not   unveil   how   Cdx   and  Wnt   signalling   establish   their  

genetic   relation,   but   they   illustrate   once   more   that   these   two   factors   interact   to   in   the  

posterior  progenitor  region.  The  fact   that  a  new  phenotype,   that   is  absent   in  either  of   the  

mutants  alone   (Cdx2+/-­‐  and  Wnt3a-­‐/-­‐),  arises   in   the  compound  mutants   indicates   that   these  

two   genes   act   together.   These   factors   are   invested   in   the   allantois   development   and   in  

proper  placental  labyrinth  formation.  The  downregulation  of  Cdx4  in  these  mutants  suggests  

that  the  labyrinth  defects  are  similar  to  Cdx2/4  mutant  placentas.  

In  this  work  Wnt3a-­‐/-­‐  embryos  do  not  show  a  downregulation  of  Cdx4  at  E8.5,  only  

the  compound  mutant  showed   less  expression  of  Cdx4   in  the  posterior  region.   It  has  been  

shown  that  in  Wnt3a  hypomorphs,  Cdx4  is  downregulated,  although  experiments  were  done  

ex  vivo  and  at  later  stages  [  ].  Microarray  data  from  Cdx2  null  embryos  showed  that  Cdx4  is  

downregulated  [3].  However,  Cdx2  heterozygotes  alone  have  a  normal  survival  rate  and  no  

defects   in   the   placental   labyrinth.   This   would  mean   that   the   combination   of   missing   one  

allele   of   Cdx2   and   both   alleles   of   Wnt3a   has   a   more   deleterious   effect   on   placental  

development  that  each  genetic  condition  individually.  

Wnt  canonical  signalling  has  been  shown  to  act  both  upstream  and  downstream  of  

Cdx  genes.  This  signalling  pathway  rescued  several  aspects  of  the  phenotype  of  Cdx  mutants,  

i.e   the  axial   truncation   [2]  and  the  number  primordial  germ  cells   (PGCs)   that   is  affected   in  

Cdx2  null  mutants   [17].  These   findings   suggested   that   the  Wnt  pathway  plays  an  essential  

role  in  the  balance  of  morphogenesis  of  the  derivatives  of  the  posterior  growth  zone  during  

emergence  of   tissues   from   the  different   germ   layers.   The  defects  of   placental   labyrinth   in  

the  compound  mutants  investigated  in  this  work  are  most  likely  result  of  a  deregulation  of  

allantoic  progenitors,  since  Wnt3a  and  Cdx2  are  not  expressed   in  the  allantois   itself  at   the  

time  point  vascular  differentiation  takes  place.  Given  the  many  roles  of  Wnt  in  the  allantoic  

and  placental  development;  Fzd5   [57],  Wnt2   [58]   ,  Wnt7b   [59],  Tcf1/Lef1   [56]   ;  we  do  not  

exclude   that   this   genotype  Wnt3a-­‐/-­‐Cdx2+/-­‐  causes   a   further   decrease   of  Wnt   signalling   by  

other   ligands   than  Wnt3a.   We   propose   that   downregulation   of  Wnt3a   and   Cdx2   in   the  

progenitors  impairs  the  expression  of  other  factors,  like  Wnt2,  in  the  endothelial  cells  of  the  

allantois.   This   hypothesis   is   supported   by   results   that   show   that   Tcf1-­‐/-­‐   Lef-­‐1-­‐/-­‐   mutants  

allantois  does  not  fuse  with  the  chorion  [56].    

Page 30: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  17  

Chapter  II  –  Anterior  Hox  genes  and  axial  elongation  

Introduction  

The  vertebrate  axis  

The  vertebral  column  arises  from  blocks  of  mesodermal  tissue  that  are  formed  in  a  

sequential   manner   along   the   AP   axis   during   development.   These   structures   are   called  

somites  and  are  formed  sequentially   in  pairs  on  each  side  of  the  neural  tube,  by  a  process  

called  somitogenesis.  The  number  of  somites  formed  during  development  will  determine  the  

number  of  vertebrae.  By  a  process  called   resegmentation   the  posterior  half  of  one  somite  

will  fuse  with  the  anterior  half  of  the  succeeding  somite  to  form  a  complete  vertebra.  While  

the  somites  show  no  morphological  difference  along  the  AP  axis,  vertebrae  have  a  different  

morphology  depending  on  their  position  along  the  axis.  The  most  anterior  vertebrae  are  the  

cervical   vertebrae,   and   in   the   trunk   region   are   the   thoracic   vertebrae,   which   are  

characterized  by  the  presence  of  ribs.  Posterior  to  these  are  the  lumbar  vertebrae,  the  sacral  

vertebrae,  which  are   fused  to   form  the  sacrum,  and  finally   the  caudal  vertebrae  that   form  

the   tail.   The   number   of   vertebrae   of   each   morphological   group   (axial   formula)   varies  

amongst  vertebrates  and  is  specific  for  each  species.  The  mouse  has  7  cervical  vertebrae,  13  

thoracic   vertebrae   with   7   seven   ribs   attached   to   the   sternum.   The   number   of   lumbar  

vertebrae  varies  from  5  to  6,  and  4  sacral  vertebrae  fuse  to  form  the  sacrum.  The  number  of  

caudal   vertebrae   varies   from   28   to   30.   The   identity   of   the   vertebrae   along   the   AP   axis   is  

acquired  by  the  combination  of  Hox  genes  expression  in  their  mesoderm  precursors.  

 

Hox  genes  and  vertebrate  axis  

Edward   B.   Lewis   described   30   years   ago   a   gene   complex   that   controls   segment  

identity   in   Drosophila   [62],   since   he   observed   that   mutations   in   the   complex   resulted   in  

homeotic   transformations   in   the  Drosophila  body  segments.  These  genes  were   later  called  

Hox  genes  and  were  identified   in  Drosophila  as  essential   in  determining  the  body  plan  and  

the   formation  of  body  segment   [63].  The  term  “homeotic”  genes   is   related  to  homeosis,  a  

term   introduced   by   William   Bateson   in   1894   when   describing   the   phenomenon   of   the  

replacement   of   an   expected   body   part   by   another   [64].   Mutations   of   Hox   genes   cause  

homeotic   transformations,  and  so   they  are  called  homeotic  genes.  One  of   the  best  known  

Page 31: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Introduction  

  18  

examples   is   the   mutation   Antennapedia   (Antp),   a   homeotic   mutation   that   causes   legs   to  

grow  in  the  place  where  antennae  are  normally  found  on  the  Drosophila  head  [65].

 Homologs   of   the   fly   Hox   genes   have   been   identified   in   most   bilaterian   animals  

studied.  In  metazoan,  Hox  genes  are  evolutionary  conserved  in  structure  and  function.  They  

are  organized  in  clusters  on  the  chromosomes.  In  vertebrates  the  chromosomal  position  of  

3’  to  5’  Hox  genes  in  the  cluster  follows  the  temporal  order  in  which  they  are  expressed.  The  

initial  Hox  genes  to  be  expressed  are  the  most  3’  genes  (Hox1)  followed  by  the  next  5’  genes,  

until   the   most   5’   gene   (Hox13)   is   expressed   [66].   This   characteristic   is   called   temporal  

collinearity.  Hox  genes  also  exhibit  spatial  collinearity  of  expression  [66].  This  means  that  the  

more  3’  have  a  more  anterior   expression  boundary   than   the  more  5’   and   later  Hox   genes  

[67].  

As  result  of  two  rounds  of  whole  genome  duplication,  mammals  obtained  4  copies  

of  the  Hox  cluster  (A,  B,  C  and  D).  Every  Hox  gene  has  at  least  1  close  relative  or  paralog  on  

another   cluster.  Mutations   of   a  whole   paralog   group   lead   to   severe   homeotic   changes   in  

axial   skeleton   of   mice.   Loss   of   function   of   the   Hox10   paralog   group   caused   anterior  

transformations   of   all   lumbar   vertebrae.   These  mutants   have   rib-­‐bearing   vertebrae   at   the  

position  of  lumbar  vertebrae  [68].  Hox10  genes  therefore  repress  rib  formation  in  vertebrae  

posterior   to   the   ribcage.   In   the   absence   of   Hox10   the   repression   is   no   longer   present,  

resulting   ribs   formation   on   all   lumbar   vertebrae   [68].  When  Hox10   was   overexpressed   at  

thoracic   levels,   the   ribcage   remains   rib-­‐less   [69].     These   results   highlight   another  

characteristic   of   Hox   genes,   called   posterior   prevalence,   where   the   most   posteriorly  

expressed   Hox   gene   usually   imposes   its   function   over   that   of   more   anterior   genes.   This  

suppressive  mechanism  does  not   involve  transcription  repression  but   it   is   likely  to  proceed  

through   protein   interaction   and   competition   for   co-­‐factors   [70-­‐72].   This   repression   was  

proposed  to  ensure  that  more  posterior  identities  arise  at  posterior  axial  levels  [66].    

 

Hox  genes  expression  and  regulation  

In   the  mouse   embryo,   the   expression   of   the   earliest  Hox   genes   is   initiated   in   the  

posterior  primitive  streak,  at  the  boundary  between  extraembryonic  and  embryonic  tissues  

[6,73].   First,   the   expression   is   in   the   epiblast   and   overlying  mesoderm   [74,75].   The   initial  

expression  domain  spreads  anteriorwards  in  a  way  that  does  not  correlate  with  cell  lineage,  

and  does  not  rely  on  cell  migration  until   it  reaches  the  anterior-­‐most  expression  boundary.  

This  was   called   phase   I   of   expression   of  Hox   genes   [74].   The   regulation   of   this   initial   Hox  

transcription   is   thought   to   result   from   events   that   are   connected   to   the   emergence   and  

Page 32: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Introduction  

  19  

extension  of  the  primitive  streak  [75].  Wnt  and  Fgf  signalling  pathways  are  involved  in  early  

developmental   processes   and   are   also   involved   in   the   regulation   of   Hox   genes.   Wnt  

signalling,  which  is  essential  for  the  initiation  of  gastrulation,  could  also  modulate  Hox  gene  

expression   during   anterior   spreading   of   expression   domains   [75].   A   second   phase   of  Hox  

gene   expression   take   place   at   later   stages   (early   somite   stages)   after   their   expression  

domains   reach   the   region   anterior   to   the   streak   [74].   From   that   moment   on,   Hox   gene  

expression  domain  expands  parallel  to,  but  not  fully  clonally,  the  emerging  tissues.  

