capítulo 2. estudio de la ventilación natural en recintos...

66
CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES 83 Capítulo 2. Estudio de la ventilación natural en recintos tridimensionales. 2.1 Introducción. Una vez estudiada la ventilación natural en recintos bidimensionales, en este capítulo se realizará un estudio de la ventilación natural en recintos tridimensionales, los cuales se asemejan más a la realidad. Para ello se estudiará un desarrollo de Modelo Zonal para cálculo de ventilación en recintos. Dicho desarrollo ha sido llevado a cabo por Tomás Carmona Hernández en su Proyecto fin de carrera [4]. En este capítulo se explicará con detalle en qué consiste el Modelo Zonal y como ha sido desarrollado, es decir, sus bases y su estructuración (Para más información ver [4]). Por otro lado se calculará mediante el programa CFD Flovent, recintos tridimensionales y se analizará de forma detallada el movimiento del aire en su interior, sus pérdidas de carga a lo largo del recorrido y la variación de esta con la posición de la entrada y de la salida de aire, lo cual no se contempla en el Modelo Zonal. En la última parte del capítulo, se intentarán correlacionar las pérdidas de carga del aire a través del recinto por separado, es decir, correlación de pérdidas debidas a los codos y por otro lado, correlación de pérdidas debida a la fricción del aire en su recorrido. Dichas correlaciones se incluirán en el Modelo Zonal realizado por Tomás Carmona, con el fin de corregirlo y mejorarlo de cara a que los resultados que se obtengan en su programa sean más exactos.

Upload: votruc

Post on 26-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

83

Capítulo 2.

Estudio de la ventilación natural en recintos

tridimensionales.

2.1 Introducción.

Una vez estudiada la ventilación natural en recintos bidimensionales, en este

capítulo se realizará un estudio de la ventilación natural en recintos tridimensionales, los

cuales se asemejan más a la realidad.

Para ello se estudiará un desarrollo de Modelo Zonal para cálculo de ventilación en

recintos. Dicho desarrollo ha sido llevado a cabo por Tomás Carmona Hernández en su

Proyecto fin de carrera [4].

En este capítulo se explicará con detalle en qué consiste el Modelo Zonal y como ha

sido desarrollado, es decir, sus bases y su estructuración (Para más información ver [4]).

Por otro lado se calculará mediante el programa CFD Flovent, recintos

tridimensionales y se analizará de forma detallada el movimiento del aire en su interior,

sus pérdidas de carga a lo largo del recorrido y la variación de esta con la posición de la

entrada y de la salida de aire, lo cual no se contempla en el Modelo Zonal.

En la última parte del capítulo, se intentarán correlacionar las pérdidas de carga del

aire a través del recinto por separado, es decir, correlación de pérdidas debidas a los

codos y por otro lado, correlación de pérdidas debida a la fricción del aire en su

recorrido.

Dichas correlaciones se incluirán en el Modelo Zonal realizado por Tomás

Carmona, con el fin de corregirlo y mejorarlo de cara a que los resultados que se

obtengan en su programa sean más exactos.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

84

2.2 Desarrollo del Modelo Zonal para cálculo de ventilación en

recintos.

2.2.1 Introducción.

En este apartado se explicará de forma detallada el Modelo Zonal realizado por

Tomás Carmona Hernández. Se estudiará el fenómeno físico y el programa en cuestión

para el cálculo de ventilación en recintos.

El uso racional de la energía que los edificios emplean para satisfacer sus

necesidades de calefacción y refrigeración pasa por la adopción de medidas

complementarias que afectan entre otras cosas al diseño racional de la envuelta o

epidermis edificatoria, de forma que se minimicen las denominadas demandas de

energía. En términos de refrigeración una de las actuaciones más prometedora para

reducir la demanda de energía consiste en la utilización de estrategias de ventilación

natural aprovechando los momentos en los que la temperatura del aire exterior es

inferior a la existente en los ambientes interiores.

El aire exterior penetra de forma natural en el edificio a través de las ventanas y

rendijas debido a la combinación de dos factores: la presión dinámica inducida por el

viento y el tiro térmico inducido por las diferencias de temperatura entre el interior y el

exterior.

La determinación del potencial de ahorro energético debido a la ventilación natural

exige conocer con precisión los dos factores anteriores, tanto si el edificio se encuentra

como si se encuentra emplazado en un medio urbano.

El estudio de la ventilación natural exige conocer las variaciones en las fuerzas

impulsoras, lo cual puede únicamente conseguirse mediante modelos que contemplen el

acoplamiento térmico-aeraulico que existe en los espacios urbanos, acoplado a la vez

con el correspondiente a los espacios interiores a través de las ventanas.

El desarrollo de herramientas de simulación térmica de edificios permitirá avanzar

en el diseño de sistemas de aprovechamiento de energía basados en la ventilación

natural.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

85

2.2.2 Objetivo del Modelo Zonal desarrollado.

El proyecto desarrollado por Tomás Carmona Hernández, tiene como finalidad

complementar un modelo zonal, actualmente existente en el Grupo de Termotecnia de la

Escuela Superior de Ingenieros de la Universidad de Sevilla. Este modelo es aplicable

en su estado actual a recintos cerrados en los que existe movimiento de aire debido

únicamente a efectos térmicos.

Los objetivos del proyecto pueden resumirse en los siguientes aspectos:

• Desarrollo de un modelo de cálculo para recintos abiertos, tanto a un medio

urbano, como aislado.

• Incorporación de las fuerzas dinámicas generadas por el viento.

• Acoplamiento interzonal espacio exterior/espacio interior y entre espacios

de un mismo edifico conectados por puertas.

• Implementación de un método de resolución estable y rápido.

• Desarrollo de una programación estructurada, que facilite su acoplamiento

al modelo existente y sus posteriores actualizaciones.

2.2.3 Fundamentos físicos.

2.2.3.1 Distribución de presiones. La distribución de presiones es debida a la acción combinada de viento, fenómenos

de flotabilidad térmica y presencia de ventilación mecánica.

La acción del viento sobre un edificio es difícilmente mesurable, debido sobre todo

a que se trata de un fenómeno muy poco estacionario. Además, su efecto varía en cada

punto de cada fachada expuesta, según parámetros geométricos del edificio y de su

entorno, y otros intrínsecos al propio flujo de aire. Para modelar estos efectos, se

recurrirá al uso de coeficientes de presiones adimensionalizados, obtenidos a partir de

datos experimentales.

Las diferencias de presiones debidas a los efectos de flotación tienen su origen en la

diferencia de densidad del aire según la temperatura a la cual se encuentre. Así, un aire

más caliente y por tanto menos denso, disminuirá menos su presión con la altura que un

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

86

aire más frío y denso, dando lugar fenómenos como los explicados anteriormente para la

convección natural.

Por último, la presencia de ventilación mecánica forzada, induce flujos de aire

ligados a las diferencias de presión generadas por la acción de estos sistemas.

A continuación se presenta el desarrollo utilizado para modelar el efecto de cada

uno de estos fenómenos sobre el campo de presiones.

- Efecto del viento.

Un flujo de viento produce un campo de velocidades y presiones alrededor de un

edificio. La relación, en flujo libre, entre la velocidad y la presión en los distintos

puntos del campo puede ser obtenida a partir de la ecuación de Bernouilli. Asumiendo

la densidad constante en una línea de corriente a una altura determinada, la citada

ecuación toma la forma siguiente:

ctevPsat =+ 2

21 ρ (2.1)

La velocidad en la capa límite varía desde cero para las partículas en contacto con la

pared, hasta la velocidad del flujo libre para aquellas situadas en el extremo opuesto de

la capa límite. Los efectos de viscosidad son los que predominan en esta capa. Según

sea el número de Reynolds, el flujo en esta zona podrá ser laminar o turbulento. El caso

particular del flujo de viento alrededor de un edificio corresponde a un movimiento

turbulento con una anchura de capa límite de varias centenas de metros.

La distribución vertical del perfil de velocidades en un edificio depende

principalmente de las superficies que rodean al mismo. Éste perfil se puede modelar a

través de una expresión potencial, según una altura de referencia (zref

):

( )( )

α

=

refzz

refvzv (2.2)

El valor del exponente aumenta al hacerlo la rugosidad del entorno del edificio.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

87

Para describir la distribución de presiones alrededor de la envoltura del edificio se

suele usar un coeficiente adimensional denominado Coeficiente de Presiones (Cp), que

corresponde al cociente entre la presión dinámica sobre la superficie y la presión

dinámica del flujo no perturbado a la altura de referencia. Para un punto k (x,y,z) de la

superficie, la expresión del Coeficiente de Presiones con una altura de referencia zref

es

la siguiente:

( ) ( )( )ref

krefP

zv

zPPzC

20

0

21 ρ

−= (2.3)

Para evaluar las distribuciones de Cp

en la cubierta de un edificio, se pueden seguir

diversas estrategias:

- Realizar medidas directas, cuando el edificio a estudiar existe.

