cam clay the model - code-aster.org · code_aster version default titre : loi de comportement...

38
Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579 Constitutive law CAM_CLAY Summarized: The model of Camwood-Clay one of the elastoplastic models the most known and the most is used in soil mechanics. It is especially adapted to the argillaceous materials. There are several types of models Camwood- Clay, that presented here is most current and is called modified Camwood-Clay. This model is characterized by hammer-hardenable surfaces of load in the shape of ellipses in the diagram of the first two invariants of the stresses. Inside these surfaces of reversibility, the material is elastic nonlinear. There exists moreover, in a point of each ellipse, a critical condition characterized by a variation of volume null. The set of these points constitutes a line separating the zones from dilatancy and contractance of the material as well as the zones of negative and positive hardening. Hardening is governed by only one scalar variable and the normal flow rule is adopted. Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience. Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Upload: hoangtram

Post on 22-Feb-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Constitutive law CAM_CLAY

Summarized:

The model of Camwood-Clay one of the elastoplastic models the most known and the most is used in soil mechanics. It is especially adapted to the argillaceous materials. There are several types of models Camwood-Clay, that presented here is most current and is called modified Camwood-Clay. This model is characterized by hammer-hardenable surfaces of load in the shape of ellipses in the diagram of the first two invariants of the stresses. Inside these surfaces of reversibility, the material is elastic nonlinear. There exists moreover, in a point of each ellipse, a critical condition characterized by a variation of volume null. The set of these points constitutes a line separating the zones from dilatancy and contractance of the material as well as the zones of negative and positive hardening. Hardening is governed by only one scalar variable and the normal flow rule is adopted.

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 2: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 2/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Contents 1 Notations4

2 Introduction6 ..........................................................................................................................................

2.1 Phenomenology of the behavior of the sols6 ..................................................................................

2.2 Behavior under compression hydrostatique6 ..................................................................................

2.3 Behavior under loading déviatorique7 ............................................................................................

3 Camwood Model Clay modifiée8 ..........................................................................................................

3.1 Assumptions of modélisation8 ........................................................................................................

3.2 Surface of charge8 .........................................................................................................................

3.3 elastic Model and model of écrouissage9 .......................................................................................

3.4 flow Model plastique10 ...................................................................................................................

3.5 Writing energy and hardening modulus plastique10 .......................................................................

3.6 Relations incrémentales11 ..............................................................................................................

3.7 Abstract of the behavior models ................................................................................................ 12

4 Numerical integration of the relations of comportement13 ...................................................................

4.1 Recall of the problème13 ................................................................................................................

4.2 Computation of the stresses and variable internes13 .....................................................................

4.3 Computation of unknown ..................................................................................................... 15.4.4

Determination of the limits of the fonction15 ........................................................................................

4.5 Typical case of the point critique17 ................................................................................................

4.6 Résumé18 .......................................................................................................................................

5 Operator tangent19 ...............................................................................................................................

5.1 elastic tangent Operator not linéaire19 ...........................................................................................

5.2 plastic tangent Operator of velocity. Option RIGI_MECA_TANG ........................................ 20.5.3

tangent Operator into implicit. Option FULL_MECA ........................................................................ 23

6 Materials parameters and local variables ................................................................................... 23.6.1

Materials parameters ................................................................................................................. 23.6.2

Variables internes25 .............................................................................................................................

7 Implementation of a computation with model CAM_CLAY25 ...............................................................

7.1 Initialization of the calcul25 ............................................................................................................

7.2 Examples of results obtained on tests triaxiaux25 ..........................................................................

8 Appendix: Tangent operator into implicit. Option FULL_MECA28 ........................................................

8.1 general Cases ...............................................................................................................................

28.8.1.1 Processing of the part déviatorique28 ..............................................................................

8.1.2 Processing of the part hydrostatique32 .................................................................................

8.1.3 Operator tangent34 ...............................................................................................................

8.2 tangent Operator at the point critique34 .........................................................................................

8.2.1 Processing of the part déviatorique35 ...................................................................................

8.2.2 Processing of the part hydrostatique35 .................................................................................

8.2.3 tangent Operator .............................................................................................................. 36

9 Bibliographie36 ...................................................................................................................................... Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 3: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 3/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

10 Description of the versions of the document36 ...................................................................................

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 4: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 4/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

1 Notations

indicates the tensor of the effective stresses in small disturbances defined as being the difference between the total stresses and the pressure of water in the case of the water-logged soils, noted in the shape of the following vector:

11

22

33

212

223

231

One notes:

P=−13

tr forced deviative

s=PI containment of the stresses

I 2=12

tr s . s second invariant of the stresses

Q=eq=3I2 equivalent stress

=12

∇ u∇T u total deflection

=e pth partition of the strains (elastic, plastic, thermal)

v=−tr 3 T −T 0 total deflection voluminal

Vp=−tr p voluminal plastic strain

=13v I deviative deviator of

e=−

p the strains of the elastic strain

p=

p

13v

p I deviatoric plastic strain

eqe = 2

3tr e . e elastic strain equivalent

eqp = 2

3tr p . p equivalent plastic strain

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 5: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 5/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

e index of the vacuums of the material (ratio of the volume of the pores on the volume of the solid matter constituents)

e0 initial index of the vacuums

porosity (ratio of the volume of the pores on total volume)

coefficient of swelling (elastic slope in a hydrostatic compression test)