The  early  expression  and  dynamics  of  Cdx  genes  is  very  similar  to  the  expression  of  

Hox   genes,   likely   to  be  a   result  of   their   close  evolutionary   relationship.  As   referred  above,  

Cdx   and   Hox   family   genes   are   close   relatives   and   they   derived   from   a   common  ProtoHox  

ancestral  cluster  [76].  In  addition  Cdx  is  a  direct  regulator  of  Hox  genes  in  a  dose-­‐dependent  

way  [38,77-­‐79]  and  this  regulation  is  achieved  via  Cdx  binding  sites  present  in  the  regulatory  

region  of  the  respective  Hox  genes.  The  regulation  of  Hox  genes  by  Cdx  is  not  the  same  for  

all  the  Hox  paralog  groups  [80,81]  and  it  is  suggested  that  Cdx  genes  could  be  intermediaries  

between  Fgf  and  Wnt  signals  and  the  Hox  genes  [33].  A  more  recently  discovered  function  of  

Cdx  genes  is  that  they  are  essential  for  the  process  of  embryonic  axial  elongation  in  addition  

to   their   involvement   in   transducing   AP   positional   information   together   with   Hox   genes  

[2,43].  Since  Cdx  and  Hox  genes  share  an  evolutionary  history  as  well  as  biological  functions,  

Young   et   al.,   2009   questioned   whether   Hox   genes   were   also   involved   in   posterior   axial  

extension,   despite   the   fact   that   no  Hox  mutation   has   ever   caused   axial   truncations.   They  

showed  that  gain  of  function  of  central  or  trunk  Hox  genes  (Hoxb8  and  Hoxa5)  rescued  the  

truncation  of   the  posterior  axis  of   the  Cdx2/4   compound  mutants.  This  demonstrated  that  

central   Hox   genes   stimulate   trunk   tissue   expansion   during   posterior   axial   growth   [2].   In  

addition,  it  was  shown  that  the  most  posterior  Hox  genes,  Hox13  controls  axial  elongation  in  

the  opposite  way.  Precocious  expression  of  Hoxb13  (driven  by  the  Cdx2  promoter)  resulted  

in  an  axial  truncation  similar  to  Cdx  mutants.  

Together  with   the  observation  of   a   longer  body  axis   in   the  Hoxb13   knock-­‐out   [82]  

these  findings  suggest  that  the  function  of  the  most  5’  Hox  genes  is  to  arrest    axial  extension.  

Therefore  Hox  and  Cdx  genes  are  involved  in  coupling  the  two  processes,  tissue  generation  

and  the  AP  patterning.    

Based  on  the  previous  findings  Young  et  al.  2009  proposed  a  model  where  Cdx  genes  

and   trunk  Hox   genes   stimulate   the  posterior  axial   growth   in   the  posterior  growth   zone  by  

sustaining   the   signalling   required   for   the  maintenance  of   the   axial   progenitors.   This   effect  

goes  on  until  Hox13  starts  to  be  expressed  to  compete  with  trunk  Hox  genes,  leading  to  the  

Page 33: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Introduction  

  20  

termination   of   the   axis   elongation.   The   switch   of   expression   from   trunk   Hox   genes   to  

posterior  Hox  genes  would  instruct  a  slowing  down  of  the  axial  growth.  This  is  referred  to  as  

the   trunk-­‐tail   transition.   Axial   elongation   would   depend   on   Cdx/Hox   genes   acting   on  

downstream  positive  (Wnt  and  Fgf)  and  negative  (RA)  signalling  in  the  posterior  growth  zone  

(Figure  2)  [2].  

 

 

 

 

Objective  

To  test  the  role  of  Hoxb1  in  the  regulation  of  axial  extension,  the  strategy  designed  

was   to   attempt   the   rescue   of   Cdx2/4   mutant   phenotype   by   overexpressing   Hoxb1   as  

previously   done   for   trunk   Hox   genes   (Hoxb8   and   Hoxa5).   The   phenotype   of   the   Cdx2/4  

mutant   includes  a   lower  survival   rate  due  to   failure   in  placental  development  and  an  axial  

truncation   of   variable   severity   [4].   To   show   that   Hoxb1   rescues   the   phenotype,   Cdx2/4    

embryos  with  the  Hoxb1  transgene  (Cdx2/4  Cdx2PHoxb1)    should  have    a  higher  survival  rate  

and/or  a  less  severe  truncation  of  the  axis.    

   

Figure   2     -­‐   Interaction   of   Wnt,   RA,   Cdx/trunk   Hox   genes   and   HoxPG13   in   the   regulation   of   axis   growth.   Left:   Schematic  representation  of   the  expression  level  of  Cdx/trunk  Hox  genes,  Wnt,  Cyp26a1  and  HoxPG13   in   the  posterior  region  of   the  embryo  during   axial   growth.   Cdx/trunk   Hox   genes,  Wnt   and   Cyp26a1   have   similar   expression   dynamics   while   it   is   opposite   to   HoxPG13  starting  at  E10.0  shortly  before  the  trunk-­‐tail   transition.  Three  different  phases  related   to   the   involvement  of  Cdx/trunk  Hox  genes  during   axial   growth   can   be   identified;   initiation,   maintenance   and   termination.   Right:   Schematic   view   of   the   genetic   interaction  between  Cdx/Hox  trunk,  Wnt,  Ra  and  HoxPG13.  Note  the  positive  feedback  loop  between  Cdx  and  Wnt.  Expression  of  Cdx/Hox  trunk  genes  in  blue,  Wnt  in  green,  Cyp26a1  in  yellow  and  HoxPG13  in  red.  From:  Young  et  al.,  2009  

Page 34: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  21  

Methods      

Generation  of  transgenic  constructs  and  mice    

To  construct   the  Cdx2PHoxb1,   full-­‐length  cDNA   for  Hoxb1   (a   kind  gift  of  M.  Mallo,  

IGC,   Oeiras   Portugal)   was   cloned   behind   the   9.4kb   Cdx2   promoter   fragment   [83].   The  

construct   was   injected   in   Cdx4   deficient   male   pronuclei   to   generate   transgenic   embryos.  

Founder  mice  were  recovered  and  7  transgenic  lines  were  established.    

 

Isolation  of  embryos  

For   expression   analysis   of   the   transgene,  Cdx4-­‐/0  Cdx2PHoxb1  males  were   crossed  

with  wild-­‐type  females.  Embryos  were  isolated  at  E9.5  in  PBS0  at  4°C.  Posterior  region  of  the  

embryo   (posterior   to   the   forelimb)   was   used   for   total   RNA   extraction   and   the   remaining  

tissues  (anterior  region  of  the  embryo,  yolk  sac  and  amnion)  were  used  for  genotyping.  For  

analysing   the   embryonic   phenotype   of   Cdx2/4   Cdx2PHoxb1;   Cdx4-­‐/-­‐   Cdx2PHoxb1   females  

were  crossed  with  Cdx2+/-­‐  males  and  embryos  were  isolated  at  E10.5  in  the  same  conditions  

as  describes  in  Methods  of  Chapter  I.    

 

Bone  and  cartilage  staining  

Newborns  skin  and  internal  organs  were  removed.  Forelimb  was  dissected  for  DNA  

isolation   and   genotyping.   Fixation   was   performed   with   96%   ethanol   including   1%   glacial  

acetic  acid  for  at  least  24  hours.  Afterwards  cartilage  was  stained  in  80%  ethanol/20%  acetic  

acid  and  0.5  mg/ml  Alcian  Blue  (Sigma)  overnight.  Newborns  were  washed  twice  in  ethanol  

(96%)   for  1  hour  and  soft   tissue  was  dissolved   in  1.5%  KOH  for  2  hours.  Bone  was  stained  

overnight   in   0.5%   KOH   including   0.15   mg/ml   Alizarin   Red   S   (Sigma).   Destaining   was  

performed   in  0.5%  KOH/20%  glycerol   for   3  days   and   finally  newborns  were   stored   in  20%  

ethanol/20%   glycerol   (adapted   from:   van   den   Akker   et   al.,   2001   [84]).   Cervical,   thoracic,  

lumbar,  sacral  and  caudal  vertebrae  were  counted.  

 

Genotyping  

The   procedure   is   described   in   Methods   of   Chapter   I.   The   primer   sequences   for  

genotyping   Cdx2   are   the   same   as   described   in   Chapter   I.   Primer   sequences   for   Hoxb1  

Page 35: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Methods  

  22  

transgene   are   GCCGCAGCCCCCATACGGAA   (forward)   and   AGGCATCTCCAGCGGCTTCCT  

(reverse).  Cdx4-­‐null   embryos  were   confirmed  by   the  presence  of   the  Y   chromosome  using  

primer   sequences   for   Sry,   TTATGGTGTGGTCCCGTGGTGAG   (forward)   and  

TGTGATGGCATGTGGGTTCCTGT  (reverse).  The  PCR  conditions  for  Cdx2  and  Sry  are  the  same  

as  described   in  Methods  of  Chapter   I.  The  touchdown  PCR  conditions  for  Hoxb1   transgene  

were  94°C  for  1  min,  92°C  for  30  seconds  (sec),  65°C  with  a  decrease  of  0.6°C  per  cycle,  72°C  

for  45  sec  for  12  cycles,  92°C  for  30sec,  58°C  for  30  sec,  72°C  for  45  sec  for  20  cycles,  72°C  for  

3  min  and  12°C  until   the  end  of   reaction.   In  10μl  mixture  with  0.5  μM  of  each  primer,  0.2  

mM  of  each  dNTP,1.5  mM  MgCl2  and  1x  PCR  buffer  (Promega  5x  Flexi  Green  GoTaq  Buffer).  

