category theory - aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms....

69
University of Cambridge Mathematics Tripos Part III Category Theory Michaelmas, 2018 Lectures by P. T. Johnstone Notes by Qiangru Kuang

Upload: others

Post on 25-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

University ofCambridge

Mathematics Tripos

Part III

Category Theory

Michaelmas, 2018

Lectures byP. T. Johnstone

Notes byQiangru Kuang

Page 2: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

Contents

Contents

1 Definitions and examples 2

2 The Yoneda lemma 10

3 Adjunctions 16

4 Limits 23

5 Monad 35

6 Cartesian closed categories 47

7 Toposes 557.1 Sheaves and local operators* . . . . . . . . . . . . . . . . . . . . 62

Index 67

1

Page 3: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

1 Definitions and examples

Definition (category). A category C consists of

1. a collection obC of objects ๐ด, ๐ต, ๐ถ, โ€ฆ,

2. a collection morC of morphisms ๐‘“, ๐‘”, โ„Ž, โ€ฆ,

3. two operations dom and cod assigning to each ๐‘“ โˆˆ morC a pair ofobjects, its domain and codomain. We write ๐ด

๐‘“โˆ’โ†’ ๐ต to mean ๐‘“ is a

morphism and dom ๐‘“ = ๐ด, cod ๐‘“ = ๐ต,

4. an operation assigning to each ๐ด โˆˆ obC a morhpism ๐ด1๐ดโˆ’โ†’ ๐ด,

5. a partial binary operation (๐‘“, ๐‘”) โ†ฆ ๐‘“๐‘” on morphisms, such that ๐‘“๐‘” isdefined if and only if dom ๐‘“ = cod ๐‘” and let dom ๐‘“๐‘” = dom ๐‘”, cod ๐‘“๐‘” =cod ๐‘“ if ๐‘“๐‘” is defined

satisfying

1. ๐‘“1๐ด = ๐‘“ = 1๐ต๐‘“ for any ๐ด๐‘“โˆ’โ†’ ๐ต,

2. (๐‘“๐‘”)โ„Ž = ๐‘“(๐‘”โ„Ž) whenever ๐‘“๐‘” and ๐‘”โ„Ž are defined.

Remark.

1. This definition is independent of any model of set theory. If weโ€™re given aparticuar model of set theory, we call C small if obC and morC are sets.

2. Some texts say ๐‘“๐‘” means ๐‘“ followed by ๐‘” (we are not).

3. Note that a morphism ๐‘“ is an identity if and only if ๐‘“๐‘” = ๐‘” and โ„Ž๐‘“ = โ„Žwhenever the compositions are defined so we could formulate the defini-tions entirely in terms of morphisms.

Example.

1. The category Set has all sets as objects and all functions between sets asmorphisms (strictly, morphisms ๐ด โ†’ ๐ต are pairs (๐‘“, ๐ต) where ๐‘“ is a settheoretic function).

2. The category Gp where objects are groups, morphisms are group homo-morphisms. Similarly Ring is the category of rings and Mod๐‘… is thecategory of ๐‘…-modules.

3. The category Top has all topological spaces as objects and continuousfunctions as morphisms. Similarly Unif the category of uniform spaceswith uniformly continuous functions and Mf the category of manifoldswith smooth maps.

4. The cateogry Htpy has same objects as Top but morphisms are homotopyclasses of continuous functions.More generally, given C we call an equivalence relation โ‰ƒ on morC acongruence if ๐‘“ โ‰ƒ ๐‘” implies dom ๐‘“ = dom ๐‘”, cod ๐‘“ = cod ๐‘” and ๐‘“โ„Ž โ‰ƒ ๐‘”โ„Ž

2

Page 4: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

and vice versa. Then we have a set C/ โ‰ƒ with the same objects as C butcongruence classes as morphisms.

5. Given C, the opposite category Cop has the same objects and morphismsas C, but domain and codomain interchanged and ๐‘“๐‘” in Cop is ๐‘”๐‘“ in C.This leads to duality principle: if ๐‘ƒ is a valid statement about categoriesso is ๐‘ƒ โˆ— attained by reversing all the arrows.

6. A small category with one object is a monoid, i.e. a semigroup with 1.In particular, a group is a small category with one object, in which everymorphism is an isomorphism (i.e. for all ๐‘“ there exists ๐‘” such that ๐‘“๐‘” and๐‘”๐‘“ are identities).

7. A groupoid is a category in which every morphism is an isomorphism. Forexample, for a topological space ๐‘‹, the fundamental groupoid ๐œ‹(๐‘‹) hasall points of ๐‘‹ as objects and morphisms ๐‘ฅ โ†’ ๐‘ฆ as homotopy classes rel0, 1 of paths ๐›พ โˆถ [0, 1] โ†’ ๐‘‹ with ๐›พ(1) = ๐‘ฆ.

8. A discrete category is one whose only morphisms are identities. A preorderis a category C in which for any pair (๐ด, ๐ต) there exists at most one mor-phism ๐ด โ†’ ๐ต. A small preorder is a set equipped with a binary relationwhich is reflexive and transitive. In particular a partially ordered set is apartially ordered set is a small preorder in which the only isomorphismsare identities.

9. The category Rel has the same objects as Set but morphisms ๐ด โ†’ ๐ต arearbitrary relations. Given ๐‘… โŠ† ๐ด ร— ๐ต, ๐‘† โŠ† ๐ต ร— ๐ถ, we define

๐‘† โˆ˜ ๐‘… = {(๐‘Ž, ๐‘) โˆˆ ๐ด ร— ๐ถ โˆถ โˆƒ๐‘ โˆˆ ๐ต s.t. (๐‘Ž, ๐‘) โˆˆ ๐‘…, (๐‘, ๐‘) โˆˆ ๐‘†}.

The identity 1๐ด โˆถ ๐ด โ†’ ๐ด is {(๐‘Ž, ๐‘Ž) โˆถ ๐‘Ž โˆˆ ๐ด}. Similarly, the category Partof sets and partial functions (i.e. relations such that for all (๐‘Ž, ๐‘), (๐‘Ž, ๐‘โ€ฒ) โˆˆ๐‘…, ๐‘ = ๐‘โ€ฒ) can be defined.

10. Let ๐พ be a field. The category Mat๐พ has natural numbers as objects andmorphisms ๐‘› โ†’ ๐‘ are (๐‘ ร— ๐‘›) matrices with entries from ๐พ. Compositionis matrix multiplication.

Definition (functor). Let C, D be categories. A functor ๐น โˆถ C โ†’ Dconsists of

1. a mapping ๐ด โ†ฆ ๐น(๐ด) from obC to obD,

2. a mapping ๐‘“ โ†ฆ ๐น(๐‘“) from morC to morD such that

dom(๐น(๐‘“)) = ๐น(dom ๐‘“), cod(๐น๐‘“) = ๐น cod(๐‘“)1๐น(๐ด) = ๐น(1๐ด), (๐น (๐‘“))(๐น(๐‘”)) = ๐น(๐‘“๐‘”)

wherever ๐‘“๐‘” is defined.

Example. We write Cat for the category whose objects are all small categoriesand whose morphisms are functors between them.

3

Page 5: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

Example.1. We have forgetful functors ๐‘ˆ โˆถ Gp โ†’ Set, Ring โ†’ Set, Top โ†’ Set โ€ฆ

and Ring โ†’ AbGp (forget multiplication), Ring โ†’ Mon (forget addi-tion).

2. Given ๐ด, the free group ๐น(๐ด) has the property given any group ๐บ, any

๐ด๐‘“โˆ’โ†’ ๐‘ˆ๐บ, there is a unique homomorphism ๐น๐ด

๐‘“โˆ’โ†’ ๐บ extending ๐‘“.

๐น is a functor Set โ†’ Gp: given any ๐ด๐‘“โˆ’โ†’ ๐ต, we define ๐น(๐‘“) to be

the unique homomorphism extending ๐ด๐‘“โˆ’โ†’ ๐ต โ†ช ๐‘ˆ๐น๐ต. Functoriality

follows from uniqueness: given ๐ต๐‘”โˆ’โ†’ ๐ถ, ๐น(๐‘”๐‘“) and (๐น๐‘”)(๐น๐‘“) are both

homomorphisms extending

๐ด๐‘“โˆ’โ†’ ๐ต

๐‘”โˆ’โ†’ ๐ถ โ†ช ๐‘ˆ๐น๐ถ.

3. Given a set ๐ด, we write ๐‘ƒ๐ด for the set of all subsets of ๐ด. We can make๐‘ƒ into a functor Set โ†’ Set: given ๐ด

๐‘“โˆ’โ†’ ๐ต, we define

๐‘ƒ๐‘“(๐ดโ€ฒ) = {๐‘“(๐‘Ž) โˆถ ๐‘Ž โˆˆ ๐ดโ€ฒ}

for ๐ดโ€ฒ โŠ† ๐ด.But we also have a functor ๐‘ƒ โˆ— โˆถ Set โ†’ Setop defined by

๐‘ƒ โˆ—๐‘“(๐ตโ€ฒ) = {๐‘Ž โˆˆ ๐ด โˆถ ๐‘“(๐‘Ž) โˆˆ ๐ตโ€ฒ}

for ๐ตโ€ฒ โŠ† ๐ต.

4. By a contravariant functor C โ†’ D we mean a functor C โ†’ Dop (orCop โ†’ D. (A covariant functor is one that doesnโ€™t reverse arrows)Let ๐พ be a field. We have a functor โ‹…โˆ— โˆถ Mod๐พ โ†’ Modop

๐พ defined by

๐‘‰ โˆ— = {linear maps ๐‘‰ โ†’ ๐พ}

and if ๐‘‰๐‘“โˆ’โ†’ ๐‘Š, ๐‘“โˆ—(๐œƒ) = ๐œƒ๐‘“.

5. We have a functor โ‹…op โˆถ Cat โ†’ Cat which is the identity on morphisms.(note that this is covariant)

6. A functor between monoids is a monoid homomorphism.

7. A functor between posets is an order-preserving map.

8. Let ๐บ be a group. A functor ๐น โˆถ ๐บ โ†’ Set consists of a ast ๐ด = ๐นโˆ—together with an action of ๐บ on ๐ด, i.e. permutation representation of ๐บ.Similarly a functor ๐บ โ†’ Mod๐พ is a ๐พ-linear representation of ๐บ.

9. The construction of the fundamental gropu ๐œ‹1(๐‘‹, ๐‘ฅ) of a space ๐‘‹ withbasepoint ๐‘ฅ is a functor

Topโˆ— โ†’ Gpwhere Topโˆ— is the category of spaces with a chosen basepoint.Similarly, the fundamental groupoid is a functor

Top โ†’ Gpd

where Gpd is the category of groupoids and functors between them.

4

Page 6: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

Definition (natural transformation). Let C, D be categories and ๐น, ๐บ โˆถC โ†’ D be two functors. A natural transformation ๐›ผ โˆถ ๐น โ†’ ๐บ consists of anassignment ๐ด โ†ฆ ๐›ผ๐ด from obC to morD such that dom๐›ผ๐ด = ๐น๐ด, cod๐›ผ๐ด =๐บ๐ด for all ๐ด, and for all ๐ด

๐‘“โˆ’โ†’ ๐ต in C, the square

๐น๐ด ๐น๐ต

๐บ๐ด ๐บ๐ต

๐น๐‘“

๐›ผ๐ด ๐›ผ๐ต

๐บ๐‘“

commutes, i.e. ๐›ผ๐ต(๐น๐‘“) = (๐บ๐‘“)๐›ผ๐ด.

Example.

1. Given categories C, D, we write [C, D] for the category whose objects arefunctors C โ†’ D and whose morphisms are natural transformations.

2. Let ๐พ be a field and ๐‘‰ a vector space over ๐พ. There is a linear map๐›ผ๐‘‰ โˆถ ๐‘‰ โ†’ ๐‘‰ โˆ—โˆ— given by

๐›ผ๐‘‰(๐‘ฃ)(๐œƒ) = ๐œƒ(๐‘ฃ)

for ๐œƒ โˆˆ ๐‘‰ โˆ—. This is the ๐‘‰-component of a natural transformation

1Mod๐พโ†’ โ‹…โˆ—โˆ— โˆถ Mod๐พ โ†’ Mod๐พ.

3. For any set ๐ด, we have a mapping ๐œŽ๐ด โˆถ ๐ด โ†’ ๐‘ƒ๐ด sending ๐‘Ž to {๐‘Ž}. If๐‘“ โˆถ ๐ด โ†’ ๐ต then ๐‘ƒ๐‘“({๐‘Ž}) = {๐‘“(๐‘Ž)}. So ๐œŽ is a natural transformation1Set โ†’ ๐‘ƒ.

4. Let ๐น โˆถ Set โ†’ Gp be the free group functor and ๐‘ˆ โˆถ Gp โ†’ Set theforgetful functor. The inclusions ๐ด โ†’ ๐‘ˆ๐น๐ด is a natural transformation1Set โ†’ ๐‘ˆ๐น.

5. Let ๐บ, ๐ป be groups and ๐‘“, ๐‘” โˆถ ๐บ โ†’ ๐ป be two homomorphisms. Then anatural tranformation ๐›ผ โˆถ ๐‘“ โ†’ ๐‘” corresponds to an element โ„Ž = ๐›ผโˆ— suchthat โ„Ž๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ)โ„Ž for all ๐‘ฅ โˆˆ ๐บ, or equivalently ๐‘“(๐‘ฅ) = โ„Žโˆ’1๐‘”(๐‘ฅ)โ„Ž, i.e. ๐‘“and ๐‘” are conjugate group homomorphisms.

6. Let ๐ด and ๐ต be two ๐บ-sets, regarded as functors ๐บ โ†’ Set. A naturaltransformation ๐ด โ†’ ๐ต is a function ๐‘“ satisfying ๐‘“(๐‘”.๐‘Ž) = ๐‘”.๐‘“(๐‘Ž) for all๐‘Ž โˆˆ ๐ด, i.e. a ๐บ-equivariant map.

When we say โ€œnatural isomorphismโ€, it is ambiguous and can formally meantwo different things: one could mean there is a natural transformation goingthe other way which when composed produces identity, or each component isan isomorphism. It turns out they coincide:

Lemma 1.1. Let ๐น, ๐บ โˆถ C โ†’ D be two functors and ๐›ผ โˆถ ๐น โ†’ ๐บ a naturaltransformation. Then ๐›ผ is an isomorphism in [C, D] if and only if each ๐›ผ๐ดis an isomorphism in D.

5

Page 7: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

Proof. Only if is trivial. For if, suppose each ๐›ผ๐ด has an inverse ๐›ฝ๐ด. We need toprove the ๐›ฝโ€™s satisfy the naturality condition: give ๐‘“ โˆถ ๐ด โ†’ ๐ต in C, we need toshow that

๐บ๐ด ๐บ๐ต

๐น๐ด ๐น๐ต

๐บ๐‘“

๐›ฝ๐ด ๐›ฝ๐ต

๐น๐‘“

commutes. But

(๐น๐‘“)๐›ฝ๐ด = ๐›ฝ๐ต๐›ผ๐ต(๐น๐‘“)๐›ฝ๐ด = ๐›ฝ๐ต(๐บ๐น)๐›ผ๐ด๐›ฝ๐ด = ๐›ฝ๐ต(๐บ๐‘“)

by naturality of ๐›ผ.

In study of algebraic theories (for example), we are interested in isomor-phisms of objects and investigate the properties of objects โ€œup to isomorphismโ€.However, in category theory a weaker notion of isomorphism is often more use-ful:

Definition (equivalence). Let C and D be categories. By an equivalencebetween C and D we mean a pair of functors ๐น โˆถ C โ†’ D, ๐บ โˆถ D โ†’ Ctogether with natural isomorphisms ๐›ผ โˆถ 1C โ†’ ๐บ๐น, ๐›ฝ โˆถ ๐น๐บ โ†’ 1D. We writeC โ‰ƒ D if C and D are equivalent.

We say a property ๐‘ƒ of categories is a category propery if whenever Chas ๐‘ƒ and C โ‰ƒ D then D has ๐‘ƒ.

For example, being a groupoid or a preorder are categorical properies, butbeing a group or a partial order are not.

Example.

1. The category Part is equivalent to the category Setโˆ— of pointed sets (andbasepoint preserving functions). We define

๐น โˆถ Setโˆ— โ†’ Part(๐ด, ๐‘Ž) โ†ฆ ๐ด \ {๐‘Ž}

and if ๐‘“ โˆถ (๐ด, ๐‘Ž) โ†’ (๐ต, ๐‘) then ๐น๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅ) if ๐‘“(๐‘ฅ) โ‰  ๐‘ and undefinedotherwise, and

๐บ โˆถ Part โ†’ Setโˆ—

๐ด โ†ฆ ๐ด+ = (๐ด โˆช {๐ด}, ๐ด)

and if ๐‘“ โˆถ ๐ด โ†’ ๐ต is a partial function , we define

๐‘ฅ โ†ฆ {๐‘“(๐‘ฅ) if ๐‘ฅ โˆˆ ๐ด and ๐‘“(๐‘ฅ) defined๐ต otherwise

Then ๐น๐บ is the identity on Part but ๐บ๐น is not. However there is anisomorphism

(๐ด, ๐‘Ž) โ†’ ((๐ด \ {๐‘Ž})+, ๐ด \ {๐‘Ž})sending ๐‘Ž to ๐ด \ {๐‘Ž} and everything else to itself. This is natural.Note that there can be no isomorphism Setโˆ— โ†’ Part since Part has a1-element isomorphism class {โˆ…} and Setโˆ— doesnโ€™t.

6

Page 8: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

2. The category fdMod๐พ of finite-dimensional vector spaces over ๐พ is equiv-alent to fdModop

๐พ : the functors in both directions are โ‹…โˆ— and both isomor-phisms are the natural transformations given by double dual.

3. fdMod๐พ is also equivalent to Mat๐พ: we write ๐น โˆถ Mat๐พ โ†’ fdMod๐พ by๐น(๐‘›) = ๐พ๐‘›, and ๐น(๐ด) is the map represented by ๐ด with respect to thestandard basis. To define functor ๐บ the other way, choose a basis for eachfinite-dimensional vector space and define

๐บ(๐‘‰ ) = dim๐‘‰

๐บ(๐‘‰๐‘“โˆ’โ†’ ๐‘Š) = matrix representing ๐‘“ w.r.t. chosen bases

๐บ๐น is the identity, provided we choose the standard bases for the space ๐พ๐‘›.๐น๐บ โ‰  1 but the chosen bases give isomorphisms ๐น๐บ(๐‘‰ ) = ๐พdim ๐‘‰ โ†’ ๐‘‰for each ๐‘‰, which form a natural isomorphism.

Example 3 illustrates a general principle: when constructing a pair of func-tors between equivalent categories, ususally one is โ€œcanonicalโ€ and the otherrequires some choice, and a clever choice results in a particularly simple formfor one way of composition. The next theorem abstracts away the โ€œchoiceโ€ andtells us when a functor is part of an equivalence purely by its properties.

The criterion is stated in term of โ€œbijectivityโ€ of functors, informally. It isgenerally a bad idea to look at sur/injectivity of functors on objects. Insteadthe correct way is to look at their behaviour on morphisms.

Definition (faithful, full, essentially surjective). Let C๐นโˆ’โ†’ D be a functor.

1. ๐น is faithful if given ๐‘“, ๐‘“ โ€ฒ โˆˆ morC with dom ๐‘“ = dom ๐‘“ โ€ฒ, cod ๐‘“ = cod ๐‘“ โ€ฒ

and ๐น๐‘“ = ๐น๐‘“ โ€ฒ then ๐‘“ = ๐‘“ โ€ฒ.

2. ๐น is full if given ๐น๐ด๐‘”โˆ’โ†’ ๐น๐ต in D then there exists ๐ด

๐‘“โˆ’โ†’ ๐ต in C with

๐น๐‘“ = ๐‘”.

3. ๐น is essentially surjective if for every ๐ต โˆˆ obD there exists ๐ด โˆˆ obCand an isomorphism ๐น๐ด โ†’ ๐ต in D.

Definition. A subcategory Cโ€ฒ โŠ† C is full if the inclusion Cโ€ฒ โ†’ C is a fullfunctor.

Example. Gp is a full subcategory of Mon but Mon is not a full subcategoryof the category SGp of semigroups.

Lemma 1.2. Assuming the axiom of choice. A functor ๐น โˆถ C โ†’ D ispart of an equivalence C โ‰ƒ D if and only if itโ€™s full, faithful and essentiallysurjective.

Proof. Suppose given ๐บ, ๐›ผ, ๐›ฝ as in the definition of equivalence of categories.Then for each ๐ต โˆˆ obD, ๐›ฝ๐ต is an isomorphism ๐น๐บ๐ต โ†’ ๐ต so ๐น is essentiallysurjective.

7

Page 9: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

Given ๐ด๐‘“โˆ’โ†’ ๐ต in C, we can recover ๐‘“ from ๐น๐‘“ as the via conjugation by ๐›ผ:

๐บ๐น๐ด ๐บ๐น๐ต

๐ด ๐ต

๐บ๐น๐‘“

๐›ผ๐ด

๐‘“

๐›ผ๐ต

Hence if ๐ด๐‘“โ€ฒ

โˆ’โ†’ ๐ต satisfies ๐น๐‘“ = ๐น๐‘“ โ€ฒ then ๐‘“ = ๐‘“ โ€ฒ.Similarly there is a natural preimage given a morphism in D. Given ๐น๐ด

๐‘”โˆ’โ†’

๐น๐ต, define ๐‘“ to be the composite

๐บ๐น๐ด ๐บ๐น๐ต

๐ด ๐ต

๐บ๐‘”

๐›ผ๐ด ๐›ผ๐ต

Then ๐บ๐น๐‘“ = ๐›ผ๐ต๐‘“๐›ผโˆ’1๐ด = ๐บ๐‘”. As ๐บ is faithful for the same reasons as ๐น, ๐น๐‘“ = ๐‘”.

Conversely, for each ๐ต โˆˆ obD, choose ๐บ๐ต โˆˆ obC and an isomorphism๐›ฝ๐ต โˆถ ๐น๐บ๐ต โ†’ ๐ต in D. Given ๐ต

๐‘”โˆ’โ†’ ๐ตโ€ฒ, define ๐บ๐‘” โˆถ ๐บ๐ต โ†’ ๐บ๐ตโ€ฒ to be the unique

morphism whose image under ๐น is the composition

๐ต ๐ตโ€ฒ

๐น๐บ๐ต ๐น๐บ๐ด

๐‘“

๐›ฝ๐ต ๐›ฝ๐ตโ€ฒ

Faithfulness implies functoriality: given ๐ตโ€ฒ๐‘”โ€ฒ

โˆ’โ†’ ๐ตโ€ณ, (๐บ๐‘”โ€ฒ)(๐บ๐‘”) and ๐บ(๐‘”โ€ฒ๐‘”) havethe same image under ๐น so they are equal.

By construction, ๐›ฝ is a natural transformation ๐น๐บ โ†’ 1D.Given ๐ด โˆˆ obC, define ๐›ผ๐ด โˆถ ๐ด โ†’ ๐บ๐น๐ด to be the unique morphism whose

image under ๐น is

๐น๐ด๐›ฝโˆ’1

๐น๐ดโˆ’โˆ’โ†’ ๐น๐บ๐น๐ด.

๐›ผ๐ด is an isomorphism since ๐›ฝ๐น๐ด also has a unique preimage under ๐น. Finally๐›ผ is a natural transformation, since any naturality square for ๐›ผ is mapped by๐น to a commutative square (corresponding to naturality square for ๐›ฝ) and ๐น isfaithful.

Note that axiom of choice is only used in the if part. The lemma is usefulas it saves us from making explicit choices when showing an equivalence byexhibiting inverses. However note that the choice is always required.

Definition (skeleton). By a skeleton of a category C we mean a full sub-category C0 containing one object from each isomorphism class. We say Cis skeletal if itโ€™s a skeleton of itself.

Example. Mat๐พ is skeletal and the image of ๐น โˆถ Mat๐พ โ†’ fdMod๐พ is askeleton of fdMod๐พ (essentially because ๐น is full and faithful).Remark. Almost any assertion about skeletons is equivalent to the axiom ofchoice. See example sheet 1 Q2. This is one reason why we should not restrictout attention to skeletal categories.

8

Page 10: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

1 Definitions and examples

Definition (monomorphism, epimorphism). Let ๐ด๐‘“โˆ’โ†’ ๐ต be a morphism in

C.

1. We say ๐‘“ is a monomorphism or monic if given any pair ๐‘”, โ„Ž โˆถ ๐ถ โ†’ ๐ด,๐‘“๐‘” = ๐‘“โ„Ž implies ๐‘” = โ„Ž.

2. We say ๐‘“ is a epimorphism or epic if it is a monomorphism in Cop, i.e.given any pair ๐‘”, โ„Ž โˆถ ๐ต โ†’ ๐ถ, ๐‘”๐‘“ = โ„Ž๐‘“ implies ๐‘” = โ„Ž.

We denote monomorphisms by ๐‘“ โˆถ ๐ด โ†ฃ ๐ต and epimorphisms by ๐‘“ โˆถ๐ด โ†  ๐ต.

Any isomorphism is monic and epic. More generally if ๐‘“ has a left inversethen itโ€™s monic. We call such monomorphisms split.

Definition (balanced). We say C is a balanced category if any morphismwhich is both monic and epic is an isomorphism.

Example.

1. In Set, monomorphism is precisely an injection (one direction is easy andfor the other direction take ๐ถ = 1 = {โˆ—}) and epimorphism is precisely asurjection (use morphisms ๐ต โ†’ 2 = {0, 1}). Thus Set is balanced.

2. In Gp, monomorphism is precisely an injection (use homomorphism fromthe free group with one generator, i.e. Z โ†’ ๐ด) and epimorphism is pre-cisely a surjection (use free product with amalgamation). Thus Gp isbalanced.

