奈米科技在地下水整治的應用與展望ebooks.lib.ntu.edu.tw/1_file/moeaidb/012695/2005120501.pdf ·...

33
奈米科技在地下水整治的應用與展望 奈米科技在地下水整治的應用與展望 連興隆 副教授 國立高雄大學 11/29/2005 土壤及地下水污染預防與整治示範輔導成果發表會

Upload: others

Post on 23-Oct-2019

21 views

Category:

Documents


0 download

TRANSCRIPT

  • 奈米科技在地下水整治的應用與展望奈米科技在地下水整治的應用與展望

    連興隆 副教授

    國立高雄大學

    11/29/2005

    土壤及地下水污染預防與整治示範輔導成果發表會

  • 環境與奈米環境與奈米

  • ……and the Promising Role of and the Promising Role of NanotechnologyNanotechnology

    Improve environmental technologies (treatment, remediation, sensing)

    Improve manufacturing processes (efficiency, waste reduction)

    Dematerialization

    SensorsSensors

    Treatment/Treatment/RemediationRemediation

    Pollution PreventionPollution Prevention

    Source: Barbara Karn, US Environmental Protection Agency

  • USEPAUSEPA最新發展最新發展

    監測Sensors (5)處理Treatment (3)復育Remediation (4)其他Other areas (4) e.g., Green catalysis

    美國環保署研發處國家環境研究中心(USEPA National Center for Environmental Research)獎助之相關環境奈米技術

  • 國際學界的最新發展國際學界的最新發展

    Treatment/Remediation Using Nanotechnology (14)Nanotech-Enabled Sensors and Sensor Systems (8)Nanocatalysts for Environmental Technology (7)Toxicology and Biological Interactions of Nanomaterials (6) Environmentally Benign Manufacturing (6)Nanoparticle Geochemistry in Air and Water (6)Nanotech-Enabled Green Energy Sources (6)Metrology for Nanosized Materials (5)

    225th ACS Meeting :Nanotechnology and the Environment

  • 奈米顆粒奈米顆粒

    solid state molecular

    •Nanoparticles are small elemental ensembles (typically on the nanometer scale).

    •They often have unique properties due to the fact that they are do not exhibit the characteristics of the bulk or individual particles.

  • 奈米顆粒的合成奈米顆粒的合成(Bottom(Bottom--up)up)

    molecularprecursor nanoparticle

    •Typically, the synthesis of nanoparticles is performed by reducing metal salts in various ways (electrodeposition, thermolysis, photochemistry, and chemically).

  • 不斷增加的表面積不斷增加的表面積

    ÷8

    ÷8

    N = 4096n = 1352

    N = 4096n = 3584

    N = 4096n = 2368

    N = total atoms; n = surface atoms

  • 奈米的優勢奈米的優勢

    1 cm

    100 nm表面積: 6 cm2

    表面積: 600,000 cm2

    x 105

    假設在材質相同的情況下,反應速率與表面大小成

    正比,則奈米化後,可使成本降低10萬倍!

  • 表面的優勢表面的優勢::非均相反應非均相反應

    C2Cl4Vitamin B12

    H+, 2e-C2HCl3 + Cl-

    C2H4

    C2Cl4Iron Surface

    4H+, 8e-C2H4 + 4Cl-

  • Conventional Technology for Conventional Technology for Groundwater RemediationGroundwater Remediation

    ((第一代第一代))

  • Permeable Reactive BarriersPermeable Reactive Barriers((第二代第二代))

    Peerless iron

    •含氯有機物•(PCE,TCE, VC..)•重金屬•無機物 (NH4-..)•放射性核種

  • 零價鐵之工作原理零價鐵之工作原理——含氯有機物之去除含氯有機物之去除

    氧化還原作用、催化作用。Iron Corrosion:

    CCl4 +2H+ + Fe CHCl3 + HCl + Fe2+ ( Go = -214KJ)

    Fe Fe2+ + 2e- ( Eow = 0.44V)

    CCl4 +2H+ + 2e- CHCl3 + HCl ( Eow = 0.67V)

    Organic Reduction:

    Iron Corrosion:

    CCl4 +2H+ + Fe CHCl3 + HCl + Fe2+ ( Go = -214KJ)