RNA  isolation  

After  embryos  isolation  and  dissection  the  tissue  were  directly  placed  in  a  tube  with  

1   ml   of   TRIZOL   Reagent   (Ambion®,   Life   Technologies).   Samples   were   stored   at   -­‐80°C   or  

proceeded  to  RNA  isolation.  To   isolate  total  RNA  firstly  the  samples  were  homogenised,  at  

room   temperature   (RT),   by   pipetting   up   and   down   the   tissue   in   the   TRIZOL   reagent.  Next  

step  was  phase  separation,  0.2  ml  of  chloroform  was  added  and  the  mixture  was  shaken  for  

15  sec.  After  incubating  at  RT  for  2-­‐3  minutes  the  samples  were  centrifuged  at  12000  x  g  for  

5   min   at   4°C.   The   solution   separates   into   a   lower,   an   interphase   and   an   upper   aqueous  

phase  that  contains  the  RNA.  This  aqueous  phase  is  recovered  into  a  new  tube  and  the  next  

procedure  is  RNA  isolation.  RNA  was  precipitated  by  adding  0.5  ml  of  100%  isopropanol  (5-­‐

10   μg   of   glycogen   is   also   added   as   a   carrier)   and   incubated   at   RT   for   10  min   followed   by  

centrifugation   for   10  min  at   12000g  at   4°C.  After   centrifugation   the  pellet  was   visible   and  

was  washed  with  1  ml  of  75%  EtOH.  The  pellet  was  air  dried  at  RT  for  5-­‐10  min.  The  RNA  was  

ressuspended   in   20   μl   of   DEPC-­‐treated   water   (DEPC   water)   and   left   for   15   min   at   55°C.  

Samples  were  stored  at   -­‐80°C.  RNA  concentration  was  quantified  using  Nanodrop    analysis  

(Thermoscientific,USA).  

 

DNAse  treatment  

From  the  RNA  isolated  using  TRIZOL  reagent,  15  μl  were  used,  4  μl  of  transcription  

buffer  and  2  μl  of  DNAse  (Roche-­‐RNA  free)  were  added.  The  mixture  was  incubated  for  1  h  

at  37°C.  After  DNA  digestion  the  solution   is  diluted  with  115  μl  of  DEPC  water  and  15μl  of  

Ammonium  Acetate   (5M)   (BDH®  Reagents)   is   added   to   stop   DNAse   activity.   The   next   step  

was   phenol/chloroform   extraction   followed   by   isopropanol   precipitation.   The   RNA   is  

ressuspended  in  20  μl  of  DEPC  water  and  stored  at  -­‐80°C.  

Page 36: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Methods  

  23  

cDNA  synthesis  

cDNA  was  synthesized  from  RNA  samples  using  the  SuperScript™  II  RT  (Invitrogen).  

The  reverse  transcription  reaction  includes  1  μg  of  total  RNA,  1  μl  of  dNTP  mix  (10  mM)  and  

13  μl  of  DEPC  water,  incubation  for  5  min  at  65°C,  addition  of  5x  First-­‐Strand  Buffer  and  2  μl  

of  0.1  M  DTT  followed  by  incubation  at  42°C  for  2  min.  1  μl  of  SuperScript  II  RT  enzyme  was  

added,  new   incubation   for  50  min  at  42°C  and  afterwards   the   reaction  was   inactivated  by  

incubating  at  70°C  for  15  min.    

 

Quantitative  RT-­‐PCR  analysis  

Q-­‐RT   PCRs   were   performed   in   duplicate   for   3   individual   samples   from   each  

genotype,   with   2   μl   of   amplified   cDNA   per   reaction   using   Light   Cycler   DNA  Master   SYBR  

Green   1   (Roche)   according   to  manufacturer’s   instructions.   Real   time   PCR  was   carried   out  

using  the  My  iQ  PCR  equipment  (BioRad).  The  reaction  conditions  were  in  25  μl  of  mixture  

with  200  nM  of  forward  and  reverse  primers,  1x  Reaction  buffer  (2x  iQ  SYBR  Green  mix)  and  

5   μl   of   cDNA.   The   primer   sequences   used   for   Gapdh   were   TTCACCACCATGGAGAAGGC  

(forward)     and  GGCATGGACTGTGGTCATGA   (reverse).  Hoxb1  primers  were  designed   in   the  

exon-­‐exon   junction,   the   sequences   are   CCTCCTTCTGAGGACAAGGAA   (forward)   and  

GACACCTTCGCTGTCTTAGGTG  (reverse).  

Relative   gene   expression   was   calculated   by   the   comparative   Ct   method   [85].  

Significance  of  fold  difference  was  analysed  with  t-­‐student  test  using  Microsoft®  Excel®  for  

Mac  2011  (2010  ©Microsoft  Corporation).  

 

Statistical  Analysis  

For  statistical  analyses  of  vertebra  counts  IBM®  SPSS®  Statistics  (IBM  Corp.  Released  

2011,  Version  20.0.  Armonk,  NY)  was  used.  The  Kolmogorov-­‐Smirnov  test  was  used  to  test  

for   normality   of   distribution   of   the   counted   vertebrae.   Since   the   data   sets  were   normally  

distributed,  Mann-­‐Whitney  (U)  test  was  used  to  analyze  the  significance  of  the  difference  of  

the  sacro-­‐caudal  vertebrae  between  groups.    

 

   

Page 37: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  24  

Results  A   construct   of   full   length  Hoxb1   cDNA   under   the   Cdx2   promoter   was   injected   in  

Cdx4-­‐/-­‐   (from  now  on   referred   as  Cdx4   null)   zygotes.   7   founder  mice  were  obtained  and  7  

transgenic  lines  were  generated  (A-­‐G).  Line  B  and  C  had  no  transgenic  descendants  and  were  

discarded  for  no  germline  transmission.  For  line  A  the  founder  was  a  male  and  it  was  crossed  

with   a  Cdx4   null   female   to   generate   a   colony   and   females   for   further   crossing.   Cdx4   null  

Cdx2PHoxb1   (Cdx4   null  Cdx2PHoxb1)   females  were   crossed  with  Cdx2+/-­‐  males   in   order   to  

generate  Cdx2+/-­‐  Cdx4-­‐/-­‐  Cdx2PHoxb1  newborns  (hereafter  called  Cdx2/4  Cdx2PHoxb1)  

Hoxb1  is  overexpressed  in  the  Cdx2PHoxb1  transgenic  mice  

In  order  to  assure  that  the  Cdx2PHoxb1  transgene  was  active,  positive  mice  for  the  

transgene  (Cdx4+/-­‐  Cdx2PHoxb1)  were  tested  to  see  whether  they  show  a  higher  expression  

of  Hoxb1  compared  to  embryos  without  the  transgene  (Cdx4+/-­‐),  in  the  time  window  of  Cdx2  

expression.   The   Cdx2   promoter   used,   drives   expression   in   the   posterior   region   of   the  

embryo   from   E7.2   to   E12.5.   This  

expression  pattern  is  very  similar  to  

that   of  Hoxb1   in   the   same   region,  

both   in   time   and   in   space.   The  

expected   difference   of   expression  

of   Hoxb1   between   transgenic  

embryos   and   non-­‐transgenic  

embryos   is   therefore   quantitative  

and   not   qualitative.   Quantitative  

real   time   PCR   (qPCR)   was   used   to  

measure   the   relative   Hoxb1  

expression   difference   between  

transgenic   (Cdx2PHoxb1)   and   non-­‐transgenic   littermates.   The   embryonic   stage   examined  

was   E9.5,   a   time   point  where   the  Cdx2   promoter   is   active   in   the   posterior   region.   At   this  

stage,  Hoxb1  is  also  expressed  in  the  anterior  region  of  the  embryo,  in  rhombomere  4  [86],  

therefore   only   the   tissue   posterior   to   the   heart  was   used   to   extract   total   RNA.   Figure   2.1  

shows   the   increase   by   11.76-­‐fold   (Annex   I)   of  Hoxb1   expression   between   transgenic   and  

non-­‐transgenic   embryos   for   the   line   investigated.   This   data   indicates   that   there   is  

overexpression  of  Hoxb1  in  the  posterior  part  of  these  embryos  and  therefore  the  transgene  

is  active.  

 Figure   2.1   –   Overexpression   of   Hoxb1   in   Cdx2PHoxb1   mice.  Expression  of  Hoxb1  was  quantitatively  measure  by   real-­‐time  PCR   in  dissected   posterior   tissues   of   E9.5   Cdx4+/-­‐   and   Cdx4+/-­‐   Cdx2PHoxb1  embryos.   Gapdh   was   used   as   endogenous   control.   Transgenic   mice  have  a  11-­‐fold  increase  of  Hoxb1  expression.    *  significantly  different;  p-­‐value=0,0105.   Error   bar   represent   the   standard   error   of   mean.  Detailed  data  in  Annex  I  

Page 38: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  25  

 

Hoxb1   transgene  does  not   recue  defects   from   the  placental   labyrinth  

of  Cdx2/4  mutants.  

To   assess   whether   Hoxb1   is   capable   of   rescuing   the   Cdx2/4   placental   labyrinth  

defects   that   lead   to  embryonic  death,  we  asked   the  question  whether   the   survival   rate  of  

embryos  would  improve  respectively  to  that  of  Cdx2/4  mutants.  For  each  of  the  5  transgenic  

lines  Cdx4  null  Cdx2PHoxb1  females  where  crossed  with  Cdx2+/-­‐  males.  Newborns  from  that  

cross  were  genotyped  and  newborn  survival  was  analysed.  Each  line  has  a  different  founder,  

because   each   line   represents   a   different   insertion   site   of   the   transgene,   what   could   be  

possibly  translated  into  a  different  phenotype  

Table  2.1  shows  the  number  of  observed  and  expected  newborns  per  genotype  for  

lines   E,   G   and   F.   The   number   of  

newborns   analysed   is   low   and   so  

statistically   they   should   be  

interpreted   as   indications.     A  

survival   rate   lower   than   100%   for  

Cdx4+/-­‐Cdx2+/-­‐   and   Cdx2/4   mutants  

is  expected  [4].  For   lines  E,  G  and  F  

the   number   of   observed   newborns  

carrying   the   Hoxb1   transgene   is  

very   low.  Table  2.1  also  shows  that  

the   newborns   survival   decreases  

when  Hoxb1  transgene  is  expressed  

in  combination  with  Cdx  null  alleles.  

Table   2.2   shows   the   number   of   newborns   obtained   from   the   same   cross   from  

founders  of  line  A  and  D.    For  these  lines  the  presence  of  the  transgene  in  the  Cdx4  mutant  

background   has   no   significant   effect   on   the   survival   of   embryos.   Although   the   number   of  

Cdx2/4   Cdx2PHoxb1   newborns   is   low,   the   data   does   not   show   that   the   presence   of   the  

transgene   is   able   to  overcome   the   lethality  of   the  Cdx2/4  mutants   since   there   is  only  one  

Cdx2/4  Cdx2PHoxb1  newborn.  

