carbon nanotube gas sensing -...

20
Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben Teresa April 29, 2005 NSF Presentation

Upload: hoangkien

Post on 01-May-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Carbon Nanotube Gas Sensing

Group 3:Karen Shu, Connie Lee, John Joo, Ben Teresa

April 29, 2005NSF Presentation

Page 2: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Carbon nanotube chemical sensors have the most positive short-term effects on

the environment, national security, energy, and the economy.

Page 3: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Overview

• CNT applications• Sensing applications• Sensing requirements• Standard sensors• CNT sensors• Science of CNT sensors• Projected viability• Future direction

Page 4: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Short term outlook on carbon nanotube applications

YYYYYGas Sensors

YYYYNHydrogen storage

YYYNYField emission displays

YYYNNStrong materials

YNNNYScanning probe

NNNNNNanotweezers

YNYNYNonvolatile memory

NNYNNElectronic devices

EconomyEnergyNational security

EnvironmentFeasibility

Page 5: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Applications

• Environmental monitoring• National security• Medical Diagnostic Apparatus• Space Exploration• Domestic Gas Alarms• Automotive applications• Agricultural applications

Page 6: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Chemical Sensors• Device that converts chemical quantity

into electrical signal– Small, robust, and reliable construction– Selective and rapid response– Independence from environmental

parameters– Reproducibility– Manufacturability using conventional

microelectronic methods– Microelectronics compatibility

Gardner, Julian W. “Microsensors: Principles and Applications” 1991.

Page 7: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Disadvantages of Existing Gas Sensors

X

X

XPower

X

X

X

X

Selectivity

X

X

Sensitivity

X

Stability

Conductive polymer sensors

Metal Oxide Semiconductors

Catalytic bead sensors

Electrochemical sensors

XAnalytical equipment

SizeSensor

X = unsatisfactory

http://www.sensorsmag.com/resources/businessdigest/sbd0704.shtm

Capone S et. al. Solid State Gas Sensors: State of the Art and Future Activities. Journal of Optoelectrics 2003.

Page 8: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Nanotubes in Sensing

• High Surface Area• High Aspect Ratio • Large Absorption

Capacity• Large change in

electrical properties when in the presence of different gases at room temperature

www.ewels.info/ img/science/nano.html

Page 9: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Gas Ionization Sensor• Measures breakdown voltage

to identify gas– Nanotubes lower breakdown

voltage by 65%• Gas quantities determined by

current discharge • Advantages:

– Independent of Temp. and Humidity

– No absorption (quick recovery)• Disadvantages:

– Not good at low concentrations (~25ppm when combined with gas chromotography)

A. Modi, N. Koratkar, E. Lass, B. Q. Wei and P. M. Ajayan: Nature, 2003, 424, 171–174.

Page 10: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

FET- Based Sensor• Measures drain current with

given applied gate voltage

• Sensitivity on the order of ppm has been achieved

• Recovery time ~2 sec when gate voltage is removed

• Disadvantage: difficult to manufacture consistently

(1) Someya T et al. “Alcohol vapor sensors based on single-walled carbon nanotube field effect” transistors” NanoLetters Vol 3 p.877 2003

(2) Jing Li. et. al. “Carbon nanotube sensors for gas and organic vapor detection” Nano letters Vol. 3, P.929 2003

Page 11: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Chemoresistor• Measures change in

resistance• CNTs form network on

interdigitated electrodes (IDE)

• Enables electric contact between CNTs and electrodes over large areas

• Accessible for vapor adsorption to all CNTs

• Sensitivty:– < 44ppb for NO2

• Recovery:– ~4sec

Jing Li. et. al. “Carbon nanotube sensors for gas and organic vapor detection” Nano letters Vol. 3, P.929 2003

Page 12: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Chemicapacitor:

• Advantages – Stable– Highly sensitive

(50 ppb)– Fast response

time and recovery time (< 4 seconds)

– Sensitive to wide range of chemical vapors (19 tested)

Doped Si

SiO2SWCNTs

electrodes

Page 13: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Processing

• MUCH cheaper than current solid-state sensors ($100 vs. $1500)

• Scalability limited only by lithography step

Photolithography to make 2 mm x 2mm interdigitated array

Doped SiSiO2

Doped SiSiO2

CVD growth of SWNT

Doped SiSiO2

Doped SiSiO2

Get rid of excess CNT

E.Snow, et al. Science 307, 1947 (2005).E. Snow, et al. Appl. Phys. Lett. 82, 2145 (2003).

Page 14: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Physics of Chemicapacitor

• Enhanced electric field around nanotubes

• Net polarization of adsorbates

• Increase in relative capacitance,

• Does not depend on chirality or diameter of NT

SWCNTs

CC∆

Doped SiSiO2

electrodes

+ + +

- - -

+ + +

+ + + + + +

- - - - - -

- - -

+

-

E.Snow, et al. Science 307, 1947 (2005).

Page 15: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Binding Mechanism

C

O • Binding of analytes to nanotubes is governed by Van der Waals interactions

Broad range of compounds can be detected

Page 16: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Enhancing Selectivity

Functionalize nanotubes

Hydrogen bonding acidic polysilane/allyltrichlorosilane

J. P. Novak et al., Appl. Phys. Lett. 83, 4026, 2003. Snow, E.S. et al., Science. 307, 1942, 2005.

Page 17: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Functionalization using polymers filters out common interference from vapors

DMMP, stimulant for nerve agent sarin, preferentially binds to polymer-coated nanotubes

Snow, E.S. et al., Science. 307, 1942, 2005.

Page 18: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Feasibility

< 4 s

3084 s

1.5 hr

3 s

ResponseTime

$150

$10,000

$3000

$200

Cost(per unit)

200 ppmNoneMetallic Oxide Semiconductor

1000 ppmAny combustibles

Combustible Gas

10,000 ppm- sub ppb

2 ppm

Sensitivity

HighSWNT

MediumPolymer Chemicapacitor

Selectivity

http://www.cdnsafety.com/articles/selecting_gas_detectors.htm

S. V. Patel et al., Sens. Actuators B 96, 541 (2003).

Page 19: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Commercialization• Integrated Nanosystem, Inc.

– Low power (<1 mW)– Small (1 cm2)– Sensitive (ppt-ppm)– Multiplexing capability

• Nanomix– H2 leak detection sensors

• Only responds to H2• $150/unit. Possibly $50/unit in future.• Wireless capabilities

http://www.sensorsmag.com/resources/businessdigest/sbd0704.shtmlInterview with sales representative at KWJ Engineering (510.794.4296) who is Nanomix’s distributer.

Page 20: Carbon Nanotube Gas Sensing - w3.ualg.ptw3.ualg.pt/~hgomes/html/classes/Biosensores/ISFET/nanotubes.pdf · Carbon Nanotube Gas Sensing Group 3: Karen Shu, Connie Lee, John Joo, Ben

Moving forward

• Implications are wide ranging– Homeland security,

economy, environment, etc.

• Background science exists– Solid state gas sensors– Research on CNT-based

gas sensors proves potential to be better than current sensors

• Commerializable– INI and Nanomix

• Barriers remain– Selectivity, sensitivity,

response time