- Desarrollar ensayos en túneles sobre modelos de los edificios a estudiar.

- Generar los valores de Cp

a partir de modelos numéricos tridimensionales de

flujos de aire.

- Generar los valores de Cp

a partir de modelos numéricos basados en análisis

paramétricos de los resultados de los ensayos sobre túnel de viento.

Esta última opción es la escogida para desarrollar los modelos por parte de COMIS

(Conjunction of Multizone Infiltration Specialists). La primera opción resulta inviable

para trabajos de diseño y demasiado cara incluso en los casos en los que es posible

llevarla a cabo. La segunda depende en exceso de la disponibilidad del equipo de

ensayo y la tercera requiere un consumo de tiempo excesivo.

El algoritmo desarrollado permite obtener los valores del Cp

en función de distinto

parámetros (entorno del edificio, dirección del viento), a partir de la interpolación de los

resultados obtenidos en diversos ensayos. Es evidente que la precisión del modelo

obtenido dependerá en gran manera de la calidad de los datos experimentales utilizados.

Los parámetros que se han tenido en cuenta para implementar el cálculo de los Cp

han sido los siguientes:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

88

- Parámetros climáticos

o Ángulo de incidencia del viento.

o Exponente de la ley potencial del perfil de velocidades.

- Parámetros medioambientales

o Densidad de área alrededor del edificio.

o Altura relativa del edificio.

- Parámetros del edificio

o Proporción de orientación frontal.

o Proporción de orientación lateral.

o Posición vertical relativa.

o Posición horizontal relativa.

El modelo de COMIS tiene por objetivo calcular la relación entre las variaciones

que experimenta el valor de Cp y la variación de cada uno de los parámetros anteriores.

Como datos experimentales de referencia, se utilizaron los obtenidos por los

experimentos de Hussein y Lee (“An Investigation of Wind Forces on Three-

Dimensional Roughness Elements in a Simulated Atmospheric Boundary Layer”), y los

obtenidos por los experimentos de Akins y Cermak (“Wind Pressures in Buildings”).

A partir de estos datos, y mediante el ajuste de los puntos experimentales a través de

funciones de interpolación, se generan los valores de Cp. Las correlaciones se aplican a

conjuntos de puntos experimentales ligados por alguno de los parámetros descritos

anteriormente.

Los resultados obtenidos por estos trabajos del COMIS se han utilizado en este

proyecto como base de datos a partir de la cual modelar los efectos de viento. A

continuación se muestran las tablas que recogen los resultados de los análisis

comentados anteriormente, y que proporcionan valores medios de Cp

sobre cada

fachada, según el parámetro correspondiente.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

89

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

90

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

91

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

92

- Efecto de la flotabilidad térmica.

Este efecto genera diferencias de presión a partir de diferencias de densidad entre

dos zonas en contacto. La densidad es función principalmente de la temperatura, ya que

en este proyecto se va a considerar la composición del aire constante.

Para poner de manifiesto este fenómeno se tomará como ejemplo un caso como el

de la siguiente figura:

Figura 2.1: Aire de dos zonas distintas puesto en contacto mediante una pequeña apertura

Sean M y N dos zonas diferentes, puestas en contacto a través de un conducto de

pequeño diámetro. Sean Zm

, Pm

, Tm

, ρm

, Zn, P

n, T

n, ρ

n respectivamente la altura de

referencia, la presión, la temperatura y la densidad de cada zona. La diferencia de

presión entre los extremos (i, j) del conducto que conecta las dos zonas se obtiene a

partir de la siguiente expresión:

ςPPPPP nmji +−=− (2.4)

Siendo Pς el efecto de flotabilidad térmica, que puede ser calculado mediante la

relación siguiente:

( ) ( )jnnimm zzgzzgP −−−= ···· ρρς (2.5)

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

93

Como la densidad se va a considerar como una función exclusivamente de la

temperatura, variaciones de ésta provocarán a su vez variaciones en el término de

flotabilidad. De esta manera se verá influenciado el equilibrio de presiones, para una

geometría fija, por los efectos de temperatura. Estos efectos son especialmente

relevantes cuando el efecto de viento es menos pronunciado. Las diferencias de

presiones generadas por el efecto de flotabilidad térmica son usualmente menores que

las provocadas por los efectos de viento, pero en ausencia de éste, será la diferencia de

temperatura la que ejercerá de motor de movimiento.

- Efecto de la ventilación mecánica.

La ventilación mecánica genera flujos de aire entre dos zonas, gracias,

generalmente, a la acción de un ventilador. La presencia de estos flujos de aire provoca

efectos de diferencia de presión, ya que el sistema físico reacciona para mantener los

balances de masa equilibrados en cada zona. Como ejemplo de este fenómeno se tiene

el caso de la figura siguiente:

Figura 2.2: Ejemplo de ventilación mecánica

Sea un recinto compuesto por cuatro zonas A, B, C y D, conectadas entre sí de

forma que permitan flujos de aire entre ellas. Por simplicidad, se supone que sólo la

zona D está conectada con el exterior a través de una abertura que permite el flujo de

aire. Si sobre la zona A se introduce desde el exterior (mediante un ventilador) un

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

94

caudal de aire Q, éste deberá salir del conjunto por la abertura situada en D,

cumpliéndose el balance de masa en el edificio. Para que el flujo pase desde A hasta D,

se generarán corrientes que atravesarán las zonas B y C del conjunto. La acción del

ventilador genera una sobrepresión en la zona A, que se atenúa gradualmente hasta la

zona D, según sea la geometría, el tipo de aberturas y las condiciones térmicas de cada

una. El conjunto se encontrará a sobrepresión respecto al ambiente exterior, pero la

presión en cada zona será tal que los flujos de aire entre ellas verifiquen en todo

momento el balance másico correspondiente.

2.2.3.2 Flujos de aire a través de aperturas.

- Flujo de aire a través de grietas.

Para describir los flujos de aire a través de grietas son necesarios muchos

parámetros. A las diferencias de presión, temperatura, composición y fuerzas

mecánicas, se suman los efectos de la propia naturaleza de las grietas. Para caracterizar

estás últimas es necesario conocer la naturaleza de los materiales que la componen, así

como el proceso de construcción. Además habría que añadir los fenómenos de

deformaciones causados por efecto de temperaturas, tiempo y erosión. El flujo de aire a

través de una grieta es siempre una mezcla de laminar, turbulento y transitorio,

dependiendo la proporción de cada uno, del contorno de la grieta y de la diferencia de

presiones.

Para modelar todos estos efectos se suele usar una ley potencial del tipo:

( )nQ PCQ ∆= · (2.6)

Esta expresión muestra claramente que el flujo depende de la diferencia de presiones

existente, si bien no toma en cuenta efectos como el de las propiedades del aire. Los

parámetros de esta expresión se deducen a partir de ensayos para cada tipo de grieta.

Evidentemente, el rango de aplicación de estas expresiones depende de que las

correlaciones disponibles respondan al caso que se trata de modelar. Uno de los

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

95

principales motivos de error a la hora de aplicar estas expresiones, es hacerlo en

condiciones térmicas muy distintas a las que fueron empleadas durante el experimento

que determinó los coeficientes.

Obtener una descripción precisa del flujo de aire a través de grietas es de todo punto

imposible, no sólo por la enorme cantidad de datos a tener en cuenta sino también por la

propia complejidad de las expresiones a utilizar. Por este motivo, se aplicarán leyes de

tipo potencial como la descrita anteriormente, que serán validadas experimentalmente.

Se utilizará un tipo de ley potencial distinta para cada tipo de grieta considerada.

- Flujo en conductos.

Las grietas pueden aparecer en cualquier punto de la envoltura de un edificio,

conectando zonas entre sí y con el exterior. A pesar de las complejas geometrías de las

grietas, las leyes de la mecánica de fluidos siguen siendo válidas, por lo que se puede

aplicar la expresión del flujo en conductos.

2

2vdLP ρλ=∆ (2.7)

Gracias a esta expresión se puede calcular el flujo en un conducto conocida la

diferencia de presiones. El factor de fricción λ depende del tipo de flujo existente, y

puede ser obtenido de forma precisa para cualquier tipo de flujo. Si consideramos las

expresiones del caudal y el número de Reynolds, podemos modificar la ecuación

anterior.

( )Re

·Re

4

2

f

vd

dQ

=

=

=

λυ

π

(2.8)

Y si se definen los coeficientes adecuados, la expresión del flujo en conductos queda

así:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

96

( )nnnS PCQ ∆= −− ··· 21 ρυ (2.9)

Tomando los parámetros n y CQ

un valor para cada tipo de flujo.