M slope of the right of critical condition

k0=1e0

Pcr local variable of the model, critical pressure equal to half of the pressure of consolidation Pcons

coefficient of compressibility (slope plastic in a hydrostatic compression test)

k=1e0

λ−κ

elastic coefficient of shears (coefficient of Lamé)

f surfaces of load

tensor plastic

I d multiplier unit of order 2 whose term running is ij

I 4d tensor unit of order 4 whose term running is ijkl

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 6: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 6/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

2 Introduction

The model described here is the model known as of modified Camwood-Clay. The model initial of Camwood-Clay was developed by the school of soil mechanics of Cambridge in the Sixties. He predicted too important deviatoric strains under weak loading deviatoric, and was modified by Burland and Roscoe in 1968 [bib1].

2.1 Phenomenology of the behavior of the soils

the materials poroplastic such as certain clays are characterized by the following behaviors:

•the strong porosity of these materials causes unrecoverable deformations under hydrostatic loading corresponding to an important reduction of porosity. This mechanism purely contractor is sometimes called “collapse”,

•under loading deviatoric, these materials show a contracting phase followed by a phase where the material becomes deformed with constant plastic volume or dilates.

For the two types of loading, the energy blocked in the material evolves according to the number of contact between the grains. For a hydrostatic loading, the number of contact increases, as well as blocked energy, one thus has positive hardening. For a loading deviatoric, the material can become deformed without variation of volume to many intergranular contacts constant. Moreover, one can observe in the tests of the localizations of strains accompanied by a strong dilatancy. In these zones, the number of grains in decreasing contact, there is reduction in blocked energy and thus softening.

These behaviors are highlighted primarily by triaxial compression tests of revolution. These observations bring to apply that there exists a plastic threshold whose evolution is controlled by two mechanisms: one purely contractor associated with the hydrostatic stress, and a mechanism deviatoric controlled by internal friction being held with constant volume and possibly dilating with the approach of the localization. All the advantage of the Camwood Clay model lies in its faculty to describe these phenomena with a minimum of ingredients and in particular only one surface of load and a hardening associated with only one scalar variable.

2.1 Behavior under hydrostatic compression

During a hydrostatic compression test, the soils present an index of the vacuums which decrease logarithmiquement with the exerted hydrostatic pressure (cf [Figure 2.2-a]). e0 being the initial index

of the vacuums under initial loading. Until a pressure Pcons0 called pressure of consolidation, the

behavior is reversible, the slope κ of the diagram e , Ln P is called elastic coefficient of

swelling. Pcons0 corresponds to the maximum pressure which the material during its history

underwent. Beyond this preconsolidation, the diagram presents a new slope λ (coefficient of

compressibility) more marked and the appearance of unrecoverable deformations. Pcons0

thus

corresponds to an evolutionary elastoplastic threshold.

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 7: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 7/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Appear 2.2-a: Hydrostatic test of loading and unloading

Note:

The diagram above corresponds to a set of measurements where the effective stress is stabilized. Indeed, in the process of consolidation of the soils, it is the water contained in the pores which takes again initially the hydrostatic pressure with very little strain, before running out and letting the squelette become deformed. After consolidation of the material and stabilization of the pressure of water, the effective stress (forced total minus pressure of water) is stabilized and deferred on the graph. The behavior models in the saturated porous environments are generally expressed with the effective stresses according to the assumption of Terzaghi.

2.2 Behavior under loading deviatoric

the triaxial compression tests of revolution make it possible to control at the same time the deviatoric component Q and the spherical component P of the loading. According to the ratio of these two

components, one observes a plastic behavior purely dilating (Q

P−P trac

M ) or contracting (

QP−P trac

M ), line Q=M Pcr−P trac representing all the critical points on surfaces of load

where the mechanical state evolves without plastic change of volume. The model basic of Camwood Clay makes the assumption that plastic strain rates are normal on the surface of load f (

εvp=Λ

∂ f∂ P

, ε p= Λ

∂ f∂Q

). Moreover, plastic work in an unspecified point of the surface of load is

considered equal to plastic work with the critical condition.

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 8: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 8/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

3 Camwood Clay model modified

3.1 Assumptions of modelization

The model is written in small disturbances.The coefficients of the model do not depend on the temperature.

3.2 Surface of load

the statement of the surface of load is written in the following way:

f P , Q , Pcr =Q2M 2 P−Ptrac 2−2M2 P−Ptrac Pcr ≤0 éq 3.2-1

In the plane P ,Q , the statement represents a family of ellipses, centered on Pcr which is related

to the pressure of consolidation: Pcons=2 Pcr−P trac (cf [Figure 3.2-a). Pcr will be the hardening parameter of the model.

0crP 1crPtracP0consP 1consP P

Q

)( tracPPMQ −=

When f =0 and P−P tracPcr the material is dilating ( εvp0 ) and Pcr is decreasing

(softening).