The  results   indicate  an  effect  of   the   insertion  site  of   the   transgene,   since  different  

lines  present  differences  in  survival  of  newborns.  For  lines  in  Table  2.1,  the  transgene  has  a  

lethal   effect   on   embryonic   development.   This   lethality   could   be   due   to   the   fact   that   the  

Table  2.1.  Number  of  expected  and  observed  newborns  for  transgenic  lines   E,   F   and   G.   The   total   number   of   transgenic   newborns   compared  with   the   total   number   of   non-­‐transgenic   newborns   for   each   line.   For  each   line   is   also   represented   the   number   of   observed   and   expected  newborns  for  each  of  the  genotypes.  *The   expected   number  was   calculated   using   the  Mendelian   rule  based  on   the   expected   rate   of   Cdx4+/-­‐   newborns   being   1/8.   The   number   of  expected   newborns   is   1/8   (7,   4   and   8   newborns   for   lines   E,   F   and   G  respectively)  for  all  genotypes.    

Page 39: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  26  

construct  is  inserted  in  an  essential  

region   of   the   chromosome.  

Alternatively  it  could  mean  that  the  

transgene   expression   aggravates  

the   Cdx   phenotype   and   that   these  

integration   sites   make   the  

transgene  more  active  than  in  lines  

A   and   D,   causing   lethality   even   in  

the   Cdx4   null   background.   This  

hypothesis   will   be   further  

investigated   by   crossing   the  

founders   of   these   lines   with   wild-­‐

type  mice.    

Together,   these   data   show  

that   Hoxb1   overexpression   in  

Cdx2/4  mutants  differs  from  overexpression  of  Hox  trunk  genes  (Hoxb8,  Hoxa5)  in  the  same  

genetic   background   [2].   Hox   trunk   genes  were   able   to   rescue   the  Cdx2/4   lethal   placental  

defects  while  Hoxb1  is  not.    

Hoxb1  does  not  rescue  the  axial  defects  of  Cdx  mutants  

In  order  to  investigate  whether  Hoxb1  is  able  to  rescue  the  truncation  of  the  Cdx2/4  

mutant,   skeletons   of   newborns   were   stained   and   analysed.   The   results   described   above  

showed   that   the   presence   of   the   transgene   does   not   improve   the   survival   and   to   test  

whether   there   were   any   effects   on   the   skeletal   axis,   newborns   of   all   genotypes   were  

analysed.   For   the   analysis   of   the   skeletal   phenotype   of   each   genotype   all   newborns  were  

considered   irrespectively  of   the   line   from  which   they  were  generated  since  no  phenotypic  

differences  were  found  between  lines.  

 

Table   2.2.   Number   of   expected   and   observed   newborns   for  transgenic   lines   A   and  B.  The   total  number  of   transgenic   newborns  compared  with  the  total  number  of  non-­‐transgenic  newborns  for  each  line.   For   each   line   is   also   represented   the   number   of   observed   and  expected  newborns  for  each  of  the  genotypes.  *The  expected  number  was  calculated  using   the  Mendelian   rule  based  on  the  expected  rate  of  Cdx4+/-­‐  newborns  being  1/8.  The  number  of  expected  newborns  is  1/8   (10   and   5   newborns   for   lines   A   and   D   respectively)   for   all  genotypes.    

Page 40: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  27  

   

Table2

.3.  Ve

rteb

ral  ph

enotyp

e  of  Cdx4+/

-­‐  Cd

x4-­‐/0 ,  

Cdx2

+/-­‐  Cd

x4+/-­‐ ,  Cd

x2/4  w

ith  and

 with

out  the  Cd

x2PH

oxb1

 transgene

.  Th

e  nu

mbe

r  of  skeletal  

prep

arations  analysed  for  each  gen

otype  is  referred  in  the

 top

.  The  nu

mbe

rs  rep

resent  the

 num

ber  of  new

borns  that  exhibit  the  respectiv

e  axial  

phen

otype.  Tab

les  was  adapted

 from

.  van  den

 Akker  et  a

l.,  200

2      

Figu

re  2

.2  –

 Schem

atic  rep

resentation  

of  

part  of  the  

mou

se  verteb

ral  axis.  Each  

rectan

gle  represen

ts  a  vertebra.    O

n  the  rig

ht  

the  

diffe

rent  

verteb

rae  

iden

tity  

are  

represen

ted  by  differen

t  colours.  The

 black  

vertical  line

 rep

resents  the  sternu

m,  the

 red

 ho

rizon

tal  lines  are  th

e  rib

s  and  the  light  blue  

lines  rep

resent  the

 fusion  

betw

een  

sacral  

verteb

rae.  V

 –verteb

ra;  C  

–  cervical;  T  

–  thoracic;  S  –  sacral;  Cd

 –  cau

dal.  Ad

apted  

from

 Favier  a

nd  Dollé  ,  19

97  [8

7].

 

Page 41: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  28  

Cdx4  +/-­‐  and  Cdx4+/-­‐  Cdx2PHoxb1  

Cdx4+/-­‐   littermates  show  a  wild-­‐type  vertebral  phenotype  (this  work  and  [4]).  From  

the   34   newborns   with   this   genotype   13   skeletons   were   analysed.   There   are   only   two  

deviations  from  the  wild-­‐type  phenotype:  1/13  had  the  most  caudal  thoracic  vertebrae  with  

rib  attached  to  sternum  in  the  15th  vertebrae  (V15)  unilaterally,  which  means  that   it  had  8  

sternal  ribs,  and  1/13  had  14  thoracic  vertebrae  (Table  2.3).  This  anterior  transformation  at  

the  V15  level  has  been  observed  with  a  very  low  penetrance  in  Cdx4  null  [4]  and  with  a  100%  

penetrance   in  Cdx2/4  mutants  [2,4].  The  number  of   lumbar,  sacral  and  caudal  vertebrae   is  

the  same  as   in  the  wild-­‐type  phenotype  (5-­‐6   lumbar,  4  sacral  and  28-­‐30  caudal  vertebrae).  

From  the  16  Cdx4+/-­‐  Cdx2PHoxb1  newborns,  12  axial  skeletons  were  analysed.  The  presence  

of  14  thoracic  ribs  was  more  frequent,  with  4/12  newborns  with  this  phenotype  (3  bilaterally  

and   1   unilaterally,   Table   3)   and   two   of   these   (2/12)   had   8   sternal   ribs.   The   anterior  

transformation  at  the  V15  level  seen,  with  very  low  penetrance  in  the  Cdx4+/-­‐,  has  a  higher  

penetrance  in  the  presence  of  the  Hoxb1  transgene.  At  the  lumbar,  sacral  and  caudal  levels  

there  are  no  differences  between  the  transgenic  and  non-­‐transgenic  newborns.  

 

Cdx4  null  and  Cdx4  null  Cdx2PHoxb1  

Cdx4   null  mutants   have   been   described   by   Van   Nes   et   al.,   2006   to   have   similar  

phenotype   as   Cdx4+/-­‐   described   above.   From   the   29   newborns   with   this   genotype,   13  

newborns   had   their   skeleton   stained   and   analysed.   The   V15   to   V14   transformation   has   a  

higher   penetrance   in  Cdx4   null,   when   compared   to  Cdx4   heterozygous.   3/13   had   the   last  

sternal  ribs  on  V15  level  (8  sternal  ribs)  and  3/13  had  14  thoracic  ribs  (2/10  unilaterally  and  1  

bilaterally).   At   the   other   skeletal   levels   the   phenotype   was   wild-­‐type-­‐like.   11   transgenic  

newborns  in  the  Cdx4  null  genetic  background  were  analysed.  The  penetrance  of  the  V15  to  

V14  transformation  seen  in  the  non-­‐transgenic  newborns  was  much  higher,  with  8/11  with  8  

sternal   ribs   (2  unilaterally,  6  bilaterally)  and  7/11  with  14   ribs   (all  bilaterally).  Without   the  

transgene   the   penetrance   of   this   transformation   was   about   25%   but   with   the   Hoxb1  

transgene  85%  of  the  newborns  have  this  transformation  (Fig.2.3).  At  more  posterior  levels,  

the  number  of   lumbar,   sacral  and  caudal  vertebrae  does  not  vary  between  transgenic  and  

non-­‐transgenic  mice.   It   seems   that   the  presence  of   the   transgene   in   the  Cdx4   null   genetic  

background  aggravates  the  effect  of  the  Cdx4  null  mutation,  rendering  it  more  similar  to  the  

thoracic  phenotype  of  Cdx2/4.  

 

 

Page 42: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  29  

 

Cdx2+/-­‐  Cdx4  +/-­‐  and  Cdx2+/-­‐  Cdx4  +/-­‐  Cdx2PHoxb1  

The   Cdx4+/-­‐Cdx2+/-­‐   (double   heterozygote)   skeletal   phenotype   shows   the   anterior  

transformation  at   the  V15   level   in   two  thirds  of   the  analysed  newborns.   In  addition,   these  

newborns   have   transformations   at   the   sacral   level,   5/12   have   5   fused   sacral   vertebrae   (3  

unilaterally  and  2  bilaterally)  instead  of  4.  There  is  a  slight  truncation  of  the  axis  in  some  of  

the  skeletons  analysed:  4/12  have  less  than  25  caudal  vertebrae.  These  transformations  with  

low   penetrance   in   the   sacral   and  

caudal   regions   are   probably   due   to  

the  lack  of  one  Cdx2  allele,  becoming  

more   severe   in   the   Cdx2/4   mutant.  

From   the   6   transgenic   newborns  

analysed,  5/6  have  8  sternal   ribs  and  

4/6   have   14   thoracic   ribs,   which  

makes   the   V15   transformation  more  

common   than   in   the   non-­‐transgenic  

mice.   At   the   sacral   level,   5   of   the   6  

have  more  than  4  sacral  fused  vertebrae,  varying  between  5  and  9  (Fig.2.4).  

The   phenotype   of   a   fused   sacrum   with   more   than   5   vertebrae   resembles   the  

phenotype   of   the   Cdx2/4   mutants.   In   the   non-­‐transgenic   double   heterozygotes,   the  

maximum   number   of   sacral   vertebrae   observed   is   5   and   this   transformation   has   a   low  

penetrance.      Posterior  to  the  sacral  level  the  vertebrae  have  many  malformations  and  as  a  

result,   in  some  cases,  these  mice  present  a  curly  tail  (Fig.2.5).  Besides  malformations  these  

transgenic  newborns  show  a  truncation  of  the  axis:  the  number  of  distinct  caudal  vertebrae  

Figure  2.3  Anterior  homeotic-­‐like  transformations  in  rib  cage  of  Cdx4  null  Cdx2PHoxb1.  Rib  cage  of  skeletal  preparations  from  Cdx4  null  (A,B)  and  Cdx4  null  Cdx2PHoxb1  (C,D),  both  dorsal  (B,D)  and  ventral  views  (A,C).    The  numbers  indicate  the  thoracic  vertebrae  and  ribs  attached  to  the  sternum.  A  and  B  show  13  thoracic  vertebrae  from  which  7  are  attached  the  sternum.   In  C  and  D  8  ribs  are  attached   to   the  sternum,  from  a  total  of  14   thoracic   ribs.  Cdx4  null  Cdx2PHoxb1  have  an  anterior  homeotic-­‐like  transformation  at  the  level  of  V15  and  V21.      