- Flujo en grietas.

El flujo a través de una grieta es mucho más complejo que el flujo a través de un

conducto. Por analogía con el caso de flujo en un conducto, se modela el flujo a través

de las grietas mediante una ley potencial del mismo tipo que la del caso anterior:

( ) ( )nS PnfCQ ∆= ·,,· υρ (2.10)

Para cada tipo de grieta, se ajustarán experimentalmente los parámetros de la

ecuación. Cuanto más próximas estén las condiciones del modelo a las condiciones

experimentales de ajuste, esta expresión representará el flujo de forma más precisa.

Para afinar aún más la precisión de estos modelos, y ampliar su rango de operación,

se puede añadir un factor corrector de temperatura. Con este factor, se puede extender el

uso de la expresión a condiciones térmicas distintas de las empleadas para ajustar los

parámetros.

En cuanto a la temperatura del flujo que atraviesa la grieta, depende

significativamente de la anchura de ésta. Mientras más estrecha es la grieta, más

próxima estará la temperatura del flujo a la de la pared. Por el contrario, mientras más

ancha es la grieta, menos modificada se ve la temperatura respecto de la del aire de la

zona de la cual proviene. Este fenómeno es difícilmente modelable y tan sólo existen

unos pocos experimentos para casos relativamente sencillos.

Finalmente, la expresión del flujo a través de grietas queda de la siguiente forma:

nPCQ ∆= · (2.11)

En la cual, los coeficientes C y n se obtienen de unos resultados experimentales, al

igual que ocurría con los coeficientes de presiones.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

97

Como se comentó en el caso de los coeficientes de presiones, mientras mayor sea la

base de datos experimentales disponibles, mayor será la capacidad para modelar

situaciones reales.

Los factores correctores de temperatura deberán ser añadidos cuando la precisión

requerida sea alta, o cuando las condiciones del modelo estén alejadas de las de ajuste.

- Flujo de aire a través de grandes aperturas.

El flujo de aire a través de grandes aberturas contribuye de forma decisiva a los

intercambios de masa y energía entre las zonas de un recinto. En este intercambio se

manifiestan múltiples efectos al mismo tiempo, desde los fenómenos de flotación

térmica hasta los de turbulencia y reflujo. Al ser procesos tan complejos,

tradicionalmente se han modelado realizando una partición de la abertura en pequeñas

zonas, donde cada una de las cuales se modelaba como una grieta. Para modelar la

abertura como un todo, habrá que tener en cuenta efectos constantes y variables.

• Efectos constantes

Dentro de esta categoría se incluyen los efectos de viento, flotabilidad térmica y los

causados por la ventilación mecánica. La clave para describir de forma precisa el flujo a

través de una gran abertura es determinar el tipo de flujo que se está desarrollando al

circular por la misma. Diversos autores han desarrollado experimentos a partir de los

cuales se han obtenido expresiones que modelan el flujo de aire en la abertura. Cabe

destacar el trabajo realizado por Brown y Solvasson (Natural Convection through

Rectangular Openings in Partition), que proporciona una solución analítica basada en

las condiciones del aire a cada lado de la abertura.

Como sucede en los casos precedentes, son necesarios más experimentos que

proporcionen con mejor precisión y mayor rango de aplicabilidad la solución para cada

tipo de abertura. Cabe destacar especialmente el caso de las aberturas horizontales, para

las cuales a penas existen modelos fiables.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

98

• Efectos variables

Dentro de esta categoría es necesario distinguir entre efectos transitorios debidos a

la evolución de las condiciones de contorno del problema y los debidos a las

fluctuaciones de los campos de presiones y velocidades.

Para modelar el primer tipo, basta con usar un modelo estático para cada instante de

tiempo considerado, y realizar la hipótesis de que el flujo entre dos instantes

consecutivos está completamente desarrollado, siguiendo la evolución de las

condiciones de contorno. Mientras más pequeña sea la partición en tiempo, más fiel será

la aproximación, aunque el esfuerzo computacional exigido también será más alto.

Para el segundo caso, debido a la complejidad del fenómeno, se hace necesario un

estudio experimental. Estos efectos son particularmente sensibles en casos críticos,

como el que se presenta cuando el viento es paralelo a la superficie de la abertura.

Normalmente, estos estudios se realizan sobre modelos a escala en túneles de viento.

Para introducir estos efectos de turbulencia en la ecuación de flujo, se emplea un

término de presión ficticio, que recoge el aporte de la turbulencia al flujo. De nuevo

existe una gran laguna en las correlaciones disponibles para modelar este fenómeno.

Para definir el flujo de aire a través de una gran abertura, se considerará que ésta se

encuentra desconectada del edificio. Posteriormente se integrará en el conjunto gracias a

las ecuaciones de balance. Debido a que las incógnitas en las ecuaciones de balance

serán las presiones de cada zona, será necesario expresar el flujo a través de la gran

apertura en función de la diferencia de presión existente a ambos lados de la misma.

La primera posibilidad consiste en sustituir la gran apertura por un conjunto de

pequeñas aperturas paralelas, suponiendo que a través de ellas el flujo tiene una sola

dirección. Cada una de estas aperturas se modelará mediante una ecuación de flujo a

través de grieta.

Una segunda posibilidad es expresar el flujo a través de la apertura a partir de una

ley de presiones no necesariamente lineal, que recoja la evolución de ésta a ambos lados

de la misma. De esta forma, se establecerán ecuaciones de flujo propias de cada apertura

considerada. Se toma como ejemplo el caso de una apertura vertical conectando dos

zonas i y j. Siguiendo las aproximaciones del flujo de Bernoulli, se asume que la

velocidad del flujo a cada altura es proporcionada por la ecuación del orificio.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

99

( ) ( ) 21

, 2

−=

ρzPzP

v jiji (2.12)

En la cual, z representa la altura y ρ la densidad del flujo de aire.

La complejidad del modelo reside en la forma de definir la presión de cada zona.

Como se comentó en apartados anteriores, para definir con precisión la presión en una

zona, hace falta tener en cuenta muchos efectos simultáneos. Así, para el caso simple de

considerar tan sólo los efectos de flotabilidad térmica, la expresión de define la presión

en cada zona sería la siguiente:

( ) ( ) zgzPzPzii ··

0ρ−=

= (2.13)

Donde se ha tomado 0 como la altura de referencia y ρ como la densidad del aire de

la zona.

El plano neutro es la altura a la cual las presiones de ambas zonas se igualan, siendo

el flujo nulo a esa altura. Para determinarlo basta con igualar las expresiones de las

presiones de cada una de las zonas.

El flujo a través de la abertura se obtiene mediante la integración de la velocidad

sobre la superficie de paso del flujo. Para tener en cuenta que el flujo puede tener dos

sentidos a través de la apertura, la integración debe realizarse a trozos, desde su

comienzo hasta los posibles planos neutros, y de estos hasta el final. Así por ejemplo, si

se considera la existencia de un solo plano neutro localizado entre los extremos de la

apertura, y se toma esta altura como referencia el flujo másico se obtiene así:

(2.14)

Donde W es el ancho de la apertura y Cd es un coeficiente de descarga que depende

de la geometría y que se calcula experimentalmente.

Este modelo puede mejorarse añadiendo los efectos de turbulencia, de reducción de

área y tantos cuanto sean posible representar mediante un término que afecte a la

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

100

definición de la presión de la zona. Nuevamente cabe destacar la necesidad de

experimentos para aumentar la fidelidad de los modelos.

A continuación se muestra el caso que recoge los efectos de flotabilidad térmica y

de reducción de área, que será utilizado como base para el presente estudio. En él se

observan dos zonas i y j conectadas por una gran abertura de altura H y de anchura W.

Figura 2.3: Efectos de flotabilidad térmica y de reducción de área

Se ha tomado como origen de alturas el nivel más bajo de la zona. A esa altura se

tiene una presión Pi,0

en la zona i y una presión Pj,0

en la zona j. La evolución de la

presión con la altura depende de la temperatura de cada zona, según la ley de flotación:

( ) ( ) ( ) zTgzPzP izii ··0

ρ−==

(2.15)

Así, si la temperatura en i fuera más alta que la temperatura en j, la densidad del aire

en i sería menor que en j. En la zona j, la presión disminuiría más rápidamente con la

altura que en i. El plano neutro se situaría a la altura en la cual se igualan las presiones.

Según el modelo escogido, pueden darse tres situaciones:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

101

- Si Pi

> Pj

para cualquier altura comprendida entre los extremos superior e

inferior de la abertura, flujo en sentido j.

- Si Pi

< Pj

para cualquier altura comprendida entre los extremos superior e

inferior de la abertura, flujo en sentido i.

- Si el plano medio se sitúa entre los extremos de la abertura, habrá flujo en

ambos sentidos, como se muestra en la figura.