3. In Rng, monomorphism is precisely an injection (similarly to free group)but the inclusion Z โ†’ Q is an epimorphism, since if ๐‘“, ๐‘” โˆถ Q โ†’ ๐‘… agreeon all integers they agree everywhere. So Rng is not balanced.

4. In Top, monomorphism is precisely an injection and epimorphism is pre-cisely a precisely surjection (same argument as Set) but Top is not bal-anced since a continuous bijection need not to have a continuous inverse.

9

Page 11: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

2 The Yoneda lemma

2 The Yoneda lemmaIt may seem weird to devote an entire chapter to a lemma. However, althoughthe Yoneda lemma is indeed a lemma, with a simple statement and straight-forward proof, it is much more than a normal lemma and underlies the entirecategory theory.

Here is a little story about Yoneda lemma. It is named after Nobuo Yoneda,who is better known as a computer scientist than a mathematician. The resultis likely not due to him and he wasnโ€™t the first person to write it down. In fact,he never actually wrote down the lemma, as opposed to some books claiming thelemma was first to be found in one of Yonedaโ€™s papers. The story, accordingto Saunders Mac Lane, is that after a conference he met Yoneda on a trainplatform. While exchanging conversations Yoneda told him the result, whichMac Lane was not aware of at that moment but immediately recognised itsimportance. Mac Lane later attributed the lemma to Yoneda and because ofhis standing in category theory, the name retains. Perhaps this is the first andonly result in mathematics to be enunciated on a train platform!

Definition (locally small category). We say a category C is locally smallif, for any two objects ๐ด, ๐ต, the morphisms ๐ด โ†’ ๐ต in C form a set C(๐ด, ๐ต).

If we fix ๐ด and let ๐ต vary, the assignment ๐ต โ†ฆ C(๐ด, ๐ต) becomes a functorC(๐ด, โˆ’) โˆถ C โ†’ Set: given ๐ต

๐‘“โˆ’โ†’ ๐ถ, C(๐ด, ๐‘“) is the mapping ๐‘” โ†ฆ ๐‘“๐‘”. Similarly,

๐ด โ†ฆ C(๐ด, ๐ต) defines a functor C(โˆ’, ๐ต) โˆถ Cop โ†’ Set.

Lemma 2.1 (Yoneda lemma). Let C be a locally small category, ๐ด โˆˆ obCand ๐น โˆถ C โ†’ Set is a functor. Then natural transformations C(๐ด, โˆ’) โ†’ ๐นare in bijection with elements of ๐น๐ด.

Moreover, this bijection is natural in both ๐ด and ๐น.

Proof. We prove the first part now. The second part follows very easily once wehave gained some intuitions so weโ€™ll come back to it later. Given ๐›ผ โˆถ C(๐ด, โˆ’) โ†’๐น, we define

ฮฆ(๐›ผ) = ๐›ผ๐ด(1๐ด) โˆˆ ๐น๐ด.

Conversely, given ๐‘ฅ โˆˆ ๐น๐ด, we define ฮจ(๐‘ฅ) โˆถ C(๐ด, โˆ’) โ†’ ๐น by

ฮจ(๐‘ฅ)๐ต(๐ด๐‘“โˆ’โ†’ ๐ต) = ๐น๐‘“(๐‘ฅ) โˆˆ ๐น๐ต

which is natural: given ๐‘” โˆถ ๐ต โ†’ ๐ถ, we have

ฮจ(๐‘ฅ)๐ถC(๐ด, ๐‘”)(๐‘“) = ฮจ(๐‘ฅ)๐ถ(๐‘”๐‘“) = ๐น(๐‘”๐‘“)(๐‘ฅ)(๐น๐‘”)ฮจ(๐‘ฅ)๐ต(๐‘“) = (๐น๐‘”)(๐น๐‘“)(๐‘ฅ) = ๐น(๐‘”๐‘“)(๐‘ฅ)

10

Page 12: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

2 The Yoneda lemma

C(๐ด, ๐ต) C(๐ด, ๐ถ)

๐‘“ ๐‘”๐‘“

๐น๐‘“(๐‘ฅ) ๐น(๐‘”๐‘“)(๐‘ฅ)

๐น๐ต ๐น๐ถ

C(๐ด,๐‘”)

ฮจ(๐‘ฅ)๐ต ฮจ(๐‘ฅ)๐ถ

๐น๐‘”

by functoriality of ๐น. Now left to show they are inverses to each other.

ฮฆฮจ(๐‘ฅ) = ฮจ(๐‘ฅ)๐ด(1๐ด) = ๐น(1๐ด)(๐‘ฅ) = ๐‘ฅฮจฮฆ(๐›ผ)๐ต(๐‘“) = ฮจ(๐›ผ๐ด(1๐ด))๐ต(๐‘“) = ๐น๐‘“(๐›ผ๐ด(1๐ด)) = ๐›ผ๐ตC(๐ด, ๐‘“)(1๐ด) = ๐›ผ๐ต(๐‘“)

so ฮจฮฆ(๐›ผ) = ๐›ผ.

Corollary 2.2 (Yoneda embedding). The assignment ๐ด โ†ฆ C(๐ด, โˆ’) definesa full faithful functor Cop โ†’ [C, Set].

Proof. Put ๐น = C(๐ต, โˆ’) in the above proof, we get a bijection between C(๐ต, ๐ด)and morphisms C(๐ด, โˆ’) โ†’ C(๐ต, โˆ’) in [C, Set]. We need to verify that this isfunctorial. But it sends ๐‘“ โˆถ ๐ต โ†’ ๐ด to the natural transformation ๐‘” โ†ฆ ๐‘”๐‘“. Sofunctoriality follows from associativity.

We call this functor (or the functor C โ†’ [Cop, Set] sending ๐ด to C(โˆ’, ๐ด))the Yoneda embedding of C and typically denote it by ๐‘Œ. At first glance, [C, Set]seems like a much more complicated entity and is much more unwieldy. However,it stands out as being more concrete and thus easier to deal with. It is in analogywith group representation: instead of an abstract group, we consider its actionon a set, which is more explicit and concrete. Weโ€™ll come back to this point ina minute.

Now return to the second part of the lemma. Suppose for the momentthat C is small, so that [C, Set] is locally small. Then we have two functorsC ร— [C, Set] โ†’ Set: one sends (๐ด, ๐น) to ๐น๐ด, and the other is the composite

C ร— [C, Set]๐‘Œ ร—1โˆ’โˆ’โ†’ [C, Set]op ร— [C, Set]

[C,Set](โˆ’,โˆ’)โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ Set

where the last map maps a pair of functors to the set of natural transformationsbetween them, and the naturality in the statement of Yoneda lemma says thatthese are naturally isomorphic. We can translate this into an elementary state-ment, making sense even when C isnโ€™t small: given ๐ด

๐‘“โˆ’โ†’ ๐ต and ๐น

๐›ผโˆ’โ†’ ๐บ, there

are two ways of producing an element of ๐บ๐ต from the natural transformation.For example, given ๐›ฝ โˆถ C(๐ด, โˆ’) โ†’ ๐น, the two ways give the same result, namely

๐›ผ๐ต(๐น๐‘“)๐›ฝ๐ด(1๐ด) = (๐บ๐‘“)๐›ผ๐ด๐›ฝ๐ด(1๐ด)

11

Page 13: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

2 The Yoneda lemma

which is equal to ๐›ผ๐ต๐›ฝ๐ต(๐‘“).

[C, Set](C(๐ด, โˆ’), ๐น) [C, Set](C(๐ต, โˆ’), ๐น)

๐น๐ด ๐น๐ต

๐บ๐ต ๐บ๐ต

[C, Set](C(๐ด, โˆ’), ๐บ) [C, Set](C(๐ต, โˆ’), ๐บ)

ฮฆ๐ด,๐น

ฮฆ๐ต,๐น๐น๐‘“

๐›ผ๐ด ๐›ผ๐ต

๐บ๐‘“

ฮฆ๐ด,๐บ

ฮฆ๐ต,๐บ

Definition (representable functor, representation). We say a functor ๐น โˆถC โ†’ Set is representable if itโ€™s isomorphic to C(๐ด, โˆ’) for some ๐ด.

By a representation of ๐น, we mean a pair (๐ด, ๐‘ฅ) where ๐‘ฅ โˆˆ ๐น๐ด is suchthat ฮจ(๐‘ฅ) is an isomorphism. We also call ๐‘ฅ a universal element of ๐น.

Corollary 2.3. If (๐ด, ๐‘ฅ) and (๐ต, ๐‘ฆ) are both representations of ๐น, then thereis a unique isomorphism ๐‘“ โˆถ ๐ด โ†’ ๐ต such that (๐น๐‘“)(๐‘ฅ) = ๐‘ฆ.

Proof. Consider the composite

C(๐ต, โˆ’)ฮจ(๐‘ฆ)โˆ’โˆ’โˆ’โ†’ ๐น

ฮจ(๐‘ฅ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โ†’ C(๐ด, โˆ’),

By Yoneda embedding, this is of the form ๐‘Œ (๐‘“) for a unique isomorphism ๐‘“ โˆถ๐ด โ†’ ๐ต and the diagram

C(๐ต, โˆ’) C(๐ด, โˆ’)

๐น

๐‘Œ (๐‘“)

ฮจ(๐‘ฆ) ฮจ(๐‘ฅ)

commutes if and only if (๐น๐‘“)(๐‘ฅ) = ๐‘ฆ.

Example.

1. The forgetful functor Gp โ†’ Set is representable by (Z, 1). Similarly theforgetful functor Rng โ†’ Set is representable by (Z[๐‘ฅ], ๐‘ฅ). The forgetfulfunctor Top โ†’ Set is representable by ({โˆ—}, โˆ—).

2. The functor ๐‘ƒ โˆ— โˆถ Setop โ†’ Set is representable by ({0, 1}, {1}). This isthe bijection between subsets and characteristic functions.

3. Let ๐บ be a group. The unique (up to isomorphism) representable functor๐บ(โˆ—, โˆ’) โˆถ ๐บ โ†’ Set is the Cayley representation of ๐บ, i.e. the set ๐‘ˆ๐บ with๐บ acting by left multiplication.

12

Page 14: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

2 The Yoneda lemma

4. Let ๐ด and ๐ต be two objects of a locally small category C. Then we havea functor Cop โ†’ Set sending ๐ถ to C(๐ถ, ๐ด) ร— C(๐ถ, ๐ต) (note that it is apurely categorical product and require only cartesian product of the mor-phism sets). A representation of this, if it exists, is called a (categorical)product of ๐ด and ๐ต, and denoted

๐ด ร— ๐ต

๐ด ๐ต

๐œ‹1 ๐œ‹2

This pair has the property that, for any pair (๐ถ๐‘“โˆ’โ†’ ๐ด, ๐ถ

๐‘”โˆ’โ†’ ๐ต), there is a

unique ๐ถโ„Žโˆ’โ†’ ๐ด ร— ๐ต with ๐œ‹1โ„Ž = ๐‘“ and ๐œ‹2โ„Ž = ๐‘”.

๐ด ร— ๐ต

๐ด ๐ถ ๐ต

๐œ‹1 ๐œ‹2

๐‘“๐‘”

โ„Ž

Products exist in many categories of interest: in Set, Gp, Rng, Top, โ€ฆthey are โ€œjustโ€ cartesian products. In posets they are binary meets.Dually, we have the notion of coproduct

๐ด + ๐ต

๐ด ๐ต

๐œˆ1 ๐œˆ2

These also exist in many categories of interest.

5. Let ๐‘“, ๐‘” โˆถ ๐ด โ†’ ๐ต be morphisms in a locally small category C. We have afunctor ๐น โˆถ Cop โ†’ Set defined by

๐น(๐ถ) = {โ„Ž โˆˆ C(๐ถ, ๐ด) โˆถ ๐‘“โ„Ž = ๐‘”โ„Ž},

which is a subfunctor of C(โˆ’, ๐ด). A representation of ๐น, if it exists, iscalled an equaliser of (๐‘“, ๐‘”). It consists of an object ๐ธ and a morphism๐ธ

๐‘’โˆ’โ†’ ๐ด such that ๐‘“๐‘’ = ๐‘”๐‘’ and every โ„Ž with ๐‘“โ„Ž = ๐‘”โ„Ž factors uniquely

through ๐‘’. In Set, we take ๐ธ = {๐‘ฅ โˆˆ ๐ด โˆถ ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฅ)} and ๐‘’ to beinclusion. Similar constructions work in Gp, Rng, Top, โ€ฆ

๐ธ ๐ด ๐ต

๐ถ

๐‘’ ๐‘“

๐‘”โ„Ž

Dually we have the notion of coequaliser .Remark. If ๐‘’ occurs as an equaliser then it is a monomorphism, since any โ„Žfactors through it in at most one way. We say a monomorphism is regular if itoccurs as an equaliser.

Split monomorphisms are regular (see example sheet 1 Q6 (i)). Note that aregular mono that is also epic implies isomorphism: if the equaliser ๐‘’ of (๐‘“, ๐‘”)is epic then ๐‘“ = ๐‘” so ๐‘’ โ‰… 1cod ๐‘’.

13

Page 15: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

2 The Yoneda lemma

Definition (separating/detecting family, seperator, detector). Let C be acategory, ๐’ข a class of objects of C.

1. We say ๐’ข is a separating family for C if, given ๐‘“, ๐‘” โˆถ ๐ด โ†’ ๐ต such that๐‘“โ„Ž = ๐‘”โ„Ž for all ๐บ

โ„Žโˆ’โ†’ ๐ด with ๐บ โˆˆ ๐’ข then ๐‘“ = ๐‘”. (i.e. the functor

C(๐บ, โˆ’) where ๐บ โˆˆ ๐’ข are collectively faithful)

2. We say ๐’ข is a detecting family for C if, given ๐ด๐‘“โˆ’โ†’ ๐ต such that every

๐บโ„Žโˆ’โ†’ ๐ต with ๐บ โˆˆ ๐’ข factors uniquely through ๐‘“, then ๐‘“ is an isomor-

phism.

If ๐’ข = {๐บ} then we call ๐บ a separator or detector.

Lemma 2.4.

1. If C is a balanced category then any separating family is detecting.

2. If C has equalisers (i.e. every pair has an equaliser) then any detectingfamily is separating.

Proof.

1. Suppose ๐’ข is separating and ๐ด๐‘“โˆ’โ†’ ๐ต satisfies condition in definition 2. If

๐‘”, โ„Ž โˆถ ๐ต โ†’ ๐ถ satisfy ๐‘”๐‘“ = โ„Ž๐‘“, then ๐‘”๐‘ฅ = โ„Ž๐‘ฅ for every ๐บ๐‘ฅโˆ’โ†’ ๐ต, so ๐‘” = โ„Ž,

i.e. ๐‘“ is epic.

Similarly if ๐‘˜, โ„“ โˆถ ๐ท โ†’ ๐ด satisfy ๐‘“๐‘˜ = ๐‘“โ„“ then ๐‘˜๐‘ฆ = โ„“๐‘ฆ for any ๐บ๐‘ฆโˆ’โ†’ ๐ท,

since both are factorisations of ๐‘“๐‘˜๐‘ฆ through ๐‘“. So ๐‘˜ = โ„“, i.e. ๐‘“ is monic.

2. Suppose ๐’ข is detecting and ๐‘“, ๐‘” โˆถ ๐ด โ†’ ๐ต satisfy definition 1. Then theequaliser ๐ธ

๐‘’โˆ’โ†’ ๐ด of (๐‘“, ๐‘”) is isomorphism so ๐‘“ = ๐‘”.

Example.

1. In [C, Set] the family {C(๐ด, โˆ’) โˆถ ๐ด โˆˆ obC} is both separating and de-tecting. This is just a restatement of Yoneda lemma.

2. In Set, 1 = {โˆ—} is both a separator and a detector since it represents theidentity functor Set โ†’ Set. Similarly Z is both in Gp since it representsthe forgetful functor Gp โ†’ Set.Dually, 2 = {0, 1} is a coseparator and a codetector in Set since it repre-sents ๐‘ƒ โˆ— โˆถ Setop โ†’ Set.

3. In Top, 1 = {โˆ—} is a separator since it represents the forgetful functorTop โ†’ Set, but not a detector. In fact Top has no detecting set ofobjects: for any infinite cardinality ๐œ…, let ๐‘‹ be a discrete space of cardi-nality ๐œ…, and ๐‘Œ the same set with โ€œco-๐œ…โ€ topology, i.e. ๐น โŠ† ๐‘Œ closed if andonly if ๐น = ๐‘Œ or ๐น has cardinality smaller ๐œ…. The identity map ๐‘‹ โ†’ ๐‘Œis continuous but not a homomorphism. So if {๐บ๐‘– โˆถ ๐‘– โˆˆ ๐ผ} is any set ofspaces, taking ๐œ… larger than cardinality of ๐บ๐‘– for all ๐‘– yields an exmapleto show that the set is not detecting.

14

Page 16: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

2 The Yoneda lemma

4. Let C be the category of pointed conntected CW-complexes and homotopyclasses of (basepoint-preserving) continuous maps. J. H. C. Whiteheadproved that if ๐‘‹

๐‘“โˆ’โ†’ ๐‘Œ in this category induces isomorphisms ๐œ‹๐‘›(๐‘‹) โ†’

๐œ‹๐‘›(๐‘Œ ) for all ๐‘› then it is an isomorphism in C. This says that {๐‘†๐‘› โˆถ ๐‘› โ‰ฅ 1}is a detecting set for C. But P. J. Freyd showed there is no faithful functorC โ†’ Set, so no separating set: if {๐บ๐‘– โˆถ ๐‘– โˆˆ ๐ผ} were separating then

๐‘‹ โ†ฆ โˆ๐‘–โˆˆ๐ผ

C(๐บ๐‘–, ๐‘‹)

would be faithful.

Note that any functor of the form C(๐ด, โˆ’) preserves monos, but they donโ€™tpreserve epis. We give a name to those special functors.

Definition (projective, injective). We say an object ๐‘ƒ is projective if given

๐‘ƒ

๐ด ๐ต

๐‘“๐‘”

๐‘’

there exists ๐‘ƒ๐‘”โˆ’โ†’ ๐ด with ๐‘’๐‘” = ๐‘“. If C is locally small, this says C(๐‘ƒ , โˆ’)

preserves epimorphisms.Dually an injective object of C is a projective object of Cop.Given a class โ„ฐ of epimorphisms, we say ๐‘ƒ is โ„ฐ-projective if it satisfies

the condition for all ๐‘’ โˆˆ โ„ฐ.

Lemma 2.5. Representable functors are (pointwise) projectives in [C, Set].

Proof. Suppose givenC(๐ด, โˆ’)

๐น ๐บ

๐›ฝ๐›พ

๐›ผ

where ๐›ผ is pointwise surjective. By Yoneda, ๐›ฝ corresponds to some ๐‘ฆ โˆˆ ๐บ๐ด andwe can find ๐‘ฅ โˆˆ ๐น๐ด with ๐›ผ๐ด(๐‘ฅ) = ๐‘ฆ. Now if ๐›พ โˆถ C(๐ด, โˆ’) โ†’ ๐น corresponds to ๐‘ฅ,then naturality of the Yoneda bijection yields ๐›ผ๐›พ = ๐›ฝ.

15

Page 17: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

3 Adjunctions

Definition (adjunction). Let C and D be two categories and ๐น โˆถ C โ†’D, ๐บ โˆถ D โ†’ C be two functors. By an adjunction between ๐น and ๐บ wemean a bijection between morphisms ๐‘“ โˆถ ๐น๐ด โ†’ ๐ต in D and ๐‘“ โˆถ ๐ด โ†’ ๐บ๐ต inC, which is natural in ๐ด and ๐ต, i.e. given ๐ดโ€ฒ

๐‘”โˆ’โ†’ ๐ด and ๐ต

โ„Žโˆ’โ†’ ๐ตโ€ฒ, โ„Ž ๐‘“(๐น๐‘”) =

(๐บโ„Ž)๐‘“๐‘” โˆถ ๐น๐ดโ€ฒ โ†’ ๐ตโ€ฒ

๐น๐ด ๐ต

๐น๐ดโ€ฒ ๐ตโ€ฒ

๐‘“

โ„Ž๐น๐‘”

๐ด ๐บ๐ต

๐ดโ€ฒ ๐บ๐ตโ€ฒ

๐‘“

๐บโ„Ž๐‘”

We say ๐น is left adjoint to ๐บ and write ๐น โŠฃ ๐บ.

Example.

1. The functor ๐น โˆถ Set โ†’ Gp is left adjoint to the forgetful functor ๐‘ˆ โˆถGp โ†’ Set since any function ๐‘“ โˆถ ๐ด โ†’ ๐‘ˆ๐ต extends uniquely to a grouphomomorphism ๐‘“ โˆถ ๐น๐ด โ†’ ๐ต and any homomorphism induces a set func-tion. Naturality in ๐ต is easy and naturality in ๐ด follows from the definitionof ๐น as a functor. Similar for Rng, Mod๐พ, โ€ฆ

2. The forgetful functor ๐‘ˆ โˆถ Top โ†’ Set has a left adjoint ๐ท which equipsany set with the discrete topology and a right adjoint ๐ผ which equips anyset with the indiscrete topology so ๐ท โŠฃ ๐‘ˆ โŠฃ ๐ผ.

3. The functor ob โˆถ Cat โ†’ Set (recall that Cat is the category of smallcategories) has a left adjoint ๐ท sending ๐ด to the discrete category withob(๐ท๐ด) = ๐ด and only identity morphisms, and a right adjoint ๐ผ sending๐ด to the category with ob(๐ผ๐ด) = ๐ด and one morphism ๐‘ฅ โ†’ ๐‘ฆ for each(๐‘ฅ, ๐‘ฆ) โˆˆ ๐ด ร— ๐ด. In this case ๐ท in turn has a left adjoint ๐œ‹0 sending a smallcategory C to its set of connected components, i.e. the quotient of obCby the smallest equivalence relation identifying dom ๐‘“ with cod ๐‘“ for all๐‘“ โˆˆ morC. So ๐œ‹0 โŠฃ ๐ท โŠฃ ob โŠฃ ๐ผ.

4. Let ๐‘€ be the monoid {1, ๐‘’} with ๐‘’2 = ๐‘’. An object of [๐‘€, Set] is apair (๐ด, ๐‘’) where ๐‘’ โˆถ ๐ด โ†’ ๐ด satisfying ๐‘’2 = ๐‘’. We have a functor ๐บ โˆถ[๐‘€, Set] โ†’ Set sending (๐ด, ๐‘’) to

{๐‘ฅ โˆˆ ๐ด โˆถ ๐‘’(๐‘ฅ) = ๐‘ฅ} = {๐‘’(๐‘ฅ) โˆถ ๐‘ฅ โˆˆ ๐ด}

and a functor ๐น โˆถ Set โ†’ [๐‘€, Set] sending ๐ด to (๐ด, 1๐ด). Claim that

๐น โŠฃ ๐บ โŠฃ ๐น.

Given ๐‘“ โˆถ (๐ด, 1๐ด) โ†’ (๐ต, ๐‘’), it must take values in ๐บ(๐ต, ๐‘’) and any ๐‘” โˆถ(๐ต, ๐‘’) โ†’ (๐ด, 1๐ด) is determined by its values on the image of ๐‘’. In someway this is due to the two ways in which the fixed point of ๐‘’ can be written.

5. Let 1 be the discrete category with one object โˆ—. For any C, there is aunique functor C โ†’ 1. A left adjoint for this picks out an initial object of

16

Page 18: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

C, i.e. an object ๐ผ such that there exists a unique ๐ผ โ†’ ๐ด for each ๐ด โˆˆ ob๐ถ.Dually a right adjoint for C โ†’ 1 corresponds to a terminal object of C.

6. Let ๐ด๐‘“โˆ’โ†’ ๐ต be a morphism in Set. We can regard ๐‘ƒ๐ด and ๐‘ƒ๐ต as posets,

and we have functors ๐‘ƒ๐‘“ โˆถ ๐‘ƒ๐ด โ†’ ๐‘ƒ๐ต and ๐‘ƒ โˆ—๐‘“ โˆถ ๐‘ƒ๐ต โ†’ ๐‘ƒ๐ด. Claim๐‘ƒ๐‘“ โŠฃ ๐‘ƒ โˆ—๐‘“: we have ๐‘ƒ๐‘“(๐ดโ€ฒ) โŠ† ๐ตโ€ฒ if and only if ๐‘“(๐‘ฅ) โˆˆ ๐ตโ€ฒ for all ๐‘ฅ โˆˆ ๐ดโ€ฒ,if and only if ๐ดโ€ฒ โŠ† ๐‘ƒ โˆ—๐‘“(๐ตโ€ฒ).

7. Galois connection: suppose givens sets ๐ด and ๐ต and a relation ๐‘… โŠ† ๐ดร—๐ต.We define mappings โ‹…โ„“, โ‹…๐‘Ÿ between ๐‘ƒ๐ด and ๐‘ƒ๐ต by

๐‘†๐‘Ÿ = {๐‘ฆ โˆˆ ๐ต โˆถ โˆ€๐‘ฅ โˆˆ ๐‘†, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘…}, ๐‘† โŠ† ๐ด๐‘‡ โ„“ = {๐‘ฅ โˆˆ ๐ด โˆถ โˆ€๐‘ฆ โˆˆ ๐‘‡ , (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘…}, ๐‘‡ โŠ† ๐ต

These mappings are order-reversing, i.e. contravariant functors, and ๐‘‡ โŠ†๐‘†๐‘Ÿ if and only if ๐‘† ร— ๐‘‡ โŠ† ๐‘…, so by symmetry if and only if ๐‘† โŠ† ๐‘‡ โ„“. Wesay โ‹…๐‘Ÿ and โ‹…โ„“ are adjoint on the right.