Figure   2.4.   Defects   in   sacral   vertebrae   of   double   heterozygote  expressing   Cdx2PHoxb1.   Sacral   region   of   skeletal   preparations  from   Cdx4+/-­‐Cdx2+/-­‐   (A)   and   Cdx4+/-­‐Cdx2+/-­‐   Cdx2PHoxb1   (B,C).  Transgenic  mice  (B,C)  present  defects  in  the  sacral  area,  number  of  fused   vertebrae   is   higher   and   the   morphology   of   vertebrae   is  altered.  

Page 43: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  30  

varies  from  14  to  20  with  many  vertebrae  fused.  The  number  of  sacral  plus  caudal  vertebrae  

in   the  double  heterozygous  expressing   the   transgene   is   significantly   lower   (Fig2.6;   p-­‐value  

0,041;  Annex  II)  than  in  the  double  heterozygous  without  the  transgene.  The  axis  truncation  

in  these  newborns  shows  that  Hoxb1  aggravates  the  Cdx  phenotype  instead  of  correcting  it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure   2.5.   Axial   truncation   and   vertebrae   malformations   in   caudal   vertebrae   in   Cdx2+/-­‐Cdx4+/-­‐  

Cdx2PHoxb1.   Caudal   region   of   skeleton   preparations   from   Cdx2+/-­‐Cdx4+/-­‐(A)   and   Cdx2+/-­‐Cdx4+/-­‐  

Cdx2PHoxb1   (B-­‐G).   Note   the   variation   of   the   level   of   truncation   (B-­‐D)   and   a   curly   tail   (C-­‐D).   The  caudal  vertebrae  of  transgenic  mice  are  fused  and  underdeveloped.  A  and  B  are  lateral  views  and  C-­‐G  are  dorsal  views.  F  and  G  are  enlargements  of  C  and  D,   respectively.  Arrows  point   to  defects   in  caudal  vertebrae.        

Figure  2.6.  Sacral-­‐caudal  vertebrae  counts  in  transgenic  and  Cdx  mutants.  The  graph  represents  the  number  of  sacral  plus  caudal  vertebrae  for  each  studied  genotypes.  The  statistical  difference  between  transgenic  and  non-­‐transgenic  is  denoted  on  top  of  the  bars.  Cdx2PHoxb1  causes  a   significant  decrease  in   the  number  of  posterior  vertebrae  in  the  Cdx2+/-­‐Cdx4+/-­‐  background.  Error  bars  represent  the  standard  deviation.  ns1  (not  significant,   p-­‐value=0,314).   ns2   (not   significant,   p-­‐value=0,880).   *   (significant,   p-­‐value=0,041).  Detailed  data  and  statistical  analysis  in  Annex  II.  

Page 44: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  31  

Cdx2/4  and  Cdx2/4  Cdx2PHoxb1  

The  skeletal  axis  transformations  of  the  Cdx2/4  mutants  have  been  discussed  before  

[2]  In  this  work,  from  the  4  newborns,  4  were  analysed  and  3/4  show  an  anterior  homeotic-­‐

like  transformation  at  V8  (8  cervical  vertebrae  T1-­‐>C7),  V15  (8  sternal  ribs  (T8-­‐>T7)  and  V28  

(7   lumbar   vertebrae,   S1-­‐>L6).   The   number   of   sacral   vertebrae   varies   from   5   to   6.   These  

mutants  have  an  axial  truncation;  the  number  of  caudal  vertebrae  varies  from  8  to  12.  

If   Hoxb1   is   capable   of   rescuing   the   Cdx2/4   axial   truncation,   Cdx2/4   Cdx2PHoxb1  

newborns   should   possess   a   higher   number   of   caudal   vertebrae.   Newborns   with   this  

genotype   were   rare;   from   all   lines   only   one   pup   was   born.   At   more   anterior   levels   this  

animal  had  the  same  phenotype  as  Cdx2/4,  the  same  anterior  transformation.  Starting  at  the  

lumbar  level  most  of  vertebrae  are  fused  which  makes  it  very  difficult  to  distinguish  lumbar  

from  sacral  vertebrae.  The  axis  of   this  animal  terminates  at   the  sacrum  level   (Fig.2.7).  This  

truncation  is  more  severe  than  the  truncation  of  the  Cdx2/4  mutants  described  in  this  work.  

However   the   level   of   the   truncation   in  Cdx2/4   varies   and   a   truncation   at   the   level   of   the  

sacrum   has   been   described   before   [2].   The   data   in   the   present   work   refers   only   to   one  

newborn,   which   likely   does   not   represent   all   the   possible   phenotypic   variations   of   this  

genotype.  

 

 

 

 

 

 

 

 

 

 

Analysis  of  the  phenotype  of  Hoxb1  transgenic  embryos  

To   better   understand   the   phenotype   of   the   Cdx2/4   Cdx2PHoxb1   newborns,   the  

same  crosses  described  above  were  performed  for  embryonic  analysis.  This  approach  would  

increase  the  probability  of  getting  Cdx2/4  Cdx2PHoxb1  genotypes  and  allow  analysis  of  their  

phenotype   and   the   cause   of   embryonic   lethality.   In   Figure   2.8C,D   a   Cdx2/4   Cdx2PHoxb1  

embryo   at   E10.5   is   represented.   The   axis   of   the   embryo   is   severely   truncated   and   at   this  

embryonic  stage  the  truncation  seems  more  severe  than  the  Cdx2/4  mutant  without  Hoxb1  

Figure   2.7.   Cdx2/4   Cdx2PHoxb1   newborn   shows   a   truncation   of   the   axis   more   severe   than  Cdx2/4.  Posterior  region  of  skeletal  preparations  of  Cdx2/4  newborn  (A)  and  Cdx2/4  Cdx2PHoxb1  (B,C).  The  axis  of  the  transgenic  newborn  terminates  at  the  sacral   level,  no  caudal  vertebrae  are  formed  (B,C).  The  sacral  region  is  very  defective  (C).  C  is  an  enlargement  of  B.    

Page 45: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Results  

  32  

transgene.   The   axis   is   terminated   just   posteriorly   to   the   hindlimb   and   the   tailbud   is   not  

distinguishable  as  in  the  Cdx2/4.  

Putting   the   data   together   from   the   recovery   rate   of   transgenic   newborns   and   the  

corresponding   phenotypes,  Hoxb1   is   not   capable   of   rescuing   either   the   placental   defects  

that   lead   to  embryonic  death  or   the  posterior   truncation  of   the  Cdx2/4  mutants.  The  data  

suggests   that   the   presence   of   Hoxb1   aggravates   the   phenotypes   of   the   different   Cdx  

genotypes.   Regarding   the   skeletal   axis,   the   presence   of   the   transgene   increases   the  

penetrance  of   the  homeotic   changes   seen   in   the  non-­‐transgenic  mice   in   the   same  genetic  

background.  Also,  both  the  newborn  and  embryo  show  a  more  severe  truncation  of  the  axis  

than  what   is   observed   in  Cdx2/4   non-­‐transgenic.   Since   the   data   of   the   newborns   survival  

differ   between   lines,   it   is   possible   that   this   negative   effect   of  Hoxb1   on   axis   elongation   is  

stronger  in  the  lines  E,  F  and  G.  In  that  case  Hoxb1  would  lead  to  such  a  high  lethality  that  no  

Cdx  mutants  carrying  the  transgene  would  be  recovered.    

 

Figure  2.8.  Severe  truncation  of  the  axis   in  Cdx2/4  Cdx2PHoxb1  embryos.  Photographs  of  E10.5  Cdx2/4  (A,B)  and  Cdx2/4  Cdx2PHoxb1  (C,D)  embryos.  Axis  of  transgenic  embryos  is  truncated  at  the  level  of  the  hindlimb  and  morphology  of  tailbud  is  altered.  B  and  D  are  an   enlargement   of   A   and   C,   respectively.   Dash   lines   surround   the   tail   bud   and   the  hindlimbs.  HL  –  hindlimb.  Scale  bars  in  A,B  and  C  represent  1  mm  and  in  C  represent  500  μm.  

Page 46: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  33  

Discussion  Cdx   and   trunk   Hox   genes   are   expressed   in   the   axial   progenitor   region   in   the  

posterior   growth   zone  where   they   play   a   pivotal   role   in   the   regulation   of   axial   extension.  

This  work  set  out  to  discover  whether  anterior  Hox  gene,  Hoxb1  participates  with  Cdx  genes  

in   this   regulation.  Here   it   is   shown   that   this   3’  Hox  gene   (Hoxb1),   unlike   trunk  Hox  genes,  

does  not  rescue  the  Cdx2/4  placental  defects  or  the  defects   in  patterning  and  extension  of  

the   body   axis.  On   the   contrary,  Hoxb1   aggravates   the  Cdx2/4   phenotype   causing   a   higher  

rate  of  lethality  and  a  more  severe  truncation  of  the  axis.    

Experiments   of   overexpression   of   Hoxb1   under   the   control   of   Dll1   promoter  

(expression   in   the   presomitic   mesoderm)   in   wild-­‐type   embryos   lead   to   anterior  

transformations   at   the   V15   level   similar   to   Cdx   mutants   [88].   We   also   observe   this  

phenotype  in  the  Cdx2PHoxb1  transgenic  newborns  suggesting  that  this  anterior  phenotype  

is   consistent   with   Hoxb1   overexpression   in   the   PSM.   Since   Dll1   is   not   expressed   in   the  

posterior  progenitors,  this  Hoxb1  overexpression  does  not  lead  to  defects  in  axis  extension  

or  survival.    

