cambridge university chemistry databook

Upload: iantoc

Post on 03-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Cambridge University Chemistry DataBook

    1/18

    Department of Chemistry

    Data Book(revised October 2005)

    Contents

    Periodic table of the elements inside front cover

    Physical constants and conversion factors 1

    Greek alphabet 3

    Series 3

    Stirling's formula 3

    Determinants 3

    Integrals 4

    Integration by parts 4Trigonometrical formulae 4

    Cosine formula 4Spherical polar coordinates 5

    Laplacian 5

    Spherical harmonics 5

    Ladder operators 5

    Character tables 6 11

    Selected tables for descent in symmetry 11

    Reduction of a representation 12

    Projection operators 12

    Direct products 12

    Antisymmetrized squares 12

    Flow chart for determining molecular point groups 13

    Space groups (GEPs and SEPs) 14

    Parameters for selected magnetic nuclei 15

    Amino acids 16

    Nucleotide bases 17

  • 8/12/2019 Cambridge University Chemistry DataBook

    2/18

    H

    1

    1.008

    He

    2

    4.003

    Li

    3

    6.94

    Be

    4

    9.01

    symbolatomic number

    mean atomic massB

    5

    10.81

    C

    6

    12.01

    N

    7

    14.01

    O

    8

    16.00

    F

    9

    19.00

    Ne

    10

    20.18

    Na

    11

    22.99

    Mg

    12

    24.31

    Al

    13

    26.98

    Si

    14

    28.09

    P

    15

    30.97

    S

    16

    32.06

    Cl

    17

    35.45

    Ar

    18

    39.95

    K

    19

    39.102

    Ca

    20

    40.08

    Sc

    21

    44.96

    Ti

    22

    47.90

    V

    23

    50.94

    Cr

    24

    52.00

    Mn

    25

    54.94

    Fe

    26

    55.85

    Co

    27

    58.93

    Ni

    28

    58.71

    Cu

    29

    63.55

    Zn

    30

    65.37

    Ga

    31

    69.72

    Ge

    32

    72.59

    As

    33

    74.92

    Se

    34

    78.96

    Br

    35

    79.904

    Kr

    36

    83.80

    Rb

    37

    85.47

    Sr

    38

    87.62

    Y

    39

    88.91

    Zr

    40

    91.22

    Nb

    41

    92.91

    Mo

    42

    95.94

    Tc

    43

    Ru

    44

    101.07

    Rh

    45

    102.91

    Pd

    46

    106.4

    Ag

    47

    107.87

    Cd

    48

    112.40

    In

    49

    114.82

    Sn

    50

    118.69

    Sb

    51

    121.75

    Te

    52

    127.60

    I

    53

    126.90

    Xe

    54

    131.30

    Cs

    55

    132.91

    Ba

    56

    137.34

    La*

    57

    138.91

    Hf

    72

    178.49

    Ta

    73

    180.95

    W

    74

    183.85

    Re

    75

    186.2

    Os

    76

    190.2

    Ir

    77

    192.2

    Pt

    78

    195.09

    Au

    79

    196.97

    Hg

    80

    200.59

    Tl

    81

    204.37

    Pb

    82

    207.2

    Bi

    83

    208.98

    Po

    84

    At

    85

    Rn

    86

    Fr

    87

    Ra

    88

    Ac+

    89

    *Lanthanides Ce58

    140.12

    Pr

    59

    140.91

    Nd

    60

    144.24

    Pm

    61

    Sm

    62

    150.4

    Eu

    63

    151.96

    Gd

    64

    157.25

    Tb

    65

    158.93

    Dy

    66

    162.50

    Ho

    67

    164.93

    Er

    68

    167.26

    Tm

    69

    168.93

    Yb

    70

    173.04

    Lu

    71

    174.97

    +Actinides Th90

    232.01

    Pa

    91