8. The functor ๐‘ƒ โˆ— โˆถ Setop โ†’ Set is self-adjoint on the right since a func-tion ๐ด โ†’ ๐‘ƒ๐ต corresponds bijectively to subsets of ๐ด ร— ๐ต, and hence bysymmetry to functions ๐ต โ†’ ๐‘ƒ๐ด.

Theorem 3.1. Let ๐บ โˆถ D โ†’ C be a functor. Then specifying a left adjointfunctor for ๐บ is equivalent to specifying an initial object of (๐ด โ†“ ๐บ) foreach ๐ด โˆˆ obC where (๐ด โ†“ ๐บ) has objects pairs (๐ต, ๐‘“) with ๐ด

๐‘“โˆ’โ†’ ๐บ๐ต and

morphisms (๐ต, ๐‘“) โ†’ (๐ตโ€ฒ, ๐‘“ โ€ฒ) are morphisms ๐ต๐‘”โˆ’โ†’ ๐ตโ€ฒ such that the following

diagram commutes๐ด ๐บ๐ต

๐บ๐ตโ€ฒ

๐‘“

๐‘“โ€ฒ๐บ๐‘”

Proof. Suppose given ๐น โŠฃ ๐บ. Consider the morphism ๐œ‚๐ด โˆถ ๐ด โ†’ ๐บ๐น๐ด corre-sponding to ๐น๐ด

1โˆ’โ†’ ๐น๐ด. Then (๐น๐ด, ๐œ‚๐ด) is an object of (๐ด โ†“ ๐บ). Moreover,

given ๐‘” โˆถ ๐น๐ด โ†’ ๐ต and ๐‘“ โˆถ ๐ด โ†’ ๐บ๐ต, the diagram

๐ด ๐บ๐น๐ด

๐บ๐ต

๐œ‚๐ด

๐‘“๐บ๐‘”

commutes if and only if๐น๐ด ๐น๐ด

๐ต

1๐ด

๐‘“๐‘”

commutes by naturality condition in adjunction, i.e. ๐‘” = ๐‘“. So (๐น๐ด, ๐œ‚๐ด) isinitial to (๐ด โ†“ ๐บ).

17

Page 19: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

Conversely, suppose given an initial object (๐น๐ด, ๐œ‚๐ด) for each (๐ด โ†“ ๐บ). Given๐‘“ โˆถ ๐ด โ†’ ๐ดโ€ฒ, we define ๐น๐‘“ โˆถ ๐น๐ด โ†’ ๐น๐ดโ€ฒ to be the unique morphism making

๐ด ๐บ๐น๐ด

๐ดโ€ฒ ๐บ๐น๐ดโ€ฒ

๐œ‚๐ด

๐‘“ ๐บ๐น๐‘“๐œ‚๐ดโ€ฒ

commutes. Functoriality follows from uniqueness: given ๐‘“ โ€ฒ โˆถ ๐ดโ€ฒ โ†’ ๐ดโ€ณ, both๐น(๐‘“ โ€ฒ๐‘“) and (๐น๐‘“ โ€ฒ)(๐น๐‘“) are both morphisms (๐น๐ด, ๐œ‚๐ด) โ†’ (๐น๐ดโ€ณ, ๐œ‚๐ดโ€ณ๐‘“ โ€ฒ๐‘“) in (๐ด โ†“๐บ). To show ๐น โŠฃ ๐บ: given ๐ด

๐‘“โˆ’โ†’ ๐บ๐ต, we define ๐‘“ โˆถ ๐น๐ด โ†’ ๐ต to be the unique

morphism (๐น๐ด, ๐œ‚๐ด) โ†’ (๐ต, ๐‘“) in (๐ด โ†“ ๐บ). This is a bijection with inverse

(๐น๐ด๐‘”โˆ’โ†’ ๐ต) โ†ฆ (๐ด

๐œ‚๐ดโˆ’โ†’ ๐บ๐น๐ด

๐บ๐‘”โˆ’โˆ’โ†’ ๐บ๐ต).

The latter mapping is natural in ๐ต since ๐บ is a functor, and in ๐ด since byconstruction ๐œ‚ is a natural transformation 1C โ†’ ๐บ๐น.

Corollary 3.2. If ๐น and ๐น โ€ฒ are both left adjoint to ๐บ โˆถ D โ†’ C then theyare naturally isomorphic.

Proof. It basically follows from the fact that initial object in any category, ifexists, is unique up to isomorphism. For any ๐ด, (๐น๐ด, ๐œ‚๐ด) and (๐น โ€ฒ๐ด, ๐œ‚โ€ฒ

๐ด) areboth initial in (๐ด โ†“ ๐บ) so there is a unique isomorphism

๐›ผ๐ด โˆถ (๐น๐ด, ๐œ‚๐ด) โ†’ (๐น โ€ฒ๐ด, ๐œ‚โ€ฒ๐ด).

In any naturality square for ๐›ผ, the two ways round are both morphisms in(๐ด โ†“ ๐บ) whose domain is initial, so theyโ€™re equal.

Lemma 3.3. GivenC D E

๐น

๐บ

๐ป

๐พ

with ๐น โŠฃ ๐บ and ๐ป โŠฃ ๐พ, we have

๐ป๐น โŠฃ ๐บ๐พ.

Proof. We have bijections between morphisms ๐ด โ†’ ๐บ๐พ๐ถ, morphisms ๐น๐ด โ†’๐พ๐ถ and morphisms ๐ป๐น๐ด โ†’ ๐ถ, which are both natural in ๐ด and ๐ถ.

Corollary 3.4. Given a commutative square

C D

E F

of categories and functors, if the functors all have left adjoints, then thediagram of left adjoints commutes up to natural isomorphsms.

18

Page 20: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

Proof. By Lemma 3.3, both ways round the diagram of left adjoints are leftadjoint to the composite C โ†’ F, so by Theorem 3.1 they are isomorphic.

Actually, we didnโ€™t use the full strength of Lemma 3.3: if we require merelyinstead that the original commutative diagram is only up to natural isomor-phism, then weโ€™ll get the same conclusion. In practice, however, the weakerversion stated above will usually suffice.

Definition (unit, counit). Given an adjunction ๐น โŠฃ ๐บ, the natural trans-formation ๐œ‚ โˆถ 1C โ†’ ๐บ๐น emerging in the proof of Theorem 3.1 is called theunit of the adjunction.

Dually we have a natural transformation ๐œ€ โˆถ ๐น๐บ โ†’ 1D such that ๐œ€๐ต โˆถ๐น๐บ๐ต โ†’ ๐ต corresponds to ๐บ๐ต

1๐บ๐ตโˆ’โˆ’โ†’ ๐บ๐ต, is called the counit.

Theorem 3.5. Given ๐น โˆถ C โ†’ D, ๐บ โˆถ D โ†’ C, specifying an adjunction๐น โŠฃ ๐บ is equivalent to specifying two natural transformations

๐œ‚ โˆถ 1C โ†’ ๐บ๐น๐œ€ โˆถ ๐น๐บ โ†’ 1D

satisfying the commutative diagrams

๐น ๐น๐บ๐น

๐น

๐น๐œ‚

1๐น

๐œ€๐น

๐บ ๐บ๐น๐บ

๐บ

๐œ‚๐บ

1๐บ๐บ๐œ€

which are called the triangular identities.

Proof. First suppose given ๐น โŠฃ ๐บ. Define ๐œ‚ and ๐œ€ as in Theorem 3.1 and itsdual. Now consider the composite

๐น๐ด๐น๐œ‚๐ดโˆ’โˆ’โ†’ ๐น๐บ๐น๐ด

๐œ€๐น๐ดโˆ’โˆ’โ†’ ๐น๐ด.

Under the adjunction this corresponds to

๐ด๐œ‚๐ดโˆ’โ†’ ๐บ๐น๐ด

1๐บ๐น๐ดโˆ’โˆ’โˆ’โ†’ ๐บ๐น๐ด

but this also corresponds to 1๐น๐ด so ๐œ€๐น๐ด๐น๐œ‚๐ด = 1๐น๐ด. The other identity is dual.Conversely, suppose ๐œ‚ and ๐œ€ satisfying the trianglular identities. Given ๐ด

๐‘“โˆ’โ†’

๐บ๐ต, let ฮฆ(๐‘“) be the composite

๐น๐ด๐น๐‘“โˆ’โ†’ ๐น๐บ๐ต

๐œ€๐ตโˆ’โ†’ ๐ต

and given ๐น๐ด๐‘”โˆ’โ†’ ๐ต, let ฮจ(๐‘”) be

๐ด๐œ‚๐ดโˆ’โ†’ ๐บ๐น๐ด

๐บ๐‘”โˆ’โˆ’โ†’ ๐บ๐ต.

19

Page 21: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

Then both ฮฆ and ฮจ are both natural. Need to show that ฮฆฮจ and ฮจฮฆ areidentity mappings. But

ฮจฮฆ(๐ด๐‘“โˆ’โ†’ ๐บ๐ต)

=๐ด๐œ‚๐ดโˆ’โ†’ ๐บ๐น๐ด

๐บ๐น๐‘“โˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐ต

๐บ๐œ€๐ตโˆ’โˆ’โ†’ ๐บ๐ต

=๐ด๐‘“โˆ’โ†’ ๐บ๐ต

๐œ‚๐บ๐ตโˆ’โˆ’โ†’ ๐บ๐น๐บ๐ต

๐บ๐œ€๐ตโˆ’โˆ’โ†’ ๐บ๐ต

=๐ด๐‘“โˆ’โ†’ ๐บ๐ต

where the second equality is naturality of ๐œ‚ and the third equality is triangularequation. Dually ฮฆฮจ(๐‘”) = ๐‘”.

Sometimes this is taken to be the definition of adjunction.Obviously two inverse functors form an adjunction. We have seen before a

weaker notion of inverse, namely a pair of functors forming an equivalence ofcategories. The question is, do they always from an adjunction? The answer isyes, but sometimes we canโ€™t see it since weโ€™ve chosen the wrong isomorphism.

Lemma 3.6. Given functors ๐น โˆถ C โ†’ D, ๐บ โˆถ D โ†’ C and natural isomor-phisms

๐›ผ โˆถ 1C โ†’ ๐บ๐น๐›ฝ โˆถ ๐น๐บ โ†’ 1D

there are isomorphism

๐›ผโ€ฒ โˆถ 1C โ†’ ๐บ๐น๐›ฝโ€ฒ โˆถ ๐น๐บ โ†’ 1D

which satisfy the triangular identities so ๐น โŠฃ ๐บ and ๐บ โŠฃ ๐น.

This is often summarised as โ€œevery equivalence is an adjoint equivalenceโ€.

Proof. We fix ๐›ผโ€ฒ = ๐›ผ and modify ๐›ฝ. We have to change the domain andcodomain of ๐›ฝ by conjugation.

Let ๐›ฝโ€ฒ be the composite

๐น๐บ(๐น๐บ๐›ฝ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐บ(๐น๐›ผ๐บ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐›ฝโˆ’โ†’ 1D.

Note that ๐น๐บ๐›ฝ = ๐›ฝ๐น๐บ since

๐น๐บ๐น๐บ ๐น๐บ

๐น๐บ 1D

๐น๐บ๐›ฝ

๐›ฝ๐น๐บ ๐›ฝ๐›ฝ

commmutes by naturality of ๐›ฝ and ๐›ฝ is monic.

20

Page 22: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

Now (๐›ฝโ€ฒ๐น)(๐น๐›ผโ€ฒ) is the composite

๐น๐น๐›ผโˆ’โˆ’โ†’ ๐น๐บ๐น

(๐›ฝ๐น๐บ๐น)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐บ๐น(๐น๐›ผ๐บ๐น)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐›ฝ๐นโˆ’โ†’ ๐น

=๐น(๐›ฝ๐น)โˆ’1

โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐น๐บ๐น๐›ผโˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐บ๐น

(๐น๐›ผ๐บ๐น)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐›ฝ๐นโˆ’โ†’ ๐น

=๐น(๐›ฝ๐น)โˆ’1

โˆ’โˆ’โˆ’โˆ’โ†’ ๐น๐บ๐น๐›ฝ๐นโˆ’โ†’ ๐น

=1๐น

since ๐บ๐น๐›ผ = ๐›ผ๐บ๐น. Similarly (๐บ๐›ฝโ€ฒ)(๐›ผโ€ฒ๐บ) is

๐บ๐›ผ๐บโˆ’โˆ’โ†’ ๐บ๐น๐บ

(๐บ๐น๐บ๐›ฝ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐น๐บ(๐บ๐น๐›ผ๐บ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐บ๐›ฝโˆ’โˆ’โ†’ ๐บ

=๐บ(๐บ๐›ฝ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐›ผ๐บ๐น๐บโˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐น๐บ

(๐บ๐น๐›ผ๐บ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐บ๐›ฝโˆ’โˆ’โ†’ ๐บ

=๐บ(๐บ๐›ฝ)โˆ’1

โˆ’โˆ’โˆ’โˆ’โ†’ ๐บ๐น๐บ๐บ๐›ฝโˆ’โˆ’โ†’ ๐บ

=1๐บ

Lemma 3.7. Suppose ๐บ โˆถ D โ†’ C has a left adjoint ๐น with counit ๐œ€ โˆถ ๐น๐บ โ†’1D, then

1. ๐บ is faithful if and only if ๐œ€ is pointwise epic,

2. ๐บ is full and faithful is and only if ๐œ€ is an isomorphism.

Proof.

1. Given ๐ต๐‘”โˆ’โ†’ ๐ตโ€ฒ, ๐บ๐‘” corresponds under the adjunction to the composite

๐น๐บ๐ต๐œ€๐ตโˆ’โ†’ ๐ต

๐‘”โˆ’โ†’ ๐ตโ€ฒ.

Hence the mapping ๐‘” โ†ฆ ๐บ๐‘” is injective on morphisms with domain ๐ต (andspecified codomain) if and only if ๐‘” โ†ฆ ๐‘”๐œ€๐ต is injective, if and only if ๐œ€๐ต isepic.

2. Similarly, ๐บ is full and faithful if and only if ๐‘” โ†ฆ ๐‘”๐œ€๐ต is bijective. If๐›ผ โˆถ ๐ต โ†’ ๐น๐บ๐ต is such that ๐›ผ๐œ€๐ต = 1๐น๐บ๐ต, i.e. ๐›ผ is left inverse of ๐œ€๐ต, then

๐œ€๐ต๐›ผ๐œ€๐ต = ๐œ€๐ต,

whence ๐œ€๐ต๐›ผ = 1๐ต. So ๐œ€๐ต is an isomophism. Thus ๐œ€ is an isomorphism.

Definition (reflection, reflective subcategory). By a reflection we mean anadjunction in which the right adjoint is full and faithful (equivalently thecounit is an isomorphism).

We say a full subcategory Cโ€ฒ โŠ† C is reflective if the inclusion Cโ€ฒ โ†’ Chas a left adjoint.

21

Page 23: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

3 Adjunctions

Example.

1. The category AbGp of abelian groups is reflective in Gp: the left adjointsends a group ๐บ to its abelianization ๐บ/๐บโ€ฒ, where ๐บโ€ฒ is the subgroupgenerated by all commutators [๐‘ฅ, ๐‘ฆ] = ๐‘ฅ๐‘ฆ๐‘ฅโˆ’1๐‘ฆโˆ’1 for ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ. (The unitof the adjunction is the quotient map ๐บ โ†’ ๐บ/๐บโ€ฒ)This is where the name โ€œreflecting subcategoryโ€ comes from: mirror is 2Dso reflection in a mirror cannot create a copy of a 3D object. However,it keeps every 2D detail fully and faithfully. Similarly abelianization doesnot tell you everything about ๐บ but as much as an abelian group can. c.f.universal property.

2. Given an abelian group, let ๐ด๐‘‡ denote the torsion subgroup, i.e. the sub-group of elements of finite orders. The assigment ๐ด โ†ฆ ๐ด/๐ด๐‘‡ gives a leftadjoint to the inclusion tfAbGp โ†’ AbGp, where tfAbGp is the fullsubcategory of torsion-free abelian groups.On the other hand ๐ด โ†ฆ ๐ด๐‘‡ is the right adjoint to the inclusion tAbGp โ†’AbGp from torsion abelian groups to abelain groups, so this subcate-gory is coreflective. There are many many examples in algebra involving(co)reflective subcategories, and the constructions all give rise to impor-tant universal properries.

3. Let KHaus โŠ† Top be the full subcategory of compact Hausdorff spaces.The inclusion KHaus โ†’ Top has a left adjoint ๐›ฝ, the Stone-ฤŒech com-pactification. It is a reflective subcategory. Weโ€™ll revisit this example laterin the course.

4. Let ๐‘‹ be a topological space. We say ๐ด โŠ† ๐‘‹ is sequentially closed if๐‘ฅ๐‘› โ†’ ๐‘ฅโˆž and ๐‘ฅ๐‘› โˆˆ ๐ด for all ๐‘› implies ๐‘ฅโˆž โˆˆ ๐ด. Note that closedimplies sequentially closed but not vice versa. We say ๐‘‹ is sequentialif all sequentially closed sets are closed, e.g. a metric space. Given anon-sequential space ๐‘‹, let ๐‘‹๐‘  be the same set with topology given bythe sequentially open sets (complements of sequentially closed sets) in ๐‘‹.Certainly the identity ๐‘‹๐‘  โ†’ ๐‘‹ is continuous, and defines the counit ofan adjunction between the inclusion Seq โ†’ Top and its right adjoint๐‘‹ โ†ฆ ๐‘‹๐‘ .

5. If ๐‘‹ is a topological space, the poset ๐ถ๐‘‹ of closed subsets of ๐‘‹ is reflectivein ๐‘ƒ๐‘‹ with reflector given by closure and the poset ๐‘‚๐‘‹ of open subsetsis coreflective with coreflector given by interior.

22

Page 24: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

4 Limits

Definition (diagram, cone, limit).

1. Let J be a category (almost always small, often finite). By a diagramof shape J in C we mean a functor ๐ท โˆถ J โ†’ C. The objects ๐ท(๐‘—) for๐‘— โˆˆ obJ are called vertices of the diagram and the morphisms ๐ท(๐›ผ)๐›ผ โˆˆ morJ are called edges of ๐ท.

2. Given ๐ท โˆถ J โ†’ C, a cone over ๐ท consists of an object ๐ด of C, called

the apex of the cone, together with morphisms ๐ด๐œ†๐‘—โˆ’โ†’ ๐ท(๐‘—) for each

๐‘— โˆˆ obJ, called the legs of the cone, such that

๐ด

๐ท(๐‘—) ๐ท(๐‘—โ€ฒ)

๐œ†๐‘— ๐œ†๐‘—โ€ฒ

๐ท(๐›ผ)

commutes for all ๐‘—๐›ผโˆ’โ†’ ๐‘—โ€ฒ in morJ.

Given cones (๐ด, (๐œ†๐‘—)๐‘—โˆˆob J) and (๐ต, (๐œ‡๐‘—)๐‘—โˆˆob J), a morphism of cones

between them is a morphism ๐ด๐‘“โˆ’โ†’ ๐ต such that

๐ด ๐ต

๐ท(๐‘—)๐œ†๐‘—

๐‘“

๐œ‡๐‘—

commutes for all ๐‘—.We write Cone(๐ท) for the category of all cones over ๐ท.

3. A limit for ๐ท is a terminal object of Cone(๐ท), if this exists.Dually we have the notion of cone under a diagram (sometime calledcocone) and of colimit (i.e. initial cone under ๐ท).

For example, if J is the category

โ‹… โ‹…

โ‹… โ‹…

with 4 objects and 5 non-identity morphisms, a diagram of shape J is a com-mutative square

๐ด ๐ต

๐ถ ๐ท

๐‘“

๐‘” โ„Ž

๐‘˜

On the other hand, to express a not-necessarily-commutative square, we use

23

Page 25: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

the shapeโ‹… โ‹…

โ‹… โ‹…

An alternative way to understand limits is that, if C is locally small and Jis small, we have a functor Cop โ†’ Set sending ๐ด to the set of cones with apex๐ด. A limit for ๐ท is a representation of this functor.

A thrid way to visualise cones: if ฮ”๐ด denotes the constant diagram of shapeJ with all vertices ๐ด and all edges 1๐ด, then a cone over ๐ท with apex ๐ด is thesame thing as a natural transformation ฮ”๐ด โ†’ ๐ท. ฮ” is a functor C โ†’ [J, C]and Cone(๐ท) is the arrow category (ฮ” โ†“ ๐ท). So to say that every diagram ofshape J in C has a limit is equivalent to saying that ฮ” has a right adjoint. (Wesay C has limits of shape J)

Dually C has colimits of shape J if and only if ฮ” โˆถ C โ†’ [J, C] has a leftadjoint.

Example.

1. Suppose ๐ฝ = โˆ…. There is a unique diagram of shape J in C; a cone overit is just an object, and a morphism of cones is a morphism of C. So alimit for the empty diagram is a terminal object of C. We defined limitsin terms of terminal object but now the terminal object is also a speciallimit. Dually a colimit for it is an initial object.

2. Let J be the categoryโ‹… โ‹…

A diagram of shape J is a pair of objects ๐ด, ๐ต; a cone over it is a span

๐ถ

๐ด ๐ต

and a limit for it is a product

๐ด ร— ๐ต

๐ด ๐ต

๐œ‹1 ๐œ‹2

as defined in example 4 on page 12. Dually a colimit for it is a coproduct.More generally, if J is a small discrete category, a diagram of shape J isan indexed family (๐ด๐‘— โˆถ ๐‘— โˆˆ J), and a limit for it is a product (โˆ๐‘—โˆˆJ ๐ด๐‘—

๐œ‹๐‘—โˆ’โ†’

๐ด๐‘— โˆถ ๐‘— โˆˆ J). Dually, (๐ด๐‘—

๐œˆ๐‘—โˆ’โ†’ โˆ‘๐‘—โˆˆJ ๐ด๐‘— โˆถ ๐‘— โˆˆ J), sometimes also written as

โˆ๐‘—โˆˆJ ๐ด๐‘—.

3. Let J be the categoryโ‹… โ‹…

24

Page 26: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

A diagram of shape J is a parallel pair

๐ด ๐ต๐‘“

๐‘”

a cone over it is๐ถ

๐ด ๐ต

โ„Ž ๐‘˜

satisfying ๐‘“โ„Ž = ๐‘˜ = ๐‘”โ„Ž, or equivalently a morphism โ„Ž โˆถ ๐ถ โ†’ ๐ด satisfying๐‘“โ„Ž = ๐‘”โ„Ž. A (co)limit for the diagram is a (co)equaliser as defined inexample 5 on page 12.

4. Let J be the categoryโ‹…

โ‹… โ‹…A diagram of shape J is a cospan

๐ด

๐ต ๐ถ

๐‘“๐‘”

a cone over it is๐ท ๐ด

๐ต ๐ถ

๐‘

๐‘ž ๐‘Ÿ

satisfying ๐‘“๐‘ = ๐‘Ÿ = ๐‘”๐‘ž, or equivalently a span (๐‘, ๐‘ž) completing the dia-gram to a commutative square. A limit for the diagram is called a pullbackof (๐‘“, ๐‘”). In Set, the apex of the pullback is the โ€œfibre productโ€

๐ด ร—๐ถ ๐ต = {(๐‘ฅ, ๐‘ฆ) โˆถ ๐ด ร— ๐ต โˆถ ๐‘“(๐‘ฅ) = ๐‘”(๐‘ฆ)}.

Dually, colimits of shape Jop are pushouts. Given

๐ด ๐ต

๐ถ

๐‘“

๐‘”

we โ€œpush ๐‘” along ๐‘“โ€ to get the RHS of the colimt square.

5. Let J be the poset of natural numbers. A diagram of shape J is a directedsystem

๐ด0๐‘“0โˆ’โ†’ ๐ด1

๐‘“1โˆ’โ†’ ๐ด2

๐‘“2โˆ’โ†’ ๐ด3

๐‘“3โˆ’โ†’ โ€ฆ

A colimit for this is called a direct limit: it consists of ๐ดโˆž equipped withmorphisms ๐ด๐‘›

๐‘”๐‘›โˆ’โ†’ ๐ดโˆž satisfying ๐‘”๐‘› = ๐‘”๐‘›+1๐‘“๐‘› for all ๐‘› and universal

among such. Dually we have inverse system and inverse limit.

25

Page 27: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

Theorem 4.1.

1. Suppose C has equalisers and all finite (respectively small) products.Then C has all finite (respectively small) limits.

2. Suppose C has pullbacks and a terminal object, then C has all finitelimts.

Proof.

1. Suppose given ๐ท โˆถ J โ†’ C. Form the industrial strength products

๐‘ƒ = โˆ๐‘—โˆˆob J

๐ท(๐‘—), ๐‘„ = โˆ๐›ผโˆˆmor J

๐ท(cod๐›ผ).

We have morphisms ๐‘“, ๐‘” โˆถ ๐‘ƒ โ†’ ๐‘„ defined by

๐œ‹๐›ผ๐‘“ = ๐œ‹cod ๐›ผ, ๐œ‹๐›ผ๐‘” = ๐ท(๐›ผ)๐œ‹dom ๐›ผ

for all ๐›ผ. Let ๐‘’ โˆถ ๐ธ โ†’ ๐‘ƒ be an equaliser of (๐‘“, ๐‘”). The composites

๐œ†๐‘— = ๐œ‹๐‘—๐‘’ โˆถ ๐ธ โ†’ ๐ท(๐‘—)

form a cone over ๐ท: given ๐›ผ โˆถ ๐‘— โ†’ ๐‘—โ€ฒ in J,

๐ท(๐›ผ)๐œ†๐‘— = ๐ท(๐›ผ)๐œ‹๐‘—๐‘’ = ๐œ‹๐›ผ๐‘”๐‘’ = ๐œ‹๐›ผ๐‘“๐‘’ = ๐œ‹๐‘—โ€ฒ๐‘’ = ๐œ†๐‘—โ€ฒ .