Until   now   one   Hox   paralog   group   has   been   shown   to   cause   truncation   when  

overexpressed,  the  Hox13  [2,89].  Overexpression  of  Hoxb13  under  the  same  spatiotemporal  

conditions  of  Cdx2  leads  to  a  precocious  arrest  of  the  axial  growth.    It  is  believed  that  Hox13  

acts   on   terminating   axis   extension   by   dominantly   competing  with   trunk  Hox   genes.   Given  

the   resemblance   of   the   phenotype   we   wonder   whether   Hoxb1   interaction   with   Cdx/Hox  

trunk  genes  is  proceeding  similarly  to  that  of  Hoxb13.  Both  Hox1  and  Hox13,  the  groups  at  

the   extremities   of   the   Hox   cluster,   differ   at   several   aspects   from   the   central   Hox   genes.  

Recent   findings   about   binding   specificity   of  Drosophila   Hox   proteins,   suggested   that   Hox1  

has  a  binding  preference  that  differs  considerably  from  Hox2-­‐8,  and  from  Hox13  [90].    

Analysis   of   the   number   of   amino   acid   substitutions   between   the   Drosophila  

homeodomains,  showed  that  compared  to  Antp  (Hox6)  substitutions  values  increase  in  both  

directions   towards   labial   (lab)  and  toward  Abd  B   (the  most  posterior  domain,  Hox13)   [89].  

These   results   are   consistent   with   the   hypothesis   that   the   second   thoracic   segment   in  

Drosophila,  which  expresses  Antp,   represents   the   so-­‐called  “developmental   ground  state”.  

This  ground  state  was  identified  since  loss  of  function  mutations  lead  back  to  this  state  while  

gain  of  function  mutations   lead  away  from  it  [89].  This  means  that  Hox  genes  anterior  and  

posterior   to   Antp   are   epistatic   over   this   ground   state   gene   and   therefore   have   a   similar  

dominance.   From   this   “developmental   ground   state”   perspective,   both   anterior   and  

posterior   prevalence   therefore   play   a   role   in   Drosophila’s   axial   patterning.   As   central   Hox  

Page 47: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Chapter II – Discussion      

  34  

genes   together  with   Cdx   genes   promote   axial   extension,   dominance   of  Hox1  over   central  

Hox  genes  in  the  Cdx2PHoxb1  transgenic  embryos  would  lead  to  defects  in  axial  extension,  

similar  to  Cdx  mutants.  Interestingly  when  both  Hoxb8  and  Hob13  are  overexpressed  in  the  

Cdx2/4  mutants  the  result  is  the  rescue  of  the  phenotype  [2].  It  was  proposed  the  right  ratio  

between  posterior  and  anterior  Hox  genes  might  required  for  the  process  of  axis  extension  

[2].  

Besides  interacting  with  trunk  Hox  genes  Hoxb1  could  have  a  negative  effect  on  Cdx  

genes.   What   has   been   shown   is   that   Cdx   negatively   regulates   Hoxb1   Experiments   of  

overexpression  of  Xcad3   (Cdx4  homolog)   in  Xenopus  embryos  showed  upregulation  of  Hox  

trunk   genes   but   downregulation   of   Hox   anterior   genes   [33].   This   supported   that   Cdx  

differentially  regulates  different  subsets  of  Hox  genes,  and  this  regulation  would  be  positive  

for   trunk  Hox  genes  and  antagonistic  with  anterior  Hox   genes.   This  emphasizes   that   trunk  

Hox  genes  and  Cdx  form  a  functional  entity  different  from  both  Hox1  and  Hox13.  

Rescue  experiments  of  Cdx  mutants  by  Hox   genes,   showed   that  only   trunk/central  

Hox  genes  promote  axial  extension,  by  interacting  with  Cdx  genes.  Hox  genes  posterior  and  

anterior  to  these,  Hoxb9,  Hoxc12   (personal  communication)  and  now  Hoxb1  were  not  able  

to  rescue  the  Cdx  phenotype.    

Together   we   propose   that   the   overexpression   of   Hoxb1   in   the   axial   progenitors  

alters   the   endogenous   balance   between   anterior   and   trunk   Hox   genes,   therefore  

aggravating  the  Cdx2/4  phenotype.    

       

Page 48: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

  35  

Concluding  remarks    

The  work  described  in  this  thesis  concerns  the  developmental  role  of  Cdx  genes  and  

the  interaction  with  Wnt  signalling  and  anterior  Hox  genes.  In  Chapter  I  we  focused  on  the  

interaction  between  Cdx  genes  and  canonical  Wnt  signalling  pathway  by  examining  Wnt3a-­‐/-­‐

Cdx2+/-­‐   mutant   embryos.   The   lethality   of   these   mutant   embryos   appears   to   result   from  

insufficient   vascularization   of   the   placenta,   a   phenotype   similar   to   that   of   Cdx2/4  

mutants.  We   propose   that   this   deficiency   is   most   likely   a   result   of   a   decrease   in  Wnt  

signaling   below   the   needed  threshold.   This   hypothesis  might   be   tested   by  monitoring  the  

activity   of   the   canonical  Wnt   signaling   via   qPCR   of  the  Wnt   "read   out"  Axin2   in   posterior  

tissues  of  E8.5-­‐E10.5  developing  embryos.  Nevertheless  these  results  give  further  proof  that  

Cdx   genes   and   canonical   Wnt   signalling   interact   in   the   maintenance   of   the   progenitor  

population  in  the  posterior  growth  zone  of  the  embryo.  However,  these  two  factors  are  not  

the   only   players   in   the   regulation   of   these   progenitors,  Hox  genes   together  with  Cdx   also  

plays  a  role.  The  experimental  results  in  Chapter  II  report  the  interaction  of  an  anterior  Hox  

gene  with  Cdx   in   the   regulation  of  axial  extension.  Unlike  Hoxa5   and  Hoxb8   [2],   the  3'Hox  

gene   Hoxb1   is   not   capable   of   rescuing   the   posterior   truncation   of   Cdx2/4   mutants,   but  

aggravates  the  truncation  of  the  Cdx  mutants.  Since  Hoxb1  and  the  Cdx  genes  are  expressed  

simultaneously  in  the  posterior  growth  zone  of  the  embryos  we  should  investigate  why  the  

normal  –  endogenous  -­‐  expression  of  the  two  genes  does  not  lead  to  axial  truncation.    This  

can  be  achieved  by  investigating  whether  Hoxb1  and  the  Cdx  genes  are  normally  expressed  

in   different   cell   populations   during   axial   extension.   Alternatively   the   control   of   axial  

elongation   may   rely   on   a  quantitative   ratio   of  Hoxb1   and   Cdx   expressed   in   the   same   cell  

populations.  In  the   latter  case,   it  will  be  necessary  to  understand  on  which  molecular  basis  

the   overexpressed  Hoxb1   protein  interferes  with  the   Cdx   proteins   in   the   process   of   tissue  

growth.    

Since  the  dynamics  of  expression  of  Wnt3a   in  posterior  axial  tissues  follows  that  of  

Cdx  and  central  Hox  genes  [2],  the  aggravation  of  the  Cdx2/4  phenotype  by  overexpression  

of  Hoxb1  could  also  translate  a  downregulation  of  the  Wnt  signalling.  

The   results   presented   in   this   thesis   show   that   Cdx   genes   are   essential   for   the  

generation   of   axial   and   extraembryonic   tissues   and   they   function   by   regulating   and  

interacting   with   signalling   pathways,   like   canonical  Wnt   pathway,   and   other   transcription  

factors,  like  Hox  genes.  

Page 49: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

 

Page 50: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

  37  

References    1.   Wilson  V,  Olivera-­‐Martinez  I,  Storey  KG  (2009)  Stem  cells,  signals  and  vertebrate  body  

axis  extension.  Development  136:  1591–1604.    

2.   Young  T,  Rowland  JE,  van  de  Ven  C,  Bialecka  M,  Nóvoa  A,  et  al.   (2009)  Cdx  and  Hox  Genes   Differentially   Regulate   Posterior   Axial   Growth   in   Mammalian   Embryos.  Developmental  Cell  17:  516–526.    

3.   van   de   Ven   C,   Bialecka  M,   Neijts   R,   Young   T,   Rowland   JE,   et   al.   (2011)   Concerted  involvement   of   Cdx/Hox   genes   and  Wnt   signaling   in   morphogenesis   of   the   caudal  neural   tube   and   cloacal   derivatives   from   the   posterior   growth   zone.   Development  138:  3451–3462.    

4.   van  Nes  J,  de  Graaff  W,  Lebrin  F,  Gerhard  M,  Beck  F,  et  al.  (2006)  The  Cdx4  mutation  affects   axial   development   and   reveals   an   essential   role   of   Cdx   genes   in   the  ontogenesis  of  the  placental  labyrinth  in  mice.  Development  133:  419–428.    

5.   Takada  S,  Stark  KL,  Shea  MJ,  Vassileva  G,  McMahon  JA,  et  al.  (1994)  Wnt-­‐3a  regulates  somite  and  tailbud  formation  in  the  mouse  embryo.  Genes  Dev  8:  174–189.    

6.   Young  T,  Deschamps  J  (2009)  Hox,  Cdx,  and  anteroposterior  patterning  in  the  mouse  embryo.  Curr  Top  Dev  Biol  88:  235–255.    

7.   Tam   PP,   Behringer   RR   (1997)   Mouse   gastrulation:   the   formation   of   a   mammalian  body  plan.  Mech  Dev  68:  3–25.  

8.   Wolpert   L,   Tickle   C   (2010)   Principles   of   Development.   4th   ed.   Oxford:   Oxford  University  Press.  pp.  

9.   Whitman   M   (2001)   Nodal   signaling   in   early   vertebrate   embryos:   themes   and  variations.  Developmental  Cell  1:  605–617.  

10.   Lawson   KA,  Meneses   JJ,   Pedersen   RA   (1991)   Clonal   analysis   of   epiblast   fate   during  germ  layer  formation  in  the  mouse  embryo.  Development  113:  891–911.  

11.   Stern   CD,   Charite   J,   Deschamps   J,   Duboule   D,   Durston   AJ,   et   al.   (2006)   Head-­‐tail  patterning  of   the  vertebrate  embryo:  one,   two  or  many  unresolved  problems?   Int   J  Dev  Biol  50:  3–15.    

12.   Cambray  N,  Wilson  V  (2002)  Axial  progenitors  with  extensive  potency  are  localised  to  the  mouse  chordoneural  hinge.  Development  129:  4855–4866.  