    U

    92

    238.03

    Np

    93

    Pu

    94

    Am

    95

    Cm

    96

    Bk

    97

    Cf

    98

    Es

    99

    Fm

    100

    Md

    101

    No

    102

    Lr

    103

  • 8/12/2019 Cambridge University Chemistry DataBook

    3/18

    Constants

    Symbol and ValueName definition (uncertainty) Unit

    ! 3 141592653589

    e 2 718281828459

    ln 10 1 log10e 2 302585092994

    Speed of light c 2 99792458 108m s 1

    Plancks constant h 6 6260693 11 10 34 Js

    h h 2! 1 05457168 18 10 34 Js

    Avogadros constant NA 6 0221415 10 1023mol 1

    Elementary charge e 1 60217653 14 10 19C

    Electron rest mass me 0 91093826 16 10 30kg

    Atomic mass unit mu 1gmol 1 NA 1 66053886 28 10 27kg

    Proton rest mass mp 1 67262171 29 10 27kg

    Neutron rest mass mn 1 67492728 29 10 27kg

    Faraday constant F NAe 9 64853383 83 104Cmol 1

    Boltzmann constant kB 1 3806505 24 10 23 JK 1

    Molar Gas constant R NAkB 8 314472 15 J mol 1K 1

    Permeability of vacuum 0 4! 10 7 Hm 1

    Permittivity of vacuum "0 1 0c2 8 8541878 10 12Fm 1

    4!"0 1 1126501 10 10Fm 1

    Bohr magneton B eh 2me 9 27400949 80 10 24 JT 1

    Nuclear magneton N eh 2mp 5 05078343 43 10 27 JT 1

    Stefan-Boltzmann constant # 2!5

    k4

    B 15h3

    c2

    5 670400 40 10 8

    Wm 2

    K 4

    Bohr radius a0 4!"0h2 mee2 0 5291772108 18 10 10m

    Hartree energy Eh e2 4!"0a0 4 35974417 75 10 18 J

    Fine structure constant $ e2 4!"0hc 7 297352568 24 10 3

    $ 1 137 035986

    CODATA recommended values, December 2002http://physics.nist.gov/constants

    The estimated standard uncertainty, in parentheses after the value,applies to the least significant digits of the value.

    Energy Conversion Factors

    J kJ mol 1 cm 1 K

    1 J 1 6 0221 1020 5 0341 1022 7 2429 1022

    1hartree 4 35974 10 18 2625 5 219475 315773

    1 eV 1 60218 10 19 96 485 8065 54 11604

    1kJmol 1 1 66054 10 21 1 83 5935 120 27

    1 cm 1 1 98645 10 23 11 963 10 3 1 1 4388

    1 K 1 38065 10 23 8 3145 10 3 0 69504 1

    1 Hz 6 62607 10 34 3 9903 10 13 3 3356 10 11 4 7992 10 11

    Note: the energy of a photon with reciprocal wavelength (wavenumber) 1 %andfrequency &ishc % h&. The energy corresponding to a temperatureTis kBT.

    Other conversion factors

    Length 10 10m

    Energy cal 4 184 J

    Pressure atm = 760 Torr 101 325 Pa

    Torr = mm Hg 133 3 Pa

    bar 105Pa

    Radioactivity becquerel, Bq 1 s 1

    curie, Ci 3 7 1010Bq

    Charge esu 3 33564 10 10C

    Dipole moment debye 10 18esucm 3 33564 10 30C m

    a u ea0 8 478358 10 30C m

    Temperature C 0 C 273 15K

    The entropy unit (e.u.) used for entropies of activation is usually the c.g.s. unitcal/mol/ C. Howeversome authors use the same symbol for the SI unit, Jmol 1K 1.

    2

  • 8/12/2019 Cambridge University Chemistry DataBook

    4/18

    Greek Alphabet

    A ! alpha H " eta N # nu T $ tau

    B % beta & ' ( theta ) * xi + , upsilon

    - . gamma I / iota O o omicron 0 1 2 phi

    3 4 delta K 5 kappa 6 7 pi X 8 chi

    E 9 epsilon : ; lambda P < rho = > psiZ ? zeta M mu @ A sigma B C omega

    Series

    Geometrical progression

    Sn a az az2 azn 1 a

    1 zn

    1 z S!

    a

    1 z when z 1

    Power series

    expz 1 z

    z2

    2!

    z3

    3!

    zn

    n!

    cosz eiz e iz

    2 1

    z2

    2!

    z4

    4!

    z6

    6!

    sinz eiz e iz

    2i z

    z3

    3!

    z5

    5!

    z7

    7!