Given any cone (๐ด, (๐œ‡๐‘— โˆถ ๐‘— โˆˆ obJ)) over ๐ท, there is a unique ๐œ‡ โˆถ ๐ด โ†’ ๐‘ƒwith ๐œ‹๐‘—๐œ‡ = ๐œ‡๐‘— for each ๐‘— and

๐œ‹๐›ผ๐‘“๐œ‡ = ๐œ‡cod ๐›ผ = ๐ท(๐›ผ)๐œ‡dom ๐›ผ = ๐œ‹๐›ผ๐‘”๐œ‡

for all ๐›ผ, and hence ๐‘“๐œ‡ = ๐‘”๐œ‡, so exists unique ๐œˆ โˆถ ๐ด โ†’ ๐ธ with ๐‘’๐œˆ = ๐œ‡. So(๐ธ, (๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) is a limit cone.

2. It is enough to construct finite products and equalisers. But if 1 is theterminal object, then a pullback for

๐ด

๐ต 1

has the universal property of a product ๐ด ร— ๐ต and we can form โˆ๐‘›๐‘–=1 ๐ด๐‘–

inductively as

๐ด1 ร— (๐ด2 ร— (๐ด3 ร— โ‹ฏ (๐ด๐‘›โˆ’1 ร— ๐ด๐‘›)) โ‹ฏ).

Now to form the equalisers of ๐‘“, ๐‘” โˆถ ๐ด โ†’ ๐ต, consider the cospan

๐ด

๐ด ๐ด ร— ๐ต

(1๐ด,๐‘“)(1๐ด,๐‘”)

26

Page 28: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

A cone over this consists of

๐‘ƒ ๐ด

๐ด

โ„Ž

๐‘˜

satisfying (1๐ด, ๐‘“)โ„Ž = (1๐ด, ๐‘”)๐‘˜ or equivalently 1๐ดโ„Ž = 1๐ด๐‘˜ and ๐‘“โ„Ž = ๐‘”๐‘˜, orequivalently a morphism โ„Ž โˆถ ๐‘ƒ โ†’ ๐ด satisfying ๐‘“โ„Ž = ๐‘”โ„Ž. So a pullback for(1๐ด, ๐‘“) and (1๐ด, ๐‘”) is an equaliser of (๐‘“, ๐‘”).

Definition (complete, cocomplete). We say a category C is complete if ithas all small limits. Dually, C is cocomplete if has all small colimts.

For example, Set is both complete and cocomplete: products are cartesianproducts and coproducts are disjoint unions. Similarly Gp, AbGp, Rng, Mod๐พare all complete and cocomplete.1 Top is also complete and cocomplete, withboth product and coproduct given by the underlying set.

Definition (preserve limit, reflect limit, create limit). Let ๐น โˆถ C โ†’ D be afunctor.

1. We say ๐น preserves limits of shape J if, given ๐ท โˆถ J โ†’ C and a limitcone (๐ฟ, (๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) in C, (๐น๐ฟ, (๐น๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) is a limit for ๐น๐ท.

2. We say ๐น reflects limits of shape J if, given ๐ท โˆถ J โ†’ C and a cone(๐ฟ, (๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) such that (๐น๐ฟ, (๐น๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) is a limit for ๐น๐ทthen (๐ฟ, (๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) for ๐ท.

3. We say ๐น creates limts of shape J if, given ๐ท โˆถ J โ†’ C and a limit(๐‘€, (๐œ‡๐‘— โˆถ ๐‘— โˆˆ obJ)) for ๐น๐ท, there exists a cone (๐ฟ, (๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ))over ๐ท whose image under ๐น is isomorphic to the limit cone, and anysuch cone is a limit for ๐ท.

Remark.

1. If C has limits of shape J and ๐น โˆถ C โ†’ D preserves them and reflectsisomorphisms then ๐น reflects limits of shape J.

2. ๐น reflects limits of shape 1 if and only if ๐น reflects isomorphism.

3. If D has limits of shape J and ๐น โˆถ C โ†’ D creates them, then ๐น bothpreserves and reflects them.

4. In any of the statement of Theorem 4.1, we may replace both instancesof โ€œC hasโ€ by either โ€œC has and ๐น โˆถ C โ†’ D preservesโ€ or โ€œD has and๐น โˆถ C โ†’ D createsโ€.

Example.1Note that the products have underlying set the cartesian products of those of each com-

ponent, but coproducts tend to be different. Weโ€™ll discuss this later.

27

Page 29: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

1. ๐‘ˆ โˆถ Gp โ†’ Set creates all small limits: given a family (๐บ๐‘– โˆถ ๐‘– โˆˆ ๐ผ)of groups, there is a unique group structure on โˆ๐‘–โˆˆ๐ผ ๐‘ˆ๐บ๐‘– making theprojections homomorphisms, and this makes it a product in Gp. Similarlyfor equalisers.But ๐‘ˆ doesnโ€™t preserve coproducts: ๐‘ˆ(๐บ โˆ— ๐ป) โ‰‡ ๐‘ˆ๐บ โจฟ ๐‘ˆ๐ป.

2. ๐‘ˆ โˆถ Top โ†’ Set preserves all small limits and colimits but doesnโ€™t reflectthem: if ๐ฟ is a limit for ๐ท โˆถ J โ†’ Top and ๐ฟ is not discrete, there isanother cone with apex ๐ฟ๐‘‘, which is the same underlying space as ๐ฟ withdiscrete topology, mapped to the same limit in Set.

3. The inclusion functor ๐ผ โˆถ AbGp โ†’ Gp reflects coproducts, but doesnโ€™tpreserve them. The direct sum ๐ดโŠ•๐ต (coproduct in AbGp) is not normallyisomorphic to the free product ๐ด โˆ— ๐ต, which is not abelian unless either ๐ดor ๐ต is trivial, but if ๐ด โ‰… {๐‘’} then ๐ด ร— ๐ต โ‰… ๐ด โŠ• ๐ต โ‰… ๐ต.

The following lemma tells us how to construct limit in functor categories:

Lemma 4.2. If D has limits of shape J then so does the functor category[C, D] for any C, and the forgetful functor [C, D] โ†’ Dob C creates them.

Proof. Suppose given a diagram of shape J in [C, D]. Think of it as a functor๐ท โˆถ J ร— C โ†’ D. For each ๐ด โˆˆ obC, let (๐ฟ๐ด, (๐œ†๐‘—,๐ด โˆถ ๐‘— โˆˆ obJ)) be a limit conefor the diagram ๐ท(โˆ’, ๐ด) โˆถ J โ†’ D.

Given ๐ด๐‘“โˆ’โ†’ ๐ต in C, the composition

๐ฟ๐ด๐œ†๐‘—,๐ดโˆ’โˆ’โ†’ ๐ท(๐‘—, ๐ด)

๐ท(๐‘—,๐‘“)โˆ’โˆ’โˆ’โˆ’โ†’ ๐ท(๐‘—, ๐ต)

form a cone over D(โˆ’, ๐ต), since the square

๐ท(๐‘—, ๐ด) ๐ท(๐‘—, ๐ต)

๐ท(๐‘—โ€ฒ, ๐ด) ๐ท(๐‘—โ€ฒ, ๐ต)

๐ท(๐‘—,๐‘“)

๐ท(๐›ผ,๐ด) ๐ท(๐›ผ,๐ต)๐ท(๐‘—โ€ฒ,๐‘“)

commutes. So there is a unique ๐ฟ๐‘“ โˆถ ๐ฟ๐ด โ†’ ๐ฟ๐ต making

๐ฟ๐ด ๐ท(๐‘—, ๐ด)

๐ฟ๐ต ๐ท(๐‘—, ๐ต)

๐œ†๐‘—,๐ด

๐ฟ๐‘“ ๐ท(๐‘—,๐‘“)๐œ†๐‘—,๐ต

commute for all ๐‘—. Uniqueness follows from functoriality: given ๐‘” โˆถ ๐ต โ†’ ๐ถ,๐ฟ(๐‘”๐‘“) and ๐ฟ(๐‘”)๐ฟ(๐‘“) are factorisations of the same cone through the limit ๐ฟ๐ถ.And this is the unique functor structure on ๐ด โ†ฆ ๐ฟ๐ด making the ๐œ†๐‘—,โˆ’ intonatural transformations.

The cone (๐ฟ, (๐œ†๐‘—,โˆ’ โˆถ ๐‘— โˆˆ obJ)) is a limit: suppose given another cone(๐‘€, (๐œ‡๐‘—,โˆ’ โˆถ ๐‘— โˆˆ obJ)), then for each ๐ด, (๐‘€๐ด, (๐œ‡๐‘—,๐ด โˆถ ๐‘— โˆˆ obJ)) is a coneover D(โˆ’, ๐ด), so induces a unique ๐›ผ๐ด โˆถ ๐‘€๐ด โ†’ ๐ฟ๐ด. Naturality of ๐›ผ followsfrom uniqueness of factorisation through a limit. So (๐‘€, (๐œ‡๐ฝ)) factors uniquelythrough (๐ฟ, (๐œ†๐‘—)). (This is creation is the strict sense, i.e. equality instead ofisomorphism)

28

Page 30: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

Remark. In any category, a morphism ๐ด๐‘“โˆ’โ†’ ๐ต is monic if and only if

๐ด ๐ด

๐ด ๐ต

1๐ด

1๐ด ๐‘“๐‘“

is a pullback. Hence any functor which preserves pullbacks preserves monomor-phisms. In particular if D has pullbacks momomorphisms in [C, D] are justpointwise monos. See example sheet 1 for a counterexample for the necces-sity of the pullback condition. Now we can delete the word โ€œpointwiseโ€ in thestatement of Lemma 2.5.

Theorem 4.3 (right adjoint preserves limits). Suppose ๐บ โˆถ D โ†’ C has aleft adjoint. Then ๐บ preserves all limits which exist in D.

Proof 1 with additional assumption. Suppose C and D both have limits of shapeJ. We have a commutative diagram

C D

[J, C] [J, D]

๐น

ฮ” ฮ”[J,๐น ]

where ฮ” sends an object to its constant diagram and [J, ๐น ] is composition with๐น. All functors in it have right adjoints (in particular, [J, ๐น ] โŠฃ [J, ๐บ]). So byCorollary 3.4 the diagram of right adjoints

D C

[J, D] [J, C]

๐บ

limJ

[J,๐บ]

limJ

commutes up to isomorphism, i.e. ๐บ preserves limits of shape J.

Proof 2. Suppose given ๐ท โˆถ J โ†’ D and a limit cone (๐ฟ, (๐œ†๐‘— โˆถ ๐ฟ โ†’ ๐ท(๐‘—) โˆถ๐‘— โˆˆ obJ)). Given a cone (๐ด, (๐›ผ๐‘— โˆถ ๐ด โ†’ ๐บ๐ท(๐‘—) โˆถ ๐‘— โˆˆ obJ)) over ๐บ๐ท, the

morphisms ๐น๐ด๏ฟฝ๏ฟฝ๐‘—โˆ’โ†’ ๐ท(๐‘—) form a cone over ๐ท, so they induce a unique ๐น๐ด

๐›ฝโˆ’โ†’ ๐ฟ

such that ๐œ†๐‘—๐›ฝ = ๐›ผ๐‘— for all ๐‘—. Then ๐ด

๐›ฝโˆ’โ†’ ๐บ๐ฟ is the unique morphism satisfying

(๐บ๐œ†๐‘—)๐›ฝ = ๐›ผ๐‘— for all ๐‘—. So (๐บ๐ฟ, (๐บ๐œ†๐‘— โˆถ ๐‘— โˆˆ obJ)) is a limit cone in C.

The last major theorem in this chapter is adjoint functor theorem. It saysthat morally the converse of the above theorem is also true, i.e. a functor pre-serving all limits ought to have a left adjoint. It may only fail so if some limitsdo not exist. The โ€œprimevalโ€ adjoint functor theorem is exactly this: if D hasand ๐บ โˆถ D โ†’ C preserves all limits, then ๐บ has a left adjoint. However, this istoo strong a condition as the categories having all limits can be shown to be pre-orders. Thus there are two more versions cut down on the all limits requirementand use some set theory to replace part of it.

29

Page 31: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

Lemma 4.4. Suppose D has and ๐บ โˆถ D โ†’ C preserves limits of shape J.Then for any ๐ด โˆˆ obC the arrow category (๐ด โ†“ ๐บ) has limits of shape J,and the forgetful functor ๐‘ˆ โˆถ (๐ด โ†“ ๐บ) โ†’ D creates them.

Proof. Suppose given ๐ท โˆถ J โ†’ (๐ด โ†“ ๐บ). Write ๐ท(๐‘—) as (๐‘ˆ๐ท(๐‘—), ๐‘“๐‘—). Let(๐ฟ, (๐œ†๐‘— โˆถ ๐ฟ โ†’ ๐‘ˆ๐ท(๐‘—))๐‘—โˆˆob J) be a limit for ๐‘ˆ๐ท. Then (๐บ๐ฟ, (๐œ†๐‘—)๐‘—โˆˆob J) is a limitfor ๐บ๐‘ˆ๐ท. Since the edges of ๐‘ˆ๐ท are morphisms in (๐ด โ†“ ๐บ), the ๐‘“๐‘— form a coneover ๐บ๐‘ˆ๐ท so there is a unique โ„Ž โˆถ ๐ด โ†’ ๐บ๐ฟ such that (๐บ๐œ†๐‘—)โ„Ž = ๐‘“๐‘— for all ๐‘—, i.e.thereโ€™s a unique โ„Ž such that the ๐œ†๐‘—โ€™s are all morphisms in (๐ฟ, โ„Ž) โ†’ (๐‘ˆ๐ท(๐‘—), ๐‘“๐‘—)in (๐ด โ†“ ๐บ). We need to show that ((๐ฟ, โ„Ž), (๐œ†๐‘—)๐‘—โˆˆob J) is a limit cone in (๐ด โ†“ ๐บ).If (๐ถ, (๐œ‡๐‘—)๐‘—โˆˆob J) is any cone over D then (๐ถ, (๐œ‡๐‘—)๐‘—โˆˆob J) is a cone over ๐‘ˆ๐ท sother is a unique โ„“ โˆถ ๐ถ โ†’ ๐ฟ with ๐œ†๐‘—โ„“ = ๐œ‡๐‘— for all ๐‘—. We need to show (๐บโ„“)๐‘˜ = โ„Ž.But

(๐บ๐œ†๐‘—)(๐บโ„“)๐‘˜ = (๐บ๐œ‡๐‘—)๐‘˜ = ๐‘“๐‘— = (๐บ๐œ†๐‘—)โ„Ž

for all ๐‘— so (๐บโ„“)๐‘˜ = โ„Ž by uniqueness of factorisations through limits.

Recall that we have seen a limit for the empty diagram is a terminal object.We can also consider dually the diagram of โ€œmaximal sizeโ€, namely that of acategory over itself, to realise inital object as a limit. Think for example posets,in which limit for an empty diagram is maximimum while limit for the

Lemma 4.5. A category C has an initial object if and only if 1C โˆถ C โ†’ C,regarded as a diagram of shape C in C, has a limit.

Note that this is an exception to J being small.

Proof. First suppose C has an initial object ๐ผ. Then the unique morphisms(๐ผ โ†’ ๐ด โˆถ ๐ด โˆˆ obC) form a cone over 1C and given any cone (๐œ†๐ด โˆถ ๐ถ โ†’ ๐ด โˆถ ๐ด โˆˆobC), for any ๐ด the triangle

๐ถ ๐ผ

๐ด

๐œ†๐ผ

๐œ†๐ด

commutes so ๐œ†๐ผ is the unique factorisation of (๐œ†๐ด โˆถ ๐ด โˆˆ obC) through (๐ผ โ†’ ๐ด โˆถ๐ด โˆˆ obC).

Conversely, suppose (๐ผ, (๐œ†๐ด โˆถ ๐ผ โ†’ ๐ด)๐ดโˆˆob C) is a limit. Then for any ๐‘“ โˆถ ๐ผ โ†’๐ด the diagram

๐ผ ๐ผ

๐ด

๐œ†๐ผ

๐œ†๐ด๐‘“

commutes. ๐ผ is weakly initial as we donโ€™t know if it is unique, i.e. if ๐œ†๐ผ = 1๐ผ. Inparticular, putting ๐‘“ = ๐œ†๐ด, we see that ๐œ†๐ผ is a factorisation of the limit conethrough itself so ๐œ†๐ผ = 1๐ผ. Hence every ๐‘“ โˆถ ๐ผ โ†’ ๐ด satisfies ๐‘“ = ๐œ†๐ด.

The primeval adjoint functor theorem follows immediately from the previoustwo lemmas and 3.3. However, it only applies to functors between preorders.See example sheet 2 Q6.

30

Page 32: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

Theorem 4.6 (general adjoint functor theorem). Suppose D is locally smalland complete. Then ๐บ โˆถ D โ†’ C has a left adjoint if and only if ๐บ preservesall small limits and satisfies the solution set condition, which says that foreach ๐ด โˆˆ obC, there exists a set of morphisms {๐‘“๐‘– โˆถ ๐ด โ†’ ๐บ๐ต๐‘– โˆถ ๐‘– โˆˆ ๐ผ} suchthat every โ„Ž โˆถ ๐ด โ†’ ๐บ๐ถ factors as

๐ด๐‘“๐‘–โˆ’โ†’ ๐บ๐ต๐‘–

๐บ๐‘”โˆ’โˆ’โ†’ ๐บ๐ถ

for some ๐‘– and some ๐‘” โˆถ ๐ต๐‘– โ†’ ๐ถ.

Proof. If ๐น โŠฃ ๐บ then ๐บ preserves limits. To obtain the solution set, note that{๐œ‚๐ด โˆถ ๐ด โ†’ ๐บ๐น๐ด} is a singleton solution set by 3.3 since it is initial.

Conversely, by 4.10 (๐ด โ†“ ๐บ) is complete and it inherits local smallness fromD. We need to show that if ๐’œ is complete and locally small and has a weaklyinitial set of objects {๐ต๐‘– โˆถ ๐‘– โˆˆ ๐ผ} then ๐’œ has an initial object. First form๐‘ƒ = โˆ๐‘–โˆˆ๐ผ ๐ต๐‘–; then ๐‘ƒ is weakly initial. Now form the limit of

๐‘ƒ ๐‘ƒโ‹ฎ

where edges are all the endomorphisms of ๐‘ƒ. Denote it ๐‘– โˆถ ๐ผ โ†’ ๐‘ƒ. ๐ผ is alsoweakly initial in ๐’œ. Suppose given ๐‘“, ๐‘” โˆถ ๐ผ โ†’ ๐ถ. Form the equaliser ๐‘’ โˆถ ๐ธ โ†’ ๐ผof (๐‘“, ๐‘”). Then there exists โ„Ž โˆถ ๐‘ƒ โ†’ ๐ธ since ๐‘ƒ is weakly initial. ๐‘–๐‘’โ„Ž โˆถ ๐‘ƒ โ†’ ๐‘ƒand 1๐‘ƒ are edegs of the diagram so ๐‘– = ๐‘–๐‘’โ„Ž๐‘–. But ๐‘– is monic so ๐‘’โ„Ž๐‘– = 1๐ผ so ๐‘’ issplit epic so ๐‘“ = ๐‘”. Thus ๐ผ is initial.

Example.

1. This example comes from Mac Lane. He asked the question that, if we arenot given the free group functor, how can we to construct the left adjointof forgetful functor? Consider the forgetful functor ๐‘ˆ โˆถ Gp โ†’ Set. By4.6a ๐‘ˆ creates all small limits so Gp has them and ๐‘ˆ preserves them. Gpis locally smal, given a set ๐ด, any ๐‘“ โˆถ ๐ด โ†’ ๐‘ˆ๐บ factors as

๐ด โ†’ ๐‘ˆ๐บโ€ฒ โ†’ ๐‘ˆ๐บ

where ๐บโ€ฒ is the subgroup generated by {๐‘“(๐‘ฅ) โˆถ ๐‘ฅ โˆˆ ๐ด} and card๐บโ€ฒ โ‰คmax{โ„ต0, card๐ด}. Let ๐ต be a set of this cardinality. Consider all subsets๐ตโ€ฒ โŠ† ๐ต, all group structures on ๐ตโ€ฒ and all mappings ๐ด โ†’ ๐ตโ€ฒ. These giveus a solution set at ๐ด.

2. Consider the category CLat of complete lattices (posets with arbitrarymeets and joints). Again the forgetful functor ๐‘ˆ โˆถ CLat โ†’ Set creates allsmall limits. But A. W. Hales showed in 1964 that for any cardinal ๐œ… thereexists complete lattices of cardinality โ‰ฅ ๐œ… generated by three elements. Sothe solution set condition fails at ๐ด = {๐‘ฅ, ๐‘ฆ, ๐‘ง} as we cannot bound thecartinality of the solution set, and ๐‘ˆ doesnโ€™t have a left adjoint.

The general adjoint functor theorem is general in the sense that it appliesto all categories, although it imposes solution set condition, which is a ratherstrong condition on the functor. Special adjoint functor theorem aims to get ridof the condition on the functor.

31

Page 33: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

Definition (subobject, quotient object). By a subobject of an object ๐ด ofC we mean a monomorphism ๐ดโ€ฒ โ†ฃ ๐ด. The subobjects of ๐ด are preorderedby ๐ดโ€ณ โ‰ค ๐ดโ€ฒ if there is a factorisation

๐ดโ€ณ ๐ดโ€ฒ

๐ด

Dually we have quotient objects.

Definition (well-powered). We say C is well-powered if each ๐ด โˆˆ obC hasa set of subobjects {๐ด๐‘– โ†ฃ ๐ด โˆถ ๐‘– โˆˆ ๐ผ} such that every subobject of ๐ด isisomorphic to some ๐ด๐‘–.

Dually if Cop is well-powered, we say C is well-copowered. (not cowell-powered, as it implies badly powered. It also sounds like something beingpowered by Simon Cowell, which is not quite what we study in this course)

For example in Set we can take inclusions {๐ดโ€ฒ โ†ช ๐ด โˆถ ๐ดโ€ฒ โˆˆ ๐‘ƒ๐ด}. This isalso where the name โ€œwell-poweredโ€ comes from as in the Set case it simplymeans power set exists.

Before stating and proving the special functor theorem we point out a simpleyet powerful observation about pullback square.

Lemma 4.7. Given a pullback square

๐‘ƒ ๐ด

๐ต ๐ถ

โ„Ž

๐‘˜ ๐‘“๐‘”

with ๐‘“ monic. Then ๐‘˜ is monic.

Proof. Suppose ๐‘ฅ, ๐‘ฆ โˆถ ๐ท โ†’ ๐‘ƒ satisfy ๐‘˜๐‘ฅ = ๐‘˜๐‘ฆ. Then

๐‘“โ„Ž๐‘ฅ = ๐‘”๐‘˜๐‘ฅ = ๐‘”๐‘˜๐‘ฆ = ๐‘“โ„Ž๐‘ฆ.

By ๐‘“ is monic so โ„Ž๐‘ฅ = โ„Ž๐‘ฆ. So ๐‘ฅ, ๐‘ฆ are factorisations of the same cone throughthe limit cone (โ„Ž, ๐‘˜).

Theorem 4.8 (special adjoint functor theorem). Suppose C and D are bothlocally small, and that D is complete and well-powered and has a coseparatingset. Then a functor ๐บ โˆถ D โ†’ C has a left adjoint if and only if it preservesall small limits.

Proof. The only if is given by right adjoint preserves limits. For the other direc-tion, for any ๐ด โˆˆ obC, (๐ด โ†“ ๐บ) is locally complete by 4.10, locally small, andwell-powered since the subobjects of (๐ต, ๐‘“) in (๐ด โ†“ ๐บ) are just those subobjects๐ตโ€ฒ โ†ฃ ๐ต in D for which ๐‘“ factors through ๐บ๐ตโ€ฒ โ†ฃ ๐บ๐ต. Also if {๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ} is acoseparating set for D then the set

{(๐‘†๐‘–, ๐‘“) โˆถ ๐‘– โˆˆ ๐ผ, ๐‘“ โˆˆ C(๐ด, ๐บ๐‘†๐‘–)}

32

Page 34: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

is coseparating in (๐ด โ†“ ๐บ): given ๐‘”, โ„Ž โˆถ (๐ต, ๐‘“) โ†’ (๐ตโ€ฒ, ๐‘“ โ€ฒ) in (๐ด โ†“ ๐บ) with ๐‘” โ‰  โ„Ž,there exists ๐‘˜ โˆถ ๐ตโ€ฒ โ†’ ๐‘†๐‘– for some ๐‘– with ๐‘˜๐‘” โ‰  ๐‘˜โ„Ž, and then ๐‘˜ is also a morphism(๐ตโ€ฒ, ๐‘“ โ€ฒ) โ†’ (๐‘†๐‘–, (๐บ๐‘˜)๐‘“ โ€ฒ) in (๐ด โ†“ ๐บ).

So we need to show that if ๐’œ is complete, locally small and well-poweredand has a coseparating set {๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ} then ๐’œ has an initial object. Form theproduct ๐‘ƒ = โˆ๐‘– โˆˆ ๐‘†๐‘–. We have the industrial stength product and now we needthe industrial strength pullback. Consider the diagram

๐‘ƒ๐‘— ๐‘ƒ๐‘–

โ‹ฎ

๐‘ƒ โ€ฒ ๐‘ƒ

whose edges are representative set of subobjects of ๐‘ƒ and form its limit

๐ผ ๐‘ƒ๐‘–

๐‘ƒ๐‘—

โ€ฆ

๐‘ƒ โ€ฒ

By the argument in the previous lemma, the legs of the cones are all monic;in particular ๐ผ โ†ฃ ๐‘ƒ is monic, and itโ€™s a least subobject of ๐‘ƒ. Hence ๐ผ has noproper subobjects. So given ๐‘“, ๐‘” โˆถ ๐ผ โ†’ ๐ด their equaliser is an isomorphism andhence ๐‘“ = ๐‘”.