13.   Cambray  N,  Wilson  V  (2007)  Two  distinct  sources  for  a  population  of  maturing  axial  progenitors.  Development  134:  2829–2840.    

14.   Tzouanacou  E,  Wegener  A,  Wymeersch  FJ,  Wilson  V,  Nicolas  J-­‐F  (2009)  Redefining  the  Progression   of   Lineage   Segregations   during   Mammalian   Embryogenesis   by   Clonal  Analysis.  Developmental  Cell  17:  365–376.    

15.   Ribes   V,   Le   Roux   I,   Rhinn   M,   Schuhbaur   B,   Dollé   P   (2009)   Early   mouse   caudal  

Page 51: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

References

  38  

development   relies   on   crosstalk   between   retinoic   acid,   Shh   and   Fgf   signalling  pathways.  Development  136:  665–676.    

16.   del   Corral   RD,   Storey   KG   (2004)   Opposing   FGF   and   retinoid   pathways:   a   signalling  switch  that  controls  differentiation  and  patterning  onset  in  the  extending  vertebrate  body  axis.  BioEssays  26:  857–869.    

17.   Bialecka  M,  Young  T,  Sousa  Lopes  SC  de,  Berge  ten  D,  Sanders  A,  et  al.   (2012)  Cdx2  contributes   to   the   expansion   of   the   early   primordial   germ   cell   population   in   the  mouse.  Dev  Biol  371:  227–234.    

18.   Martin   BL,   Kimelman   D   (2010)   Brachyury   establishes   the   embryonic   mesodermal  progenitor  niche.  Genes  Dev  24:  2778–2783.    

19.   van   Amerongen   R,   Nusse   R   (2009)   Towards   an   integrated   view   of  Wnt   signaling   in  development.  Development  136:  3205–3214.    

20.   Logan   CY,  Nusse   R   (2004)   The  Wnt   signaling   pathway   in   development   and   disease.  Annu  Rev  Cell  Dev  Biol  20:  781–810.    

21.   Greco   TL,   Takada   S,   Newhouse   MM,   McMahon   JA,   McMahon   AP,   et   al.   (1996)  Analysis   of   the   vestigial   tail   mutation   demonstrates   that   Wnt-­‐3a   gene   dosage  regulates  mouse  axial  development.  Genes  Dev  10:  313–324.  

22.   Galceran   J,   Fariñas   I,   Depew   MJ,   Clevers   H,   Grosschedl   R   (1999)   Wnt3a-­‐/-­‐-­‐like  phenotype  and  limb  deficiency  in  Lef1(-­‐/-­‐)Tcf1(-­‐/-­‐)  mice.  Genes  Dev  13:  709–717.  

23.   Aulehla  A,  Wehrle  C,  Brand-­‐Saberi  B,  Kemler  R,  al  E  (2003)  Wnt3a  plays  a  major  role  in  the  segmentation  clock  controlling  somitogenesis.  Developmental  Cell.  

24.   Liu  P,  Wakamiya  M,  Shea  MJ,  Albrecht  U,  Behringer  RR,  et  al.  (1999)  Requirement  for  Wnt3  in  vertebrate  axis  formation.  Nat  Genet  22:  361–365.  

25.   Rhinn  M,  Dollé   P   (2012)   Retinoic   acid   signalling   during   development.   Development  139:  843–858.    

26.   Niederreither   K,   Subbarayan  V,   Dollé   P,   Chambon   P   (1999)   Embryonic   retinoic   acid  synthesis  is  essential  for  early  mouse  post-­‐implantation  development.  Nat  Genet  21:  444–448.    

27.   Abu-­‐Abed   S,   Dollé   P,  Metzger   D,   Beckett   B,   Chambon   P,   et   al.   (2001)   The   retinoic  acid-­‐metabolizing   enzyme,   CYP26A1,   is   essential   for   normal   hindbrain   patterning,  vertebral  identity,  and  development  of  posterior  structures.  Genes  Dev  15:  226–240.    

28.   Sakai   Y,   Meno   C,   Fujii   H,   Nishino   J,   Shiratori   H,   et   al.   (2001)   The   retinoic   acid-­‐inactivating   enzyme   CYP26   is   essential   for   establishing   an   uneven   distribution   of  retinoic   acid   along   the   anterio-­‐posterior   axis  within   the  mouse  embryo.  Genes  Dev  15:  213–225.  

29.   Dorey   K,   Amaya   E   (2010)   FGF   signalling:   diverse   roles   during   early   vertebrate  embryogenesis.  Development  137:  3731–3742.    

30.   Yamaguchi   TP,   Harpal   K,   Henkemeyer   M,   Rossant   J   (1994)   fgfr-­‐1   is   required   for  

Page 52: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

References

  39  

embryonic  growth  and  mesodermal  patterning  during  mouse  gastrulation.  Genes  Dev  8:  3032–3044.    

31.   Yang   X,   Dormann   D,   Münsterberg   AE,   Weijer   CJ   (2002)   Cell   movement   patterns  during   gastrulation   in   the   chick   are   controlled   by   positive   and  negative   chemotaxis  mediated  by  FGF4  and  FGF8.  Developmental  Cell  3:  425–437.  

32.   Dubrulle  J,  Pourquié  O  (2004)  Coupling  segmentation  to  axis  formation.  Development  131:  5783–5793.    

33.   Isaacs   HV,   Pownall   ME,   Slack   JM   (1998)   Regulation   of   Hox   gene   expression   and  posterior  development  by  the  Xenopus  caudal  homologue  Xcad3.  EMBO  J  17:  3413–3427.    

34.   Isaacs   HV,   Pownall  ME,   Slack   JM   (1995)   eFGF   is   expressed   in   the   dorsal  midline   of  Xenopus  laevis.  Int  J  Dev  Biol  39:  575–579.  

35.   Mlodzik  M,  Fjose  A,  Gehring  WJ  (1985)  Isolation  of  caudal,  a  Drosophila  homeo  box-­‐containing   gene  with  maternal   expression,  whose   transcripts   form   a   concentration  gradient  at  the  pre-­‐blastoderm  stage.  EMBO  J  4:  2961–2969.  

36.   Moreno  E,  Morata  G  (1999)  Caudal  is  the  Hox  gene  that  specifies  the  most  posterior  Drosophile  segment.  Nature  400:  873–877.    

37.   Meyer  BI,  Gruss  P  (1993)  Mouse  Cdx-­‐1  expression  during  gastrulation.  Development  117:  191–203.  

38.   Subramanian  V,  Meyer  BI,  Gruss  P   (1995)  Disruption  of   the  murine  homeobox  gene  Cdx1  affects  axial  skeletal   identities  by  altering  the  mesodermal  expression  domains  of  Hox  genes.  Cell  83:  641–653.  

39.   Beck  F,  Erler  T,  Russell  A,  al  E   (1995)  Expression  of  Cdx-­‐2   in  the  mouse  embryo  and  placenta:   Possible   role   in   patterning   of   the   extra-­‐embryonic   membranes.  Developmental  dynamics.  

40.   Chawengsaksophak   K,   de   Graaff  W,   Rossant   J,   Deschamps   J,   Beck   F   (2004)   Cdx2   is  essential   for   axial   elongation   in   mouse   development.   Proc   Natl   Acad   Sci   USA   101:  7641–7645.    

41.   Chawengsaksophak   K,   James   R,   Hammond   VE,   Köntgen   F,   Beck   F   (1997)   Homeosis  and  intestinal  tumours  in  Cdx2  mutant  mice.  Nature  386:  84–87.    

42.   Strumpf   D   (2005)   Cdx2   is   required   for   correct   cell   fate   specification   and  differentiation  of   trophectoderm   in   the  mouse  blastocyst.  Development  132:  2093–2102.    

43.   van  den  Akker  E,  Forlani  S,  Chawengsaksophak  K,  de  Graaff  W,  Beck  F,  et  al.   (2002)  Cdx1   and   Cdx2   have   overlapping   functions   in   anteroposterior   patterning   and  posterior  axis  elongation.  Development  129:  2181–2193.  

44.   Deschamps   J,   van   Nes   J   (2005)   Developmental   regulation   of   the   Hox   genes   during  axial  morphogenesis  in  the  mouse.  Development  132:  2931–2942.    

Page 53: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

References

  40  

45.   Gamer   LW,   Wright   CV   (1993)   Murine   Cdx-­‐4   bears   striking   similarities   to   the  Drosophila  caudal  gene  in   its  homeodomain  sequence  and  early  expression  pattern.  Mech  Dev  43:  71–81.  

46.   Gaunt   SJ,   Drage   D,   Trubshaw   RC   (2005)   cdx4/lacZ   and   cdx2/lacZ   protein   gradients  formed  by  decay  during  gastrulation  in  the  mouse.  Int  J  Dev  Biol  49:  901–908.    

47.   Van   Rooijen   C,   Simmini   S,   Bialecka   M,   Neijts   R,   van   de   Ven   C,   et   al.   (2012)  Evolutionarily   conserved   requirement   of   Cdx   for   post-­‐occipital   tissue   emergence.  Development  139:  2576–2583.    

48.   Savory   JGA,   Bouchard   N,   Pierre   V,   Rijli   FM,   De   Repentigny   Y,   et   al.   (2009)   Cdx2  regulation   of   posterior   development   through   non-­‐Hox   targets.   Development   136:  4099–4110.    

49.   Ikeya   M,   Takada   S   (2001)   Wnt-­‐3a   is   required   for   somite   specification   along   the  anteroposterior   axis   of   the  mouse   embryo   and   for   regulation   of   cdx-­‐1   expression.  Mech  Dev  103:  27–33.  

50.   Beddington   RS   (1983)   Histogenetic   and   neoplastic   potential   of   different   regions   of  the  mouse  embryonic  egg  cylinder.  J  Embryol  Exp  Morphol  75:  189–204.  

51.   Downs  KM,  Davies  T  (1993)  Staging  of  gastrulating  mouse  embryos  by  morphological  landmarks  in  the  dissecting  microscope.  Development  118:  1255–1266.  

52.   Kinder  SJ,  Tsang  TE,  Quinlan  GA,  Hadjantonakis  AK,  Nagy  A,  et  al.  (1999)  The  orderly  allocation   of   mesodermal   cells   to   the   extraembryonic   structures   and   the  anteroposterior   axis   during   gastrulation   of   the   mouse   embryo.   Development   126:  4691–4701.  