La expresión del flujo másico para el caso en que el plano medio se sitúa entre los

extremos superior e inferior de la apertura es la siguiente:

(2.16)

En estas expresiones, el coeficiente θ se denomina factor de reducción e área, y se

utiliza para representar la porción de área de la apertura que realmente permite el flujo

de aire. Al igual que el coeficiente de descarga, se determina experimentalmente.

Según la complejidad de la expresión que representa al campo de presiones (y por

tanto al de velocidades), la integral anterior tendrá solución analítica o no. Para estos

últimos casos, se recurrirá a la resolución numérica mediante métodos como el de

Simpson. Para el caso que nos ocupa, podemos calcular la solución analítica:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

102

(2.17)

En la primera expresión, el signo indica que el flujo de aire va en dirección ij → ,

al contrario que por la porción de abertura comprendida entre el plano neutro y el

extremo superior de la abertura.

2.2.3.3 Conclusiones.

Los flujos de aire se generan a partir de diferencias de presión existentes entre zonas

conectadas entre sí. La determinación precisa de estas presiones es la clave para obtener

un modelo fiable para el estudio de la ventilación en un recinto.

Para representar el flujo a través de las distintas aberturas es necesario conocer su

geometría y aproximar su comportamiento mediante diversas técnicas de partición o de

simplificación.

Dada la complejidad de los fenómenos que se tratan de estudiar, su modelado se

basa principalmente en resultados experimentales disponibles. Mientras más precisos

sean estos modelos experimentales mayor fidelidad se podrá alcanzar en la simulación

de casos reales. Las lagunas existentes actualmente sobre el conocimiento del

comportamiento de los flujos de aire en situaciones reales complejas limitan mucho el

campo de aplicación de los modelos a desarrollar, si bien nos proporcionan

herramientas suficientes como para abordar con la precisión debida situaciones comunes

dentro del mundo de la edificación.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

103

El estudio que se ha realizado ha tenido en cuenta estos hechos, de forma que se

puedan añadir mejoras a los distintos modelos de flujo propuestos a medida que se

vayan desarrollando experimentos. Evidentemente, la precisión del modelo a desarrollar

estará limitada por el ajuste de los experimentos tomados como referencia a las

condiciones de trabajo, así como a la exactitud de los mismos.

2.2.4 Desarrollo del Modelo Zonal aplicado a ventilación de

recintos.

El modelo zonal representa el recinto mediante un conjunto de zonas interconectadas

unas con otras. Cada zona representa una habitación del recinto, mientras que cada

conexión responde a la presencia de una abertura entre ambas habitaciones.

Figura 2.4: Representación del modelo zonal en recintos

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

104

En su versión más simplificada, el modelo zonal aproxima cada habitación individual

por un recinto con propiedades homogéneas en cada punto de su interior. Con un

modelo de este tipo no se puede representar el comportamiento local que puede

producirse en el aire que rodea a una gran apertura, sobre todo durante los momentos de

apertura o cierre de las mismas. Por este motivo, el modelo no puede aplicarse a

recintos en los cuales este fenómeno tenga gran importancia, como centros comerciales

o lugares de mucho tránsito. En cambio, el modelo es perfectamente aplicable a recintos

en los cuales no se produzcan cambios continuos en el estado de las grandes aberturas.

El modelo multizona representa cada habitación del recinto mediante un conjunto de

zonas homogéneas conectadas entre sí por los balances locales de masa. Este modelo

permite simular las heterogeneidades presentes en un recinto con tanto nivel de detalle

como permita el tamaño de la zona escogida.

Figura 2.5: Representación del modelo multizonal

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

105

El empleo del modelo unizonal frente a un modelo multizona, supone un ahorro de

cálculo importante, y por tanto de tiempo. Además, para un estudio que pretenda

estimar un nivel medio de flujos de aire durante un período de tiempo prolongado, el

nivel de detalle proporcionado será más que suficiente. Otra importante ventaja de este

método es su gran versatilidad, ya que puede adaptarse a cualquier configuración

posible.

2.2.5 Aplicación del Modelo Zonal al cálculo de flujos de aire en

recintos.

El objetivo del presente estudio del Modelo Zonal es el desarrollo de una aplicación

informática que permita calcular el flujo de aire en un recinto, conocida su geometría y

las condiciones climáticas de viento y temperatura.

Si no se tienen en cuenta los efectos transitorios entre estados estacionarios, los flujos

de aire en un recinto han de verificar en todo instante los balances másicos, tanto a nivel

de zona como a nivel global. Estos efectos transitorios, como los que se producen

durante la apertura de una puerta o ventana, tienen poco interés cuando lo que se trata

de simular es un comportamiento medio del flujo de aire en un recinto durante un

extenso período de tiempo. Sólo tendrían interés para modelar un comportamiento

instantáneo del flujo de aire, si bien sus efectos son de muy corta duración y el

equilibrio másico se alcanza en breves instantes. Por este motivo, el modelo

desarrollado recoge sólo situaciones estacionarias, si bien se puede extender su uso a un

estudio dinámico sin más que aplicar el método a sucesivos instantes de tiempo. En este

caso sería necesario realizar la suposición de que el flujo se desarrolla completamente

entre un instante y el siguiente. Esta hipótesis es tanto más fiable cuanto mayor es el

paso de tiempo considerado. Si se tienen en cuenta los pasos de tiempo utilizados para

modelar comportamientos energéticos anuales de edificios, esta hipótesis será

perfectamente válida.

Para modelar el conjunto de flujos de aire que se pueden producir en un recinto con

múltiples estancias, se partirá de modelos de flujo individuales para cada una de las

aberturas que conectan dichas zonas. Estos modelos (generalmente experimentales)

proporcionan el flujo de aire como función de la diferencia de presiones, conocida la

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

106

geometría de la apertura. Por tanto, las incógnitas del sistema de flujos serán las

presiones existentes en cada una de las zonas. Estas presiones están relacionadas entre sí

a través de los balances másicos, que han de cumplirse en todo momento.

Una vez integrados todos los flujos existentes gracias a los balances másicos, se

presentará un sistema de ecuaciones en presiones que será necesario resolver para

obtener los flujos de aire deseados. Cada zona proporciona una incógnita (su presión) y

una ecuación de balance. Además, habrá que añadir a las ecuaciones de balance los

posibles flujos producidos por la ventilación mecánica. Por último, para tener en cuenta

los efectos inducidos por el clima, se caracterizará el exterior de cada fachada como una

zona más, definida por su propia presión. Está presión será conocida, ya que se obtendrá

a partir del viento existente y el coeficiente de presiones correspondiente a cada

fachada.

La resolución de este sistema no será de ningún modo trivial, ya que las expresiones

que relacionan los flujos de aire con las presiones son generalmente complejas. Las

ecuaciones distarán mucho de ser lineales y será necesario aplicar un método de

resolución que sea capaz de adaptarse a la multitud de situaciones que puedan

presentarse.

2.2.6 Potencial de mejora del Modelo Zonal implementado.

La aplicación informática realizada por Tomás Carmona Hernández en su Proyecto fin

de carrera [4], es un programa de cálculo de flujo de aire en recintos mediante

aplicación del Modelo Zonal, no obstante, dicho programa posee ciertas

simplificaciones que le hacen no modelar exactamente los patrones de aire en el interior

de los recintos. En concreto son dos principalmente, los aspectos que no tiene en cuenta

el programa y deben ser considerados:

- La posición de la entrada y la salida de aire.

El programa no tiene en cuenta donde se sitúan las entradas y salidas en el muro, tan

solo su geometría. Como se vio en capítulos anteriores, la variación de la posición de la

entrada y la salida de aire puede alterar significativamente el patrón de flujo de aire en

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

107

el interior del recinto, además, las pérdidas de carga en el interior del recinto también

varían según dónde se sitúen dichas aperturas.

Por lo que el flujo de aire que circula por un recinto no será el mismo estando las

aperturas de entrada y de salida enfrentadas, que si no lo están. En cambio en el

programa realizado no se tiene en cuenta este hecho y los resultados obtenidos para

ambos recintos serían los mismos.

- Las pérdidas de cargas internas del recinto debido a la geometría del mismo.

El programa informático realizado, considera que la presión en el interior de todo el

recinto es un valor concreto y constante, es decir, no varía. Ello quiere decir que el

programa no tiene en cuenta las pérdidas de carga que sufre el aire en el interior del

recinto y por tanto los resultados obtenidos por ejemplo, para una habitación cúbica de

24 m3 son los mismos que para una habitación en forma de L de 24 m3. Lo cual en la

realidad no es así, ya que el aire sufre mayores desviaciones y fricción en la habitación

en forma de L que en la cúbica.