When f =0 and P−P tracPcr the material is contacting ( εvp0 ) and Pcr is increasing

(hardening).

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Appear 3.2-a: Family of hammer-hardenable surfaces of load

Page 9: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 9/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

3.3 Elastic model and model of hardening

the assumption of the decoupling of the partly hydrostatic and deviatoric elastic model and the additional assumption are made that the shear modulus is constant.

One thus considers an isotropic elastic model, with a linear deviatoric part and a nonlinear voluminal part:

Déviatoire part :

εe=

s2 μ

éq 3.3-1

voluminal Part :

εve=−

e1e0

ou e=e0−κ Ln PKcam si PPconsolidation éq 3.3-2

the model [éq 3.3-2] is in fact derived from a test oedometric where one measures the variation of the index of the vacuums according to the loading [Figure 2.2-a]. Let us recall that a homogeneous test oedometric consists in increasing the axial effective stress null all while maintaining the strain radial on a cylindrical test-tube.

Note:

The pressures P correspond to tests drained or not. Nevertheless, in modelization with Code_Aster stresses handled in constitutive laws are effective i.e. that one does not take into account the hydrostatic pressure of the fluid which can circulate in the pores, this one being calculated in modelizations THM.

The tests of voluminal loading (cf [Figure 2.2-a]) bring us to the following elastic model:

k0 PK cam= k 0 P0K cam exp [ k 0 ε ve−ε v0

e ] avec k0=1e0

κéq 3.3-3

In the same way, the growth of the surface of load in phase of contractance, its decrease in dilatancy, and the experimental results suggest writing:

Pcr=Pcr0 exp [ k ε v

p−εv0p ] , avec k=

1e0 λ−κ

éq 3.3-4

ε v0p and e0 corresponds to the voluminal strain and the index of the initial vacuums, determined by

extrapolation of the oedometric curve of the test to the pressure K cam (cf [Figure 2.2-a]).

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 10: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 10/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

3.4 Model of yielding

the two plastic variables are the voluminal plastic strain ε vp and the tensor deviatoric of plastic strains

ε p . The local variable ε vp but is also associated by the strength of hardening Pcr . The material

standard is not generalized. The flow rule is written:

ε p=Λ

∂ f∂ σ

, , εvp=− Λ

∂ F∂ Pcr

, éq 3.4-1

Λ being the plastic multiplier.

By breaking up the first term, one obtains:

εvp=Λ

∂ f∂ P

ε p= Λ

∂ f∂ s

ε vp=−Λ

∂F∂ Pcr

éq 3.4-2

knowing that:

P=−13

tr σ et ε v=−tr ε 3α T−T 0 éq 3.4-3

F is the plastic potential associated with the phenomenon of hardening. Let us note that the third

part of [éq 3.4-2] is only formal. Indeed, one thus εvp knows by the first relation one knows the

evolution of Pcr .

3.5 Energy writing and plastic hardening modulus

One is thus in the frame of “not generalized standard materials” (one uses three potentials then: the surface of load f , plastic potential F , and free energy ψ . Even in this configuration less favorable than the traditional frame of the not generalized standard materials, one is ensured to satisfy the second principle with the thermodynamics [bib4]. Using the condition of consistency (expressing that the point representative of the loading “follows” the surface of load) which is written in the following way:

df =∂ f∂ P

dP∂ f∂ Q

dQ∂ f∂ Pcr

dP cr=0 , éq 3.5-1

one determines the statement of the plastic multiplier [bib4]:

Λ=1

H p

∂ f∂ σ

dσ=−1

H p

∂ f∂ Pcr

dP cr éq 3.5-2

with [bib4]:

H p=∂ f∂Pcr

∂2ψ

∂ εvp2

∂ F∂ Pcr

, où H p est le module d'écrouissage éq 3.5-3

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 11: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 11/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

the identification of the first and third part of [éq 3.4-2] makes it possible to calculate F which is written:

F=−∫∂ f∂ P

dP cr=M 2 Pcr Pcr−2P2P trac éq 3.5-4

notion of hardening being associated with that of blocked energy:

Pcr=∂ψ

∂ εvp

donc dP cr=∂2ψ

∂2 εvp

dε vp

éq 3.5-5

where ψ is the density of free energy:

ψ=32

μ εeqe 2

P0

k 0

expk 0 εve

Pcr0

kexp k ε v

p−εv0p éq 3.5-6

By means of them [éq 3.4-2], [éq 3.5-4] and [éq 3.5-6], one can draw according to [éq 3.5-3] the statement from the plastic hardening modulus:

H p=∂ f∂Pcr

∂2ψ

∂ εvp2

∂ F∂ Pcr

=4 kM 4 P−P trac Pcr P−P trac−Pcr éq 3.5-7

the hardening modulus is positive in phase of contractance P−P tracPcr and negative in phase

of dilatancy P−P tracPcr . For P−P trac=Pcr , the behavior is plastic perfect and proceeds with

constant plastic volume.