    Fe Fe2+ + 2e- ( Eow = 0.44V)

    CCl4 +2H+ + 2e- CHCl3 + HCl ( Eow = 0.67V)

    Organic Reduction:

  • 零價鐵之工作原理零價鐵之工作原理——重金屬之去除重金屬之去除

    表面吸附 (Surface Adsorption )

    e.g., AsO22- + Fe2+共沉澱(Co-precipitation )e.g., carbonate green rustFe4(II)Fe2(III)(OH)12CO3•xH2O

    氧化還原之減毒化/固定化作用等

    e.g., Cr6++3e- Cr3+0 10 20 30 40 50 60

    0

    magnetite

    a)

    b)

    d=0.

    26 n

    m

    d=0.

    37 n

    m

    d=0.

    74 n

    m

    Inte

    nsity

    degrees 2-theta

  • Injection of Iron Nanoparticles

    Dechlorination of Organic Solvent (e.g., CCl4, C2Cl4)

    Detoxification of Pesiticides(e.g., Lindane, DOT)

    Immobilization of Metals (e.g., Cr, Hg, As)

    Transformation of Fertilizers (e.g., NO3-)

    Contaminant Source

    Injectable Nano-Fe(第三代)

  • 創新理論構想提出

    新穎奈米零價鐵環境復

    育技術:實驗室批次規模

    實驗驗證可行

    整治材質量產

    (Scale up): 實用性與生態

    化技術並重

    注入技術之研發

    技術改良

    環境因子: pH、微生物、離子強度

    模場測試(Pilot test):驗證技術可行

    實場復育操作

    (Full-scale)

    Elliott and Zhang (2001) 1997~ Weixian Zhang (Lehigh U.)

    1996-2000 W. Zhang, C. Wang, H-L, Lien (連興隆), (Lehigh U.)

    學界自 2002 年陸續對這些基本問題提出

    研究報告

    2001~2003 D. Elliott, W. Zhang (Lehigh U.) W. Zhang & NSF

    現在~

    新技術開發過程之合理模式 實際進程

    第二代奈米顆粒?

    Review: InjectableNano-Fe

  • InjectableInjectable NanoNano--FeFe

    100 nm

    • Nano-Fe particles are comprised of spherical particles assembled in chains. • An average size : 50-100 nm. • BET surface area: 33.5 m2/g

  • 奈米鐵奈米鐵 SEM SEM

  • 合成技術合成技術

    simulated solution (100mL) containing heavy metals ( 25 mg/L)--Cu(II), Pb(II), Cr(VI), As(V)

    Fe(0) particles (0.25g/100mL)

    CT (32 mg/L)

    4Fe3+ + 3BH4- + 9H2O 4Fe0 + 3H2BO3- + 12H+ + 6H2

  • 去除四氯化碳去除四氯化碳

    0

    20

    40

    60

    80

    100

    Yiel

    d of

    Met

    hane

    (%)

    Aldrich Fe Nano Fe Nano Pd/Fe

    0

    20

    40

    60

    80

    100

    Yiel

    d of

    DC

    M (%

    )

    Aldrich Fe Nano Fe Nano Pd/Fe

    1E-05

    1E-04

    1E-03

    1E-02

    KSA

    (L/

    h/m

    2)

    Aldrich Fe Nano Fe Nano Pd/Fe

    100X增加反應活性

    降低毒性物質生成

    提高無害產物產量

  • 穩定性穩定性

    0.0001

    0.001

    0.01

    0.1

    Spec

    ific

    Rat

    e C

    onst

    ant

    KSA

    (L/h

    r/m2 )

    0 5 10 15 20

    Experimental Cycles

    Average Value for Fe Particles

    Stability TestTrans-DCE

  • 吸附重金屬砷吸附重金屬砷

  • 吸附重金屬鉛吸附重金屬鉛

  • 吸附重金屬銅吸附重金屬銅

    C

    O

    Fe

    CuC

    O

    Fe

    CuC

    O

    Fe

    Cu

    050

    100150200250300350400450500

    20 30 40 50 60 70 80

    2

    Inte

    nsity

    Fe

    Fe2O3

    Cu2OCu

    Fe2O3 Fe Cu

    050

    100150200250300350400450500

    20 30 40 50 60 70 80

    2

    Inte

    nsity

    Fe

    Fe2O3

    Cu2OCu

    Fe2O3 Fe Cu

  • Transport and Movement of Transport and Movement of Nanoparticles in Porous Nanoparticles in Porous