Por tanto, dada la carencia de dicho programa en los dos aspectos mencionados

anteriormente, el objetivo siguiente de estudio de este proyecto será el análisis del

patrón de flujo de aire en recintos tridimensionales con variación de su geometría y de

la posición de la entrada y la salida de aire.

2.3 Estudio del patrón de flujo de aire en recintos

tridimensionales.

2.3.1 Introducción.

En este capítulo se realizará un estudio del movimiento del aire y de sus pérdidas de

carga en su recorrido a través de recintos tridimensionales. Para ello se usará un nuevo

programa CFD de cálculo, Flovent. Al igual que se hizo para los recintos

bidimensionales, se analizará la influencia que tiene la geometría y la posición de la

entrada y de la salida, en las pérdidas de carga sufridas por el aire.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

108

Para llevar a cabo el análisis, se han calculado con Flovent varios recintos

tridimensionales con distinta geometría en igualdad de volumen. Además para cada

recinto se han realizado distintas configuraciones de entrada y salida de aire. Esto dará

como resultado una variación de pérdidas de carga del aire, según la geometría que se

esté analizando.

Pero para entender mejor el movimiento del aire a través de recintos, en el siguiente

apartado, se va a explicar como se mueve el aire a través de dos viviendas distintas

calculadas mediante Flovent.

2.3.2 Estudio del movimiento del aire en recintos conectados

mediante aperturas.

En este apartado se estudiarán los resultados obtenidos mediante Flovent en dos

viviendas calculadas. En la primera de ellas, las puertas están cerradas y el aire debe

circular por unas aperturas pequeñas de rejilla situadas encima de las puertas. En la

segunda vivienda las puertas entre habitación y habitación, se encuentran abiertas, por

lo que al aire le costará menos circular por el recinto. La entrada de aire desde el

exterior, ha sido a través de grandes aperturas para ambos casos, es decir, puertas o

ventanas.

En general, el aire se mueve por diferencia de presión entre un punto y otro, yendo

siempre desde el punto de más presión al de menos. Al igual que el estudio realizado

bidimensionalmente, para una misma diferencia de presión entre la entrada y la salida

de aire, circulará más caudal en el recinto que tenga menores pérdidas de carga (menor

constante K de pérdidas).

Dicho esto, a continuación se muestran los dos recintos estudiados, el primero

corresponde a la vivienda con las puertas cerradas y con aperturas pequeñas de rejilla en

la parte superior de estas y la segunda, a la vivienda en la que las puertas permanecen

abiertas. En ambas viviendas, se ha impuesto un caudal de entrada de aire desde el

exterior en las aperturas consideradas como entradas.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

109

Vivienda 1:

Figura 2.6: Vivienda con aperturas de rejilla en la parte superior de las puertas para

ventilación.

En la figura adjunta se muestra la vivienda estudiada en la que el aire entra desde el

exterior a través de las ventanas, las cuales se han indicado con una flecha verde. En

este caso existen cuatro ventanas, una en cada uno de los tres dormitorios y otra de un

tamaño mayor en el salón. La salida del aire se hace a través de una rejilla situada en el

muro del pasillo de la entrada a la vivienda. Como no se puede apreciar la apertura de

salida desde esta perspectiva, se ha señalado su ubicación y la dirección del aire a la

salida con un círculo y una flecha roja.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

110

Se observa también las aperturas en la parte superior de las puertas de las

habitaciones para que circule el aire desde las ventanas al interior de la casa,

permaneciendo en todo momento las puertas cerradas.

Otros aspectos a tener en cuenta son los cuartos de baños que permanecen cerrados,

ya que no interesa refrigerarlos mediante ventilación natural. La cocina tiene la puerta

que conecta con el salón, abierta y por el contrario, la ventana que conecta con el

exterior cerrada.

Una vez visualizada la vivienda se mostrará cómo es el movimiento del aire en su

interior y en especial a través de las rejillas de las habitaciones y de las salidas.

Figura 2.7: Visualización del movimiento del aire en las aperturas de las habitaciones y de

salida.

En la figura 2.7 se puede apreciar el movimiento del aire a través de las aperturas.

La gama de colores de las flechas corresponden con un valor de la velocidad en el

diagrama de colores adjunto, siendo el color rojo el máximo valor y el violeta el más

pequeño. Se observa cómo el aire se acelera en las aperturas y gira bruscamente una vez

que sale, debido principalmente al choque con el aire de salida de otras aperturas y al

intentar dirigirse al orificio de salida, el cual se encuentra situado opuestamente.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

111

Además en esta figura se puede apreciar la apertura de salida y como el aire se acelera

al entrar en él.

Figura 2.8: Vista en planta de la velocidad del aire en la vivienda

En la figura 2.8 se ha representado la velocidad del aire en una vista en planta de la

vivienda. En esta figura se aprecia muy bien lo explicado en la figura anterior. Se

observa claramente como el aire se acelera a la salida de las aperturas y como choca

unos flujos con otros. También se observa como dicha aceleración también se produce

en la apertura de salida. Por el contrario se aprecia como la velocidad del aire en el

interior de las habitaciones es muy pequeña, ello se debe a las pequeñas aperturas, que

impiden grandes movimientos de aire y en el caso del salón, a la sección de la ventana,

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

112

que al ser tan grande, la velocidad de entrada del aire es pequeña para el caudal

impuesto.

Estos movimientos de aire, aceleraciones debidas a las aperturas, choques entre

flujos, etc. provocarán una gran caída de presión del aire a través del recinto. Además en

las habitaciones al no poder salir todo el aire de golpe por las pequeñas aperturas,

existirá una gran sobrepresión y por consiguiente una gran caída al atravesarlas.

A continuación se muestra una vista en planta de la vivienda con la distribución de

presiones en el recinto.

Figura 2.8: Vista en planta de la distribución de presiones en la vivienda

Se visualiza en la figura 2.8 como se produce una gran sobrepresión en las

habitaciones debido a las pequeñas aperturas y como la presión es la atmosférica (color

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

113

verde) en los cuartos de baño que se encuentran cerrados y no le llegan ventilación. Por

el contrario el salón, la cocina y el pasillo se encuentran en depresión, esto tiene sentido

ya que el aire apenas encuentra resistencia para moverse ya que las puertas del salón y

de la cocina permanecen abiertas. Finalmente se observa como la máxima depresión se

produce justo en la apertura de salida del aire. Esto se debe a la succión que está

provocando la apertura hacia el exterior de la vivienda y que ocasiona que todo el aire

que entra se dirija para salir hacia esa zona.

Como conclusión de lo visto anteriormente se puede decir que la resistencia de una

apertura pequeña puede ser mucho más alta que la debida al propio movimiento del aire

a través del recinto y ser por tanto la dominante en cuanto al caudal de flujo de entrada.

Por ello hay que tener muy en cuenta las aperturas y las resistencias de las rejillas que se

ponen para ventilación natural, ya que una mala elección puede perjudicar gravemente

el potencial de enfriamiento del sistema.

Dicho esto a continuación se analizará la vivienda en la que las puertas y ventanas

permanecen abiertas y por tanto no existen pequeñas aperturas en el paso del aire.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

114

Vivienda 2:

Figura 2.9: Vivienda en la que el aire circula a través de aperturas grandes

En la figura 2.9 se muestra la segunda vivienda analizada, en la que ahora el aire

pasa de habitación en habitación a través de puertas abiertas y sale al exterior a través de

las ventanas.

El aire entra del exterior por la ventana señalada con la flecha verde. En este caso, al

no existir pequeñas aperturas de paso, el aire podrá circular sin dificultad y por tanto

como se verá más adelante, las diferencias de velocidad y de caída de presión en el

interior del recinto no son tan acusadas.

Además, en este caso existen muchas ventanas para evacuar el aire al exterior por lo

que será muy fácil para este salir y por tanto no sufrirá grandes gradientes de presiones.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

115

En las siguientes figuras se muestra el movimiento y la velocidad del aire en el

interior del recinto.

Figura 2.10: Movimiento del aire a través del recinto

Como en el caso de la vivienda anterior, la figura 2.10 muestra mediante flechas la

dirección del aire y mediante la escala de colores, la velocidad del mismo en cada

punto.

Se observa como al estar la entrada de aire enfrentada a una puerta, la gran parte del

caudal pasa por esta hacia el siguiente recinto. Tan solo una pequeña proporción gira a

la derecha y pasa a la otra habitación por la otra puerta, puesto que al aire le cuesta más

realizar ese movimiento. En el recinto con tres ventanas, la presión va a ser muy

constante y muy cercana a la exterior ya que al existir tantas ventanas para evacuar el

aire, apenas existe resistencia para hacerlo. En cuanto a la habitación de la parte derecha

con una ventana, le llega aire desde la habitación de entrada y desde la habitación con

tres ventanas. A esta habitación apenas le llega aire, por lo que el caudal evacuado por

su ventana será pequeño al igual que la presión en el recinto.