3.6 Incremental relations

the equation [éq 3.4-3] and the condition of consistency give the flow relations:

dε vp=

1k [ 1

Pcr

−1

P−P trac dPQ

M 2 P−Ptrac Pcr

dQ ] éq 3.6-1

dε eqp =

1k [ Q

M 2 P−P trac Pcr

dPQ2

M 4 P−P trac Pcr P−P trac−Pcr dQ ] éq 3.6-2

d ε p=dε eqp 3

2sQ

éq 3.6-3

the rearrangement of [éq 3.6-1] and [éq 3.6-2] led to:

dε eqp

dεvp=

QM 2 P−P trac−Pcr

éq 3.6-4

i.e. with the equation [éq 3.6-3],

d ε p

dε vp=

32

s

M 2 P−P trac−Pcr éq 3.6-5

Typical case of the critical point:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 12: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 12/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

For f =0 et P−Ptrac=Pcr : Pcr=0 εvp=0 . One from of deduced, by considering the elastic

model: P=k 0 P εv . The condition of consistency gives us Q=0 .

3.7 Abstract of the behavior models

Elasticity

s=2μ εe éq 3.7-1

P=P0 exp k 0 Δεve

K cam

k 0exp k 0 Δεv

e −1 éq 3.7-2

Plasticity

the criterion: f σ , Pcr =Q2M 2 P−Ptrac 2−2M2 P−Ptrac Pcr=0 with Q=σ eq

∂ f∂ σ

=−13

∂ f∂ P

I d

32

∂ f∂ Q

sQ éq 3.7-3

thus:

ε p=3 Λ s éq 3.7-4

εvp=Λ 2M2 P−P trac−Pcr éq 3.7-5

Hardening

Pcr ε vp =Pcr 0 expk ε v

p−εv

p0 éq 3.7-6

Behavior elastic: So f 0 then:

Pcr=0 éq 3.7-7

εeqp =0, εv

p=0 éq 3.7-8

s=2μ ε éq 3.7-9

P= k 0 PK cam ε v éq 3.7-10

Behavior elastoplastic: If f =0 and f =0 then:

Pcr≠0 ; Pcr=k εvp Pcr éq 3.7-11

ε p=3 Λ s si P−P trac≠Pcr éq 3.7-12

εvp=Λ 2M2 P−P trac−Pcr si P−P trac≠Pcr éq 3.7-13

s=2μ ε éq 3.7-14

P= k 0 PK cam ε v éq 3.7-15

Note:

�From the only unknown εvp , one can deduce the other unknowns ε p and Pcr .

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 13: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 13/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

� If P−P trac=Pcr : εvp=0 Q=Pcr=0, P=k 0 P ε v .

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 14: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 14/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

1 Numerical integration of the behavior models

1.1 Recall of the problem

For an increment of loading given and a set of variables given (initial field of displacement, stress and local variable), one solves the discretized total system (2.2.2.2 - 1 of [bib3]) which seeks to satisfy the balance equations.

The resolution of this system gives us Δu , therefore Δε . One thus seeks locally, in each Gauss point, the increment of stress and local variable corresponding to Δε and which satisfy the constitutive law.

The following notations are employed: A− , A , ΔA for the evaluated quantity at known time T, time

tΔt and its increment, respectively. The equations are discretized in an implicit way, expressed according to the unknown variables at time tΔt .

1.2 Computation of the stresses and local variables

the elastic prediction of the deviatoric stress is written:

se=s−2μΔ ε éq 4.2-1

gold one can always write s at time + as being:

s=s−2μΔ ε e éq 4.2-2

These two equations enable us to deduce s according to se :

s=se−2μΔ ε2μΔ εe éq 4.2-3

ou s=se−2μΔ ε p éq 4.2-4

While replacing Δ ε p by its statement according to Δεvp , one obtains:

s=se

13μΔε v

p

M 2 P−Ptrac−Pcr éq 4.2-5

from where,

Q=Qe

13μΔεv

p

M 2 P−P trac−Pcr éq 4.2-6

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 15: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 15/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

By supposing that k0 is independent of the temperature, the incremental writing of P is written:

P=P−exp [k 0 εve−k 0ε v

e− ] Kcam

k0exp [k 0ε v

e−k 0 εve−]−1 éq 4.2-8

P=P−exp [ k 0 Δεve ]

K cam

k 0exp [ k 0 Δεv

e ]−1 éq 4.2-9

ΔP=P− exp [ k 0 Δεve ]−1

K cam

k 0exp [ k0 Δεv

e ]−1 éq 4.2.10

In the same way one can write the statement of Pe according to P - :

Pe=P−exp [k 0 Δεv ]K cam

k 0exp [ k 0 Δεv ]−1 éq 4.2-11

from where the statement of P at time + is:

P=Pe exp [−k 0 Δεvp ]

K cam

k 0exp [−k 0 Δεv

p ]−1 éq 4.2-12

In the incremental writing of Pcr , the coefficient k does not depend on the temperature, one thus finds the statement following:

Pcr=Pcr 0exp [k ε vp−ε v

p0 ] éq 4.2-13

Pcr=Pcr− exp [ kΔεv

p ] éq 4.2-14

( )[ ]1exp −∆=∆ − pvcrcr kPP ε éq 4.2-15

Abstract:

f se , Pe , Pcr− ≤0 in this case ΔP cr=0 either s=s−Δs=se

P=Pe

f se , Pe , Pcr− 0 in this case, ΔP cr0 Δ ε p≠0 and Δεv

p≠0

or s=se−2μΔ ε p

P=Pe exp [−k 0 Δεvp ]

K cam

k 0exp [−k 0 Δεv

p ]−1

Pcr=Pcr− exp [ kΔεv

p ]

Note::

The principal unknown is Δεvp .

