carrier phase two-way satellite frequency transfer (twcp)

34
Carrier Phase Two-Way Satellite Frequency Transfer (TWCP) Miho Fujieda National Institute of Information and Communications Technology (NICT) APMP TCTF workshop 9/19/2014

Upload: others

Post on 07-Jan-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Miho Fujieda

National Institute of Information and Communications Technology (NICT)

APMP TCTF workshop 9/19/2014

Page 2: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

- Motivation

- Tools

- Equations

- Demonstration

- Error sources

- Summary and Future plans

Outline

Page 3: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Motivation

For intercontinental transfer, frequency link via satellite is still necessary, especially for island country, Japan.

10-18

10-17

10-16

10-15

10-14

10-13

100 101 102 103 104 105

周波

数安

定度

平均化時間 [s]Averaging time [s]

Alla

n d

evia

tion

Our target

Our target: improvement of transfer stability of TWSTFT in the 10-16 level

Page 4: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Expected precision

Use of carrier phase is one of ways to improve the measurement precision.

Method Precision [ns] Rate/Frequency [MHz]

GPS code 5 1.023

GPS carrier phase 0.05 1575.42

TWSTFT code 0.5 2.5

TWSTFT carrier phase

0.005 ? 11000 ~ 14500

Brief measurement precision

Page 5: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

History

ETS-VIII experiment at NICT2

First experiment by USNO and Timetech1

1 B. Fonville et al., Proc of PTTI meeting 149 (2004). 2 F. Nakagawa et al., Metrologia 50 200-207 (2013). 3 M. Fujieda et al., IEEE TUFFC 59 12 2625 (2012). 4 M. Fujieda et al., Metrologia 51 253-262 (2014).

NMIJ OP

Short-baseline3

Long-baseline4

TWCP: A technique established recently

Page 6: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

ωs ωu ωd

ωu, ωd : uplink, downlink frequencies

ωs : local frequency at satellite

Earth station A Earth station B

Communication satellite

What is problem for TWCP?

Phase jitter: induced by onboard oscillator in down-conversion

USNO’s proposal: Mathematical solution by using four signals (A->A, A->B, B->A, B->B)

Page 7: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

- Introduction & history

- Tools

- Equations

- Demonstration

- Error sources

- Summary and Future plans

Outline

Page 8: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

What tools are necessary for TWCP?

Name Lab

NICT modem (discontinued) NICT

SATRE modem USNO, OP

Arbitrary Waveform Generator (AWG) NICT

*Signal generation (Tx)

Name Lab

SATRE modem USNO, OP

A/D sampler (vssp32) NICT

*Phase/Frequency detection (Rx)

Frequency converters should be locked to an external reference. Other instruments are identical to conventional TWSTFT (code phase).

Page 9: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Experimental apparatus for TWCP in NICT Setup of earth station

Power amp.

Low-noise amp.

Up converter

Down converter

Arbitrary waveform generator

A/D sampler

10MHz & 1pps

BPF

1.2-m/1.8-m/2.4-m antenna 99% OBW =

200 kHz

200-kHz signal for TWCP

Sampling : every 20 ms 50 points of 20-ms data

Least-square fit

1-sec data

Narrower bandwidth signal (200 kHz) for save satellite-link fee Slower chip rate signal (127.75 kcps) to help signal tracking

Page 10: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Name Specification

Sampling frequency

40 kHz ~ 64 MHz

Number of A/D bit

1, 2, 4, 8

Number of channels

4

External reference signals

5 or 10 MHz and 1 pps

A/D Sampler for phase detection

Name Specification

Sampling frequency 204.6 MHz

D/A bit 8

Number of channels 2

Waveform memory 512 kB x 2 /CH

Overlay memory 64 kB / CH

External reference signals 10 MHz and 1 pps

Arbitrary waveform generator

Arbitrary waveform generator(Right)

A/D sampler (Left)

A/D sampler and AWG

Page 11: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

- Introduction & history

- Tools

- Equations

- Demonstration

- Error sources

- Summary and Future plans

Outline

Page 12: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Signal from station A at satellite:

Computation of time difference (1)

Sin(ωu’t+ωuτa(t))

= Sin(ωu (1 – va(t)/c)t + ωuτa(t))

Down-converted signal at satellite: Sin((ωu’-ωs)t+ωuτa(t) –ωsτs(t))

Received signal at station B:

v(t)/c ~1e-9 at GEO

Sin((ωu’-ωs)(1-vb(t)/c)t+ωuτa(t) –ωsτs(t)-ωdτb(t))

= Sin(ωdt + Φab(t))

Signal from station A: Sin(ωut+ωuτa(t))

(ωu’-ωs)(1-vb(t)/c)t = (ωu (1 – va(t)/c) -ωs) (1-vb(t)/c)t

= ωdt –ωuva(t)/c・t - ωdvb(t)/c・t + ωu・va(t)/c・vb(t)/c negligible

φab(t)=ωuτa(t)-ωsτs(t)-ωdτb(t)-(ωuρas(t)+ωdρbs(t))/c

ρas(t)

Time at station A: τa(t)

Radial velocity: va(t)

Page 13: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

ωs ωu ωd

A B

φab(t)=ωuτa(t)-ωsτs(t)-ωdτb(t)-(ωuρas(t)+ωdρbs(t))/c +ωuIua(t)+ωdIdb(t)

Phase from station A to station B

ωu, ωd : uplink, downlink frequencies

ωs : local frequency at satellite

τa,τs,τb : time difference of local clock

ρas,ρbs : geometric distance between earth station and satellite

c : speed of light

Computation of time difference (2)

I ij: Ionosphere delay with frequency fi at station j [s]

Time difference:

Page 14: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

φab(t)=ωuτa(t)-ωsτs(t)-ωdτb(t)-(ωuρas(t)+ωdρbs(t))/c +ωuIua(t)+ωdIdb(t)

Phase from station A to station B

Computation of time difference (3)

*Ionosphere delays: given by TEC map *Troposphere delay independent of frequency: canceled out on the way

Iij(t) = c・fi

2

40.3・TECj(t)

TECj(t): Total electron content at position j [1016 electrons/m2]

4 Unknown values: (τa – τb), τs, ρas, ρbs

4 equations

Page 15: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

φab(t)=ωuτa(t)-ωsτs(t)-ωdτb(t)-(ωuρas(t)+ωdρbs(t))/c +ωuIua(t)+ωdIdb(t)

1. Phase from station A to station B

φba(t)=ωuτb(t)-ωsτs(t)-ωdτa(t)-(ωuρas(t)+ωdρbs(t))/c +ωuIub(t)+ωdIda(t)

2. Phase from station B to station A

φaa(t)=ωuτa(t)-ωsτs(t)-ωdτa(t)-(ωuρas(t)+ωdρas(t))/c +ωuIua(t)+ωdIda(t)

3. Phase from station A to station A

φbb(t)=ωuτb(t)-ωsτs(t)-ωdτb(t)-(ωuρbs(t)+ωdρbs(t))/c +ωuIub(t)+ωdIdb(t)

4. Phase from station B to station B

Computation of time difference (4)

Time difference:

Target

Page 16: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

φab(t)-φba(t)=(ωu+ωd)(τa(t)-τb(t))-(ωu-ωd)(ρas(t)-ρbs(t))/c +ωu(Iua(t) – Iub(t)) - ωd(Ida(t)-Idb(t))

1-2

φaa(t)-φbb(t)=(ωu-ωd)(τa(t)-τb(t))-(ωu+ωd)(ρas(t)-ρbs(t))/c +ωu(Iua(t) – Iub(t)) + ωd(Ida(t)-Idb(t))

3-4

Computation using 4 phase information

Calculation of time difference (5)

ω+

ω+ ω-

ω- x(t)

x(t) y(t)

y(t)

Page 17: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Time difference between station A and station B with ionosphere delay terms

τa(t)-τb(t) ω+x(t)-ω-y(t)

= ω+

2 –ω-2

x(t) = φab(t) - φba(t)

ω+ = ωu + ωd

y(t) = φaa(t) - φbb(t)

ω- = ωu - ωd

Calculation of time difference (6)

φab(t) ,φba(t), φaa(t), φbb(t) : Observed data

+ ω+

2 –ω-2

2ωuωd

[(IdA(t)-IuA(t))-(IdB(t)-IuB(t))]

Page 18: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

- Introduction & history

- Tools

- Equations

- Demonstration

- Error sources

- Summary and Future plans

Outline

Page 19: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

TWCP experiments in various-length baselines

*0 km Domestic, GE23@172°, free from stability of reference clocks *100-km Domestic (Tokyo-Kashima), GE23@172°, H-maser comparison *1000-km Domestic (Tokyo-Okinawa), GE23@172°, H-maser comparison *10000-km International (NICT-PTB), AM2@80°, UTC(k) or H-maser comparison

AM2@80° GE23@172° (now Eutelsat 172A)

NICT PTB

Page 20: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

NICT-PTB TWCP experiment (2013/3 ~ 2013/6)

*Period: 2013/3/7~2013/6/30 *Satellite: AM2 @ 80E *Satellite transponder on-time: 10:05 h ~ 22:59 h in UTC *Elevation angles: 3.7° @PTB 16.0°@NICT

PTB 1.8-m antenna

@PTB

Special thanks to D. Piester, J. Becker, A. Bauch

AWG

AD sampler

Frequency converters

SSPA

LNA

Page 21: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

TWCP stability in various-length baselines

10-16

10-15

10-14

10-13

100

101

102

103

104

105

106

0 km100 km

1000 km10000 km10000 km

Mo

difie

d A

llan

de

via

tio

n

Averaging time [s]

Short-term stability: Independent of baseline length

(2013/3/15)

(2013/3/7~4/1)

Due to H-maser

Due to Air-

conditioner

Page 22: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Comparison with GPS CP in 10000-km baseline

-552

-550

-548

-546

-544

-542

56355 56360 56365 56370 56375 56380 56385

UTC(NICT)-UTC(PTB) via AM2

TWcodeGPSCP (300-s avg)TWCP (300-s avg)

Tim

e d

iffe

rence

[n

s]

MJD

-800

-600

-400

-200

0

200

400

600

800

56355 56360 56365 56370 56375 56380 56385

UTC(NICT)-UTC(PTB) via AM2

GPSCP

TWCP

Fre

qu

ency d

iffe

ren

ce (

x 1

01

5)

MJD

300-s averageFiber transfer system failed.

Wo/ fiber link stabilization

1-s average, 300-s sampling

Phase ambiguity in TWCP: Filled by integral multiple of one period to agree with GPS CP

Result of TWCP: Consistent with GPS CP within the uncertainty of GPS CP

5 days

2 ns

2e-13

5 days

Page 23: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Comparison with GPS CP in 10000-km baseline

-552

-550

-548

-546

-544

-542

56355 56360 56365 56370 56375 56380 56385

UTC(NICT)-UTC(PTB) via AM2

TWcodeGPSCP (300-s avg)TWCP (300-s avg)

Tim

e d

iffe

rence

[n

s]

MJD

-800

-600

-400

-200

0

200

400

600

800

56355 56360 56365 56370 56375 56380 56385

UTC(NICT)-UTC(PTB) via AM2

GPSCP

TWCP

Fre

qu

ency d

iffe

ren

ce (

x 1

01

5)

MJD

300-s averageFiber transfer system failed.

Wo/ fiber link stabilization

1-s average, 300-s sampling

Phase ambiguity in TWCP: Filled by integral multiple of one period to agree with GPS CP

Result of TWCP: Consistent with GPS CP within the uncertainty of GPS CP GPSCP-TWCP:(1.3±0.8)x10-15

standard error

5 days

2 ns

2e-13

5 days

10-16

10-15

10-14

102

103

104

105

106

GPSCPTWCPGPSCP-TWCP

Mo

difie

d A

llan

de

via

tio

n

Averaging time [s]

w/ gap

GPSCP-TWCP: 5e-16 @ 1 day

Page 24: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

- Introduction & history

- Tools

- Equations

- Demonstration

- Error sources

- Summary and Future plans

Outline

Page 25: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

1E-17

1E-16

1E-15

1E-14

1E-13

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Error sources (1) *Short term

Item Phase jitter [ps]

Frequency converters ~ 0.2

Instability by common-clock meas. Frequency converters updated.

via Eutelsat 172A

old

new

Averaging time [s]

Alla

n d

evia

tio

n

Page 26: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

*Mid ~ Long term

Item Amplitude in time[ps]

Amplitude in Frequency

Compensation methods

Ionosphere ~ 300 ps 10-15~10-14

-Compensation using global ionosphere map -Average over 1 day

Troposphere A few ps < 10-16 -Not necessary at present

Sagnac effect < 20 ps (AM2, NICT-PTB)

< 10-15

-Calculation using orbit information

2nd order of Doppler shift

< 0.1 ps < 10-17 -Not necessary at present

Phase variation in instruments

A few ~ 200 ps < 10-13 -Temperature stabilization -Correction by measurement

Error sources (2)

Page 27: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Phase variation due to frequency converters

-1

-0.5

0

0.5

1

1.5

7 8 9 10 11 12

GPSCP, 120-sec avgTWCP, 1-sec avg

Tim

e d

iffe

rence

[n

s]

Day in 2012/12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20

21

22

23

24

25

26

27

28

7 7.05 7.1 7.15 7.2 7.25 7.3 7.35 7.4

Tim

e d

iffe

rence

[n

s]

Indo

or te

mp

era

ture

[de

g C

]

Day in 2012/12

TWCP

Room temp.

10-15

10-14

10-13

100

101

102

103

104

105

106

TWCPGPSCP

MD

EV

Averaging time [s]

3x10-13@1 s

1 day

0.5 ns

0.15 ns / 1.5 ℃

H-maser comparison

Page 28: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Ionosphere delay correction using TEC map

TEC: Total Electron Contents Some TEC maps -Global ionosphere maps (GIM) ftp://ftp.unibe.ch/aiub/CODE

*Provided by the Center for Orbit Determination in Europe (CODE) *Time resolution: every 2 hours *Position resolution: 2.5°in latitude, 5.0°in longitude

-Japanese local TEC map http://wdc.nict.go.jp/IONO/gps-tec/tecv/

*Provided by NICT *Every 15 min. *2.0°in latitude, 2.0°in longitude

-European TEC map ftp://gnss.oma.be/gnss/products/IONEX/

*Provided by the Royal Observatory of Belgium (ROB) *Every 15 min. *0.5°in latitude, 0.5°in longitude

Iij(t) = c・fi

2

40.3・TECj(t)

Page 29: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Ionosphere delay effect in NICT-PTB link Ionosphere delay in NICT-PTB link computed using GIM

Elevation angle: 3.7°@PTB ⇒ Significant impact in TWCP

Page 30: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Ionosphere delay effect in NICT-PTB link Ionosphere delay in NICT-PTB link computed using GIM

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

10 11 12 13 14 15 16

GPS CP - TWCP: UTC(NICT)-UTC(PTB)

GPSCP-TWCPGPSCP-(TWCP w/ionosphere correction)Ionosphere correction

Do

uble

diffe

ren

ce [

ns]

Day in 2013/4

1-hour average

10-16

10-15

103

104

105

106

GPSCP-TWCP

wo/ correctionw/ correction

Mo

difie

d A

llan d

evia

tio

n

Averaging time [s]

The ionosphere effect was visible and the compensation using GIM was effective in NICT-PTB link.

3e-16

4/10~4/19

GPSCP-TWCP

1 day 0.05 ns

Page 31: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Optical clock comparison in NICT-PTB link

10-16

10-15

10-14

10-13

100

101

102

103

104

2013/6/26

Sr(PTB)-H8Sr(NICT)-H4H4-H8H4-H8 (all data)Sr(PTB)-Sr(NICT)

Alla

n d

evia

tio

n

Averaging time [s]

Final result: Sr(PTB) = Sr(NICT) ± 1.6e-15

TWCP instability was worse than that of common-clock measurement. Due to instrument’s phase variation, imperfect compensation of ionosphere delays?

Further study is necessary.

Page 32: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Summary

-TWCP is recently confirmed technique. -It has a measurement precision in the 10-13 level. -The precision is independent of the baseline length. -The result is consistent with GPSCP. Future plans for further study about the instability *24-hours measurement in 10000-km order link *Comparison of frequency standards

Page 33: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Thank you for your kind attention.

Page 34: Carrier Phase Two-Way Satellite Frequency Transfer (TWCP)

Global ionosphere maps (GIM) ftp://ftp.unibe.ch/aiub/CODE

*Provided by the Center for Orbit Determination in Europe (CODE) *Vertical total electron content (VTEC) *Time resolution: every 2 hours *Position resolution: 2.5°in latitude, 5.0°in longitude *Accuracy: 2~8 TECU [1016 electrons/m2] Ionosphere effect in TWSTFT: 40.3*(TECa-TECb)/c*(1/fu

2-1/fd2)

= 40.3*8 [TECU]/c*(1/fu2-1/fd

2)

~ 30 ps → 30 ps / 2/3600 ~ 4e-15

Ionosphere delay correction using global ionosphere map

VTEC 0,1 VTEC 1,1

VTEC 0,0 VTEC 1,0

VTEC(ti, j)

Time interpolation using VTEC(ti, j) and VTEC(ti+1, j)

Conversion from VTEC to slant TEC, along with signal path slant_TEC ~ VTEC/sinφ φ: elevation angle

φ

Iij(t) = c・fi

2

40.3・TECj(t)