En la siguiente figura se muestra mejor la velocidad del aire en cada punto del

recinto.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

116

Figura 2.11: Visualización de la velocidad del aire en la vivienda

En esta figura se ve de forma más intuitiva cómo se mueve el aire y hacia dónde lo

hace. Se observa que al estar una puerta y seguidamente una ventana enfrentadas con la

ventana de entrada de aire, la mayoría del flujo se dirige en esa dirección y sale al

exterior por la ventana enfrentada, ya que la dirección del aire de entrada es normal a la

superficie. Por tanto se observa que existe una gran velocidad en la habitación por

donde entra el aire.

En la habitación con tres ventanas, se puede ver que por la ventana de más a la

izquierda y la de más a la derecha sale menos aire que por la central, principalmente

debido al giro que debe realizar el aire.

Finalmente en la habitación de la derecha se observa que casi todo el aire le llega

desde el recinto con tres ventanas y que apenas le llega desde la habitación de entrada,

ello se debe a que el aire entra frontalmente a una gran velocidad y al no encontrar

impedimento para seguir recto, sigue esa dirección y muy poco aire se desvía hacia

dicha habitación.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

117

A continuación se muestra una vista en planta de la presión en el interior del recinto.

Se comprobará como apenas existe sobrepresiones y depresiones debido a la poca

resistencia que el recinto opone al aire en su recorrido.

Figura 2.12: Vista en planta de la presión del aire en el interior del recinto

Efectivamente, la presión en el interior del recinto es muy homogénea como se

puede apreciar en la figura 2.12. No existen sobrepresiones acusadas porque todo el

caudal de aire de entrada pasa sin problemas por las grandes aperturas de las puertas. La

poca sobrepresión que existe, se debe al choque del aire con las paredes.

En este recinto al ser menor la constante de pérdidas de carga K, para una misma

diferencia de presión, el caudal de aire circulante será mayor.

Tras estudiar el flujo de aire en dos viviendas con aperturas totalmente distintas, se

demuestra como al existir pequeñas aperturas, se ocasiona en el aire una gran pérdida de

carga, restringiendo por tanto el caudal de aire. Por el contrario, para recintos con

grandes aperturas, el fluido puede moverse con facilidad y por tanto no sufre grandes

pérdidas en su trayectoria, lo cual hace que para una diferencia de presión dada entre el

exterior y el interior, exista un mayor caudal de aire circulante.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

118

Una vez realizado el análisis de este apartado, a continuación se va a realizar un

estudio de cómo afecta a las pérdidas de carga sufridas por el aire en el interior del

recinto, la variación de la geometría del mismo y de la posición de la entrada y de la

salida.

2.3.3 Influencia de la geometría del recinto y de la variación de la

posición de la entrada y la salida en las pérdidas de carga

ocasionadas al aire en su recorrido.

Como se vio en el estudio bidimensional de recintos, la geometría y la posición de la

entrada y la salida del aire, son factores que afectan mucho a la pérdida de carga del aire

en su recorrido.

En este apartado, se visualizarán para un mismo volumen de recinto, varias

geometrías con distintos casos a su vez, de posiciones de entrada y salida de aire.

Los casos a estudiar son los siguientes, los cuales se muestran en planta indicando la

entrada y la variación de la posición de la salida:

Figura 2.13: Vista en planta de las configuraciones a estudiar

En el primero de los recintos, la relación de los lados es la unidad, es decir, 1=ba ,

en cambio para el segundo recinto la relación de los lados (largo/ancho) es 2=ba . Por

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

119

tanto se estudiará el flujo de aire primero en un recinto de planta cuadrada y después en

uno de planta rectangular.

Para ambos recintos el volumen y la altura ha sido el mismo: V = 24 m3, Z = 3 m.

El caudal de aire que va a circular por el interior de todos los casos, va a ser

impuesto y se va a ir variando para analizar la evolución de las pérdidas de carga con

dicho caudal.

Las sección de entrada será para todos los casos de 0.5 m de ancho y 0.75 m de alto

situada a una altura de 1 m del suelo.

La sección de salida será para todos los casos de 0.5 m de ancho y 0.15 m de alto

situada a una altura de 2.5 m del suelo.

Recordamos que la pérdida de carga de un fluido en el interior de un recinto se

modela en función del caudal mediante la siguiente expresión:

2·QKP =∆ (2.17)

Donde:

K es la constante de pérdidas de carga del recinto

Una vez recordado como varía la pérdida de carga del aire en función del caudal, a

continuación se va a mostrar una tabla con las diferencias de presión ( ( )PaP∆ )

obtenidas para varios caudales, para cada uno de los casos estudiados.

Casos\Q(m3/s) 0.226 0.3 0.339 0.453

2a 6.23 10.95 13.95 24.87

2b 5.79 10.23 13.05 23.29

2c 5.81 10.22 13.04 23.26

2d 6.09 10.72 13.67 24.38

2e 5.85 10.29 13.11 23.38

3a 6.37 11.17 14.38 25.50

3b 6.40 11.26 14.45 25.61

3c 6.39 11.22 14.41 25.54

3d 5.85 10.29 13.21 23.43

Tabla 2.1: Valores de la caída de presión del aire en función del caudal

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

120

A continuación se muestran los recintos estudiados y el movimiento del aire en su

interior.

Caso 2a:

Figura 2.14: Vista del recinto 2a

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

121

Figura 2.15: Movimiento del aire en el interior del recinto 2a

Caso 2b:

Figura 2.16: Vista del recinto 2b

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

122

Figura 2.17: Movimiento del aire en el interior del recinto 2b

Caso 2c:

Figura 2.18: Vista del recinto2c

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

123

Figura 2.19: Movimiento del aire en el interior del recinto 2c

Recinto 2d:

Figura 2.20: Vista del recinto 2d

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

124

Figura 2.21: Movimiento del aire en el interior del recinto 2d

Recinto 2e:

Figura 2.22: Vista del recinto 2e

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

125

Figura 2.23: Movimiento del aire en el interior del recinto 2e

Caso 3a:

Figura 2.24: Vista del recinto 3a

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

126

Figura 2.25: Movimiento del aire en el interior del recinto 3a

Caso 3b:

Figura 2.26: Vista del recinto 3b

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

127

Figura 2.27: Movimiento del aire en el interior del recinto 3b

Recinto 3c:

Figura 2.28: Vista del recinto 3c

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

128

Figura 2.29: Movimiento del aire en el interior del recinto

Caso 3d:

Figura 2.30: Vista del recinto 3d

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

129

Figura 2.31: Movimiento del aire en el interior del recinto 3d

En las figuras anteriores se ha mostrado cómo se mueve el aire en el interior del

recinto y el recorrido que realiza. Cabe esperar y como se ha visualizado en la tabla 2.1,

que la caída de presión no va a ser la misma en un recinto que en otro, ya que el

recorrido del aire tampoco va a ser el mismo.

A continuación se observa gráficamente la evolución de la caída de presión para

cada caso, en función del caudal de aire. Se representarán dos gráficas, una en la que se

muestren conjuntamente todos los casos del recinto cuadrado y otra en la que se

representen todos los casos del recinto rectangular.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

130

Figura 2.32: Representación de la pérdida de carga del aire en cada recinto

En la gráfica se puede observar como existen diferencias de pérdidas de carda

debido a la variación de la posición de la salida del aire. En este caso el recinto que hace

que el aire sufra más pérdidas de carga es el 2d, siguiéndole muy de cerca el 2a. En una

posición intermedia se encuentra el recinto 2e y los recintos que provocan menos

pérdidas de carga al aire son el 2c y el 2b respectivamente.

A continuación se muestra las gráficas correspondientes a los casos del recinto

rectangular.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

131

Figura 2.33: Representación de la pérdida de carga del aire en cada recinto

En este caso los recintos que tienen más pérdidas de carga son el 3b, el 3a y el 3c

respectivamente. Se puede decir que los tres tienen una pérdida de carga muy parecida.

Por el contrario el recinto 3d difiere de los otros tres, siendo el que menos pérdidas

de carga le ocasiona al aire.

Hay que decir que en el caso de recintos tridimensionales, la visualización de cuál

recinto ocasiona más pérdidas de carga al aire, no es tan intuitivo como en el caso

bidimensional. Por ejemplo, cabía esperar que el recinto 3d fuera el de más pérdidas de

carga ya que la salida se encuentra más lejos de la entrada y por el contrario es el que

menos tiene. Ello se debe a que en el caso 3a, 3b y 3c existen choques con la pared y

por tanto, más giros (codos) a 90 º del aire, lo cual le ocasiona una gran pérdida de

carga. En cambio en el recinto 3d el aire apenas sufre desviaciones.