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 16: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 16/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

1.3 Computation of the unknown Δεvp

By deferring in the criterion the statements of P and Q according to Pe and of Qe and by means of the equation [éq 4.2-6]:

Q e2=−[1 3μΔεv

p

M 2 P−P trac−Pcr ]2

M 2 P−Ptrac P−P trac−2Pcr éq 4.3-1

Q e2=−M 2 [1

3μΔε vp

M 2 Pe exp [−k 0 Δεvp ]

K cam

k 0exp [−k0 Δεv

p ]−1−P trac−Pcr− exp [ kΔεv

p ] ]2

Pe exp [−k 0 Δεvp ]

K cam

k0exp [−k 0 Δεv

p]−1−P tracPe exp [−k 0 Δεv

p ]K cam

k0exp [−k 0 Δεv

p]−1−P trac−2Pcr− exp [ kΔεv

p ]

éq 4.3-2

In under following paragraph one determines limits with this function which facilitate the resolution of the equation [éq 4.3-2] with for example the method of the ropes or by the method of Newton.

1.4 Determination of the limits of the function

One poses Δεvp=x the unknown of the problem.

One thus has:

( ) ( )( )1expexp)( 00

0 −−+−= xkk

KxkPxP came

éq 4.4-1

Pcr x =Pcr− exp kx éq 4.4-2

Λ x =x

2M2 P x −Ptrac−Pcr x éq 4.4-3

Q x =Q e

16 μ Λ x éq 4.4-4

f x =Q2 x M 2 P x −P trac 2−2M2 P x −Ptrac Pcr x =0 éq 4.4-5

At the point x=0 ; P 0 =Pe ; Pcr 0 =Pcr− ; λ 0 =0 ; Q 0 =Q e éq 4.4-6

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 17: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 17/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

f 0 =Q e2M 2 Pe−P trac Pe−P trac−2Pcr

− éq 4.4-7

f 0 0 With point:

P−P trac=Pcr ; Λ xb =∞ ; Q xb =0 et f xb =−M 2 P−Ptrac 2

éq 4.4-8

( ) 0<bxf

In 0=x ; f 0 0 and in x= xb ; f xb0

One seeks X between 0 and bx ; to determine it, one writes:

P xb−P trac=Pcr xb

⇔Pe exp−k0 xb K cam

k 0

exp−k0 xb −Pcr− exp kxb =

K cam

k 0

P trac éq 4.4-9

It is a nonlinear equation in bx , one makes a restricted development of order 1 to deduce the

statement from bx :

If 0=−− −traccr

e PPP ; 0=bx and Δεvp=0

If 00 ≠++ −crcam

e kPKPk ; xb= Pe−Pcr− −P trac

k 0 PeK camkPcr

If not one makes a restricted development of order 2 and one finds;

Pe−Pcr

−−P trac − k0 Pe

KcamkPcr− xb

12

k 0 PeKcam−kPcr

− xb2=0

As 00 =++ −crcam

e kPKPk then 00 ≠−+ −crcam

e kPKPk

And one solves

Pe−Pcr

−−P trac 1

2k 0 Pe

K cam−kPcr− xb

2=0

If 0=−− −traccr

e PPP ; 0=bx and 0=∆ pvε

If not xb=± −2 Pe−Pcr−−P trac

k 0 PeK cam−kPcr−

If σ <0 one chooses a value for xb approximate is xb=1

k0kLog ∣Pe−P trac∣

Pcr−

If not one has the choice between two values of bx ; The following test is made:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 18: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 18/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

So ( )−>− crtrace PPP then

( )( )−

−+−−−

=crcam

etraccr

e

b kPKPk

PPPx

0

2 ; the solution would be positive;

x>0

So Pe−P tracPcr

− then xb=− −2 Pe−Pcr− −P trac

k 0 PeK cam−kPcr−

; the solution would be negative;

x<0

1.5 Typical case of the critical point

crPtracPconsP P

Q

)( tracPPMQ −=

−t+t

So at time t− one reaches the critical condition, then Pcr =Pcr

− , Δεvp =0 and Q−=MP− . If

f =0, f =0 , then the point P ,Q at time t moves on the initial ellipse (cf [Figure 4.5-a]).

One deduces immediately from the elastic model and the condition Δεvp =0 :

ΔP= k0 Δ εv P− éq 4.5-1

the criterion being checked at time t , one has by means of [éq 4.5-1]:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Appears 4.5-a: Mechanical state around the point criticizes

Page 19: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 19/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Q2=M 2 P 2Pcr− −P =M 2 P−ΔP P−−ΔP =M 2 P−2

1−k 02 Δεv

2 =Q−2 1−k 0

2 Δεv2

éq 4.5-2

In addition the deviator of the stresses can be written:

s=se−2μ Δ ε p

=se−2μ Λ

∂ f∂ s

=se−6μ Λ s éq 4.5-3

One from of deduced:

16 μ Λ =Qe

Q , éq 4.5-4

and:

s=Q− 1−k 0

2 Δεv2

Qese éq 4.5-5

1.6 Abstract

the discretization of the equations and the implicit constitutive law of way leads to the resolution of the equation [éq 4.3-2].

If P−≠Pcr− , then one solves the equation [éq 4.3-2] whose unknown is Δεv

p .

One deduces then:

Pcr=Pcr−

exp kΔεvp ,

P=Pe exp [−k0 Δεvp ]

K cam

k 0exp [−k 0 Δεv

p ]−1 ,

puis s=se

13μΔεv

p

M 2 P−Ptrac−Pcr

éq 4.6-1

One deduces finally:

Δ ε p=32

Δεvp

M 2 P−Ptrac−Pcr s éq 4.6-2

At the critical point:

Δεvp=0, Pcr=Pcr

− éq 4.6-3

In this point, it has no evolution of hardening there, on the other hand the stress state can continue to evolve either in contractance, or in dilatancy (the tangent with the criterion is horizontal). The new stress state moves on the surface of load of the preceding state.

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 20: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 20/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

2 Tangent operator

If the option is: RIGI_MECA_TANG , option used at the time of the prediction, the tangent operator calculated in each Gauss point is known as of velocity:

σ ij=Dijklelp ε kl

In this case, Dijklelp is calculated starting from the not discretized equations.

If the option is: FULL_MECA , option used when one and the reactualizes the tangent matrix with each iteration by updating the stresses local variables:

dσ ij=Aijkl dεkl

In this case, Aijkl is calculated starting from the implicitly discretized equations.

2.1 Nonlinear elastic tangent operator

the elastic relation of velocity is written:

σ ij=−P δij sij= k 0 PKcam tr { ε δij2μ ε } éq 5.1-1

σ ij=k 0 PK cam−23

μ tr { ε δij2μ εij } éq 5.1-2

the tangent operator in elasticity of the model noted Cam_Clay D e is thus deduced from the following matric writing:

{σ11

σ 22

σ 33

2 σ 12

2 σ 23

2 σ 31

}=[k 0 PK cam

43

μ k 0 PK cam−23

μ k0 PK cam−23

μ 0 0 0

k 0 PK cam−23

μ k 0 PK cam43

μ k0 PK cam−23

μ 0 0 0

k 0 PK cam−23

μ k 0 PK cam−23

μ k0 PK cam43

μ 0 0 0

0 0 0 2μ 0 00 0 0 0 2μ 00 0 0 0 0 2μ

]

De

{ε11

ε22

ε33

2 ε12

2 ε23

2 ε31

} éq 5.1-3

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 21: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 21/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

2.2 plastic tangent Operator of velocity. Option RIGI_MECA_TANG

the total tangent operator is in this case K i−1 (option RIGI_MECA_TANG called with the first iteration

of a new increment of load) starting from the results known at time t i−1 [bib3].

If the tensor of the stresses with t i−1 is on the border of the field of elasticity, the condition is written:

f =0 who must be checked jointly with the condition f =0 . If the tensor of the stresses with t i−1

is inside the field f 0 , then the tangent operator is the operator of elasticity.

f =∂ f∂ σ σ

∂ f∂ Pcr

Pcr=0 éq 5.2-1

like Pcr=∂ Pcr

∂ ε vp

ε vp

, then:

f =∂ f∂ σ σ

∂ f∂ Pcr

∂ Pcr

∂ εvp

ε vp=0 éq 5.2-2

In addition εe=ε− ε p

thus:

De−1σ=ε− Λ

∂ f∂ σ

, éq 5.2-3

i.e.:

σ ij=Dijkle ε kl− Λ Dijkl

e ∂ f∂ σ

kléq 5.2-4

the plastic hardening modulus is written according to the equation [éq 3.5-7] and by means of the flow rule:

H p=∂ f∂Pcr

∂ Pcr

∂ ε vp

∂ F∂ Pcr

=−1Λ

∂ f∂ Pcr

∂ Pcr

∂ ε vp

ε vp

éq the 5.2-5

equations [éq 5.2-1] and [éq 5.2-5] give:

∂ f∂ σ

ijσ ij− Λ H p=0 éq 5.2-6

the multiplication of the equation [éq 5.2-4] by ∂ f∂ σ

ij gives:

∂ f∂ σ

ijσ ij= ∂ f

∂σ ij

Dijkle ε− Λ ∂ f

∂ σ ij

Dijkle ∂ f

∂ σ kl

éq the 5.2-7

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 22: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 22/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

two preceding equations make it possible to find:

H p Λ= ∂ f∂σ

ijDijkl

e εkl− Λ ∂ f∂ σ

ijDijkl

e ∂ f∂ σ

kléq 5.2-8

from where the statement of the plastic multiplier:

Λ= ∂ f∂ σ

ijDijkl

e ε kl

∂ f∂ σ

ijDijkl

e ∂ f∂ σ

klH p

éq 5.2-9

Is H the definite elastoplastic modulus like:

H = ∂ f∂ σ

ijDijkl

e ∂ f∂ σ

klH p éq 5.2-10

the plastic multiplier is written:

Λ= ∂ f∂ σ

ijDijkl

e ε kl

H

éq 5.2-11

While replacing Λ by its statement in the equation [éq 5.2-4], one obtains:

σ ij=Dijkle ε kl−

1H [ ∂ f

∂ σ mn

Dmnope εop] . Dijkl

e ∂ f∂ σ

kléq 5.2-12

One from of thus deduced the elastoplastic operator Delp=De−D p :

σ ij=[Dijkle

−1H ∂ f

∂ σ op

Dijope Dmnkl

e ∂ f∂σ

mn]

Delp

ε kl éq 5.2-13

with,

Dijklp

=1H ∂ f

∂ σ op

D ijope Dmnkl

e ∂ f∂ σ

mnéq 5.2-14

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 23: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 23/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Computation of H :

∂ f∂ σ

ij=−

23

M 2 P−Ptrac−Pcr δ ij3sij , éq 5.2-15

which is written in vectorial notation:

[−

23

M 2 P−P trac−Pcr 3s11

−23

M 2 P−P trac−Pcr 3s22

−23

M 2 P−P trac−Pcr 3s33

32 s12

32 s23

32 s31

] éq 5.2-16

from where the statement of:

Dijkle ∂ f

∂σ kl

: [−2k0 M 2 P−P trac P−P trac−Pcr 6μs11

−2k 0 M 2 P−P trac P−Ptrac−Pcr 6μs22

−2k0 M 2 P−P trac P−Ptrac−Pcr 6μs33

6μ2 s12

6μ 2 s23

6μ 2 s31

] éq 5.2-17

and

∂ f∂ σ

ijDijkl

e ∂ f∂ σ

kl=4k0 M 4 P−Ptrac P−P trac−Pcr

212 μQ2

where

12 μQ2=18 μ tr s . s éq 5.2-18

According to the equations [éq 3.5-7] and [éq 5.2-18], one can deduce the statement from H :

H=4M4 P−Ptrac P−P trac−Pcr k 0 P−Ptrac−Pcr kP cr 12 μQ2éq 5.2-19

While posing:

Aij=−2k0 M 2 P−Ptrac P−P trac−Pcr δij6μsij , éq 5.2-20

one can write the following symmetric plastic matrix:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 24: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 24/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

D p=1H [

A112 A11 A22 A11 A33 62 μA11 s12 62 μA11 s23 6 2 μA11 s31

. A222 A22 A33 62 μA22 s12 62 μA22 s23 6 2 μA22 s31

. . A332 62 μA33 s12 62 μA33 s23 6 2 μA33 s31

. . . 36 μ2 s122 36 μ2 s12 s23 36 μ2 s12 s31

. . . . 36 μ2 s232 36 μ2 s23 s31

. . . . . 36 μ2 s312

] éq 5.2-21

2.3 tangent Operator into implicit. Option FULL_MECA

the coherent tangent operator of option FULL_MECA is calculated like the tangent operator of velocity for the current stress state.

Nevertheless, of the theoretical elements allowing to calculate it are given in appendix, in the paragraph . A to note, that the equations present in the appendix suppose that the criterion passes by a stress state null, P trac and K cam were not introduced yet there. It is necessary to think of taking them into account and with the need to reactivate these equations for the coherent tangent operator.

3 Materials parameters and local variables

3.1 Materials parameters

the parameters E and ν compulsory under key word ELAS are not used by model CAM_CLAY. Key word ELAS can of this fact avoided being if the user does not need to inform α or ρ .

The data specific to the Cam_Clay model are:

•The elastic modulus of shears μ , •the critical slope M , •porosity associated with a pressure initial and related to the initial index of the vacuums:

0

0

1 e

en

+=

•Initial compressibility K cam ,

•pressure of tolerated tension Ptrac , (must be negative)

•the elastic coefficient of swelling: κ (which leads to k 0 ),

•the coefficient of plastic compressibility: λ (which leads to k ),

•the initial critical pressure Pcr 0 such as Pcr 0−P trac is equal to half of the pressure of

consolidation,

Notices 1 :

The number of data is relatively low, which makes very simple the model. One of the most visible limitations of the model is the assumption of the alignment of the critical points on a line of slope M . This is besides the statement of the concept of internal friction. One can also interpret the quantity

M by connecting it to the internal friction angle of Coulomb by the relation: sin ϕ=3M

6M.

However it is known that for very cohesive materials, this angle varies when the average constraint decreases. It is noted besides that for a chock of M on a triaxial compression test to a certain average constraint, one simulates well with this model the triaxial ones realized with a average

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 25: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 25/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

constraint step too different but one cannot correctly consider the bearings plastic for a broad range of confining pressure (cf [bib2]). It is thus necessary to readjust M for several beaches of average constraint.

Notice 2:

The increase in stresses is connected to the voluminal increase in the strains according to one or the other of the constitutive laws:

With Cam_Clay:

ΔP=k 0 P−K cam Δεv

tr Δσ =3 k 0 P−Kcam Δεv with k0=

1e0

κ where e0=

n1−n

; n is porosity and it is a

material characteristic.