    1 z p 1 pz p p 1

    2! z2

    p p 1 p 2

    3! z3 z 1

    ln 1 z z z2

    2

    z3

    3

    z n

    n z 1

    Stirlings formula

    ln n! n ln n n for largen

    Determinants

    a b

    c d ad bc

    In general,

    det A !j Ai jCji (ifixed at any value)

    where the cofactor Cji is 1 i j times the determinant of the matrix obtained by deleting theith row

    and the jth column ofA. For example,

    a11 a12 a13a21 a22 a23a31 a32 a33

    a11a22 a23a32 a33

    a12a21 a23a31 a33

    a13a21 a22a31 a32

    a11a22a33 a11a23a32 a12a23a31 a12a21a33 a13a21a32 a13a22a31

    3

  • 8/12/2019 Cambridge University Chemistry DataBook

    5/18

    Integrals

    !

    !exp ax2 dx 7 a a 0

    !

    !

    x2n exp ax2 dx 1 3 5 2n 17 a

    2a n n 1; a 0

    !

    0

    rn exp ar dr n!

    an 1 n 0; a 0

    " 2

    0

    sinm ' cosn ' d' m 1

    m n

    " 2

    0

    sinm 2 ' cosn ' d'

    n 1

    m n

    " 2

    0

    sinm ' cosn 2 ' d'

    so that

    " 2

    0

    sinm ' cosn ' d' m 1 m 3 n 1 n 3m n m n 2 m n 4

    C

    whereC 7 2 ifm andn are botheven, andC 1 otherwise. E.g.:

    " 2

    0

    sin' cos3 ' d' 2

    4 2

    1

    4;

    " 2

    0

    sin2 ' cos2 ' d' 1 1

    4 2

    7

    2

    7

    16

    Integration by partsb

    au

    d

    dxdx u ba

    b

    a

    du

    dx dx

    Trigonometrical formulae

    sin A B sinA cosB cosA sinB

    cos A B cosA cosB sinA sinB

    cosA cosB 12

    cos A B cos A B

    sinA sinB 12

    cos A B cos A B

    sinA cosB 12

    sin A B sin A B

    sinA sinB 2sinA B

    2cos

    A B

    2

    sinA sinB 2cosA B

    2sin

    A B

    2

    cosA cosB 2cosA B

    2 cos

    A B

    2

    cosA cosB 2sinA B

    2 sin

    A B

    2

    Cosine formula

    a2 b2 c2 2bc cosA

    4

  • 8/12/2019 Cambridge University Chemistry DataBook

    6/18

    Spherical Polar Coordinates

    Relationship with Cartesian coordinates

    x r sin' cos2 r x2 y2 z2

    y r sin' sin 2 ' arccos z r

    z r cos' 2 arctan y x

    Integration

    dV!

    r 0

    "

    # 0

    2"

    $ 0r2 sin' dr d' d2

    z

    x

    y

    r'

    2

    Laplacian

    D2> E2>

    Ex2E2>

    Ey2E2>

    Ez2

    1

    r2E

    Er r2

    E>

    Er

    1

    r2 sin '

    E

    E' sin '

    E>

    E'

    1

    r2 sin2 '

    E2>

    E22

    Spherical Harmonics

    Ylm ' 2 2l 1

    47 Clm ' 2

    where

    Clm ' 2 l m !

    l m !

    1

    2

    Pm

    l cos' eim$ 1

    m form 0,

    1 form 0.