Por tanto se puede concluir que el estudio del movimiento del aire en un recinto

tridimensional es más complejo y menos intuitivo.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

132

Como el objetivo de este estudio es el de buscar una corrección de cara al

movimiento del aire en el Modelo Zonal, se va a intentar buscarla de una forma más

estructurada y desmembrada.

Para ello en el siguiente capítulo, se va analizar un recinto bidimensional muy

esbelto, en el que el largo es mucho más grande que el ancho, con el objetivo de evitar

que el aire choque con la pared de longitud más pequeña. De esta forma se evita la

perturbación del movimiento del aire y la mejor fiabilidad de los datos.

En este recinto se analizará la pérdida de carga total y dentro de esta, la debida a los

codos y la debida a la fricción del aire. Finalmente se buscará una correlación para

ambas pérdidas.

2.4 Obtención de correcciones para implementación en el Modelo

Zonal realizado.

2.4.1 Introducción.

Como se comento al final del apartado anterior, el objetivo de este capítulo es el de

realizar una corrección por pérdidas de carga del aire en el interior del recinto. Hasta

ahora el programa realizado mediante el Modelo Zonal, considera que la presión en el

interior de cada recinto permanece constante en todos sus puntos. Lo cual no es cierto,

pues la presión del aire va disminuyendo desde la entrada a la salida, debido a las

pérdidas de carga sufridas en el recorrido.

Para la búsqueda de la corrección, se va a estudiar varios recintos bidimensionales, ya

que el estudio bidimensional es más intuitivo que el tridimensional debido

principalmente a que es más fácil de ver el movimiento del aire y las zonas donde sufre

más pérdidas.

El recinto consistirá en un pasillo muy esbelto de 8 metros de largo y 1 metro de

ancho. Situándose la entrada y la salida enfrentadas en cada uno de los lados largos del

pasillo. La diferencia entre un recinto y otro va a ser la variación de la posición de la

apertura de salida, ya que ésta va a ir cambiando para analizar cómo evoluciona la

pérdida de carga en el recinto.

A continuación se mide la diferencia de presión entre la entrada y la salida de cada

recinto.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

133

Finalmente se calcula por separado las perdidas de carga debida a la fricción y las

debidas a los codos y se correlaciona el valor de la constante de pérdidas de cargas para

cada caso. Estas correlaciones serán las que hay que implementar en el programa para

mejorarlo.

2.4.2 Estudio de los recintos bidimensionales y cálculo de

correlaciones para corrección del Modelo Zonal.

A continuación, se van a mostrar los recintos que se han estudiado mediante el

programa Fluent para la obtención de las correcciones.

Como se comentó anteriormente, dichos recintos se han diseñado muy esbeltos para

que los lados cortos del recinto se sitúen lejos de la apertura de salida del aire y con ello,

evitar que perturben el movimiento del aire.

Las dimensiones son de 8 metros de largo y 1 metro de ancho, con una anchura de las

aperturas de entrada y salida de 0.5 metros.

Dicho esto, a continuación se van a mostrar los recintos analizados con el aire en

movimiento en su interior. En concreto son cuatro. En el primero la entrada y la salida

se encuentran enfrentadas y en los otros tres la salida se ha ido desplazando

progresivamente cada vez más lejos de la entrada, con el objetivo de que la pérdida de

carga vaya aumentando en el recinto.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

134

Caso A:

Figura 2.34: Movimiento del aire en el recinto A

Se observa como en este caso, al estar enfrentadas la entrada y la salida, casi

todo el flujo másico sale directamente del recinto desde la entrada a la salida. Por lo que

cabe esperar que en este caso la pérdida de carga del aire sea pequeña con respecto a las

siguientes.

Caso B:

Figura 2.35: Movimiento del aire en el recinto B

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

135

Caso C:

Figura 2.36: Movimiento del aire en el recinto C

Caso D:

Figura 2.37: Movimiento del aire en el recinto D

Se puede visualizar que en los casos B, C y D el flujo de aire realiza dos codos a 90º

y un movimiento longitudinal muy recto, entre ellos.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

136

Cabe destacar también, que el movimiento del aire en las zonas remansadas del

recinto es prácticamente nulo, es decir, su velocidad es casi cero.

Por tanto el flujo de aire principal puede modelarse como si estuviese confinado en

un tubo, en el que existe una pérdida de carga debida a la fricción, la cual depende de la

longitud recorrida y existe una pérdida de carga debida a los codos realizados por el

aire, la cual depende del número de los mismos.

Ese será el objetivo de este capítulo, separar las perdidas de carga (fricción y codos)

y obtener una correlación o valor para ambas según sea el recinto a estudiar.

A continuación se muestra una tabla con las pérdidas de cargas totales obtenidas

para distintos caudales en los cuatro recintos estudiados:

Q (m3/s) Caso A Caso B Caso C Caso D 0.15 0.068397 0.13423 0.149417 0.1669924 0.3 0.102911 0.558295 0.61072 0.6776874 0.6 0.3247764 2.204984 2.47674 2.734742

Tabla 2.2: Valores de la caída de presión en función del caudal para los cuatro recintos

Se aprecia en la tabla como para un mismo caudal la pérdida de carga aumenta

progresivamente desde el caso A hasta el D. Esto se debe al aumento de la fricción del

aire a causa de la mayor distancia recorrida hasta llegar a la salida.

También se puede observar en la tabla como a medida que aumenta el caudal de

aire, la diferencia de la caída de presión entre el caso A y los otros tres aumenta

considerablemente, siendo en el último caso de hasta 2 Pascales de diferencia. Y ello

sólo con modificar la posición de la apertura de salida.

A continuación se representa gráficamente las cuatro curvas de pérdidas de carga en

función del caudal, para tener una mejor visualización de lo comentado anteriormente.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

137

Figura 2.38: Representación de la pérdida de carga para los cuatro recintos

En la figura 2.38 se muestra de forma más intuitiva como el recinto A es el que

menor pérdida de carga ocasiona. Le sigue el recinto B con una pérdida de carga mayor,

el recinto C se sitúa en una posición intermedia y el recinto D como cabía esperar, es el

que tiene una pérdida de carga mayor.

Una vez calculada la pérdida de carga total de los recintos, a continuación se va a

calcular la pérdida de carga debida a la fricción y la debida a los codos.

Las pérdidas de carga debido al movimiento del aire se calcula mediante la fórmula:

2

' 2· · ·2vP K K Qρ∆ = = (2.18)

A su vez la constante K de pérdidas de carga se puede dividir en 2, la pérdida de

carga debida a la fricción del aire a través de su recorrido y la pérdida de carga debida a

los codos. Esto es:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

138

( )·codos codo

K kL kfkL f Lkf n k

= +

=

=

(2.19)

La pérdida de carga debida a la fricción depende de la longitud recorrida por el aire,

ya que a mayor longitud, más fricción y por tanto más pérdidas de carga.

- Cálculo de la constante kL para los casos B, C y D y relación de kL con la longitud L recorrida.

En este apartado se va a calcular la constante de pérdidas de carga debida a la

fricción del aire (kL) para los recintos B, C y D. Y una vez calculadas las constantes, se

obtendrá una relación de kL en función de la longitud L recorrida por el aire.

Para los casos B,C y D la longitud L recorrida por el aire va aumentando ya que

hemos ido alejando la salida de la entrada. La longitud recorrida por el flujo de aire

desde la entrada hasta la salida para cada caso ha sido:

Casos B C D L (m) 1.75 2.75 3.25

Tabla 2.3: Valor de la longitud L recorrida por el aire en cada recinto

Conocida la longitud a recorrer por el aire, se calcula la presión al inicio y al

final del recorrido (entre los dos codos) mediante el programa Fluent, para así obtener

la perdida de carga debida a la fricción. Los resultados obtenidos para los tres casos son

los siguientes, medidos en Pascales:

Q (m3/s) 0.15 0.3 0.6

Caso B (Pa) 0.08462676 0.32279 1.21478053 Caso C (Pa) 0.075400875 0.31089955 1.26582917 Caso D (Pa) 0.078193394 0.314499819 1.35729016

Tabla 2.4: Valor de la caída de presión debida a la fricción en cada recinto

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

139

Una vez obtenidas las pérdidas de carga, a continuación se obtienen la constante kL

para cada caso, para ello se correlacionan los puntos de la tabla anterior mediante la

forma:

2· , ,

ii LP k Q i B C D∆ = →∀ = (2.20)

Los resultados de las constantes de pérdidas de cargas obtenidos son los siguientes:

Caso B C D kL 3.1849 3.5761 3.9977

Tabla 2.5: Valor de kL para cada recinto

Se observa en la tabla 2.5 como la constante kL aumenta a medida que aumenta la

longitud L recorrida por el aire. Ello es razonable ya que a mayor longitud a recorrer por

el aire, mayor fricción.