We get uniqueness for free but need to work harder to show existence. Nowlet ๐ด be any object of ๐’œ. Form the product ๐‘„ = โˆ๐‘–โˆˆ๐ผ,๐‘“โˆˆ๐’œ(๐ด,๐‘†๐‘–) ๐‘†๐‘–. There is anobvious โ„Ž โˆถ ๐ด โ†’ ๐‘„ defined by ๐œ‹๐‘–,๐นโ„Ž = ๐‘“; and โ„Ž is monic, since the ๐‘†๐‘–โ€™s are acoseparating set. We also have a morphism ๐‘˜ โˆถ ๐‘ƒ โ†’ ๐‘„ defined by ๐œ‹๐‘–,๐‘“๐‘˜ = ๐œ‹๐‘–.Now form the pullback

๐ต ๐ด

๐‘ƒ ๐‘„

โ„Ž

๐‘˜

by lemma ๐‘ƒ is monic so ๐ต is a subobject of ๐‘ƒ. Hence there exists

๐ผ ๐ต

๐‘ƒ

and hence a morphism ๐ผ โ†’ ๐ต โ†’ ๐ด.

This result is due to Freyd, who first published it in a book as an exerciseto the readers (!).

Example. Consider the inclusion ๐ผ โˆถ KHaus โ†’ Top, where KHaus is thefull subcategory of compact Hausdorff spaces. KHaus has and ๐ผ preservessmall products (by Tychonoffโ€™s theorem) and equalisers (since equalisers of pairs

33

Page 35: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

4 Limits

๐‘“, ๐‘” โˆถ ๐‘‹ โ†’ ๐‘Œ with ๐‘Œ Hausdorff are closed subspaces). Both cateogories arelocally small and KHaus is well-powered (subobjects of ๐‘‹ are isomorphic toclosed subspaces). The closed interval [0, 1] is a coseparateor in KHaus byUrysohnโ€™s lemma. So by special adjoint functor theorem ๐ผ has a left adjoint ๐›ฝ,the Stone-ฤŒech compactification.

Remark.

1. ฤŒechโ€™s construction of ๐›ฝ is as follow: given ๐‘‹, form

๐‘ƒ = โˆ๐‘“โˆถ๐‘‹โ†’[0,1]

[0, 1]

and define โ„Ž โˆถ ๐‘‹ โ†’ ๐‘ƒ by ๐œ‹๐‘“โ„Ž = ๐‘“. Define ๐›ฝ๐‘‹ to be the closure of theimage of โ„ŽฤŒechโ€™s proof that this works is essentially the same as SAFT.

2. We could have used GAFT to construct ๐›ฝ by a cardinality argument: weget a solution set at ๐‘‹ by considering all continuous ๐‘“ โˆถ ๐‘‹ โ†’ ๐‘Œ with๐‘Œ compact Hausdorff and ๐‘“(๐‘‹) dense in ๐‘Œ and such ๐‘Œ have cardinalityโ‰ค 22card ๐‘‹ .

34

Page 36: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

5 MonadThe idea of a monad is what is left in an adjunction when you cannot see oneof the categories. Suppose given ๐‘“ โˆถ C โ†’ D, ๐‘” โˆถ D โ†’ C with ๐น โŠฃ ๐บ. How muchof this structure can we describe without mentioning D? We have

1. the functor ๐‘‡ = ๐บ๐น โˆถ C โ†’ C,

2. the unit ๐œ‚ โˆถ 1C โ†’ ๐‘‡ = ๐บ๐น,

3. and โ€œshadowโ€ of counit as a natural transformation ๐œ‡ = ๐บ๐œ€๐น โˆถ ๐‘‡ ๐‘‡ =๐บ๐น๐บ๐น โ†’ ๐บ๐น = ๐‘‡

satisfying the commutative diagrams 1, 2

๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡

๐‘‡

๐‘‡ ๐œ‚

1๐‘‡

๐œ‡

๐œ‚๐‘‡

1๐‘‡

by the triangle inequalities, and 3

๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡

๐‘‡ ๐‘‡ ๐‘‡

๐‘‡ ๐œ‡

๐œ‡๐‘‡ ๐œ‡

๐œ‡

by naturality of ๐œ€.

Definition (monad). A monad T = (๐‘‡ , ๐œ‚, ๐œ‡) on a category C consists of afunctor ๐‘‡ โˆถ C โ†’ C and natural transofrmations ๐œ‚ โˆถ 1C โ†’ ๐‘‡ , ๐œ‡ โˆถ ๐‘‡ ๐‘‡ โ†’ ๐‘‡satisfying commutative diagrams 1 - 3.

๐œ‚ and ๐œ‡ are called the unit and multiplication of T.

The name โ€œmonadโ€ was used because of the similarity of axioms of monadwith those of monoid. Before that, although being well-known to mathemati-cians, monad didnโ€™t really have an identifier. It goes by the name โ€œstandardconstructionโ€, then โ€œtripleโ€, thereby the letter T. But both are confessionsof failure to come up with a meaningful name! Someone invented the nameโ€œmonadโ€ and Mac Lane popularised it.

Example.

1. Any adjunction ๐น โŠฃ ๐บ induces a monad (๐บ๐น , ๐œ‚, ๐บ๐œ€๐น) on C and a comonad(๐น๐บ, ๐œ€, ๐น๐œ‚๐บ) on D.

2. Let ๐‘€ be a monoid. The functor (๐‘€ ร—โˆ’) โˆถ Set โ†’ Set has a monad struc-ture with unit given by ๐œ‚๐ด(๐‘Ž) = (๐‘Ž๐‘€, ๐‘Ž) and multiplication ๐œ‡๐ด(๐‘š, ๐‘šโ€ฒ, ๐‘Ž) =(๐‘š๐‘šโ€ฒ, ๐‘Ž). The monad identities follow from the monoid ones.

3. Let C be any category with finite products and ๐ด โˆˆ obC. The functor(๐ด ร— โˆ’) โˆถ C โ†’ C has a comonad structure with counit ๐œ€๐ต โˆถ ๐ด ร— ๐ต โ†’ ๐ตgiven by ๐œ‹2 and comultiplication ๐›ฟ๐ต โˆถ ๐ด ร— ๐ต โ†’ ๐ด ร— ๐ด ร— ๐ต given by(๐œ‹1, ๐œ‹1, ๐œ‹2).

35

Page 37: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

Does every monad comes from an adjunction? The answer is yes and is givenindependently in 1965 by Eilenberg, Moore and Kleisli. We will cover both.

In example 2 above we have the cateogry [๐‘€, Set]. Its forgetful functor toSet has a left adjoint, sending ๐ด to ๐‘€ ร— ๐ด with ๐‘€ acting by multiplication onthe left factor. This adjunction gives rise to the monad.

Definition (Eilenberg-Moore algebra). Let T be a monad on C. A T-algebra is a pair (๐ด, ๐›ผ) with ๐ด โˆˆ obC and ๐›ผ โˆถ ๐‘‡ ๐ด โ†’ ๐ด satisfying commu-tative diagrams 4, 5

๐ด ๐‘‡ ๐ด

๐ด

๐œ‚๐ด

1๐ด๐›ผ

๐‘‡ ๐‘‡ ๐ด ๐‘‡ ๐ด

๐‘‡ ๐ด ๐ด

๐‘‡ ๐›ผ

๐œ‡๐ด ๐›ผ

๐›ผ

A homomorphism ๐‘“ โˆถ (๐ด, ๐›ผ) โ†’ (๐ต, ๐›ฝ) is a morphism ๐‘“ โˆถ ๐ด โ†’ ๐ต suchthat diagram 6

๐‘‡ ๐ด ๐‘‡ ๐ต

๐ด ๐ต

๐‘‡ ๐‘“

๐›ผ ๐›ฝ๐‘“

commutes.The category of T-algebras is denoted CT.

Lemma 5.1. The forgetful functor ๐บT โˆถ CT โ†’ C has a left-adjoint ๐นT andthe adjunction induces T.

Proof. We define a โ€œfreeโ€ T-algebra functor, mimicking that in monoid case.Define ๐นT๐ด = (๐‘‡ ๐ด, ๐œ‡๐ด) (an algebra by 2, 3) and ๐นT(๐ด

๐‘“โˆ’โ†’ ๐ต) = ๐‘‡ ๐‘“ (a homo-

morphism by naturality of ๐œ‡). Clearly ๐บT๐นT = ๐‘‡, the unit of the adjunction is๐œ‚. We define the counit ๐œ€(๐ด,๐›ผ) = ๐›ผ โˆถ (๐‘‡ ๐ด, ๐œ‡๐ด) โ†’ (๐ด, ๐›ผ) (a homomorphism by5) and is natural by 6. The triangle identities

๐œ€๐น๐ด(๐น๐œ‚๐ด) = 1๐น๐ด

๐บ๐œ€(๐ด,๐›ผ)๐œ‚๐ด = 1๐ด

are given by 1 and 4. Finally, the monad induced by ๐นT โŠฃ ๐บT has functor ๐‘‡and unit ๐œ‚, and

๐บT๐œ€๐นT๐ด = ๐œ‡๐ด

by definition of ๐นT๐ด.

Kleisli took a โ€œminimalistโ€ approach: if ๐น โˆถ C โ†’ D, ๐บ โˆถ D โ†’ C induces Tthen so does ๐น โˆถ C โ†’ Dโ€ฒ, ๐บ1Dโ€ฒ โˆถ Dโ€ฒ โ†’ C where Dโ€ฒ is the full subcategory ofD on objects ๐น๐ด. So in trying to construct D, we may assume ๐น is surjective(or indeed bijective) on objects. But then morphisms ๐น๐ด โ†’ ๐น๐ต correspondbijectively to morphisms ๐ด โ†’ ๐บ๐น๐ต = ๐‘‡ ๐ต in C. This leads us half way throughas we sitll have to specify how to compose morphisms (in general domains andcodomains donโ€™t match up).

36

Page 38: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

Definition (Kleisli category). Given a monad T on C, the Kleisli cat-egory CT has obCT = obC and morphisms ๐ด ๐ต (we use bluearrow to signify morphism in CT) are ๐ด โ†’ ๐‘‡ ๐ต in C. The composite๐ด ๐ต ๐ถ๐‘“ ๐‘” is

๐ด ๐‘‡ ๐ต ๐‘‡ ๐‘‡ ๐ถ ๐ถ๐‘“ ๐‘‡ ๐‘” ๐œ‡๐ถ

and the identity ๐ด ๐ด is ๐ด๐œ‚๐ดโˆ’โ†’ ๐‘‡ ๐ด.

To verify associativity, suppose given ๐ด ๐ต ๐ถ ๐ท๐‘“ ๐‘” โ„Ž then

๐ด ๐‘‡ ๐ต ๐‘‡ ๐‘‡ ๐ถ ๐‘‡ ๐‘‡ ๐‘‡ ๐ท ๐‘‡ ๐‘‡ ๐ท

๐‘‡ ๐ถ ๐‘‡ ๐‘‡ ๐ท ๐‘‡ ๐ท

๐‘“ ๐‘‡๐‘” ๐‘‡ ๐‘‡ โ„Ž

๐œ‡๐ถ

๐‘‡ ๐œ‡๐ท

๐œ‡๐‘‡๐ท ๐œ‡๐ท

๐‘‡ โ„Ž ๐œ‡๐ท

commutes: the upper way monad is (โ„Ž๐‘”)๐‘“ and the lower is โ„Ž(๐‘”๐‘“). (used diagram3 in rightmost square)

The unit laws similarly follow from

๐ด ๐‘‡ ๐ต ๐‘‡ ๐‘‡ ๐ต

๐‘‡ ๐ต

๐‘“ ๐‘‡ ๐œ‚๐ต

1๐‘‡๐ต๐œ‡๐ต

๐ด ๐‘‡ ๐ต

๐‘‡ ๐ด ๐‘‡ ๐‘‡ ๐ต ๐‘‡ ๐ต

๐‘“

๐œ‚๐ด1๐‘‡๐ต1๐‘‡๐ต

๐‘‡ ๐‘“ ๐œ‡๐ต

(used diagram 1 and 2 respecitively in the triangles)

Lemma 5.2. There exists an adjunction ๐นT โˆถ C โ†’ CT, ๐บT โˆถ C๐‘‡ โ†’ Cinducing the monad T.

Proof. We define ๐นT๐ด = ๐ด, ๐นT(๐ด๐‘“โˆ’โ†’ ๐ต) = ๐ด

๐‘“โˆ’โ†’ ๐ต

๐œ‚๐ตโˆ’โ†’ ๐‘‡ ๐ต. ๐นT preserves

identities by definition. For composites, consider ๐ด๐‘“โˆ’โ†’ ๐ต

๐‘”โˆ’โ†’ ๐ถ, we get

๐ด ๐ต ๐‘‡ ๐ต

๐ถ ๐‘‡ ๐ถ ๐‘‡ ๐‘‡ ๐ถ

๐‘‡ ๐ถ

๐‘“ ๐œ‚๐ต

๐‘” ๐‘‡ ๐‘”๐œ‚๐ถ ๐‘‡ ๐œ‚๐ถ

1๐‘‡๐ถ

๐œ‡๐ถ

(used diagram 1 in the triangle)We define

๐บT๐ด = ๐‘‡ ๐ด

๐บT(๐ด๐‘“โˆ’โ†’๐ต) = ๐‘‡ ๐ด

๐‘‡ ๐‘“โˆ’โ†’ ๐‘‡ ๐‘‡ ๐ต

๐œ‡๐ตโˆ’โˆ’โ†’ ๐‘‡ ๐ต

37

Page 39: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

๐บT preserves identities by diagram 1. For composite, consider ๐ด ๐ต ๐ถ๐‘“ ๐‘”

, we get๐‘‡ ๐ด ๐‘‡ ๐‘‡ ๐ต ๐‘‡ ๐‘‡ ๐‘‡ ๐ถ ๐‘‡ ๐‘‡ ๐ถ

๐‘‡ ๐ต ๐‘‡ ๐‘‡ ๐ถ ๐‘‡ ๐ถ

๐‘‡ ๐‘“ ๐‘‡ ๐‘‡ ๐‘”

๐œ‡๐ต

๐‘‡ ๐œ‡๐ถ

๐œ‡๐‘‡๐ถ ๐œ‡๐ถ

๐‘‡ ๐‘” ๐œ‡๐ถ

(used diagram 3 is last square)Have

๐บT๐นT๐ด = ๐‘‡ ๐ด๐บT๐‘‡T๐‘“ = ๐œ‡๐ต(๐‘‡ ๐œ‚๐ต)๐‘‡ ๐‘“ = ๐‘‡ ๐น

so we take ๐œ‚ โˆถ 1C โ†’ ๐‘‡ as the unit of ๐นT โŠฃ ๐บT. The counit ๐‘‡ ๐ด ๐ด๐œ€๐ด is1๐‘‡ ๐ด. To verify naturality consider the square

๐‘‡ ๐ด ๐‘‡ ๐ต

๐ด ๐ต

๐นT๐บT๐‘“

๐œ€๐ด ๐œ€๐ต

๐‘“

This expands to

๐‘‡ ๐ด ๐‘‡ ๐‘‡ ๐ต ๐‘‡ ๐ต ๐‘‡ ๐‘‡ ๐ต

๐‘‡ ๐ต

๐‘‡ ๐‘“ ๐œ‡๐ต ๐œ‚๐‘‡๐ต

1๐‘‡๐ต๐œ‡๐ต

(used diagram 2 in triangle) so ๐œ€ is natural.Finally, ๐บT(๐‘‡ ๐ด

๐œ€๐ดโˆ’โ†’๐ด) = ๐œ‡๐ด so

๐บT(๐œ€๐ด)๐œ‚๐บT๐ด = ๐œ‡๐ด๐œ‚๐‘‡ ๐ด = 1๐‘‡ ๐ด

and (๐œ€๐นT๐ด)(๐นT๐œ‚๐ด) is๐ด ๐‘‡ ๐ด ๐‘‡ ๐‘‡ ๐ด

๐‘‡ ๐ด

๐œ‚๐ด ๐œ‚๐‘‡๐ด

1๐‘‡๐ด๐œ‡๐ด

(used diagram 1 in triangle) which is (1๐นT๐ด). Also ๐บT(๐œ€๐นT๐ด) = ๐œ‡๐ด so ๐นT โŠฃ ๐บTinduces T.

Theorem 5.3. Given a monad T on C, let Adj(T) be the category whoseobjects are the adjunctions ๐น โˆถ C โ†’ D, ๐บ โˆถ D โ†’ D inducing T, and whosemorphisms

(C D) (C Dโ€ฒ)๐น

๐บ

๐น โ€ฒ

๐บโ€ฒ

are functors ๐ป โˆถ D โ†’ Dโ€ฒ satisfying ๐ป๐น = ๐น โ€ฒ and ๐บโ€ฒ๐ป = ๐บ. Thenthe Kleisli adjunction is an initial object of Adj(T) and Eilenberg-Mooreadjunction is terminal.

38

Page 40: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

Proof. Let ๐น๐บ be an object of Adj(T). We define the Eilenberg-Moore com-parison functor ๐พ โˆถ D โ†’ CT by ๐พ๐ต = (๐บ๐ต, ๐บ๐œ€๐ต) where ๐œ€ is the counit of๐น โŠฃ ๐บ. Note this is an algebra by one of the triangular identities for ๐น โŠฃ ๐บ andnaturality of ๐œ€, and ๐พ(๐ต

๐‘”โˆ’โ†’ ๐ตโ€ฒ) = ๐บ๐‘”, a homomorphism by naturality of ๐œ€.

Clearly ๐บT๐พ = ๐บ and

๐พ๐น๐ด = (๐บ๐น๐ด, ๐บ๐œ€๐น๐ด) = (๐‘‡ ๐ด, ๐œ‡๐ด) = ๐นT๐ด

๐พ๐น(๐ด๐‘“โˆ’โ†’ ๐ดโ€ฒ) = ๐‘‡ ๐‘“ = ๐นT๐‘“

so ๐พ is a morphism of Adj(T).Suppose ๐พโ€ฒ โˆถ D โ†’ CT is another such, then since ๐บT๐พโ€ฒ = ๐บ we know

๐พโ€ฒ๐ต = (๐บ๐ต, ๐›ฝ๐ต) where ๐›ฝ is a natural transformation ๐บ๐น๐บ โ†’ ๐บ. Also since๐พโ€ฒ๐น = ๐นT, we have

๐›ฝ๐น๐ด = ๐œ‡๐ด = ๐บ๐œ€๐น๐ด.

Now given any ๐ต โˆˆ obD, consider the diagram.Also since ๐พโ€ฒ๐น = ๐นT we have ๐›ฝ๐น๐ด = ๐œ‡๐ด = ๐บ๐œ€๐น๐ด.Now given any ๐ต โˆˆ obD, consider the diagram

๐บ๐น๐บ๐น๐บ๐ต ๐บ๐น๐บ๐ต

๐บ๐น๐บ๐ต ๐บ๐ต

๐บ๐น๐บ๐œ€๐ต

๐บ๐œ€๐น๐บ๐ต =๐›ฝ๐น๐บ๐ต ๐บ๐œ€๐ต ๐›ฝ๐ต

๐บ๐œ€๐ต

Both squares commute so ๐บ๐œ€๐ต and ๐›ฝ๐ต have the same composite with ๐บ๐น๐บ๐œ€๐ต.But this is split epic with splitting ๐บ๐น๐œ‚๐บ๐ต so ๐›ฝ = ๐บ๐œ€. Hence ๐พโ€ฒ = ๐พ.

We now define the Kleisli comparison functor ๐ฟ โˆถ CT โ†’ D by ๐ฟ๐ด = ๐น๐ด,

๐ฟ(๐ด๐‘“โˆ’โ†’๐ต) = ๐น๐ด

๐น๐‘“โˆ’โ†’ ๐น๐บ๐น๐ต

๐œ€๐น๐ตโˆ’โˆ’โ†’ ๐น๐ต.

๐ฟ preserves identities by one of the triangular identities for ๐น โŠฃ ๐บ. Given๐ด

๐‘“โˆ’โ†’๐ต

๐‘”โˆ’โ†’๐ถ, we have

๐น๐ด ๐น๐บ๐น๐ต ๐น๐บ๐น๐บ๐น๐ถ ๐น๐บ๐น๐ถ

๐น๐ต ๐น๐บ๐น๐ถ ๐น๐ถ

๐น๐‘“ ๐น๐บ๐น๐‘”

๐œ€๐น๐ต

๐น๐บ๐œ€๐น๐ถ

๐œ€๐น๐บ๐น๐ถ ๐œ€๐น๐ถ

๐น๐‘” ๐œ€๐น๐ถ

Also

๐บ๐ฟ๐ด = ๐‘‡ ๐ด = ๐บT๐ด

๐บ๐ฟ(๐ด๐‘“โˆ’โ†’๐ต) = (๐บ๐œ€๐น๐ต)(๐น๐บ๐‘“) = ๐œ‡๐ต(๐‘‡ ๐‘“) = ๐บT๐‘“

๐บ๐นT๐ด = ๐น๐ด

๐ฟ๐นT(๐ด๐‘“โˆ’โ†’ ๐ต) = (๐œ€๐น๐ต)(๐น๐œ‚๐ต)(๐น๐‘“) = ๐น๐‘“

For future reference, note that ๐ฟ is full and faithful: its effect on morphisms(with blue domains and codmains) is that of transposition across ๐น โŠฃ ๐บ.

39

Page 41: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

Finally for uniqueness, suppose ๐ฟโ€ฒ โˆถ CT โ†’ D is a morphism of Adj(T). Wemust have ๐ฟโ€ฒ๐ด = ๐น๐ด and ๐ฟโ€ฒ maps the counit ๐‘‡ ๐ดโ†’๐ด to the counit ๐น๐บ๐น๐ด

๐œ€๐น๐ดโˆ’โˆ’โ†’

๐น๐ด. For any ๐ด๐‘“โˆ’โ†’๐ต, we have

๐‘“ = 1๐‘‡ ๐ด(๐นT๐‘“)

so ๐ฟโ€ฒ(๐‘“) = ๐œ€๐น๐ด(๐น๐‘“) = ๐ฟ๐‘“.

If C has coproducts then so does CT since ๐นT preserves them. But in generalit has few other limits or colimits. In contrast, we have

Theorem 5.4.

1. The forgetful functor ๐บ โˆถ CT โ†’ C creates all limits which exists in C.

2. If C has colimits of shape J then ๐บ โˆถ CT โ†’ C creates them if and onlyif ๐‘‡ preserves them.

Proof.

1. Suppose given ๐ท โˆถ J โ†’ CT. Write ๐ท(๐‘—) = (๐บ๐ท(๐‘—), ๐›ฟ๐‘—) and suppose(๐ฟ, (๐œ‡๐‘— โˆถ ๐ฟ โ†’ ๐บ๐ท(๐‘—) โˆถ ๐‘— โˆˆ obJ)) is a limit cone for ๐บ๐ท. Then thecomposites

๐‘‡ ๐ฟ๐‘‡ ๐œ‡๐‘—โˆ’โˆ’โ†’ ๐‘‡ ๐บ๐ท(๐‘—)

๐›ฟ๐‘—โˆ’โ†’ ๐บ๐ท(๐‘—)

form a cone over ๐บ๐ท since the edges of ๐บ๐ท are homomorphisms, so theyinduce a unique ๐œ† โˆถ ๐‘‡ ๐ฟ โ†’ ๐ฟ such that ๐œ‡๐‘—๐œ† = ๐›ฟ๐‘—(๐‘‡๐œ‡) for all ๐‘—. The factthat ๐œ† is a T-algebra structure on ๐ฟ follows from the fact that the ๐›ฟ๐‘—are algebra structure and uniqueness of factorisations through limits. So((๐ฟ, ๐œ†), (๐œ‡๐‘— โˆถ ๐‘— โˆˆ obJ)) is the unique lifting of the limit cone over ๐บ๐ทto a cone over ๐ท, and itโ€™s a limit, since given a conve over ๐ท with apex(๐ด, ๐›ผ), we get a unique factorisation ๐ด

๐‘“โˆ’โ†’ ๐ฟ in C, and ๐น is an algebra

homomorphism by uniqueness of factorisation through ๐ฟ.For โŸธ direction, suppose given ๐ท โˆถ J โ†’ CT as in 1, and a colimit cone

(๐บ๐ท(๐‘—)๐œ‡๐‘—โˆ’โ†’ ๐ฟ โˆถ ๐‘— โˆˆ obJ) in C, then (๐‘‡ ๐บ๐ท(๐‘—)

๐‘‡ ๐œ‡๐‘—โˆ’โˆ’โ†’ ๐‘‡ ๐ฟ โˆถ ๐‘— โˆˆ obC) is also

a colimit cone, so the composite

๐‘‡ ๐บ๐ท(๐‘—)๐‘“๐‘—โˆ’โ†’ ๐บ๐ท(๐‘—)

๐œ‡๐‘—โˆ’โ†’ ๐ฟ

induces a unique ๐œ† โˆถ ๐‘‡ ๐ฟ โ†’ ๐ฟ. The rest of the argument is like 1.

Definition (monadicity). Given an adjunctin ๐น โŠฃ ๐บ, we say the adjunction(or the functor ๐บ) is monadic if the comparison functor ๐พ โˆถ D โ†’ CT is partof an equivalence of categories.

Note that since the Kleisi comparison CT โ†’ D is full and faithful, itโ€™s partof an equivalence if and only if it (equivalently, ๐น) is essentially surjective onobjects.

40

Page 42: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

Remark. Given any adjunction ๐น โŠฃ ๐บ, for each object ๐ต of D we have adiagram

๐น๐บ๐น๐บ๐ต ๐น๐บ๐ต ๐ต๐น๐บ๐œ€๐ต

๐œ€๐น๐บ๐ต

๐œ€๐ต

with equal composites. The โ€œprimevalโ€ monadicity theorem asserts that CT ischaracterised in Adj(T) by the fact that these diagrams are all coequalisers.