    HerePml is an associated Legendre polynomial. In particular,

    C00 1

    C10 cos' z r

    C1 11

    2sin 'e i$ 1

    2 x iy r

    C201

    2 3cos2 ' 1 1

    2 3z2 r2 r2

    C2 13

    2cos ' sin 'e i$ 3

    2 zx izy r2

    C2 23

    8sin2 'e 2i$ 3

    8 x2 y2 2ixy r2

    Ladder Operators

    J Jx iJy; J J M J J 1 M M 1 J M 1

    5

  • 8/12/2019 Cambridge University Chemistry DataBook

    7/18

    Character tables for some important symmetry groups

    Ci E i

    Ag 1 1 Rx;Ry;Rz x2;y2;z2;xy;xz;yzAu 1 1 x;y;z

    Cs E #h

    A 1 1 x;y Rz x2;y2;z2;xyA 1 1 z Rx;Ry xz;yz

    C2 E Cz2

    A 1 1 z Rz x2;y2;z2;xyB 1 1 x;y Rx;Ry xz;yz

    2

    C2v E Cz2

    #xz #yz

    A1 1 1 1 1 z x2;y2;z2

    A2 1 1 1 1 Rz xyB1 1 1 1 1 x Ry xzB2 1 1 1 1 y Rx yz

    C2h E Cz2

    i #xy

    Ag 1 1 1 1 Rz x2;y2;z2;xyBg 1 1 1 1 Rx;Ry xz;yzAu 1 1 1 1 zBu 1 1 1 1 x;y

    D2 E Cz2

    Cy2

    Cx2

    A 1 1 1 1 x2;y2;z2

    B1 1 1 1 1 z Rz xyB2 1 1 1 1 y Ry xzB3 1 1 1 1 x Rx yz

    D2d E 2S4 Cz2 2C2 2#d

    A1 1 1 1 1 1 x2 y2;z2

    A2 1 1 1 1 1 RzB1 1 1 1 1 1 x2 y2

    B2 1 1 1 1 1 z xyE 2 0 2 0 0 x y Rx Ry xz yz

    6

  • 8/12/2019 Cambridge University Chemistry DataBook

    8/18

    D2h E Cz2

    Cy2

    Cx2

    i #xy #xz #yz

    Ag 1 1 1 1 1 1 1 1 x2;y2;z2

    B1g 1 1 1 1 1 1 1 1 Rz xyB2g 1 1 1 1 1 1 1 1 Ry xzB3g 1 1 1 1 1 1 1 1 Rx yzAu 1 1 1 1 1 1 1 1B1u 1 1 1 1 1 1 1 1 zB2u 1 1 1 1 1 1 1 1 yB3u 1 1 1 1 1 1 1 1 x

    C3 E C3 C23

    ' exp 2!i 3

    A 1 1 1 z Rz x2 y2; z2

    1 ' '2 x iy Rx iRy xz iyz; x2 2ixy y2E

    1 '2 ' x iy Rx iRy xz iyz; x2 2ixy y2

    3

    C3v E 2Cz3 3#v

    A1 1 1 1 z x2 y2;z2

    A2 1 1 1 RzE 2 1 0 x y Rx Ry xz yz; x2 y2 2xy

    D3 E 2Cz3

    3C2

    A1 1 1 1 x2 y2;z2

    A2 1 1 1 z RzE 2 1 0 x y Rx Ry xz yz ; x2 y2 2xy

    D3d E 2C3 3C2 i 2S6 3#d

    A1g 1 1 1 1 1 1 x2 y2;z2

    A2g 1 1 1 1 1 1 RzEg 2 1 0 2 1 0 Rx Ry xz yz ; x2 y2 2xyA1u 1 1 1 1 1 1A2u 1 1 1 1 1 1 zEu 2 1 0 2 1 0 x y

    D3h E 2C3 3C2 #h 2S3 3#v

    A1

    1 1 1 1 1 1 x2 y2;z2

    A2

    1 1 1 1 1 1 RzE 2 1 0 2 1 0 x y x2 y2 2xyA

    1 1 1 1 1 1 1

    A2

    1 1 1 1 1 1 zE 2 1 0 2 1 0 Rx Ry xz yz

    7

  • 8/12/2019 Cambridge University Chemistry DataBook

    9/18

    C4v E 2C4 C24 2#v 2#d

    A1 1 1 1 1 1 z x2 y2;z2

    A2 1 1 1 1 1 RzB1 1 1 1 1 1 x2 y2

    B2 1 1 1 1 1 xy

    E 2 0 2 0 0 x y Rx Ry xz yz

    4

    Note: The#vplanes inC4vcoincide with thexzandyzplanes.