A continuación se muestra una gráfica con las curvas de pérdidas de carga kL

debida únicamente a los efectos de fricción, para los casos B, C y D estudiados:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

140

Figura 2.39: Pérdida de carga debida a la fricción en cada recinto

Como cabía de esperar, kL aumenta a medida que aumenta la longitud recorrida, por

lo que habrá que encontrar una relación que muestre dicha dependencia.

Para ello se han tomado los tres valore de kL obtenidos y se ha buscado el

polinomio que mejor se ajusta a dichos puntos mediante mínimos cuadrados. Esto se ha

hecho mediante un programa en Matlab y el polinomio obtenido es de segundo grado,

es decir, el valor kL aumenta de forma cuadrática con la longitud L recorrida. Sus

coeficientes son los siguientes:

20.3013·L -0.9646·L+3.9502Lk = (2.21)

Esta es la ecuación que mejor se ajusta a los puntos experimentales, y lo hace con

una buena exactitud como se verá a continuación en la siguiente gráfica, en la que se va

a representar dichos puntos experimentales conjuntamente con la correlación obtenida

de kL en función de L. La gráfica es la siguiente:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

141

Figura 2.40: Representación de kL en función de la longitud L recorrida por el aire

En la figura 2.40 se aprecia como el polinomio obtenido aproxima muy bien los

puntos experimentales por lo que mediante esta ecuación se puede calcular directamente

el valor de kL para cualquier recinto, tan solo sabiendo cuál es la longitud que va a

recorrer el aire.

Esta correlación deberá ser introducida en el programa realizado por Tomás

Carmona Hernández, para tener en cuenta los efectos de las pérdidas de carga en el

interior de los recintos.

Una vez obtenida la correlación para poder calcular kL para cualquier recinto, a

continuación se pasará a calcular el valor de la constante de pérdidas de carga debidas a

los codos, kc.

- Cálculo de la constante de pérdidas kc, debida a los codos.

En los tres casos B, C y D existen en el movimiento del aire, dos codos a 90º. Pero

para la obtención del valor kc, es necesario calcular primero la pérdida de carga debida a

los codos. Para ello a la pérdida de carga total medida anteriormente, se le resta la

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

142

pérdida de carga debida a la fricción del aire, también obtenida anteriormente, y la

pérdida debida al orificio de salida, la cual ha sido calculada de forma precisa mediante

Fluent. Esto es:

codos Total friccion salidaP P P P∆ = ∆ −∆ −∆ (2.22)

Dicho esto, en la siguiente tabla se muestra los valores de las pérdidas de carga

debidas a los dos codos para cada uno de los tres recintos.

Q (m3/s) 0.15 0.3 0.6 Caso B (Pa) 0.0496 0.2355 0.9902 Caso C (Pa) 0.0686 0.2944 1.2055 Caso D (Pa) 0.0451 0.3194 1.3337

Tabla 2.6: Valores de la caída de presión debida a los codos para cada recinto

A diferencia del valor de kL que varía en función de L, el valor de la constante de

pérdidas de carga debida a los codos kc debe ser un valor constante. Por tanto, lo que se

va a hacer es calcular el valor kc para cada recinto, observar que los valores obtenidos

son muy parecidos y por tanto calcular un valor medio de los anteriores como valor

final.

Al igual que se hizo para calcular kL, las constantes kc se calculan mediante una

correlación de la siguiente forma:

2· , ,

ii CP k Q i B C D∆ = →∀ = (2.23)

Los resultados de las constantes de pérdidas de cargas obtenidos son los siguientes:

Caso B C D

kc 2.8975 3.3939 3.6632

Tabla 2.7: Valore de kc obtenidos para cada recinto

Se observa que los valores obtenidos no varían mucho y por tanto se puede tomar un

valor medio como valor final de kc.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

143

Hay que tener en cuenta que los valores de kc obtenidos corresponden a la pérdida

de carga debida a los dos codos del recinto por lo que para obtener el valor medio de kc

debido sólo a un codo, hay que dividir por dos el valor obtenido de la tabla anterior.

Dicho esto el valor medio de la constante de pérdidas de carga kc debida a un solo codo

a 90º es el siguiente:

kc = 1.6591

Una vez obtenidas kL y kc y conocidos el número total de codos a 90º, se puede

calcular finalmente la constante global de pérdidas de carga KTotal sin más que sumar

ambas constantes.

·

QKP

kkLK

knk

f

ccodosf

=∆

+=

=

(2.24)

Y una vez conocida la constante K, se puede conocer la pérdida de carga global que

sufre el aire en el recinto.

2.4.3 Conclusiones.

La obtención de la correlación anterior y su implementación en el programa, hace

que este tenga en cuenta las pérdidas de cargas en el interior de los recintos, ya sea por

variación de la posición de la entrada y/o la salida o bien por variación de la geometría

del recinto. Tan sólo es necesario saber la longitud recorrida por el aire desde la entrada

hasta la salida y el número de giros a 90º que realiza durante dicho recorrido.

Los resultados ha obtener con el programa con la corrección introducida, van a ser

mucho más reales y precisos, ya que antes se consideraba que la presión en el recinto

era constante y además no se tenía en cuenta ni la geometría del recinto, ni la posición

de la entrada y la salida de aire, y por consiguiente las pérdidas del aire en el interior.

Con dicho estudio y finalmente con la obtención de la corrección se ha querido

mejorar el Modelo Zonal y aportar un grado más de exactitud en el mismo, intentando

hacerlo cada vez más real aunque no más complejo.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

144

A continuación se muestran las fases para implementar las correcciones en el

algoritmo del programa.

2.4.4 Pasos a seguir para la implementación de las correcciones en el

programa realizado mediante el Modelo Zonal.

Los pasos a seguir para la corrección del modelo zonal son los siguientes:

1.- Las pérdidas de carga debido al movimiento del aire se calcula mediante la

fórmula:

22 3

6

· ·Pa s mP K Qm s

∆ =

(2.25)

A su vez la constante K de pérdidas de carga se puede dividir en 2, la pérdida de

carga debida a la fricción del aire a través de su recorrido y la pérdida de carga debida a

los codos. Esto es:

( )·codos codo

K kL kfkL f Lkf n k

= +

=

=

(2.26)

La pérdida de carga debida a la fricción depende de la longitud recorrida por el aire,

ya que a mayor longitud, más fricción y por tanto más pérdidas de carga.

2.- Cálculo de kL en función de la longitud recorrida por el aire.

La constante de pérdidas de cargas debida a la fricción del aire se calcula mediante

la fórmula:

20.3013·L -0.9646·L+3.9502kL = (2.27)

Donde:

L = Longitud en metros, recorridos por el aire desde el orificio de entrada al orificio

de salida.

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

145

Cálculo de la longitud L en una habitación:

Para el cálculo de la longitud L se pueden dar 2 casos:

a) Entrada y salida en distintas paredes y paralelas entre sí. En este caso la

longitud L se calcula como:

L = L1+L2

Figura 2.41: Obtención de L en el caso a)

Donde:

L1 = Es el ancho de la habitación.

L2 = Es la desviación de la salida respecto de la entrada (En el caso de enfrentadas

L2 = 0).

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

146

b) Entrada y salida en distintas paredes perpendiculares entre sí:

L = L1+L2

Figura 2.42: Obtención de L en el caso b)

Donde:

L1 = Es la distancia media entre la salida y la entrada en el lado donde se sitúa la

salida.

L2 = Es la distancia media entre la entrada y la salida en el lado donde se sitúa la

entrada.

3.- Cálculo del número de codos recorridos por el aire y de kf.

El valor de la constante de pérdidas de carga de cada codo a 90º es constante e igual

a:

2

6

·1.6591CodoPa skm

=

(2.28)

A continuación se debe conocer el número de codos a 90º que realiza el aire en su

recorrido desde la entrada hasta la salida, para así poder obtener la kf del número total

de codos:

·f Codos Codok n k= (2.29)

Donde:

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

147

nCodos = Número de codos a 90º que realiza el aire.

Cálculo del número de codos:

El número de codos realizados por el aire depende de la posición de la entrada y de

la salida de aire.

- Para el caso a) analizado anteriormente, en 3D el número de codos es 2 ó 3,

dependiendo de las posiciones de entrada-salida.

nCodos = 2 ó 3

- Para el caso b) analizado anteriormente, en 3D el número de codos suele ser de 3 ó

4, dependiendo de las posiciones entrada-salida.

nCodos = 3 ó 4

4.- Una vez obtenidas cada una de las constantes, se obtiene la constante global

como suma de las anteriores y la pérdida de presión que sufre el aire al pasar por la

habitación.

=∆

+=

2

62

6

2

··smQ

msPaKP

kfkLK (2.30)

CAPÍTULO 2. ESTUDIO DE LA VENTILACIÓN NATURAL EN RECINTOS TRIDIMENSIONALES

148