53.   Downs  KM  (1998)  The  murine  allantois.  Curr  Top  Dev  Biol  39:  1–33.  

54.   Downs   KM,   Gifford   S,   Blahnik  M,   Gardner   RL   (1998)   Vascularization   in   the  murine  allantois   occurs   by   vasculogenesis   without   accompanying   erythropoiesis.  Development  125:  4507–4520.  

55.   Sonderegger   S,   Pollheimer   J,   Knöfler   M   (2010)   Wnt   Signalling   in   Implantation,  Decidualisation  and  Placental  Differentiation  -­‐  Review.  Placenta  31:  839–847.    

56.   Galceran   J,  Hsu   SC,  Grosschedl  R   (2001)  Rescue  of   a  Wnt  mutation  by   an  activated  form  of  LEF-­‐1:  regulation  of  maintenance  but  not  initiation  of  Brachyury  expression.  Proc  Natl  Acad  Sci  USA  98:  8668–8673.    

57.   Ishikawa   T,   Tamai   Y,   Zorn   AM,   Yoshida   H,   Seldin   MF,   et   al.   (2001)   Mouse   Wnt  receptor  gene  Fzd5  is  essential  for  yolk  sac  and  placental  angiogenesis.  Development  128:  25–33.  

58.   Monkley   SJ,  Delaney   SJ,   Pennisi  DJ,   Christiansen   JH,  Wainwright  BJ   (1996)   Targeted  disruption  of  the  Wnt2  gene  results  in  placentation  defects.  Development  122:  3343–3353.  

59.   Parr   BA,   Cornish   VA,   Cybulsky  MI,  McMahon   AP   (2001)  Wnt7b   Regulates   Placental  Development  in  Mice.  Dev  Biol  237:  324–332.    

Page 54: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

References

  41  

60.   Wilkinson  DG  (1992)  In  situ  hybridization.  A  practical  approach.  

61.   Pilon   N,   Oh   K,   Sylvestre   JR,   Savory   JGA,   Lohnes   D   (2007)   Wnt   signaling   is   a   key  mediator  of  Cdx1  expression  in  vivo.  Development  134:  2315–2323.    

62.   Lewis  EB  (1978)  A  gene  complex  controlling  segmentation  in  Drosophila.  Nature  276:  565–570.  

63.   Nüsslein-­‐Volhard   C,   Wieschaus   E   (1980)   Mutations   affecting   segment   number   and  polarity  in  Drosophila.  Nature  287:  795–801.  

64.   Bateson  W  (1894)  Materials   for  the  study  of  variaton  treated  with  special   regard  to  discontinuity  in  the  origin  of  species.  London:  Macmillan  and  co.  pp.  

65.   Struhl   G   (1981)   A   homoeotic   mutation   transforming   leg   to   antenna   in   Drosophila.  Nature  292:  635–638.  

66.   Duboule  D,  Morata  G  (1994)  Colinearity  and  functional  hierarchy  among  genes  of  the  homeotic  complexes.  Trends  Genet  10:  358–364.  

67.   Gaunt   SJ,   Sharpe   P,   Duboule   D   (1988)   Spatially   restricted   domains   of   homeo-­‐gene  transcripts   in  mouse   embryos:   relation   to   a   segmented   body   plan.   Dev   Suppl   104:  169–179.  

68.   Wellik   DM,   Capecchi   MR   (2003)   Hox10   and   Hox11   genes   are   required   to   globally  pattern  the  mammalian  skeleton.  Science  301:  363–367.    

69.   Carapuço  M,  Nóvoa  A,  Bobola  N,  Mallo  M  (2005)  Hox  genes  specify  vertebral  types  in  the  presomitic  mesoderm.  Genes  Dev  19:  2116–2121.    

70.   Kmita  M   (2003)  Organizing  Axes   in  Time  and  Space;  25  Years  of  Colinear  Tinkering.  Science  301:  331–333.    

71.   Schöck   F,   Reischl   J,   Wimmer   E,   Taubert   H,   Purnell   BA,   et   al.   (2000)   Phenotypic  suppression  of  empty  spiracles  is  prevented  by  buttonhead.  Nature  405:  351–354.    

72.   Noro   B,   Lelli   K,   Sun   L,   Mann   RS   (2011)   Competition   for   cofactor-­‐dependent   DNA  binding  underlies  Hox  phenotypic  suppression.  Genes  Dev  25:  2327–2332.    

73.   Deschamps   J,   van   den   Akker   E,   Forlani   S,   de   Graaff  W,  Oosterveen   T,   et   al.   (1999)  Initiation,   establishment   and   maintenance   of   Hox   gene   expression   patterns   in   the  mouse.  Int  J  Dev  Biol  43:  635–650.  

74.   Deschamps  J,  Wijgerde  M  (1993)  Two  Phases  in  the  Establishment  of  HOX  Expression  Domains.  Dev  Biol  156:  473–480.    

75.   Forlani   S,   Lawson   KA,   Deschamps   J   (2003)   Acquisition   of   Hox   codes   during  gastrulation   and   axial   elongation   in   the   mouse   embryo.   Development   130:   3807–3819.  

76.   Pollard   SL,   Holland   PW   (2000)   Evidence   for   14   homeobox   gene   clusters   in   human  genome  ancestry.  Curr  Biol  10:  1059–1062.  

Page 55: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

References

  42  

77.   Charité   J,   de  Graaff  W,   Consten  D,   Reijnen  MJ,   Korving   J,   et   al.   (1998)   Transducing  positional  information  to  the  Hox  genes:  critical  interaction  of  cdx  gene  products  with  position-­‐sensitive  regulatory  elements.  Development  125:  4349–4358.  

78.   Pownall  ME,  Tucker  AS,  Slack  JM,  Isaacs  HV  (1996)  eFGF,  Xcad3  and  Hox  genes  form  a  molecular   pathway   that   establishes   the   anteroposterior   axis   in   Xenopus.  Development  122:  3881–3892.  

79.   Pownall  ME,   Isaacs  HV,   Slack   JM   (1998)   Two  phases   of  Hox   gene   regulation   during  early  Xenopus  development.  Curr  Biol  8:  673–676.  

80.   Bel-­‐Vialar  S,  Itasaki  N,  Krumlauf  R  (2002)  Initiating  Hox  gene  expression:  in  the  early  chick  neural  tube  differential  sensitivity  to  FGF  and  RA  signaling  subdivides  the  HoxB  genes  in  two  distinct  groups.  Development  129:  5103–5115.  

81.   Houle  M,  Prinos  P,  Iulianella  A,  Bouchard  N,  Lohnes  D  (2000)  Retinoic  Acid  Regulation  of  Cdx1:  an  Indirect  Mechanism  for  Retinoids  and  Vertebral  Specification.  Molecular  and  Cellular  Biology  20:  6579–6586.  

82.   Economides  KD,  Zeltser  L,  Capecchi  MR  (2003)  Hoxb13  mutations  cause  overgrowth  of  caudal  spinal  cord  and  tail  vertebrae.  Dev  Biol  256:  317–330.  

83.   Benahmed   F,   Gross   I,   Gaunt   SJ,   Beck   F,   Jehan   F,   et   al.   (2008)  Multiple   Regulatory  Regions  Control  the  Complex  Expression  Pattern  of  the  Mouse  Cdx2  Homeobox  Gene.  Gastroenterology  135:  1238–1247.e3.    

84.   van   den  Akker   E,   Fromental-­‐Ramain   C,   de  Graaff  W,   Le  Mouellic   H,   Brûlet   P,   et   al.  (2001)   Axial   skeletal   patterning   in   mice   lacking   all   paralogous   group   8   Hox   genes.  Development  128:  1911–1921.  

85.   Livak  KJ,  Schmittgen  TD  (2001)  Analysis  of  Relative  Gene  Expression  Data  Using  Real-­‐Time  Quantitative  PCR  and  the  2−ΔΔCT  Method.  Methods  25:  402–408.    

86.   Murphy  P,  Davidson  DR,  Hill  RE  (1989)  Segment-­‐specific  expression  of  a  homoeobox-­‐containing  gene  in  the  mouse  hindbrain.  Nature  341:  156–159.    

87.   Favier  B,  Dollé  P  (1997)  Developmental  functions  of  mammalian  Hox  genes.  Mol  Hum  Reprod  3:  115–131.  

88.   Carapuço  M  (2007)  The  role  of  Hox  genes  in  the  development  of  the  branchial  arches  and   axial   skeleton   Oeiras:   Instituto   de   Tecnologia   Química   e   Biológica   da  Universidade  Nova  de  Lisboa.  

89.   Gehring  WJ,   Kloter   U,   Suga   H   (2009)   Evolution   of   the   Hox   gene   complex   from   an  evolutionary  ground  state.  Curr  Top  Dev  Biol  88:  35–61.    

90.   Slattery   M,   Riley   T,   Liu   P,   Abe   N,   Gomez-­‐Alcala   P,   et   al.   (2011)   Cofactor   Binding  Evokes  Latent  Differences  in  DNA  Binding  Specificity  between  Hox  Proteins.  Cell  147:  1270–1282.    

   

 

Page 56: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

 

A-­‐I  

Annexes  

Annex  I  

 Detailed   qPCR   data   and   relative   gene   expression   calculations   by   the   2-­‐(ΔΔCT)   method.  (Fig2.1).  The  Ct  values  represent  the  mean  of  the  two  replicates  of  each  sample.  Fold  change  was   determined   by   dividing   the   average   of   2-­‐(ΔCT)   results   in   transgenic   embryos   by   the  average   results   of   the   non-­‐transgenic   embryos.   Transgenic   –   Cdx4+/-­‐   Cdx2PHoxb1;   Non-­‐transgenic  -­‐  Cdx4+/-­‐  

                             

 

 

 

Page 57: Cdx, Wnt signalling and anterior Hox genes in the regulation of the

Annexes

A-­‐II  

Annex  II  

   

Detailed  data  from  caudal  plus  sacral  counts  of  vertebrae  data  (Fig.2.6)  and  results  of  statistical  analysis.  For   each   genotype   it   is   represented   the   number   of   caudal+sacral   vertebrae   counted   in   all   skeletons  analyzed.  All  samples  had  a  normal  distribution,  as  shown  by  Kolmogorov-­‐Smirnov  test.  Mann-­‐Whitney  test  was   use   to   compare   the  mean   value   of   caudal+sacral   vertebrae  between   genotypes  with   the   transgene  (Cdx2PHoxb1)  and  the  same  genetic  background  without  the  transgene.    

Page 58: Cdx, Wnt signalling and anterior Hox genes in the regulation of the