    MediaMedia

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    0.001 0.01 0.1 1 10

    Iron Particle Diameter (? )

    Diffusion

    Sedimentation Interception

    Total

    αmin

    dp,min

    Size Range ofSynthesizedIron Particles

    Tran

    spor

    t Effi

    cien

    cy (

    顆粒粒徑 (μm)

    傳輸效率(η

    )

  • Collision ProblemCollision Problem

    Schrick B. et al., Chem. Mater. 2004

  • Delivery VehiclesDelivery Vehicles

    疏水性碳(hydrophilic carbon)為載體之奈米鐵在水中之沉降非常慢(幾小時到幾天)且在地下環境中之移動性良好。

    Schrick B. et al., Chem. Mater. 2004

  • Emulsified ZeroEmulsified Zero--valent Ironvalent Iron

    美國太空總署(NASA)贊助,中佛羅里達大學(University of Central Florida)研究的

    膠囊型零價鐵(Emulsified zero-valent iron)

    利用可生物分解之油類或介面活性劑將零價鐵包附在其中以達到傳輸之目的。

  • ExamplesExamples•測試區: 於美國北卡封閉之廢棄物處置場下游38公尺處。•主要污染物為含氯有機物如三氯乙烯、二氯乙烯等,濃度在10 ppm以上。•使用了11.2公斤的奈米鐵/鈀複合金屬,與水混合後,形成總體積6056公升,奈米顆粒濃度為1.9g/L之”奈米漿”(Nanoparticle slurry)•然後以每分鐘約2.3公升之速度注入含水層。 Zhang W., J. Nanoparticle Research, 2003

  • ResultsResults•奈米顆粒之有效半徑範圍約為12公尺(若使用加壓注入或循環井將可擴大其範圍)

    •還原電位由+50 ~ -100mV降至約-700mV•污染物之去除效率可達99.9%•持續有效時間超過2個月。•微生物之菌相組成確有改變且改變之程度與注入井之距離成反比,

    •整體生物質量(Biomass)降低,

    •革蘭氏陽性(Gram-positive)之細菌比例提高。

  • The Nobel Prize in Chemistry 1996

    Robert F. Curl Jr.

    Sir Harold W. Kroto

    Richard E. Smalley

    USA United Kingdom USA

    Rice University Houston, TX, USA

    University of Sussex Brighton, United Kingdom

    Rice University Houston, TX, USA

    b. 1933 b. 1939 b. 1943

  • Impact of Impact of NanoNano--Materials?Materials?2004美國化學協會春季年會裡(ACS),環境毒物學家Dr.Eva Oberdörster以九隻大口鱸魚做研究,在水中buckyball濃度為500 ppb時(相當於一般於池溏中發現之污染物濃度),僅僅48小時的時間便對鱸魚的腦部細胞膜造成損害,而其症狀與造成人腦阿默海氏症(Alzheimer's disease)之現象有所相似。

    C&EN, April 5 2004

  • 結論結論奈米鐵金屬具備容易製作,價格低廉, 可現地處理地下水污染等多重優點

    奈米鐵金屬可同時處理多種不同污染物

    奈米鐵金屬整治技術, 現已有超過10場現地整治在進行

    奈米鐵技術可以”療程”的概念,來處理地下水污染問題

    如何避免奈米鐵顆粒的凝聚問題,是現在研究的主要課題

    奈米科技在地下水整治的應用與展望USEPA最新發展國際學界的最新發展奈米顆粒奈米顆粒的合成(Bottom-up)不斷增加的表面積奈米的優勢表面的優勢:非均相反應Conventional Technology for Groundwater Remediation�(第一代)Permeable Reactive Barriers�(第二代)Injectable Nano-Fe奈米鐵 SEM 去除四氯化碳 穩定性吸附重金屬砷吸附重金屬鉛吸附重金屬銅Transport and Movement of Nanoparticles in Porous MediaCollision ProblemDelivery VehiclesEmulsified Zero-valent IronExamplesResultsImpact of Nano-Materials?結論

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice