carey organic chemistry chapter 15 alcohols, diols, and thiols slides

68
Chem 212 B. R. Kaafarani 1 Chapter 15 Alcohols, Diols, and Thiols O H O H

Upload: hani-shamsedeen

Post on 02-Jan-2016

173 views

Category:

Documents


5 download

DESCRIPTION

Carey Organic Chemistry Chapter 15Alcohols, Diols, and Thiols Slides by Dr,Kaafarani from AUB.

TRANSCRIPT

Page 1: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 1

Chapter 15Alcohols, Diols, and Thiols

OH O

H

Page 2: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 2

15.1. Sources of Alcohols

Methanol

Methanol is an industrial chemical.- End uses: solvent, antifreeze, fuel.- Principal use: preparation of formaldehyde.- Prepared by hydrogenation of carbon monoxide.

CO + 2H2 CH3OH

Page 3: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 3

Ethanol is an industrial chemical. Most ethanol comes from fermentation.

Synthetic ethanol is produced by hydration ofethylene.

Synthetic ethanol is denatured (made unfit fordrinking) by adding methanol, benzene, pyridine,castor oil, gasoline, etc.

Ethanol

Page 4: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 4

Other Alcohols

Isopropyl alcohol is prepared by hydration ofpropene. Isopropyl alcohol evaporates quickly fromthe skin (bp. 82 oC) and has a cooling effect. It isused as rubbing alcohol and to sterilize medicalinstruments.

Most alcohols with five or six carbons are readilyavailable.

Page 5: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 5

Hydration of alkenes.

Hydroboration-oxidation of alkenes.

Hydrolysis of alkyl halides.

Syntheses using: - Grignard reagents.- Organolithium reagents.

Reactions discussed in earlier chapters (Table 15.1)

Sources of alcohols

Page 6: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 6

- Reduction of aldehydes and ketones.

- Reduction of carboxylic acids.

- Reduction of esters.

- Reaction of Grignard reagents with epoxides.

- Diols by hydroxylation of alkenes.

New methods in Chapter 15

Sources of alcohols

Page 7: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 7

C

R

H OH

H

C

R

H

O

Reduction of Aldehydes Gives Primary Alcohols

15.2. Preparation of Alcohols by Reduction of Aldehydes and Ketones

Page 8: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 8

Pt, ethanol

(92%)

CH3O CH2OH

O

CH3O CH + H2

Example: Catalytic Hydrogenation

Pt, Pd, Ni, or Ru as effective catalysts.

Page 9: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 9

C

R

H OH

R'

C

R

R'

O

Reduction of Ketones Gives Secondary Alcohols

(93-95%)

+ H2

O

Pt

ethanol

H OHExample: Catalytic Hydrogenation

Page 10: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 10

“H:–”

“H:–”

C

R

H OH

H

C

R

H

O

C

R

H OH

R'

C

R

R'

O

Retrosynthetic Analysis

Page 11: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 11

Sodiumborohydride

Lithiumaluminum hydride

Li+

Na+ –B

H

H

HH–

Al

H

H

HH

act as hydride donors

Metal Hydride Reducing Agents

Page 12: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 12

NaBH4

(82%)

CH2OH

O

CH

O2N

methanol

O2N

O H OH

(84%)

NaBH4

ethanol

Aldehyde

Ketone

Examples: Sodium Borohydride

Page 13: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 13

Lithium Aluminum Hydride

More reactive than sodium borohydride.

Cannot use water, ethanol, methanol etc. assolvents.

Diethyl ether is most commonly usedsolvent.

Page 14: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 14

(84%)

Aldehyde

Ketone

O

CH3(CH2)5CH CH3(CH2)5CH2OH

1. LiAlH4,diethyl ether

2. H2O

O

(C6H5)2CHCCH3

1. LiAlH4,diethyl ether

2. H2O

(86%)

OH

(C6H5)2CHCHCH3

Examples: Lithium Aluminum Hydride

Page 15: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 15

H OH

O

1. LiAlH4,diethyl ether2. H2O

(90%)

Selectivity

Neither NaBH4 or LiAlH4reduces isolated double bonds.

Page 16: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 16

Lithium aluminum hydride is the only effective reducing agent.

C

R

H OH

H

C

R

HO

O

Reduction of carboxylic acids gives primary alcohols:

15.3. Preparation of Alcohols By Reductionof Carboxylic Acids and Esters

Page 17: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 17

1. LiAlH4,diethyl ether2. H2OCOH

O

CH2OH

(78%)

Example: Reduction of a Carboxylic Acid

Page 18: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 18

Reduction of EstersGives Primary Alcohols

Lithium aluminum hydride preferred for laboratoryreductions.

Sodium borohydride reduction is too slow to beuseful.

Catalytic hydrogenation of esters used in industrybut conditions difficult or dangerous to duplicatein the laboratory (special catalyst, hightemperature, high pressure).

Page 19: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 19

1. LiAlH4,diethyl ether

2. H2O

(90%)

O

COCH2CH3

CH3CH2OHCH2OH +

Example: Reduction of an Ester

Page 20: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 20

CH2 CH2 OMgX

H3O+

H2C CH2

O

R MgX R

RCH2CH2OH

15.4. Reaction of Grignard Reagentswith Epoxides

Page 21: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 21

CH3(CH2)4CH2MgBr H2C CH2

O

+

1. Diethyl ether2. H3O+

CH3(CH2)4CH2CH2CH2OH

(71%)

Example

Hexylmagnesium bromide Ethylene oxide

1-Octanol

Page 22: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 22

Reactions used to prepare alcohols.

Hydroxylation of alkenes.

15.5. Preparation of Diols

Diols are prepared by...

Page 23: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 23

O O

HCCH2CHCH2CH

CH3

H2 (100 atm)

Ni, 125°C

HOCH2CH2CHCH2CH2OH

CH33-Methyl-1,5-pentanediol

(81-83%)

Example: reduction of a dialdehyde

3-Methylpentanedial

Page 24: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 24

Vicinal diols have hydroxyl groups onadjacent carbons.

Ethylene glycol (HOCH2CH2OH) is mostfamiliar example.

Hydroxylation of AlkenesGives Vicinal Diols

Page 25: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 25

syn addition of —OH groups to each carbonof double bond.

C CHO OH

C C

O OOs

OO

CC

Osmium Tetraoxide is Key Reagent

Oxidizing agent

OsO4Osmium tetroxide Cyclic

osmate ester

Page 26: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 26

(CH3)3COOH,OsO4 (cat),

tert-Butyl alcohol,HO–

(73%)

CH2CH3(CH2)7CH

CH3(CH2)7CHCH2OH

OH

Example

tert-Butyl hydroperoxide

OOH

Page 27: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 27

(CH3)3COOHOsO4 (cat)

tert-Butyl alcoholHO–

cis-1,2-cyclohexanediol

(62%)

H

H

H

H

OHHO

Example

cyclohexene

syn dihydroxylation of alkenes

Page 28: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 28

RCH2O

H

CH2R

OH

H+, heat

RCH2O CH2R H OH+

Acid-catalyzed. Referred to as a "condensation”. Equilibrium; most favorable for primary alcohols.

15.7. Conversion of Alcohols to Ethers

About this rxn:

Page 29: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 29

2 CH3CH2CH2CH2OH

H2SO4, 130°C

CH3CH2CH2CH2OCH2CH2CH2CH3

(60%)

Example

Page 30: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 30

Step 1:

CH3CH2O•• ••

H

H OSO2OH

Mechanism of Formation of Diethyl Ether

Ethanol Sulfuric acid

OSO2OH+ –CH3CH2O••

H

H+

Hydrogen sulfate ionEthyloxonium ion

Page 31: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 31

Step 2:

CH3CH2••

H

H

+O

CH3CH2O•• ••

H

Mechanism of Formation of Diethyl Ether

Ethanol

Ethyloxonium ion

++CH3CH2

CH3CH2O••

H

••

H

HO••

Diethyloxonium ion

Water

Page 32: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 32

Step 3:

+CH3CH2

CH3CH2O••

HHOCH2CH3••

••

Mechanism of Formation of Diethyl Ether

Diethyloxonium ion

Ethanol

+

H OCH2CH3••

CH3CH2

CH3CH2O••••

H

+

Diethyl ether

Ethyloxonium ion

Page 33: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 33

HOCH2CH2CH2CH2CH2OH

H2SO4 130°

O

(76%)

Intramolecular Analog

Reaction normally works wellonly for 5- and 6-memberedrings.

Page 34: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 34

HOCH2CH2CH2CH2CH2OH

H2SO4 130°

O

(76%)

via:

O

H

+O

H

H

••••••

Intramolecular Analog

+ H2O

Page 35: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 35

ROH H2O+H+

+R'COH

O

R'COR

O

15.8. Esterification

About this rxn: Called Fischer esterification. Acid catalyzed condensation reaction of an alcohol and

a carboxylic acid. Reversible. Drive reaction forward by removal of water (i.e.

azeotrop distillation using benzene).

Page 36: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 36

H2O+

CH3OH+COH

O

COCH3

O

H2SO4

0.1 mol 0.6 mol (i.e. excess)

70% yield based on benzoic acid

Example of Fischer Esterification

Page 37: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 37

ROH HCl+ +R'CCl

O

R'COR

O

Reaction of Alcohols with Acyl Chlorides

About this rxn:

- High yields.- Not reversible when carried out in presence of pyridine.

Page 38: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 38

pyridine

+ CClO2N

O

(63%)CH3

NO2

CH3CH2

OC

O

Example: Note the configuration on the alcohol!

(R)-(+)-2-phenyl-2-butanol

(R)-(-)-1-Methyl-1-phenylpropyl-p-nitrobenzoate

CH3

CH3CH2

OH

Page 39: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 39

ROH + +R'COR

OO

R'COCR'

O

R'COH

O

Reaction of Alcohols with Acid Anhydrides

analogous to reaction with acyl chlorides

Page 40: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 40

Pyridine

(83%)

+C6H5CH2CH2OH

O

F3CCOCCF3

O

C6H5CH2CH2OCCF3

O

Example

2-Phenylethanol Trifluoroacetic anhydride

2-Phenylethyl trifluoroacetate

O

F3CCOH+Trifluoroacetic acid

Page 41: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 41

Primary alcohols

Secondary alcohols

from H2O

RCH2OH

O

RCH

O

RCOH

O

RCR'RCHR'

OH

15.9. Oxidation of Alcohols

Page 42: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 42

Aqueous solution

Mn(VII) Cr(VI)

KMnO4 H2CrO4

H2Cr2O7

Typical Oxidizing Agents

Potassium permanganate

Chromic acid (H2CrO4):Prepared by acidification of solutions of chromate and

dichromate

chromate: CrO42-

dichromate: Cr2O72-

Page 43: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 43

FCH2CH2CH2CH2OH

K2Cr2O7H2SO4,H2O

FCH2CH2CH2COH

(74%)

O

Na2Cr2O7H2SO4,H2O

(85%)

H

OH

O

Aqueous Cr(VI)

3-fluoropropanoic acid

3-fluoro-1-propanol

Page 44: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 44

Nonaqueous Sources of Cr(VI)

Allows easy isolation of aldehydes in good yield by oxidation of primary alcohols.

All are used in CH2Cl2:

- Pyridinium dichromate (PDC)

(C5H5NH+)2 Cr2O72–

- Pyridinium chlorochromate (PCC)

C5H5NH+ ClCrO3–

Page 45: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 45

CH3(CH2)5CH2OHPCC

CH2Cl2

O

CH3(CH2)5CH

(78%)

ClCrO3–

N

H

+

Example: Oxidation of aprimary alcohol with PCC(pyridinium chlorochromate)

Page 46: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 46

PDC CH2Cl2

O

(94%)

CH2OH(CH3)3C

CH(CH3)3C

Example: Oxidation of a primary alcohol with PDC(pyridinium dichromate)

Page 47: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 47

MechanismStep 1:

Step 2:

Step 3:A series of redox reactions converts chromium from the 4+ oxidation state in HCrO3

– to the 3+ oxidation state.

Page 48: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 48

alcohol dehydrogenase

CH3CH2OH + NAD (a coenzyme)+

+ + +HNAD HCH3CH O

Enzyme-catalyzed

15.10. Biological Oxidation of Alcohols

Reduced form of NAD coenzymeacetaldehyde

Nicotinamide adenine dinucleotide

Page 49: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 49

Nicotinamide adenine dinucleotide (oxidized form)

HO

HO

OO

NN

NH2

PO

PO

O

HOOH

H

C

O

NH2N

O O O O

+

__

Figure 15.2. Structure of NAD+

Page 50: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 50

CH3CH2OH +N

H

CNH2

O

+

R

Enzyme-catalyzed

CH3CH

O

N

H

CNH2

O

R

H

••

NAD+

NADH

Page 51: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 51

CC

HO OH

HIO4 C O O C+

15.11. Oxidative Cleavage of Vicinal Diols

HIO4: Periodic Acid

Page 52: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 52

HIO4

CH CCH3

CH3

OHHO

CH3CCH3

O

CH

O

+

(83%)

Cleavage of Vicinal Diols by Periodic Acid

benzaldehydeacetone

2-Methyl-1-phenyl-1,2-pentanediol

Page 53: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 53

HIO4

OH

OH

O

HCCH2CH2CH2CH

O

Cyclic Diols are Cleaved

1,2-Cyclopentanediol Pentane-1,5-dial

* Both stereoisomers react* cis faster than trans

Page 54: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 54

1) Analogous to alcohols, but suffix is -thiol rather than –ol.

2) Final -e of alkane name is retained, not dropped as with alcohols.

15.12. Preparation of Thiols

Nomenclature of Thiols

CH3CHCH2CH2SH

CH3

3-Methyl-1-butanethiol

HOCH2CH2SH

2-Mercaptoethanolor

2-Sulfanylethanol

Page 55: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 55

Properties of Thiols

1. Low molecular weight thiols have foul odors.

2. Hydrogen bonding is much weaker in thiols thanin alcohols.

3. Thiols are stronger acids than alcohols.

4. Thiols are more easily oxidized than alcohols;oxidation takes place at sulfur.

Page 56: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 56

Thiols are less polar than alcohols

Methanol Methanethiol

bp: 65°C bp: 6°C

Page 57: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 57

stronger acid(pKa = 10)

waterweaker acid(pKa = 15.7)

HRS••

••

••

••OH••

–RS

••

••H

••

••OH••

–++

Thiols have pKas of about 10; can be deprotonated in aqueous base.

Thiols are stronger acids than alcohols

Hydroxide ion(stronger base)

Alkanethiolate ion (weaker base)

Thiols dissolve in aqueous base.

Page 58: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 58

RS– and HS– are weakly basic and good nucleophiles

H Cl HC6H5SC6H5SNa

SN2(75%)

KSH

SN2(67%)

Br SH

(S)-3-Chlorocyclopentene (R)-2-Cyclopentyl phenyl sulfide

Page 59: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 59

thiol (reduced)

disulfide (oxidized)

RS••

••H RS

••

••SR••

••

Oxidation of thiols takes place at sulfur

- Thiol-disulfide redox pair is important in biochemistry.

- Other oxidative processes place 1, 2, or 3 oxygenatoms on sulfur.

Page 60: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 60

thiol disulfide

sulfinic acid sulfonic acid

RS••

••H RS

••

••SR••

••

sulfenic acid

RS••

••OH RS

••

••OH

O•• ••–

+RS

••

OH

O•• ••–

2+

••O•• ••–

Oxidation of thiols takes place at sulfur

Page 61: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 61

O2, FeCl3

(CH2)4COH -Lipoic acid (78%)

HSCH2CH2CH(CH2)4COH

SH O

OS S

Example: sulfide-disulfide redox pair

Page 62: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 62

O—H stretching: 3200-3650 cm–1 (broad)

C—O stretching: 1025-1200 cm–1 (broad)

15.13. Spectroscopic Analysis of Alcohols

Infrared Spectroscopy

Page 63: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 63

Figure 15.4: Infrared Spectrum of Cyclohexanol

Page 64: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 64

Chemical shift of O—H proton is variable; depends on temperature and concentration

O—H proton can be identified by adding D2O; signal for O—H disappears (converted to O—D)

As S has a lower electronegativity than oxygen, sulfur shields neighboring Hs more.

C OH H 3.3-4 ppm 0.5-5 ppm

1H NMR

CH3CH2CH2CH2-OH CH3CH2CH2CH2SH 3.6 ppm 2.5 ppm

Page 65: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 65

Figure 15.5 (page 674)

Page 66: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 66

CH3CH2CH2CH3 CH3CH2CH2CH2OH

13 ppm 61.4 ppm

13C NMR

Chemical shift of C—OH is 60-75 ppm C—O is about 35-50 ppm less shielded than C—H.

Page 67: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 67

Unless there are other chromophores in themolecule, alcohols are transparent above about 200nm; max for methanol, for example, is 177 nm.

UV-VIS

Page 68: Carey Organic Chemistry Chapter 15  Alcohols, Diols, and Thiols Slides

Chem 212 B. R. Kaafarani 68

CH2R OH••

••

CH2R OH•+

••

CH2 OHR•••

+

Molecular ion peak is usuallysmall.

A peak corresponding to lossof H2O from the molecular ion(M - 18) is usually present.

Peak corresponding to lossof an alkyl group to give anoxygen-stabilized carbocation isusually prominent.

Mass Spectrometry of Alcohols