    D4h E 2C4 C24 2C2 2C2 i 2S4 #h 2#v 2#d

    A1g 1 1 1 1 1 1 1 1 1 1 x2 y2;z2

    A2g 1 1 1 1 1 1 1 1 1 1 RzB1g 1 1 1 1 1 1 1 1 1 1 x2 y2

    B2g 1 1 1 1 1 1 1 1 1 1 xyEg 2 0 2 0 0 2 0 2 0 0 Rx Ry xz yzA1u 1 1 1 1 1 1 1 1 1 1A2

    u 1 1 1 1 1 1 1 1 1 1 z

    B1u 1 1 1 1 1 1 1 1 1 1B2u 1 1 1 1 1 1 1 1 1 1Eu 2 0 2 0 0 2 0 2 0 0 x y

    Note: The C2axes in D4hcoincide with thexandyaxes, and the#vplanes with thexzandyzplanes.

    Note that the quantities ( 12

    5 1 satisfy( 2 1 ( and( ( 1.

    C5v E 2C5 2C25 5#v ( 1

    2 5 1

    A1 1 1 1 1 z x2 y2;z2

    A2 1 1 1 1 RzE1 2 ( ( 0 x y Rx Ry xz yzE2 2 ( ( 0 x2 y2 2xy

    5

    D5 E 2C5 2C25 5C2 ( 1

    2 5 1

    A1 1 1 1 1 x2 y2;z2

    A2 1 1 1 1 z RzE1 2 ( ( 0 x y Rx Ry xz yzE2 2 ( ( 0 x2 y2 2xy

    D5d

    E 2C5 2C25

    5C2 i 2S310

    2S105#d

    ( 12

    5 1

    A1g 1 1 1 1 1 1 1 1 x2 y2;z2

    A2g 1 1 1 1 1 1 1 1 RzE1g 2 ( ( 0 2 ( ( 0 Rx Ry xz yzE2g 2 ( ( 0 2 ( ( 0 x2 y2 2xyA1u 1 1 1 1 1 1 1 1A2u 1 1 1 1 1 1 1 1 zE1u 2 ( ( 0 2 ( ( 0 x yE2u 2 ( ( 0 2 ( ( 0

    8

  • 8/12/2019 Cambridge University Chemistry DataBook

    10/18

    D5h E 2C5 2C25 5C2 #h 2S5 2S3

    5 5#v ( 12 5 1

    A1

    1 1 1 1 1 1 1 1 x2 y2;z2

    A2

    1 1 1 1 1 1 1 1 RzE

    1 2 ( ( 0 2 ( ( 0 x y

    E2

    2 ( ( 0 2 ( ( 0 x2 y2 2xyA

    1 1 1 1 1 1 1 1 1

    A2 1 1 1 1 1 1 1 1 zE

    1 2 ( ( 0 2 ( ( 0 Rx Ry xz yz

    E2

    2 ( ( 0 2 ( ( 0

    C6v E 2C6 2C26 C3

    6 3#v 3#d

    A1 1 1 1 1 1 1 z x2 y2;z2

    A2 1 1 1 1 1 1 RzB1 1 1 1 1 1 1B2 1 1 1 1 1 1E1 2 1 1 2 0 0 x y Rx Ry xz yzE2 2 1 1 2 0 0 x2 y2 2xy

    6

    D6 E 2C6 2C26 C3

    6 3C2 3C2

    A1 1 1 1 1 1 1 x2 y2;z2

    A2 1 1 1 1 1 1 z RzB1 1 1 1 1 1 1B2 1 1 1 1 1 1E1 2 1 1 2 0 0 x y Rx Ry xz yzE2 2 1 1 2 0 0 x2 y2 2xy

    D6h E 2C6 2C26 C3

    6 3C2 3C2 i 2S3 2S6 #h 3#d 3#v

    A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 y2;z2

    A2g 1 1 1 1 1 1 1 1 1 1 1 1 RzB1g 1 1 1 1 1 1 1 1 1 1 1 1B2g 1 1 1 1 1 1 1 1 1 1 1 1E1g 2 1 1 2 0 0 2 1 1 2 0 0 Rx Ry xz yzE2g 2 1 1 2 0 0 2 1 1 2 0 0 x2 y2 2xyA1u 1 1 1 1 1 1 1 1 1 1 1 1A2u 1 1 1 1 1 1 1 1 1 1 1 1 zB1u 1 1 1 1 1 1 1 1 1 1 1 1B2u 1 1 1 1 1 1 1 1 1 1 1 1E1u 2 1 1 2 0 0 2 1 1 2 0 0 x y