Definition (reflexivity, split coequaliser).

1. We say a parallel pair ๐‘“, ๐‘” โˆถ ๐ด โ†’ ๐ต is reflexive if their exists ๐ต๐‘Ÿโˆ’โ†’ ๐ด

such that ๐‘“๐‘Ÿ = ๐‘”๐‘Ÿ = 1๐ต.We say C has reflexive coequalisers if it has coequalisers of all reflexivepairs. Equivalently, colimits of shape

โ‹… โ‹…

2. By a split coequaliser diagram we mean a diagram

๐ด ๐ต ๐ถ๐‘“

๐‘”๐‘ก

โ„Ž

๐‘ 

satisfying โ„Ž๐‘“ = โ„Ž๐‘”, โ„Ž๐‘  = 1๐ถ, ๐‘”๐‘ก = 1๐ต and ๐‘“๐‘ก = ๐‘ โ„Ž.

These equalisers imply that โ„Ž is a coequaliser of (๐‘“, ๐‘”), if ๐ต๐‘ฅโˆ’โ†’ ๐ท

satisfies ๐‘ฅ๐‘“ = ๐‘ฅ๐‘” then

๐‘ฅ = ๐‘ฅ๐‘”๐‘ก = ๐‘ฅ๐‘“๐‘” = ๐‘ฅ๐‘ โ„Ž

so ๐‘ฅ factors through โ„Ž and the factorisation is unique since its splitmonic.Note that split coequalisers are preserved by all functors.

3. Given a functor ๐บ โˆถ D โ†’ C, a parallel pair ๐ด ๐ต๐‘“

๐‘”is called

๐บ-split if there exists a split coequaliser diagram

๐บ๐ด ๐บ๐ต ๐ถ๐บ๐‘“

๐บ๐‘”๐‘ก

โ„Ž

๐‘ 

in C.

41

Page 43: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

Note that ๐น๐บ๐น๐บ๐ต ๐น๐บ๐ต๐น๐บ๐œ€๐ต

๐œ€๐น๐บ๐ตis ๐บ-split, since

๐บ๐น๐บ๐น๐บ๐ต ๐บ๐น๐บ๐ต ๐ถ๐บ๐น๐บ๐œ€๐ต

๐บ๐œ€๐น๐บ๐ต

๐œ‚๐บ๐น๐บ๐ต

๐บ๐œ€๐ต

๐œ‚๐บ๐ต

Note that the aforementioned pair

๐น๐บ๐น๐บ๐ต ๐น๐บ๐ต๐น๐บ๐œ€๐ต

๐œ€๐น๐บ๐ต

is reflexive with ๐‘Ÿ = ๐น๐œ‚๐บ๐ตโ€ฒ .

Lemma 5.5. Suppose given an adjunction C D๐น

๐บwhere ๐น โŠฃ ๐บ,

inducing a monad T on C. Then ๐พ โˆถ D โ†’ CT has a left adjoint provided,

for every T-algebra (๐ด, ๐›ผ), the pair ๐น๐บ๐น๐ด ๐น๐ด๐น๐›ผ

๐œ€๐น๐ดhas a coequaliser in

D.

Proof. We define ๐ฟ โˆถ CT โ†’ D by taking ๐น๐ด โ†’ ๐ฟ(๐ด, ๐›ผ) to be a coequaliserfor (๐น๐›ผ, ๐œ€๐น๐ด). Note that this is a functor CT โ†’ D. Recall that ๐พ is definedby ๐พ๐ต = (๐บ๐ต, ๐บ๐œ€๐ต). For any ๐ต, morphisms ๐ฟ๐ด โ†’ ๐ต correspond bijectivelyto morphisms ๐น๐ด

๐‘“โˆ’โ†’ ๐ต satisfying ๐‘“(๐น๐›ผ) = ๐‘“(๐œ€๐น๐ด). These correspond to mor-

phisms ๐ด๐‘“

โˆ’โ†’ ๐บ๐ต satisfying

๐‘“๐›ผ = ๐บ๐‘“ = ๐บ(๐œ€๐ต(๐น ๐‘“)) = (๐บ๐œ€๐ต)(๐‘‡ ๐‘“)

i.e. to algebra homomorphisms (๐ด, ๐›ผ) โ†’ ๐พ๐ต. And these bijections are naturalin (๐ด, ๐›ผ) and in ๐ต.

Theorem 5.6 (precise monadicity theorem). ๐บ โˆถ D โ†’ C is monadic if andonly if ๐บ has a left adjoint and creates coequalisers of ๐บ-split pairs.

Theorem 5.7 (refined/reflexive monadicity theorem). Suppose D has and๐บ โˆถ D โ†’ C preserves reflexive coequalisers, and that ๐บ reflects isomorphismsand has a left adjoint. Then ๐บ is monadic.

Proof. Theorem 5.6 โŸน : sufficient to show that ๐บT โˆถ CT โ†’ C creates co-equalisers of ๐บT-split pairs. But this follows from the argument of 5.4 (2), since

if ๐‘“, ๐‘” โˆถ (๐ด, ๐›ผ) โ†’ (๐ต, ๐›ฝ) is a ๐บT-split pairs, the coequalisers of ๐ด ๐ต๐‘“

๐‘”is

preserved by ๐‘‡ and ๐‘‡ ๐‘‡.Theorem 5.6 โŸธ and Theorem 5.7: Let T denote the monad induced by

๐น โŠฃ ๐บ. For any T-algebra (๐ด, ๐›ผ), the pair ๐น๐บ๐น๐ด ๐ด๐น๐›ผ

๐œ€๐น๐ดis both reflexive

and ๐บ-split, so has a coequaliser in D and hence by Lemma 5.5, ๐พ โˆถ D โ†’ CT

42

Page 44: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

has a left adjoint ๐ฟ. Then unit of ๐ฟ โŠฃ ๐พ at an algebra (๐ด, ๐›ผ), the coequaliserdefining ๐ฟ(๐ด, ๐›ผ) is mapped by ๐พ to the diagram

๐นT๐‘‡ ๐ด ๐นT๐ด ๐พ๐ฟ(๐ด, ๐›ผ)

(๐ด, ๐›ผ)

๐นT๐›ผ

๐œ‡๐ด ๐›ผ ๐œ„(๐ด,๐›ผ)

and ๐œ„(๐ด,๐›ผ) is the factorisation of this through the ๐บT-split coequaliser ๐›ผ. Buteither set of hypothesis implies that ๐บ preserves the coequaliser defining ๐ฟ(๐ด, ๐›ผ),so ๐œ„(๐ด,๐›ผ) is an isomorphism. For the counit ๐œ‰ โˆถ ๐ฟ๐พ๐ต โ†’ ๐ต, we have a coequaliser

๐น๐บ๐น๐บ๐ต ๐น๐บ๐ต ๐ฟ๐พ๐ต

๐ต

๐น๐บ๐œ€๐ต

๐œ€๐น๐บ๐ต ๐œ€๐ต ๐œ‰๐ต

Again, either set of hypothesis implies that ๐œ€๐ต is a coequaliser of (๐น๐บ๐œ€๐ต, ๐œ€๐น๐บ๐ต)so ๐œ‰๐ต is an isomorphism.

Example.

1. The forgetful functors Gp โ†’ Set, Rng โ†’ Set, Mod๐‘… โ†’ Set โ€ฆ all satisfythe hypothesis of refined monadicity theorem, for the relexive coequalisers,use example sheet 4 Q3 which shows that if

๐ด ๐ต ๐ถ๐‘“

๐‘”โ„Ž

is a reflexive coequaliser diagram in Set then so is

๐ด๐‘› ๐ต๐‘› ๐ถ๐‘›.๐‘“๐‘›

๐‘”๐‘›

โ„Ž๐‘›

2. Any reflection is monadic: this follows from example sheet 3 Q3, but canalso be proved using precise monadicity theorem. Let D be a relfecitve(full) subcategory of C, and suppose a pair ๐‘“, ๐‘” โˆถ ๐ด โ†’ ๐ต in D fits into asplit coequaliser diagram

๐ด ๐ต ๐ถ๐‘“

๐‘”๐‘ก

โ„Ž

๐‘ 

in C. Then ๐‘ก and ๐‘“๐‘ก = ๐‘ โ„Ž belongs to D since D is full and hence ๐‘  is in Dsince itโ€™s an equaliser of (1๐ต, ๐‘ โ„Ž) and D is closed under limits in C. Hencealso โ„Ž โˆˆ morD.

3. Consider the composite adjunction

Set AbGp tfAbGp๐น

๐‘ˆ

๐ฟ

๐ผ

These two factors are monadic by the above two examples respectively,but the composite isnโ€™t, since the monad it induces on Set is isomorphicto that induced by ๐น โŠฃ ๐‘ˆ.

43

Page 45: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

4. Consider the forgetful functor ๐‘ˆ โˆถ Top โ†’ Set. This is faithful and hasboth left and right adjoint (so preserves all coequalisers), but the monadinduced on Set is (1, 1, 1) and the category of algebras is Set.

5. One may get the impression that monadicty is something only shared byalgebraic construction but not topological constructions. Consider thecomposite adjunction

Set Top KHaus๐ท

๐‘ˆ

๐›ฝ

๐ผ

We shall show that this satisfies the hypothesis of precise monadicity the-orem. Let

๐‘‹ ๐‘Œ ๐‘๐‘“

๐‘”๐‘ก

โ„Ž

๐‘ 

be a split coequaliser in Set where ๐‘‹ and ๐‘Œ have compact Hausdorfftopologies and ๐‘“, ๐‘” are continuous. Note that the quotient topology on๐‘ โ‰… ๐‘Œ /๐‘… is compact, so itโ€™s the only possible candidate for a compactHausdorff topology making โ„Ž continuous.We use the lemma from general topology: if ๐‘Œ is compact Hausdorff, thena quotient ๐‘Œ /๐‘… is Hausdorff if and only if ๐‘… โŠ† ๐‘Œ ร— ๐‘Œ is closed. We note

๐‘… = {(๐‘ฆ, ๐‘ฆโ€ฒ) โˆถ โ„Ž(๐‘ฆ) = โ„Ž(๐‘ฆโ€ฒ)}= {(๐‘ฆ, ๐‘ฆโ€ฒ) โˆถ ๐‘ โ„Ž(๐‘ฆ) = ๐‘ โ„Ž(๐‘ฆโ€ฒ)}= {(๐‘ฆ, ๐‘ฆโ€ฒ) โˆถ ๐‘“๐‘ก(๐‘ฆ) = ๐‘“๐‘ก(๐‘ฆโ€ฒ)}

so if we define ๐‘† = {(๐‘ฅ, ๐‘ฅโ€ฒ) โˆถ ๐‘“(๐‘ฅ) = ๐‘“(๐‘ฅโ€ฒ)} โŠ† ๐‘‹ ร— ๐‘‹ then ๐‘… โŠ† (๐‘” ร— ๐‘”)(๐‘†),but this reverse inclusion also holds. But

๐‘† ๐‘‹ ร— ๐‘‹ ๐‘Œ๐‘“๐œ‹1

๐‘“๐œ‹2

is an equaliser, ๐‘Œ is Hausdorff, so ๐‘† is closed on ๐‘‹ ร—๐‘‹ and hence compact.So ๐‘… = (๐‘” ร— ๐‘”)(๐‘†) is compact and hence closed in ๐‘Œ ร— ๐‘Œ.Morally, a category that is monadic over Set can be thought as an alge-braic object, in the sense that it is defined by algebraic equations. Thisapplies to KHaus by including โ€œinfinitary equationsโ€.

Definition (monadic tower). Let C D๐น

๐บbe an adjunction and sup-

pose D has reflexive coequalisers. The monadic tower of ๐น โŠฃ ๐บ is the

44

Page 46: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

diagramโ‹ฎ

D (CT)S

CT

C

๐พโ€ฒ

๐พ

๐บ

๐ฟ

๐ฟ

๐น

where T is the monad induced by ๐น โŠฃ ๐บ, ๐พ is as in 5.7, ๐ฟ as in 5.11(comparison?) S is the moand induced by ๐ฟ โŠฃ ๐พ and so on.

We say ๐น โŠฃ ๐บ has monadic length ๐‘› if we reach an equlvalence after ๐‘›steps.Monadic length 0: already equivalence. Monadic length 1: monadFor example, the adjunction of 5.14c has monadic length 1. The adjunction

of 5.14d has monadic length โˆž.We will need one more result for topos theory, which we state without proof.

(lifting of left adjoint in categorical algebra)

Theorem 5.8. Suppose given an adjunction C D๐ฟ

๐‘…and monads T,S

on C, D respectively, and a functor ๐‘… โˆถ DS โ†’ CT such that

DS CT

D C

๐‘…

๐บS ๐บT

๐‘…

commutes up to isomorphism. Suppose also DS has reflexive coequalisers.Then ๐‘… has a left adjoint ๐ฟ.

Proof. Note that if ๐ฟ exists we must have ๐ฟ๐นT โ‰… ๐น S๐ฟ by 3.6. So weโ€™d expect

๐ฟ(๐ด, ๐›ผ) to be a coequaliser of two morphisms ๐น S๐ฟ๐‘‡ ๐ด ๐น S๐ฟ๐ด.๐น S๐ฟ๐›ผ

?To con-

struct the second morphism, note first that we assume wlog ๐บT๐‘… = ๐‘…๐บG, bytransporting T-algebra structurs along the isomorphism ๐บT๐‘…(๐ต, ๐›ฝ) โ†’ ๐‘…๐ต.

We obtain ๐œ™ โˆถ ๐‘‡ ๐‘… โ†’ ๐‘…๐‘† by starting from

๐‘…๐‘…๐œ„โˆ’โ†’ ๐‘…๐‘† = ๐‘…๐บS๐น S = ๐บT๐‘…๐น S,

conjugate by ๐น to get๐นT๐‘… โ†’ ๐‘…๐น S,

45

Page 47: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

5 Monad

and finally (?)

๐‘‡ ๐‘… = ๐บT๐นT๐‘…๐œ™โˆ’โ†’ ๐บT๐‘…๐น S = ๐‘…๐บS๐น S = ๐‘…๐‘†.

Convert it into ๐œ‘ โˆถ ๐ฟ๐‘‡ โ†’ ๐‘†๐ฟ by

๐ฟ๐‘‡๐ฟ๐‘‡ ๐›พโˆ’โˆ’โ†’ ๐ฟ๐‘‡ ๐‘…๐ฟ

๐ฟ๐œƒ๐ฟโˆ’โˆ’โ†’ ๐ฟ๐‘…๐‘†๐ฟ

๐›ฟ๐‘†๐ฟโˆ’โˆ’โ†’ ๐‘†๐ฟ

where ๐›พ and ๐›ฟ are the unit and counit of ๐ฟ โŠฃ ๐‘…. Transposing across ๐น S โŠฃ ๐บS,we get ๐œ‘ โˆถ ๐น S๐ฟ๐‘‡

๐น S

โˆ’โ†’ ๐ฟ. The pair (๐น S๐ฟ๐›ผ, ๐œ‘๐ด) is relexive, with common splitting๐น S๐ฟ๐œ‚. (๐œ‘ is the question mark in the diagram)

It can be verified (albeit extremely tedious) that the coequaliser of this pairhas the unviersal property we require for ๐ฟ(๐ด, ๐›ผ).

46

Page 48: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

6 Cartesian closed categories

Definition (exponentiable object, cartesian closed category). Let C be acategory with finite products. We say ๐ด โˆˆ obC is exponentiable if thefunctor (โˆ’) ร— ๐ด โˆถ C โ†’ C has a right adjoint (โˆ’)๐ด.

If every object of C is exponentiable, we say C is cartesian closed.

Intuitively, exponential object โ€œliftsโ€ morphisms to an object, instead of aset. โ€œinternalisationโ€

Example.

1. Set is cartesian closed, with ๐ต๐ด = Set(๐ด, ๐ต). A function ๐‘“ โˆถ ๐ถ ร— ๐ด โ†’ ๐ตcorresponds to ๐‘“ โˆถ ๐ถ โ†’ ๐ต๐ด.

2. Cat is cartesian closed with DC = [C, D]. In fact we have implicitly usedthis idea when discussing limits in functor categories.

3. In Top, if an exponential ๐‘Œ ๐‘‹ exists, its points must be the continuousmaps ๐‘‹ โ†’ ๐‘Œ. The compact-open topology on Top(๐‘‹, ๐‘Œ ) has the universalproperty of an exponential if and only if ๐‘‹ is locally compact.Note that finite products of exponential objects are exponentiable: since

(โˆ’) ร— (๐ด ร— ๐ต) โ‰… (โˆ’ ร— ๐ด) ร— ๐ต,

we have (โˆ’)๐ดร—๐ต โ‰… ((โˆ’)๐ต)๐ด. However, even if ๐‘‹ and ๐‘Œ are locally com-pact, ๐‘Œ ๐‘‹ neednโ€™t be. So the exponentiable objects donโ€™t form a cartesianclosed full subcategory.

4. A cartesian closed poset is called a Heyting semilattice: itโ€™s a poset withfinite meet โˆง and a binary operation โŸน satisfying

๐‘Ž โ‰ค (๐‘ โŸน ๐‘) if and only if ๐‘Ž โˆง ๐‘ โ‰ค ๐‘.

For example, a complete poset is a Heyting semilattice if and only if itsatisfies the infinite distributive law

๐‘Ž โˆง โ‹๐‘–โˆˆ๐ผ

{๐‘๐‘–} = โ‹๐‘–โˆˆ๐ผ

{๐‘Ž โˆง ๐‘๐‘–}.

For any topological space, the lattice ๐’ช(๐‘‹) of open sets satisfies this con-dition, since โˆง and โˆจ conincide with โˆฉ an โˆช. (However it does not satisfythe dual condition: arbitrary intersection needs to take interior).

Recall from example sheet 2 that, if ๐ต โˆˆ ob๐ถ, we define the slice categoryC/๐ต to have objects which are morphisms ๐ด โ†’ ๐ต in C and morphisms arecommutative triangles

๐ด ๐ดโ€ฒ

๐ต

47

Page 49: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

The forgetful functor C/๐ต โ†’ C will be denoted ฮฃ๐ต. If C has finite products,ฮฃ๐ต has a right adjoint ๐ตโˆ— which sends ๐ด to

๐ด ร— ๐ต๐œ‹2โˆ’โ†’ ๐ต

since morphisms๐ถ ๐ด ร— ๐ต

๐ต

(๐‘“,๐‘”)

๐‘” ๐œ‹2

correspond to morphisms ๐‘“ โˆถ ฮฃ๐ต๐‘” = ๐ถ โ†’ ๐ด.

Lemma 6.1. If C has all finite limits then an object ๐ต is exponentiable ifand only if ๐ตโˆ— โˆถ C โ†’ C/๐ต has a right adjoint ฮ ๐ต.

Proof.

1. โŸธ : The composite ฮฃ๐ต๐ตโˆ— is equal to (โˆ’) ร— ๐ต so we take (โˆ’)๐ต to beฮฃ๐ต๐ตโˆ—.

2. โŸน : If ๐ต is exponentiable, for any ๐‘“ โˆถ ๐ด โ†’ ๐ต we define ฮ ๐ต9๐‘“) to be thepullback

ฮ ๐ต(๐‘“) ๐ด๐ต

1 ๐ต๐ต

๐น ๐ต

๐œ‹2

where ๐œ‹2 is the transpose of the projection (?). Then morphisms ๐ถ โ†’ฮ ๐ต(๐‘“) corresponding to morphisms ๐ถ โ†’ ๐ด๐ต making

๐ถ ๐ด๐ต

1 ๐ต๐ต

๐‘“๐ต

๐œ‹2

commute, i.e. to morhpisms ๐ถ ร— ๐ต โ†’ ๐ด making

๐ถ ร— ๐ต ๐ด

๐ต๐œ‹2

๐‘“

commute.

Lemma 6.2. Suppose C has finite limits. If ๐ด is exponentiable in C then๐ตโˆ—๐ด is exponentiable in C/๐ต for any ๐ต. Moreover ๐ตโˆ— preserves exponen-tials.

48

Page 50: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

Proof. Given an object๐ถ

๐ต

๐‘“ , form the pullback

๐‘ƒ ๐ถ๐ด

๐ต ๐ต๐ด

๐‘“๐ตโˆ—๐ด ๐‘“๐ด

๐œ‹1

Then for any๐ท

๐ต

๐‘” , morphisms ๐‘” โ†’ ๐‘“๐ตโˆ—๐ด in C/๐ต correspond to morphisms

๐ทโ„Žโˆ’โ†’ ๐ถ๐ด making

๐ท ๐ถ๐ด

๐ต ๐ต๐ด

โ„Ž

๐‘” ๐‘“๐ด

๐œ‹1

commute, and hence to morphisms ๐ท ร— ๐ดโ„Žโˆ’โ†’ ๐ถ making

๐ท ร— ๐ด ๐ถ

๐ต

โ„Ž

๐‘”๐œ‹1 ๐‘“

commmute. But๐ท ร— ๐ด ๐ต ร— ๐ด

๐ท ๐ต

๐‘”ร—1๐ด

๐œ‹1 ๐œ‹1

๐‘”

is a pullback in C, i.e. a product in C/๐ต.For the second assertion, note that if ๐ถ

๐‘“โˆ’โ†’ ๐ต is of the form ๐ต ร— ๐ธ

๐œ‹1โˆ’โ†’ ๐ต

then the pullback defining ๐‘“๐ตโˆ—๐ด becomes

๐ต ร— ๐ธ๐ด ๐ต๐ด ร— ๐ธ๐ด

๐ต ๐ต๐ด

๐œ‹1ร—1๐ธ๐ด

๐œ‹1 ๐œ‹1

๐œ‹1

so ๐‘“๐ตโˆ—๐ด โ‰… ๐ตโˆ—(๐ธ๐ด).

Remark. C/๐ต is isomorphic to the category of coalgebra for the monad struc-ture on (โˆ’) ร— ๐ต (5.2c). So the first part of the lemma could be proved using liftof adjoint (last theorem of chapter 5).

Definition (locally cartesian closed). We say C is locally cartesian closedif it has all finite limits and each C/๐ต is cartesian closed.

49

Page 51: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

Note that this includes the fact that C โ‰… C/1 is cartesian closed. So theusuage is to the contrary of normal usage of โ€œlocallyโ€ as it imposes a strictercondition.

Example.

1. Set is locally cartesian closed since Set/๐ต โ‰ƒ Set๐ต for any ๐ต.

2. For any small category C, [C, Set] is cartesian closed: by Yoneda

๐บ๐น(๐ด) โ‰… [C, Set](C(๐ด, โˆ’), ๐บ๐น) โ‰… [C, Set](C(๐ด, โˆ’) ร— ๐น, ๐บ)

so we take RHS as a definition of ๐บ๐น(๐ด) and define ๐บ๐น on morphisms๐ด

๐‘“โˆ’โ†’ ๐ต by composition with C(๐‘“, โˆ’) ร— 1๐น. Note that the class of funtors

๐ป for which we have

[C, Set](๐ป, ๐บ๐น) โ‰… [C, Set](๐ป ร— ๐น, ๐บ)

is closed under colimits. But every functor C โ†’ Set is a colimit ofrepresentables.In fact [C, Set] is locally cartesian closed since all its slice categories[C, Set]/๐น are of the same form. See example sheet 4 Q6.

3. Any Heyting semilattice ๐ป is locally cartesian closed since ๐ป/๐‘ โ‰…โ†“ (๐‘),the poset of elements โ‰ค ๐‘, and ๐‘โˆ— = (โˆ’) โˆง ๐‘ is surjective.

4. Cat is not locally cartesian closed, since not all strong epis are regular.c.f. example sheet 3 Q6.

Note that given๐ด

๐ต

๐‘“ in C/๐ต, the iterated slice (C/๐ต)/๐‘“ is isomorphic to

C/๐ด, and this identifies ๐‘“โˆ— โˆถ C/๐ต โ†’ (C/๐ต)/๐‘“ with the operation of pullingback morphisms along ๐‘“. So by 6.3 C is locally cartesian closed if and only if ithas finite limits and ๐‘“โˆ— โˆถ C/๐ต โ†’ C/๐ด has a right adjoint ฮ ๐‘“ for every ๐ด

๐‘“โˆ’โ†’ ๐ต

in C. This can be taken as the definition of locally cartesian closed category.

Theorem 6.3. Suppose C is locally cartesian closed and has reflexive co-equalisers. Then every morphism ๐ด

๐‘“โˆ’โ†’ ๐ต factors as

๐ด๐‘ž

โ†  ๐ผ๐‘šโ†ฃ ๐ต

where ๐‘ž is regular epic and ๐‘š is monic.

Proof. First form the pullback

๐‘… ๐ด

๐ด ๐ต

๐‘Ž

๐‘ ๐‘“๐‘“

50

Page 52: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

and then form the coequaliser

๐‘… ๐ด ๐ผ.๐‘Ž

๐‘

๐‘ž

Since ๐‘“๐‘Ž = ๐‘“๐‘, ๐‘“ factors as

๐ด ๐ผ ๐ต.๐‘ž ๐‘š

Suppose given ๐ท ๐ผ๐‘”

โ„Žwith ๐‘š๐‘” = ๐‘šโ„Ž, form the pullback

๐ธ ๐ท

๐ด ร— ๐ด ๐ผ ร— ๐ผ

๐‘›

(๐‘˜,โ„“) (๐‘”,โ„Ž)๐‘žร—๐‘ž

Since ๐‘ž ร— ๐‘ž factors as (๐‘ž ร— 1๐ผ)(1๐ด ร— ๐‘ž) and both factors are pullbacks of ๐‘ž, it isan epimorphism and so is ๐‘›. Now

๐‘“๐‘˜ = ๐‘š๐‘ž๐‘˜ = ๐‘š๐‘”๐‘› = ๐‘šโ„Ž๐‘› = ๐‘š๐‘”โ„“ = ๐‘“โ„“

so there exists ๐ธ๐‘โˆ’โ†’ ๐‘… with ๐‘Ž๐‘ = ๐‘˜, ๐‘๐‘ = โ„“.