    E2u 2 1 1 2 0 0 2 1 1 2 0 0

    9

  • 8/12/2019 Cambridge University Chemistry DataBook

    11/18

    T E 4C3 4C23 3C2 ' exp 2!i 3

    A1 1 1 1 1 x2 y2 z2

    E 1 ' '2 1 z2 '2x2 'y2

    1 '2 ' 1 z2 'x2 '2y2

    T2 3 0 0 1 x y z Rx Ry Rz yz xz xy

    Cubic

    Td E 8C3 3C2 6S4 6#d

    A1 1 1 1 1 1 x2 y2 z2

    A2 1 1 1 1 1E 2 1 2 0 0 2z2 x2 y2 3 x2 y2

    T1 3 0 1 1 1 Rx Ry RzT2 3 0 1 1 1 x y z yz xz xy

    O E 8C3 3C24 6C4 6C2

    A1 1 1 1 1 1 x2

    y2

    z2

    A2 1 1 1 1 1E 2 1 2 0 0 2z2 x2 y2 3 x2 y2

    T1 3 0 1 1 1 x y z Rx Ry RzT2 3 0 1 1 1 xz xy yz

    Oh E 8C3 3C24 6C4 6C2 i 8S6 3#h 6S4 6#d

    A1g 1 1 1 1 1 1 1 1 1 1 x2 y2 z2

    A2g 1 1 1 1 1 1 1 1 1 1Eg 2 1 2 0 0 2 1 2 0 0 2z2 x2 y2 3 x2 y2

    T1g 3 0 1 1 1 3 0 1 1 1 Rx Ry RzT2g 3 0 1 1 1 3 0 1 1 1 xz xy yz

    A1u 1 1 1 1 1 1 1 1 1 1A2u 1 1 1 1 1 1 1 1 1 1Eu 2 1 2 0 0 2 1 2 0 0T1u 3 0 1 1 1 3 0 1 1 1 x y zT2u 3 0 1 1 1 3 0 1 1 1

    IcosahedralIh E 12C5 12C25 20C3 15C2 i 12S

    3

    10 12S10 20S6 15# ( 12 5 1

    Ag 1 1 1 1 1 1 1 1 1 1 x2

    y

    2

    z

    2

    T1g 3 ( ( 0 1 3 ( ( 0 1 Rx Ry RzT2g 3 ( ( 0 1 3 ( ( 0 1Gg 4 1 1 1 0 4 1 1 1 0

    Hg 5 0 0 1 1 5 0 0 1 1 112 2z2 x2 y2

    1

    2 x2 y2 xz xy yz

    Au 1 1 1 1 1 1 1 1 1 1T1u 3 ( ( 0 1 3 ( ( 0 1 x y zT2u 3 ( ( 0 1 3 ( ( 0 1Gu 4 1 1 1 0 4 1 1 1 0

    Hu 5 0 0 1 1 5 0 0 1 1

    10

  • 8/12/2019 Cambridge University Chemistry DataBook

    12/18

    C!v E 2Cz $ )#v

    * A1 1 1 1 z x2 y2;z2

    * A2 1 1 1 Rz+ E1 2 2 cos$ 0 x y Rx Ry xz yz, E2 2 2 cos 2$ 0 x2 y2 2xy- E3 2 2 cos 3$ 0

    Linear

    D!h E 2Cz $ )#v i 2Sz $ )C2

    *g A1g 1 1 1 1 1 1 x2 y2;z2

    *g A2g 1 1 1 1 1 1 Rz+g E1g 2 2 cos$ 0 2 2 cos$ 0 Rx Ry xz yz,g E2g 2 2 cos 2$ 0 2 2cos2$ 0 x2 y2 2xy-g E3g 2 2 cos 3$ 0 2 2cos3$ 0

    *u A1u 1 1 1 1 1 1 z

    *u A2u 1 1 1 1 1 1+u E1u 2 2 cos$ 0 2 2 cos$ 0 x y,u E2u 2 2 cos 2$ 0 2 2cos2$ 0-u E3u 2 2 cos 3$ 0 2 2cos3$ 0

    Selected tables for descent in symmetry

    C2v C2 Cs Cs

    E #xz E #yz

    A1 A A AA2 A A A

    B1 B A A

    B2 B A A

    D3h C3v C2v Cs Cs

    #h #yz E #h E #v

    A1 A1 A1 A AA

    2 A2 B2 A A

    E E A1 B2 2A A A

    A1

    A2 A2 A A

    A2

    A1 B1 A A

    E E A2 B1 2A A A

    D!h C2v

    x y z x z y

    *g A1

    *g B1

    +g A2 B2

    ,g A1 B1

    *u B2

    *u A2

    +u A1 B1

    ,u A2 B2

    O 3 Oh Td

    Sg A1g A1

    Pg T1g T1

    Dg Eg T2g E T2

    Fg A2g T1g T2g A2 T1 T2

    Gg A1g Eg T1g T2g A1 E T1 T2

    Su A1u A2

    Pu T1u T2

    Du Eu T2u E T1

    Fu A2u T1u T2u A1 T2 T1

    Gu A1u Eu T1u T2u A2 E T2 T1

    11

  • 8/12/2019 Cambridge University Chemistry DataBook

    13/18

    Reduction of a representation

    If. a1. 1 a2. 2 an. n , then

    ak1h!R

    / k R */ R

    where/ R is the character of the operationR in the rep-

    resentation .,/ k R is the character of the operationRinthe representation . k , andhis the number of elements inthe group.

    Projection operators

    The projection operator for representation . k is

    P k nk

    h!

    R

    / k R *R

    The projected function P k fobtained by applying P k to

    any function fis either zero or a component of a basis forrepresentation . k .

    Direct ProductsGenerally,

    /" " R /" R /" R

    and if the resulting representation is reducible it can be re-duced in the usual way. Alternatively the following rulescan be applied.

    Treatg uand symmetry separately. For groups with

    an inversion centre,

    g g u u g and g u u

    For groups with a horizontalplane #hbut no inversion cen-tre, single and double primes, and , are used to denotesymmetry and antisymmetry with respect to#h. Then

    and

    Direct products involving nondegenerate representa-tions are easily worked out from the character table. Theproduct of anyAor Bwith anyEis anE, and the productof anyAorBwith anyTis aT.

    In the cubic groups Td,Oand Oh,

    E E A1 A2 E

    E T1 E T2 T1 T2

    T1 T1 T2 T2 A1 E T1 T2

    T1 T2 A2 E T1 T2

    For products ofEiwithEjin the axial groups the rulesare complicated. If there is only one E representation,apart fromg uor labels, it should be considered asE1.We need the ordernof the principal axis, which is usuallyobvious e.g. n 5 for D5h butfor Dmdwithm even,n 2m(because Dmdhas anS2maxis whenmis even).

    a ForEi Ei:

    (i) IfE2iexists, then

    Ei Ei A1 A2 E2i

    (ii) Otherwise, if 4i nthen

    Ei Ei A1 A2 B1 B2

    (iii) Otherwise

    Ei Ei A1 A2 E2i n

    b ForEi Ejwithi j:

    (i) IfEi jexists, then

    Ei Ej Ei j Ei j

    (ii) If 2 i j n, then

    Ei Ej Ei j B1 B2

    (iii) Otherwise

    Ei Ej Ei j Ei j n

    If there is only oneArepresentation, apart fromg uorlabels, readA1and A2above asA; similarly forB.

    Examples

    For E E in C4v: there is only one Erepresentation, sotreat it as E1. Rule a(i) doesnt apply, because E2doesntexist, buta(ii) applies, soE E A1 A2 B1 B2.

    ForE1

    g E2

    uinD5

    d, note first thatg u u

    . Then weneedE1 E2, for which rule b(iii) applies, withn 5, sothe result isE1g E2u E1u E2u.

    Antisymmetrized SquaresThe antisymmetric component ofE Eor Ei Ei is al-ways A2. In the cubic groups, the antisymmetric part ofT1 T1andT2 T2is T1.

    12

  • 8/12/2019 Cambridge University Chemistry DataBook

    14/18

    nC2!Cn?

    n"v?

    Cnv

    "h?

    Cnh

    S2n Cn?

    S2n Cn

    i?

    C#v

    D#h

    i?Ci

    "?

    Cs

    C1

    i?

    Ih I

    i?

    Oh O

    i?

    "?

    Th Td

    Linear?