Now๐‘ž๐‘˜ = ๐‘ž๐‘Ž๐‘ = ๐‘ž๐‘๐‘ = ๐‘žโ„“,

i.e. ๐‘”๐‘› = โ„Ž๐‘›. But ๐‘› is epic so ๐‘” = โ„Ž. Hence ๐‘š is monic.

Note that this implies any strong epi ๐ด๐‘“โˆ’โ†’ ๐ต is regular since the monic part

of its image factorisation is an isomorphism. In particular, regular epimorphismsare stable under composition.

Definition. If C and D are cartesian closed categories and ๐น โˆถ C โ†’ Dpreserves products then for each pair of objects (๐ด, ๐ต) of C, we get a naturalmorphism ๐œƒ โˆถ ๐น(๐ต๐ด) โ†’ ๐น๐ต๐น๐ด, namely the transpose of

๐น(๐ต๐ด) ร— ๐น๐ด โ‰… ๐น(๐ต๐ด ร— ๐ด)๐น(ev)โˆ’โˆ’โˆ’โ†’ ๐น๐ต

where ev is the counit of ((โˆ’) ร— ๐ด โŠฃ (โˆ’)๐ด).We say ๐น is a cartesian closed functor if ๐œƒ is an isomorphism for every pair

(๐ด, ๐ต). Note that the second part of 6.4 syas that if C is locally cartesianclosed then ๐‘“โˆ— โˆถ C/๐ต โ†’ C/๐ด is a continuous cartesian functor for any๐ด

๐‘“โˆ’โ†’ ๐ต.

Theorem 6.4. Let C and D be cartesian closed categories and ๐น โˆถ C โ†’ Da functor having a left adjoint ๐ฟ. Then ๐น is cartesian closed if and only ifthe canonical morphism ๐œ‘๐ด,๐ต

๐ฟ(๐ต ร— ๐น๐ด) ๐ฟ๐ต ร— ๐ฟ๐น๐ด ๐ฟ๐ต ร— ๐ด(๐ฟ๐œ‹1,๐ฟ๐œ‹2) 1๐ฟ๐ดร—๐œ€๐ต

is an isomorphism for all ๐ด โˆˆ obC, ๐ต โˆˆ obD. This condition is called

51

Page 53: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

Frobenius reciprocity.

Note that if C is locally cartesian closed then ๐‘“โˆ— โˆถ C/๐ต โ†’ C/๐ด has a leftadjoint ฮฃ๐‘“ given by composition with ๐‘“, and itโ€™s easy to verify that

ฮฃ๐‘“(๐‘” ร— ๐‘“โˆ—โ„Ž) โ‰… ฮฃ๐‘“๐‘” ร— โ„Ž.

Proof.

โ€ข โŸน : Given an inverse for ๐œƒ โˆถ ๐น(๐ถ๐ด) โ†’ ๐น๐ด๐น๐ด, we define ๐œ‘โˆ’1๐ด,๐ต to be the

composite

๐ฟ๐ต ร— ๐ต ๐ฟ((๐ต ร— ๐น๐ด)๐น๐ด) ร— ๐ด ๐ฟ(๐น๐ฟ(๐ต ร— ๐น๐ด)๐น๐ด) ร— ๐ต

๐ฟ(๐ต ร— ๐น๐ด) ๐ฟ(๐ต ร— ๐น๐ด)๐ด ร— ๐ด ๐ฟ๐น(๐ฟ(๐ต ร— ๐น๐ด)๐ด) ร— ๐ด

๐ฟ๐œ†ร—1 ๐ฟ(๐œ‚๐น๐ด)ร—1

๐ฟ๐œƒโˆ’1ร—1

ev ๐œ€ร—1

The verification is a tedious exercise.

โ€ข โŸธ : Given an inverse for ๐œ‘, we define ๐œƒโˆ’1 to be

๐น((๐ฟ(๐น๐ถ๐น๐ด ร— ๐ด))๐ด) ๐น๐ฟ(๐น๐ถ๐น๐ด) ๐น๐ถ๐น๐ด

๐น((๐ฟ(๐น๐ถ๐น๐ด ร— ๐น๐ด))๐ด) ๐น((๐ฟ๐น๐ถ)๐ด) ๐น(๐ถ๐ด).

๐น(๐œ‘โˆ’1๐ด)

๐น๐œ† ๐œ‚

๐น((๐ฟ(ev))๐ด) ๐น(๐œ€๐ด)

Corollary 6.5. Suppose C and D are cartesian closed, and ๐น โˆถ C โ†’ D hasa left adjoint ๐ฟ which preserves finite products. Then ๐น is cartesian closedif and only if ๐น is full and faithful.

Proof.

โ€ข โŸน : ๐ฟ preserves 1 so if we substitute ๐ต in the definition of ๐œ‘ above,we get ๐ฟ๐น๐ด

๐œ€๐ดโˆ’โ†’ ๐ด. But ๐œ€ is an isomorphism if and only if ๐น is full and

faithful.

โ€ข โŸธ : If ๐ฟ preserves binary products and ๐œ€ is an isomorphism. Then bothfactors in the definition of ๐œ‘ are isomorphisms.

Definition (exponential ideal). Let C be a cartesian closed category. Byan exponential ideal of C we mean a class of objects (or a full subcategory)โ„ฐ such that ๐ต โˆˆ โ„ฐ implies ๐ต๐ด โˆˆ โ„ฐ for all ๐ด โˆˆ obC.

Example.

52

Page 54: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

1. We say ๐ด is subterminal if ๐ด โ†’ 1 is monic. In any cartesian closed cate-gory C, the class SubC(1) is an exponential ideal since ๐ด is subterminal ifand only if there exists at most 1 morphisms ๐ต โ†’ ๐ด for any ๐ต, if and onlyif at most 1 morphism ๐ถ ร— ๐ต โ†’ ๐ด for any ๐ต and ๐ถ, so by adjunction ifand only if at most 1 morphism ๐ถ โ†’ ๐ด๐ต, if and only if ๐ด๐ต is subterminal.More generally, if C is locally cartesian closed then SubC(๐ด) is an expo-nential ideal in C/๐ด for any ๐ด. if C also satisfies the hypotheses of 6.7then SubC(๐ด) is reflexive in C/๐ด.

2. Let ๐‘‹ be a topological space. By a presheaf of ๐‘‹ we mean a functor๐น โˆถ ๐’ช(๐‘‹)op โ†’ Set where ๐’ช(๐‘‹) is the partial order of open subsets of ๐‘‹.So ๐น has sets ๐น(๐‘ˆ) for each open ๐‘ˆ and restriction maps ๐น(๐‘ˆ) โ†’ ๐น(๐‘‰ ) โˆถ๐‘ฅ โ†ฆ ๐‘ฅ|๐‘‰ whenever ๐‘‰ โŠ† ๐‘ˆ.We say ๐น is a sheaf if whenever ๐‘ˆ = โ‹ƒ๐‘–โˆˆ๐ผ ๐‘ˆ๐‘– and weโ€™re given ๐‘ฅ๐‘– โˆˆ ๐น(๐‘ˆ๐‘–)for each ๐‘–, such that

๐‘ฅ๐‘–|๐‘ˆ๐‘–โˆฉ๐‘ˆ๐‘—= ๐‘ฅ๐‘—|๐‘ˆ๐‘–โˆฉ๐‘ˆ๐‘—

for all (๐‘–, ๐‘—), then exists a unique ๐‘ฅ โˆˆ ๐น(๐‘ˆ) such that ๐‘ฅ|๐‘ˆ๐‘–= ๐‘ฅ๐‘– for all ๐‘–.

We write Sh(๐‘‹) โŠ† [๐’ช(๐‘‹)op, Set] for the full subcategory of sheaves. Weโ€™llshow Sh(๐‘‹) is an exponential ideal: given presheaves ๐น, ๐บ, ๐บ๐น(๐‘ˆ) is theset of natural transofrmations ๐น ร— ๐’ช(๐‘‹)(โˆ’, ๐‘ˆ) โ†’ ๐บ or equivalently, theset of natural transformations ๐น|๐‘ˆ โ†’ ๐บ|๐‘ˆ where ๐น|๐‘ˆ โˆถ ๐’ช(๐‘‹)op โ†’ Set isthe presheaf obtained by restricting ๐น to open sets in ๐‘ˆ. Now suppose ๐บis a sheaf. Suppose ๐‘ˆ = โ‹ƒ๐‘–โˆˆ๐ผ ๐‘ˆ๐‘– and suppose given ๐›ผ๐‘– โˆถ ๐น |๐‘ˆ๐‘–

โ†’ ๐บ|๐‘ˆ๐‘–for

each ๐‘– such that๐›ผ๐‘–|๐‘ˆ๐‘–โˆฉ๐‘ˆ๐‘—

= ๐›ผ๐‘—|๐‘ˆ๐‘–โˆฉ๐‘ˆ๐‘—

for all ๐‘–, ๐‘—. Given ๐‘ฅ โˆˆ ๐น(๐‘‰ ) where ๐‘‰ โŠ† ๐‘ˆ, write ๐‘‰๐‘– = ๐‘‰ โˆฉ ๐‘ˆ๐‘–, then ๐‘‰ =โ‹ƒ๐‘–โˆˆ๐ผ ๐‘‰๐‘–. The elements ๐‘ฅ|๐‘‰๐‘–

, ๐‘– โˆˆ ๐ผ, satisfying the compatibility conditionand hence so do the elements (๐›ผ๐‘–)๐‘‰๐‘–

(๐‘ฅ|๐‘‰๐‘–) โˆˆ ๐บ(๐‘‰๐‘–) . So thereโ€™s a unique

๐‘ฆ โˆˆ ๐บ(๐‘‰ ) such that๐‘ฆ|๐‘‰๐‘–

= (๐›ผ๐‘–)๐‘‰๐‘–(๐‘ฅ|๐‘‰๐‘–

)

for all ๐‘– and we define this to be ๐›ผ๐‘‰(๐‘ฅ). This defines natural transforma-tions ๐›ผ โˆถ ๐น |๐‘ˆ โ†’ ๐บ|๐‘ˆ and itโ€™s the unique transformation whose restrictionto ๐‘ˆ๐‘– is ๐›ผ๐‘– for each ๐‘–.Note that since Sh(๐‘‹) is closed under finite products (and in fact alllimits) in [๐’ช(๐‘‹)op, Set], it is itself cartesian closed.

Lemma 6.6. Suppose C is cartesian closed and D โŠ† C is a (full) reflectivesubcategory, with reflector ๐ฟ โˆถ C โ†’ D. Then D is an exponential ideal ifand only if ๐ฟ preserves binary products.

Proof.

53

Page 55: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

6 Cartesian closed categories

โ€ข โŸน : Suppose ๐ด, ๐ต โˆˆ obC, ๐ถ โˆˆ obD. Then we have bijections

๐ด ร— ๐ต โ†’ ๐ถ๐ด โ†’ ๐ถ๐ต

๐ฟ๐ด โ†’ ๐ถ๐ต

๐ฟ๐ด ร— ๐ต โ†’ ๐ถ๐ต โ†’ ๐ถ๐ฟ๐ด

๐ฟ๐ต โ†’ ๐ถ๐ฟ๐ด

๐ฟ๐ด ร— ๐ฟ๐ด โ†’ ๐ถ

so ๐ฟ๐ด ร— ๐ฟ๐ต has the universal property of ๐ฟ(๐ด ร— ๐ต).

โ€ข โŸธ : Suppose ๐ต โˆˆ obD, ๐ด, ๐ถ โˆˆ obC. We have bijections

๐ถ โ†’ ๐ต๐ด

๐ถ ร— ๐ด โ†’ ๐ต๐ฟ๐ถ ร— ๐ฟ๐ด โ‰… ๐ฟ(๐ถ ร— ๐ด) โ†’ ๐ต

๐ฟ(๐ฟ๐ถ ร— ๐ด) โ†’ ๐ต๐ฟ๐ถ ร— ๐ด โ†’ ๐ต

๐ฟ๐ถ โ†’ ๐ต๐ด

so every ๐ถ โ†’ ๐ต๐ด factors throu ๐ถ โ†’ ๐ฟ๐ถ, hence ๐ต๐ด โˆˆ obD.

54

Page 56: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

7 ToposesTopos has it orgin in the French school of algebraic geometry. In 1963, whenstuding cohomologies in gemoetry, Grothendieck studied toposes as categoriesof โ€œgeneralised sheavesโ€. As sheaves can be seen as representation of spaces andproperties of the space can be detected from sheaves, toposes become generalisedspaces. Thus the name topos: something more fundamental than topology.

J. Giraud gave a characterisation of such categories by (set-theoretic) cate-gorical properties. F. W. Lawvere and M. Tierney (1969 - 1970) investigated theelementary categorical properties of these categories and come up with the ele-mentary definition. In fact a Grothendieck topos is exactly a Lawvere-Tierneytopos which is (co)complete and locally small, and has a separating set of ob-jects (which is what Grothendieck should, but didnโ€™t, come up with, by theway).

Definition (subobject classifier, topos, logical functor).

1. Let โ„ฐ be a category with finite limits. A subobject classifier for โ„ฐ is amonomorphism โŠค โˆถ ฮฉโ€ฒ โ†ฃ ฮฉ such that for every mono ๐‘š โˆถ ๐ดโ€ฒ โ†ฃ ๐ด inโ„ฐ, there is a unique ๐œ’๐‘š โˆถ ๐ด โ†’ ฮฉ for which there is a pullback square

๐ดโ€ฒ ฮฉโ€ฒ

๐ด ฮฉ

๐‘š โŠค๐œ’๐‘š

Note that, for any ๐ด, there is a unique ๐ด โ†’ ฮฉ which factors throughโŠค โˆถ ฮฉโ€ฒ โ†ฃ ฮฉ, so the domain of โŠค is actually a terminal object.If โ„ฐ is well-powered, we have a functor Subโ„ฐ โˆถ โ„ฐ โ†’ Set sending ๐ดto the set of (isomorphism classes) of subobjects of ๐ด and acting onmorphisms by pullback, and an subobject classifier is a representationof this functor.

2. A topos is a category which has finite limits, is cartesian closed andhas a subobject classifier.

3. If โ„ฐ and โ„ฑ are toposes, a logical functor ๐น โˆถ โ„ฐ โ†’ โ„ฑ is one whichpreserves finite limits, exponentiables and the subobject classifier.

Example.1. Set is a topos, with ฮฉ = {0, 1} and โŠค = 1 โˆถ 1 โ†ฆ {0, 1}. Have

๐œ’(๐‘Ž) = {1 ๐‘Ž โˆˆ ๐ด0 ๐‘Ž โˆ‰ ๐ด

So also is the category Set๐‘“ of finite set, or the category Set๐œ… of sets ofcardinality < ๐œ…, where ๐œ… is an infinite cardinal such that if ๐œ† < ๐œ… then2๐œ† < ๐œ….

2. For any small category C, [Cop, Set] is a topos: weโ€™ve seen that itโ€™s carte-sian, and ฮฉ is determined by Yoneda:

ฮฉ(๐ด) โ‰… [Cop, Set](C(โˆ’, ๐ด), ฮฉ) โ‰… {subfunctors of C(โˆ’, ๐ด)}.

55

Page 57: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

So we define ฮฉ(๐ด) to be the set of sieves on ๐ด, i.e. sets ๐‘… of morphismswith codomain ๐ด such that if ๐‘“ โˆˆ ๐‘… then ๐‘“๐‘” โˆˆ ๐‘… for any ๐‘”.Given ๐‘“ โˆถ ๐ต โ†’ ๐ด and a sieve ๐‘… on ๐ด, we define ๐‘“โˆ—๐‘… to be the set of ๐‘” withcodomain ๐ต such that ๐‘“๐‘” โˆˆ ๐‘…. This makes ฮฉ into a functor Cop โ†’ Set:โŠค โˆถ 1 โ†’ ฮฉ is defined by

โŠค๐ด(โˆ—) = {all morphisms with codomain ๐ด}.

Given a subfunctor ๐‘š โˆถ ๐น โ€ฒ โ†ฃ ๐น, we define ๐œ’๐‘š โˆถ ๐น โ†’ ฮฉ by

(๐œ’๐‘š)๐ด(๐‘ฅ) = {๐‘“ โˆถ ๐ต โ†’ ๐ด โˆถ ๐น๐‘“(๐‘ฅ) โˆˆ ๐น โ€ฒ(๐ต)}.

This is the unique natural transformation making

๐น โ€ฒ 1

๐น ฮฉ

๐‘š โŠค๐œ’๐‘š

a pullback.

3. For any space ๐‘‹, Sh(๐‘‹) is a topos. Itโ€™s cartesian closed. For the subobjectclassifier we take

ฮฉ(๐‘ˆ) = {๐‘‰ โˆˆ ๐’ช(๐‘‹) โˆถ ๐‘‰ โŠ† ๐‘ˆ}and ฮฉ(๐‘ˆ โ€ฒ โ†’ ๐‘ˆ) is the map ๐‘‰ โ†ฆ ๐‘‰ โŠ† ๐‘ˆ โ€ฒ. ฮฉ is a sheaf since if we have๐‘ˆ = โ‹ƒ๐‘–โˆˆ๐ผ ๐‘ˆ๐‘– and ๐‘ˆ๐‘– โŠ† ๐‘ˆ๐‘– such that ๐‘‰๐‘– โˆฉ ๐‘ˆ๐‘— = ๐‘‰๐‘— โˆฉ ๐‘ˆ๐‘– for each ๐‘–, ๐‘— then๐‘‰ = โ‹ƒ๐‘–โˆˆ๐ผ ๐‘‰๐‘– is the unique open subset of ๐‘ˆ with ๐‘‰ โˆฉ ๐‘ˆ๐‘– = ๐‘‰๐‘– for each ๐‘–.If ๐‘š โˆถ ๐น โ€ฒ โ†ฃ ๐น is a subsheaf then for any ๐‘ฅ โˆˆ ๐น(๐‘ˆ) the sieve

{๐‘‰ โŠ† ๐‘ˆ โˆถ ๐‘ฅ|๐‘‰ โˆˆ ๐น โ€ฒ(๐‘‰ )}

has a greatest element since ๐น โ€ฒ is a sheaf. So we define ๐œ’๐‘š โˆถ ๐น โ†’ ฮฉ tosend ๐‘ฅ to this object.

4. Let C be a group ๐บ. The topos structure on [๐บ, Set] is particularly simple:๐ต๐ด is the set of all ๐บ-equivariant maps ๐‘“ โˆถ ๐ด ร— ๐บ โ†’ ๐ต but such an ๐‘“ isdetermined by its values at elements of the form (๐‘Ž, 1) since ๐‘“(๐‘Ž, ๐‘”) =๐‘”.๐‘“(๐‘”โˆ’1.๐‘Ž, 1), and this restriction can be any mapping ๐ด ร— {1} โ†’ ๐ต. Sowe can take ๐ต๐ด to be the set of functions ๐ด โ†’ ๐ต with ๐บ acting by

(๐‘”.๐‘“)(๐‘Ž) = ๐‘”(๐‘“(๐‘”โˆ’1.๐‘Ž))

and ฮฉ = {0, 1} with trivial ๐บ-action. So the forgetful functor [๐บ, Set] โ†’Set is logical, as is the functor which equips a set ๐ด with trivial ๐บ-action.Moreover, even if ๐บ is infinite, [๐บ, Set] is a topos and this inclusion[๐บ, Set๐‘“] โ†’ [๐บ, Set] is logical. Similarly if ๐’ข is a large group (i.e. theunderlying space may not be a set), then [๐’ข, Set] is a topos.

5. Let C be a category such that every C/๐ด is equivalent to a finite category.Then [Cop, Set๐‘“] is a topos. Similarly if C is large but all C/๐ด are small,then [Cop, Set] is a topos. In partciular [On, Set] is a topos, but itโ€™s notlocally small.

56

Page 58: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

Lemma 7.1. Suppose โ„ฐ has finite limits and a subobject classifier. Thenevery monomorphism in โ„ฐ is regular. In particular โ„ฐ is balanced.

Proof. The universal monomorphism โŠค โˆถ 1 โ†ฃ ฮฉ is split and hence regular. Butany pullback of a regular mono is regular: if ๐‘“ is an equaliser of (๐‘”, โ„Ž) then๐พโˆ—(๐‘“) is an equaliser of (๐‘”๐‘˜, โ„Ž๐‘˜). The second assertion follows since a regularmono that is also epic is an isomorphism.

Given an object ๐ด in a topos โ„ฐ, we write ๐‘ƒ๐ด for the exponential ฮฉ๐ด. andโˆ‹๐ดโ†ฃ ๐‘ƒ๐ด ร— ๐ด for the subobject corresponding to ev โˆถ ๐‘ƒ๐ด ร— ๐ด โ†’ ฮฉ. Thishas the property that, for any ๐ต and any ๐‘š โˆถ ๐‘… โ†ฃ ๐ต ร— ๐ด, there is a uniqueโŒœ๐‘šโŒ โˆถ ๐ต โ†’ ๐‘ƒ๐ด such that

๐‘… โˆ‹๐ด

๐ต ร— ๐ด ๐‘ƒ๐ด ร— ๐ด

๐‘š

โŒœ๐‘šโŒร—1ฮ”

is a pullback.

Definition (power-object). By a power-object for ๐ด in a category โ„ฐ withfinite limits, we mean an object ๐‘ƒ๐ด equipped with โˆ‹๐ดโ†’ ๐‘ƒ๐ด ร— ๐ด satisfyingth above.

We say โ„ฐ is a weak topos if every ๐ด โˆˆ obโ„ฐ has a power-object.Similarly we say ๐น โˆถ โ„ฐ โ†’ โ„ฑ is weakly logical if ๐น(โˆ‹๐ด) โ†ฃ ๐น(๐‘ƒ๐ด) ร— ๐น๐ด

is a power-object for ๐น๐ด for every ๐ด โˆˆ obโ„ฐ.

A power-object for the termimal object is the same as a subobject classifier.This is an ad hoc defintion and we will soon show that โ„ฐ is cartesian closed

and therefore we can safely drop the adjective โ€œweakโ€. Consequently this maybe taken as the definition of topos.

Lemma 7.2. ๐‘ƒ is a functor โ„ฐop โ†’ โ„ฐ . Moreover it is self-adjoint on theright.

Compare this with the contravariant power set functor on Set, which is aspecial case.

Proof. Given ๐‘“ โˆถ ๐ด โ†’ ๐ต, we define ๐‘ƒ๐‘“ โˆถ ๐‘ƒ๐ต โ†’ ๐‘ƒ๐ด to correspond to thepullback

๐ธ๐‘“ โˆ‹๐ต

๐‘ƒ๐ต ร— ๐ด ๐‘ƒ๐ต ร— ๐ต1ร—๐‘“

For any โŒœ๐‘šโŒ โˆถ ๐‘ โ†’ ๐‘ƒ๐ต, itโ€™s easy to see that (๐‘ƒ๐‘“)โŒœ๐‘šโŒ corresponds to (1๐ถร—๐‘“)โˆ—(๐‘š),hence ๐‘“ โ†ฆ ๐‘ƒ๐‘“ is functorial. For any ๐ด and ๐ต, we have a bijection betweensubobjects of ๐ด ร— ๐ต and of ๐ต ร— ๐ด given by composition with (๐œ‹2, ๐œ‹1) โˆถ ๐ด ร— ๐ต โ†’๐ต ร— ๐ด. This yields a (natural) bijection between morphisms ๐ด โ†’ ๐‘ƒ๐ต and๐ต โ†’ ๐‘ƒ๐ด.

We write {}๐ด โˆถ ๐ด โ†’ ๐‘ƒ๐ด (pronounced โ€œsingletonโ€) for the morphism corre-sponding to (1๐‘Ž, 1๐‘Ž) โˆถ ๐ด โ†ฃ ๐ด ร— ๐ด.

57

Page 59: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

Lemma 7.3. Given ๐‘“ โˆถ ๐ด โ†’ ๐ต, {}๐ต๐‘“ corresponds to (1๐ด, ๐‘“) โˆถ ๐ด โ†ฃ ๐ด ร— ๐ตand (๐‘ƒ๐‘“){}๐ต corresponds to (๐‘“, 1๐ด) โˆถ ๐ด โ†ฃ ๐ต ร— ๐ด.

Proof. The square๐ด ๐ต

๐ด ร— ๐ต ๐ต ร— ๐ต

๐‘“

(1,๐‘“) (1,1)๐‘“ร—1

is a pullback. Similarly for the second assertion.

Corollary 7.4.

1. {}๐ด โˆถ ๐ด โ†’ ๐ด is monic.

2. ๐‘ƒ is faithful.

Proof.

1. If {}๐‘“ = {}๐‘” then (1๐ด, ๐‘“) and (1๐ด, ๐‘”) are isomorphic as subobjects of๐ด ร— ๐ต, which forces ๐‘“ = ๐‘”.

2. Similarly if ๐‘ƒ๐‘“ = ๐‘ƒ๐‘” then (๐‘ƒ๐‘“){} = (๐‘ƒ๐‘”){} so we again deduce ๐‘“ = ๐‘”.

Given a mono ๐‘“ โˆถ ๐ด โ†ฃ ๐ต is โ„ฐ, we define โˆƒ๐‘“ โˆถ ๐‘ƒ๐ด โ†’ ๐‘ƒ๐ด to correspond tothe composite

โˆ‹๐ด ๐‘ƒ๐ด ร— ๐ด ๐‘ƒ๐ด ร— ๐ต.1ร—๐‘“

Then for any โŒœ๐‘šโŒ โˆถ ๐ถ โ†’ ๐‘ƒ๐ด, (โˆƒ๐‘“)โŒœ๐‘šโŒ correponds to

๐‘… ๐ถ ร— ๐ด ๐ถ ร— ๐ต๐‘š 1ร—๐‘“

so ๐‘“ โ†ฆ โˆƒ๐‘“ is a functor Mono(โ„ฐ) โ†’ โ„ฐ.