    Are there any Cnproperrotation axes, with n $2?

    Find the order n of the highest-orderproper rotation axis Cn.

    Is there more than one such axis?

    Value of n?

    5 (6C5) 4 (3C4) 3 (4C3) 2 (3C2)

    T

    "h?

    n"d?

    Dnh Dnd Dn

    YesYes

    Yes

    Yes

    Yes Yes

    Yes

    Yes

    Yes

    Yes Yes

    YesYes

    Yes

    Yes

    No

    No

    No

    No

    No

    No

    No

    No

    No

    No

    No NoNoNo

    No

    No

    Yes

    A.J.S. 1991

    13

  • 8/12/2019 Cambridge University Chemistry DataBook

    15/18

    Space Groups

    General Equivalent Positions (GEPs) and Special Equivalent Positions (SEPs)

    Space group P21

    GEPs:

    2 @ xn yn zn xn1

    2 yn zn

    SEPs:

    None

    Space group P21/c

    GEPs:

    4 @ xn yn zn xn1

    2 yn

    1

    2 zn xn

    1

    2 yn

    1

    2 zn xn yn zn

    SEPs:

    4 pairs:

    2 @ 0 0 0 and 0 12

    1

    2

    2 @ 0 0 12

    and 0 12

    0

    2 @ 12

    0 0 and 12

    1

    2

    1

    2

    2 @ 12

    1

    2 0 and 1

    2 0 1

    2

    Space group P212121

    GEPs:

    4 @ xn yn zn xn1

    2 yn1

    2 zn1

    2 xn1

    2 yn zn1

    2 xn yn1

    2 zn

    SEPs:

    None

    14

  • 8/12/2019 Cambridge University Chemistry DataBook

    16/18

    15

    Parameters for selected magnetic nuclei*

    isotope natural abundance (%) spin, I

    1H 100 12

    2

    H 1.5 !102

    13H 0 12

    6Li 7 1

    7Li 93 32

    10B 20 3

    11B 80 32

    13C 1 12

    14

    N 100 115

    N 0.4 12

    17O 3.7 !10

    2 52

    19F 100 12

    23Na 100 32

    27Al 100 52

    29Si 5 12

    31

    P 1001

    2 51

    V 100 72

    57Fe 2 12

    77Se 8 12

    103Rh 100 12

    107Ag 52 12

    109Ag 48 12

    113

    Cd 12

    1

    2 119

    Sn 9 12

    129Xe 26 12

    195Pt 34 12

    203Tl 30 12

    205Tl 70 12

    207Pb 23 12

    *The list is not exhaustive.

  • 8/12/2019 Cambridge University Chemistry DataBook

    17/18

    16

    Amino acids H3N OO

    HR

    Name Three-letter code Single-letter code Side chain, R =

    Serine Ser S CH2OH

    Threonine Thr T CH(CH3)OH

    Cysteine Cys C CH2SH

    Methionine Met M CH2CH2SMe

    Aspartic acid Asp D CH2COO

    Asparagine Asn N CH2CONH2

    Glutamic acid Glu E CH2CH2COO

    Glutamine Gln QCH

    2CH

    2CONH

    2 Lysine Lys K CH2CH2CH2CH2NH3

    +

    Arginine Arg R CH2CH2CH2NHNH2

    NH2+

    Glycine Gly G H

    Alanine Ala A Me

    Leucine Leu L CH2CHMe2

    Isoleucine Ile I CH(Me)CH2Me

    Valine Val V CHMe2

    Histidine His H

    N

    H

    NCH2

    Phenylalanine Phe F

    CH2

    Tyrosine Tyr Y

    CH2

    OH

    Tryptophan Trp W

    N

    H

    CH2

    Proline* Pro P N

    H

    COO

    HH

    *For proline the complete structure of the amino acid is shown.

  • 8/12/2019 Cambridge University Chemistry DataBook

    18/18

    17

    Nucleotide bases

    Name Abbreviation Structure

    Guanine G NH

    N

    N

    N

    O

    NH2

    Adenine A N

    N

    N

    N

    NH2

    Cytosine C

    N

    N

    NH2

    O

    Thymine T

    N

    NH

    O

    O

    Me

    Uracil U

    N

    NH

    O

    O