Lemma 7.5 (Beck-Chevalley condition). Suppose

๐ท ๐ด

๐ต ๐ถ

โ„Ž

๐‘˜ ๐‘“๐‘”

is a pullback with ๐‘“ monic. Then the diagram

๐‘ƒ๐ด ๐‘ƒ๐ถ

๐‘ƒ๐ท ๐‘ƒ๐ต

โˆƒ๐‘“

๐‘ƒโ„Ž ๐‘ƒ๐‘”

โˆƒ๐‘˜

commutes.

58

Page 60: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

Proof. Consider the diagram

๐ธ๐‘› โˆ‹๐ด

๐‘ƒ๐ด ร— ๐ท ๐‘ƒ๐ด ร— ๐ด

๐‘ƒ๐ด ร— ๐ต ๐‘ƒ๐ด ร— ๐ถ

1ร—โ„Ž

1ร—๐‘˜ 1ร—๐‘“1ร—๐‘”

The lower square is a pullback so the upper square is a pull back. This isequivalent to the composite is a pullback.

Theorem 7.6 (Parรฉ). The functor ๐‘ƒ โˆถ โ„ฐop โ†’ โ„ฐ is monadic.

Proof. It has a left adjoint ๐‘ƒ โˆถ โ„ฐ โ†’ โ„ฐop by 7.5 (the โ€œself-adjoint on the rightโ€lemma). Itโ€™s faithful by 7.7 (ii) and hence reflects isomorphisms by 7.3. โ„ฐop hascoequalisers since โ„ฐ has equalisers. Suppose

๐ด ๐ต๐‘“

๐‘”๐‘Ÿ

is a coreflexive pair in โ„ฐ, then ๐‘“ and ๐‘” are (split) monic and the equaliser๐‘’ โˆถ ๐ธ โ†’ ๐ด makes

๐ธ ๐ด

๐ด ๐ต

๐‘’

๐‘’ ๐‘”

๐‘“

a pullback square. Since any cone over

๐ด

๐ด ๐ต

๐‘”

๐‘“

has both legs equal so by Beck-Chevalley condition we have (๐‘ƒ๐‘“)(โˆƒ๐‘”) = (โˆƒ๐‘’)(๐‘ƒ๐‘’).But we also have (๐‘ƒ๐‘”)(โˆƒ๐‘”) = 1๐น๐ด since

๐ด ๐ด

๐ด ๐ต

1

1 ๐‘”

๐‘”

is a pullback, and similarly (๐‘ƒ๐ธ)(โˆƒ๐‘’) = 1๐‘ƒ๐ธ. So

๐‘ƒ๐ต ๐‘ƒ๐ด ๐‘ƒ๐ธ๐‘ƒ๐‘“

๐‘ƒ๐‘”

โˆƒ๐‘”

๐‘ƒ๐‘’

โˆƒ๐‘’

is a split coequaliser and in particular a coequaliser. Hence by 5.13 ๐‘ƒ is monadic.

59

Page 61: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

Corollary 7.7.

1. A weak topos has finite colimits. Moreover if it has any infinite limitsthen it has the corresponding colimits. In particular if it is completethen it is cocomplete.

2. If a weakly logical functor has a left adjoint then it has a right adjoint.

Proof.

1. ๐‘ƒ creates all limits which exist, by 5.e.

2. By definition if ๐น is weakly logical then

โ„ฐop โˆƒop

โ„ฐ โˆƒ

๐น

๐‘ƒ ๐‘ƒ

๐น

commutes up to isomorphism. So this follows from 5.16.

Lemma 7.8. Let โ„ฐ be a category with finite limits and suppose ๐ด โˆˆ obโ„ฐhas a power-object ๐‘ƒ๐ด. Then, for any ๐ต, ๐ตโˆ—(๐‘ƒ๐ด) is a power-object for ๐ตโˆ—๐ดin โ„ฐ/๐ต.

Proof. Given๐ถ

๐ต

๐‘” we have a pullback square

๐ถ ร— ๐ด ๐ต ร— ๐ด

๐ถ ๐ต

๐‘”ร—1

๐œ‹1 ๐œ‹1

๐‘”

so ฮฃ๐ต(๐‘” ร— ๐ตโˆ—๐ด) โ‰… ๐ถ ร— ๐ด. Hence

Subโ„ฐ/๐ต(๐‘” ร— ๐ตโˆ—๐ด) โ‰… Subโ„ฐ(๐ถ ร— ๐ด),

but if โ„Ž โˆถ ๐ถ โ†’ ๐‘ƒ๐ด corresponds to๐‘…

๐ถ ร— ๐ด

then the upper square of the diagram

๐‘… ๐ตร— โˆ‹๐ด

๐ถ ร— ๐ด ๐ต ร— ๐‘ƒ๐ด ร— ๐ด

๐ต

(๐‘”,โ„Ž)ร—1๐ด

๐‘”๐œ‹1 ๐œ‹1

60

Page 62: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

is a pullback. So๐ต ร— ๐‘ƒ๐ด

๐ต

๐œ‹1 equipped with ๐ตโˆ—(โˆ‹๐ด) โ†ฃ ๐ตโˆ—(๐‘ƒ๐ด ร— ๐ด) is a power

object for ๐ตโˆ—๐ด.

Theorem 7.9. Suppose โ„ฐ is a weak topos. Then for any ๐ต โˆˆ obโ„ฐ, โ„ฐ/๐ต isa weak topos and ๐ตโˆ— โˆถ โ„ฐ โ†’ โ„ฐ/๐ต is weakly logical.

Proof. The second assertion follows from the previous lemma. For the first,

we need to construct a power object for an arbitrary๐ด

๐ต

๐‘“ in โ„ฐ/๐ต. Then the

pullbackฮฃ๐ต(๐‘” ร— ๐‘“) ๐ด

๐ถ ๐ต

๐‘“

๐‘”

is a subobject of ๐ถ ร— ๐ด, namely the equaliser of

๐ถ ร— ๐ด ๐ต๐‘“๐œ‹1

๐‘”๐œ‹2

Define โˆง โˆถ ๐‘ƒ๐ด ร— ๐‘ƒ๐ด โ†’ ๐‘ƒ๐ด to correspond to the intersection of ๐œ‹โˆ—13(โˆ‹๐ดโ†ฃ

๐‘ƒ๐ดร—๐ด) and ๐œ‹โˆ—23(โˆ‹๐ดโ†ฃ ๐‘ƒ๐ดร—๐ด) and dfine ๐‘ƒ1๐ด โ†ฃ ๐‘ƒ๐ดร—๐‘ƒ๐ด to be the equaliser of

๐‘ƒ๐ด ร— ๐‘ƒ๐ด ๐‘ƒ๐ด.โˆง

๐œ‹1Then, for any ๐ถ, ๐ถ ๐‘ƒ๐ด ร— ๐‘ƒ๐ด(โŒœ๐‘šโŒ,โŒœ๐‘›โŒ) factors through

๐‘ƒ1๐ด if and only if ๐‘š โ‰ค ๐‘› in Subโ„ฐ(๐ถ ร— ๐ด). Now form the pullback

๐‘„ ๐‘ƒ1๐ด

๐‘ƒ๐ด ร— ๐ต ๐‘ƒ๐ด ร— ๐‘ƒ๐ต ๐‘ƒ๐ด ร— ๐‘ƒ๐ด

(โ„Ž,๐‘˜)1ร—{} 1ร—๐‘ƒ๐‘“

Given any๐ถ

๐ต

๐‘” morphisms ๐‘”โ„“โˆ’โ†’ ๐‘˜ in โ„ฐ/๐ต correspond to morphisms ๐ถ

โ„Žโ„“โˆ’โ†’ ๐‘ƒ๐ด

such that the subobject named by โ„Žโ„“ is contained in that named by (๐‘ƒ๐‘“)({})๐‘”.But the latter is indeed ฮฃ๐ต(๐‘” ร— ๐‘“) โ†ฃ ๐ถ ร— ๐ด so ๐‘˜ is a power object for ๐‘“ inโ„ฐ/๐ต.

Corollary 7.10. A weak topos is locally cartesian closed. In particular, itis a topos.

Proof. For any ๐‘“ โˆถ ๐ด โ†’ ๐ต in โ„ฐ, we can define (โ„ฐ/๐ต)/๐‘“) with โ„ฐ/๐ด and ๐‘“โˆ— โˆถโ„ฐ/๐ต โ†’ โ„ฐ/๐ด with pullback along ๐‘“. Hence all such functors are weakly logical.

But ๐‘“โˆ— has a left adjoint ฮฃ๐‘“ so by 7.7 (2) (in lecture 7.10 (ii)) it has a rightadjoint ฮ ๐‘“. Hence by 6.3 โ„ฐ/๐ต is cartesian closed for any ๐ต.

61

Page 63: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

Remark. It can be shown that a weakly logical functor is cartesian closed, andhence logical.

Corollary 7.11.

1. Any epimorphism in a topos is regular.

2. Any ๐‘“ โˆถ ๐ด โ†’ ๐ต in a topos factors uniquely up to isomorphism as

๐ด ๐ผ ๐ต๐‘ž ๐‘š

Proof. โ„ฐ is locally cartesian closed by the above corollary and has coequalisersby 7.10(i) so by 6.7 every ๐‘“ factors uniquely as regular epi plus mono. If ๐‘“ itselfis epic then the monic part of the factorisation is isomorphism by 7.3, so ๐‘“ isregular epic.

7.1 Sheaves and local operators*Recall that Sh(๐‘‹) โŠ† [๐’ช(๐‘‹)op, Set] is a full subcategory closed under limits. Infact itโ€™s reflective and the reflector ๐ฟ โˆถ [๐’ช(๐‘‹)op, Set] โ†’ Sh(๐‘‹) preserves finitelimits. This suggests considering reflective subcategories ๐’Ÿ โŠ† โ„ฐ for which thereflector preserves finite limits (equivalently, pullbacks).

Lemma 7.12. Given such a reflective subcategory and a monomorphism๐ดโ€ฒ โ†ฃ ๐ด in โ„ฐ, define ๐‘(๐ดโ€ฒ) โ†ฃ ๐ด by the pullback diagram

๐‘(๐ดโ€ฒ) ๐ฟ๐ดโ€ฒ

๐ด ๐ฟ๐ด๐œ‚๐ด

Then ๐ดโ€ฒ โ†ฆ ๐‘(๐ดโ€ฒ) is a closure operation on Subโ„ฐ(๐ด) and commutes withpullback along a fixed morphism of โ„ฐ.

By โ€œclosureโ€ we mean an order-preserving inflationary idempotent operator.

Proof. Since๐ด ๐ฟ๐ดโ€ฒ

๐ด ๐ฟ๐ด

๐œ‚๐ดโ€ฒ

๐‘’๐‘ก๐‘Ž๐ด

and ๐ดโ€ฒ โ‰ค ๐ดโ€ณ in Sub(๐ด) implies ๐ฟ๐ดโ€ฒ โ‰ค ๐ฟ๐ดโ€ณ in Sub(๐ฟ๐ด) and hence ๐‘(๐ดโ€ฒ) โ‰ค๐‘(๐ดโ€ณ).

Since ๐ฟ๐œ‚ is an isomorphism,

๐ฟ๐ดโ€ฒ ๐ฟ๐ฟ๐ดโ€ฒ

๐ฟ๐ด ๐ฟ๐ฟ๐ด

๐ฟ๐œ‚๐ดโ€ฒ

๐ฟ๐œ‚๐ด

62

Page 64: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

is a pullback, and since ๐ฟ preserves pullbacks we deduce ๐ฟ๐‘(๐ดโ€ฒ) โ‰… ๐ฟ๐ดโ€ฒ inSub(๐ฟ๐ด). Hence ๐‘(๐‘(๐ดโ€ฒ)) โ‰… ๐‘(๐ดโ€ฒ).

For stability under pullback, suppose

๐ดโ€ฒ ๐ตโ€ฒ

๐ด ๐ต๐‘“

is a pullback. Then in the cube

๐‘(๐ดโ€ฒ) ๐ฟ๐ดโ€ฒ

๐‘(๐ตโ€ฒ) ๐ฟ๐ตโ€ฒ

๐ด ๐ฟ๐ด

๐ต ๐ฟ๐ต

๐œ‚๐ด

๐‘“ ๐ฟ๐‘“

๐œ‚๐ต

the front, back and right faces are pullbacks, whence the left face is too.

Definition (local operator). Let โ„ฐ be a topos. By a local operator in โ„ฐ wemean a morphism ๐‘— โˆถ ฮฉ โ†’ ฮฉ satisfying the commutative diagrams

1 ฮฉ ฮฉ

ฮฉ

โŠค

โŠค๐‘—

๐‘—

๐‘—

ฮฉ1 ฮฉ1

ฮฉ ร— ฮฉ ฮฉ ร— ฮฉ๐‘—ร—๐‘—

where ฮฉ1 is the order relation on ฮฉ define in 7.12.Given a closure operator on subobjects in the above lemma, define ๐ฝ โ†ฃ

ฮฉ to be the closure of โŠค โˆถ 1 โ†ฃ ฮฉ and ๐‘— โˆถ ฮฉ โ†’ ฮฉ to be the classifying mapof ๐ฝ โ†ฃ ฮฉ. Then, for any ๐ดโ€ฒ โ†ฃ ๐ด with classifying map ๐œ’๐‘š โˆถ ๐ด โ†’ ฮฉ, thecomposite ๐‘—๐œ’๐‘š classifies ๐‘(๐ดโ€ฒ) โ†ฃ ๐ด.

Given a pullback-stable cloure operation ๐‘ on subobjects, we say ๐ดโ€ฒ โ†ฃ ๐ด isdense if ๐‘(๐ดโ€ฒ) โ†ฃ ๐ด is isomorphism, and closed if ๐ดโ€ฒ โ†ฃ ๐‘(๐ดโ€ฒ) is isomorphism.

Lemma 7.13. Suppose given a commutative square

๐ตโ€ฒ ๐ดโ€ฒ

๐ต ๐ด

๐‘“โ€ฒ

๐‘› ๐‘š

๐‘“

with ๐‘› dense and ๐‘š closed. Then there is a unique ๐‘” โˆถ ๐ต โ†’ ๐ดโ€ฒ with ๐‘š๐‘” = ๐‘“

63

Page 65: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

(and ๐‘”๐‘› = ๐‘“ โ€ฒ).Proof. We have ๐‘› โ‰ค ๐‘“โˆ—(๐‘š) in Sub(๐ต) so

1๐ต โ‰… ๐‘(๐‘›) โ‰ค ๐‘“โˆ—(๐‘(๐‘š)) โ‰… ๐‘“โˆ—(๐‘š)

so we define ๐‘” as๐ต ๐‘“โˆ—(๐ดโ€ฒ) ๐ดโ€ฒโ‰…

Note that ๐‘(๐ดโ€ฒ) may be characterised as the unique (up to isomorphism)subobject ๐ดโ€ณ such that ๐ดโ€ฒ โ†ฃ ๐ดโ€ณ is dense and ๐ดโ€ณ โ†ฃ ๐ด is closed.

Lemma 7.14. Suppose ๐‘ is induced as in Lemma 7.12 by a reflector ๐ฟ โˆถโ„ฐ โ†’ ๐’Ÿ preserving finite limits. Then an object ๐ด of โ„ฐ belongs to ๐’Ÿ (up toisomorphism) if and only if, given any diagram

๐ตโ€ฒ ๐ด

๐ต

๐‘“โ€ฒ

๐‘š

with ๐‘š dense, there exists a unique ๐‘“ โˆถ ๐ต โ†’ ๐ด with ๐‘“๐‘š = ๐‘“ โ€ฒ.

Proof. Note first that ๐‘š is dense if and only if ๐ฟ๐‘š is an isomorphism: โŸธfollows from the definition. โŸน follows since, by the proof of Lemma 7.12, weknow ๐ฟ(๐ตโ€ฒ) and ๐ฟ(๐‘(๐ตโ€ฒ)) are isomorphic in Sub(๐ต).

Given this, if ๐ด is in ๐’Ÿ then the given diagram extends uniquely to

๐ตโ€ฒ ๐ฟ๐ตโ€ฒ ๐ด

๐ต ๐ฟ๐ต

๐œ‚๐ตโ€ฒ

โ‰…๐œ‚๐ต

Conversely, suppose ๐ด satisfies the condition. Let ๐‘… ๐ด๐‘Ž

๐‘be the kernel-

pair of ๐œ‚๐ด โˆถ ๐ด โ†’ ๐ฟ๐ด and ๐‘‘ โˆถ ๐ด โ†ฃ ๐‘… the factorisation of (1๐ด, 1๐ด) through(๐‘Ž, ๐‘). Since ๐ฟ๐œ‚๐ด is isomorphism and ๐ฟ preservse pullbacks, ๐ฟ๐‘‘ is isomorphismso ๐‘‘ is dense. This forces ๐‘Ž = ๐‘ so ๐œ‚๐ด is monic. And ๐œ‚๐ด is dense so we get aunique ๐‘Ÿ โˆถ ๐ฟ๐ด โ†’ ๐ด with ๐‘Ÿ๐œ‚๐ด = 1๐ด. Now ๐œ‚๐ด๐‘Ÿ๐œ‚๐ด = ๐œ‚๐ด and since ๐ฟ๐ด satisfies thecondition we have ๐œ‚๐ด๐‘Ÿ = 1๐ฟ๐ด.

We say ๐ด is a sheaf (for ๐‘, or for ๐‘—) it it satisfies the condition in the previouslemma. Given a local operator ๐‘— on โ„ฐ, we write sh๐‘—(โ„ฐ) for the full subcategoryof ๐‘—-sheaves in โ„ฐ.

Our aim is to show sh๐‘—(โ„ฐ) is a topos.

Lemma 7.15. sh๐‘—(โ„ฐ) is closed under limits in โ„ฐ and an exponential ideal.

Proof. The first assertion follows since the definition involves only morphismswith codomain ๐ด. For the second, note that if ๐‘š โˆถ ๐ตโ€ฒ โ†ฃ ๐ต is dense the so isร—1๐ถ โˆถ ๐ตโ€ฒ ร— ๐ถ โ†ฃ ๐ต ร— ๐ถ for any ๐ถ (since itโ€™s ๐œ‹โˆ—

1(๐‘š)) and so if ๐ด is a sheaf thenany morphism ๐ตโ€ฒ โ†’ ๐ด๐ถ extends uniquely to a morphism ๐ต โ†’ ๐ด๐ถ.

64

Page 66: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

Lemma 7.16. If ๐ด is a sheaf then a subobject ๐‘š โˆถ ๐ดโ€ฒ โ†ฃ ๐ด in โ„ฐ is a sheafif and only if it is closed.

Proof.

โ€ข โŸธ : Immediate from Lemma 7.13.

โ€ข โŸน : Consider๐ดโ€ฒ ๐‘(๐ดโ€ฒ) ๐ด๐‘ ๐‘ž

๐‘ is dense so if ๐ด is a sheaf we get a unique ๐‘Ÿ โˆถ ๐‘(๐ดโ€ฒ) โ†’ ๐ดโ€ฒ with ๐‘Ÿ๐‘ = 1๐ดโ€ฒ .But ๐‘(๐ดโ€ฒ) is a sheaf so ๐‘๐‘Ÿ๐‘ = ๐‘ and thus ๐‘๐‘Ÿ = 1๐‘(๐ดโ€ฒ).

We define ฮฉ๐‘— โ†ฃ ฮฉ to be the equaliser of ฮฉ ฮฉ.๐‘—

1ฮฉ

Then for any ๐ด,

morphisms ๐ด โ†’ ฮฉ๐‘— corresponding to closed subobjects of ๐ด.

Lemma 7.17. ฮฉ๐‘— is a ๐‘—-sheaf.

Proof. We want to show that if ๐‘š โˆถ ๐ต โ†ฃ ๐ด is a dense mono the pullback along๐‘š yields a bijection from closed subobjects of ๐ด to closed subobjects of ๐ต. If๐‘› โˆถ ๐ดโ€ฒ โ†ฃ ๐ด is closed then the pullback

๐ตโ€ฒ ๐ดโ€ฒ

๐ต ๐ด

๐‘šโ€ฒ

๐‘›โ€ฒ ๐‘›

๐‘š

๐‘šโ€ฒ is dense so ๐ดโ€ฒ โ†ฃ ๐ด is the closure of ๐ตโ€ฒ โ†ฃ ๐ต โ†ฃ ๐ด. It remains to show thatif ๐ตโ€ฒ โ†ฃ ๐ต is closed, it is iso up to the pullback of its closure in ๐ด. But (writing๐ดโ€ฒ โ†ฃ ๐ด for the closure) we have a factorisation ๐ตโ€ฒ โ†’ ๐‘“โˆ—๐ดโ€ฒ which is dense since๐ตโ€ฒ โ†’ ๐ดโ€ฒ is dense, and closed since ๐ตโ€ฒ โ†’ ๐ต is closed.

Theorem 7.18. For any local operator ๐‘— on โ„ฐ, sh๐‘—(โ„ฐ) is a topos. Moreoveritโ€™s reflective in โ„ฐ and the reflector preserves finite limits.

Proof. sh๐‘—(โ„ฐ) is cartesian closed and has a subobject classifier ฮฉ๐‘— by the lemma.To construct the reflect, consider the composite

๐ด ฮฉ๐ด ฮฉ๐ด๐‘—

{} ๐‘—๐ด

this corresponds to the closure (๐‘Ž, ๐‘) โˆถ ๐ด โ†ฃ ๐ด ร— ๐ด of the diagonal subobject(1๐ด, 1๐ด) โˆถ ๐ด โ†ฃ ๐ด ร— ๐ด. I claim (with proof omitted) that ๐ด ๐ด

๐‘Ž

๐‘is the

kernel-pair of ๐‘“. Hence any morphism ๐‘” โˆถ ๐ด โ†’ ๐ต where ๐ต is a sheaf satisfies๐‘”๐‘Ž = ๐‘”๐‘. So if we form the image

๐ด ๐ผ ฮฉ๐ด๐‘—

๐‘ž ๐‘š

65

Page 67: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

7 Toposes

of ๐‘“ any such ๐‘” factors uniquely through ๐‘ž.Now ฮฉ๐ด

๐‘— is a sheaf by the lemmas so if we form the closure ๐ฟ๐ด โ†ฃ ฮฉ๐ด๐‘— of ๐‘š,

we get a morphism ๐ด โ†’ ๐ฟ๐ด through which any morphism from ๐ด to a sheaffactors uniquely. Hence ๐ฟ becomes a functor โ„ฐ โ†’ sh๐‘—(โ„ฐ), left adjoint to theinclusion.

By 6.13, we know ๐ฟ preserves finite products. In fact it preserves equalisersas well (can be checked but omitted here).

Finally, we state the relation between topos and the topos Grothendieck wasinterested in (i.e. sheaves):

Theorem 7.19. For a category โ„ฐ, TFAE:

1. โ„ฐ is a topos, complete and locally small and has a separating set ofobjects.

2. there exists a small category C and a local operators on [Cop, Set]such that

โ„ฐ โ‰ƒ sh๐‘—([Cop, Set]).

Sketch of proof.

1. 1 โŸน 2: since sh๐‘—([Cop, Set]) has given properties.

2. 1 โŸธ 2: take C to be the full subcategory of โ„ฐ on the separating set andconsider

โ„ฐ [โ„ฐop, Set] [Cop, Set].๐‘Œ

66

Page 68: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

Index

adjoint functor theoremgeneral, 31special, 32

adjoints on the right, 17adjunction, 16algebra, 36arrow category, 17

Beck-Chevalley condition, 58

category, 2balanced, 9cartesian closed, 47cocomplete, 27complete, 27discrete, 3locally cartesian closed, 49locally small, 10opposite, 3skeletal, 8small, 2well-powered, 32

closed, 63closure, 62coequaliser, 13, 25

split, 41comonad, 35cone, 23congruence, 2coproduct, 13, 24counit, 19create limit, 27

dense, 63detecting family, 14detector, 14diagram, 23direct limit, 25

Eilenberg-Moore comparisonfunctor, 39

epimorphism, 9equaliser, 13, 25equivalence, 6exponentiable object, 47exponential ideal, 52

Frobenius reciprocity, 52

functor, 3contravariant, 4essentially surjective, 7faithful, 7forgetful, 4full, 7representable, 12

Heyting semilattice, 47

initial object, 16injective, 15inverse limit, 25

Kleisli category, 37

local operator, 63logical functor, 55, 57

monad, 35monadic tower, 44monadicity, 40monadicity theorem, 42monoid, 3monomorphism, 9

regular, 13split, 9

multiplication, 35

natural transformation, 5

Parรฉ theorem, 59power-object, 57preserve limit, 27presheaf, 53product, 13, 24projective, 15pullback, 25pushout, 25

quotient object, 32

reflection, 21reflective subcategory, 21reflexivity, 41right adjoint preserves limits, 29

separating family, 14separator, 14sheaf, 53sieve, 56

67

Page 69: Category Theory - Aleph epsilonqk206.user.srcf.net/notes/category_theory.pdfย ยท morphisms. Similarly Ringis the category of rings and Mod๐‘…is the categoryof๐‘…-modules. 3. The

Index

singleton, 57skeleton, 8slice category, 47Stone-ฤŒech compactification, 22,

34subobject, 32subobject classifier, 55subterminal, 53

terminal object, 17topos, 55, 57triangular identities, 19

unit, 19, 35universal element, 12

Yoneda embedding, 11Yoneda lemma, 10

68