In elasticity:

tr Δσ =E

1−2ν tr Δε =3KΔεv

The analogy between the hydrostatic part of Cam_Clay and linear elasticity in an initial state makes it possible to write:

1e0 P−

κKcam=

E3 1−2ν

E and ν are not data materials but rather μ the shear modulus: μ=E

2 1ν What amounts writing the following equality while eliminating E :

1e0 P−

κKcam=

2μ3

1ν 1−2ν

or 1ν

1−2ν =

3 1e0 P−3K cam κ

2 μκand one finds the statement of ν :

=3 1e0P -3 K cam−2

6 1e0P -6 K cam−2

to the starting of computation, P− corresponds to the initial stress field.

one can then deduce E from ν : E=2μ 1ν

the following conditions are to be checked:

0ν=3 1e0 P−3K cam κ−2 μκ

6 1e0 P−6K cam κ2 μκ≤0 .5 and E0

if one or the other of the two conditions is not satisfied, an alarm message informs the user of nonthe coherence of the provided parameters.

Notice 3:*Si P trac is given null:

two possibilities for K cam :

1 - K cam positive (of the null initial stresses are allowed)

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 26: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 26/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

2 - K cam no one (the stresses should absolutely be initialized)

*Si P trac is given negative:

only one possibility for K cam :

* K cam positive as the relation should be satisfied k0 PtracKcam0

(one cannot initialize the stresses and zero give a value to K cam )

3.1 Local variables

V 1 : critical pressure Pcr

V 2 : plastic state

V 3 : stress of containment PV 4 : equivalent stress QV 5 : voluminal plastic strain ε v

p

V 6 : equivalent plastic strain ε eqp

V 7 : index of the vacuums e

4 Implemented of a computation with model CAM_CLAY

4.1 Initialization of computation

In the model CAM_CLAY, the nonlinear elastic model reveals a hydrostatic stress for a voluminal strain null [éq 3.3-3].

The user adopts one of the two following choices:

• To give to the material parameter K cam which represents an initial compressibility a positive value. The computation can be done with a stress state initial null.

• To give to the material parameter K cam which represents an initial compressibility zero a value. To initialize the stress state according to one in the two different ways:

�To carry out a linear elastic design by affecting boundary conditions such as the stress field in structure is a uniform hydrostatic compression. One extracts from this computation the stress field with Gauss points. This stress field is regarded as the initial state of the hydrostatic stress necessary to model CAM_CLAY in STAT_NON_LINE computation using the model CAM_CLAY.

�To use operator CREA_CHAMP to create with operation “AFFE” a hydrostatic stress field with Gauss points, the stress in this case is given of negative sign (convention Aster for compressions) and constitutes the initial state in the STAT_NON_LINE according to.

4.1 Examples of results obtained on triaxial compression tests

the following figures show triaxial ways of loading with evolutions of the axial strain according to the deviator Q . They resulting from numerical computations carried out with CAM_CLAY are the model established in Code_Aster. These test were carried out by means of a modelization of the type KIT_HM in not drained condition (this condition easily enables us to charge in a purely deviatoric way, the hydrostatic part of the loading being taken again by the pressure of water). The shapes of the

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 27: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 27/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

curves obtained numerically with Code_Aster completely comparable to the schematic curves are presented in the paper of Charlez [bib2].

In the first test, the material is normally consolidated, i.e. the starting hydrostatic pressure is equal to the pressure of consolidation (in this case 6 .105 Pa). Hardening (positive) starts at the beginning of the deviatoric phase, without preliminary elastic phase. Hardening continues to a bearing of perfect plasticity when the critical point is reached ( Q=MP ).As for the three other tests, the deviatoric phase starts for a value of the average effective stress lower than the pressure of consolidation, the material is of this surconsolidé fact. If P is higher than Pcr equal to 3 .105 Pa , the specific point of the loading cuts the surface of load before the critical line. There will be thus three specific phases: an elastic phase, a contracting plastic phase then a perfect plastic phase. In the case where P=Pcr , the behavior is plastic perfect right after the elastic phase.

In the case where P is lower than Pcr , the point representative of the loading cuts the critical line before the surface of load which it reaches during a purely elastic way. In this configuration, the behavior is lenitive and dilating and blocked energy decreases. The point representative of the loading joined then the critical condition where the material will enter in perfect plasticity. Behavior CAM_CLAY cannot produce a behavior continuement contractor/dilating. The point representative of the loading is obliged to pass by the critical condition where all the hardening parameters (plastic voluminal strain, critical pressure, blocked energy) become steady [bib2].

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 28: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 28/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0,E+00 5,E-02 1,E-01 2,E-01 2,E-01 3,E-01

eps1

Q(P

a)

élastique

durcissement

état critique

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0 100000 200000 300000 400000 500000 600000 700000

P(Pa)

Q(P

a)

Q=MP

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0,E+00 5,E-02 1,E-01 2,E-01 2,E-01 3,E-01 3,E-01 4,E-01eps1

Q(P

a)

élastique

état critique

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0 100000 200000 300000 400000 500000 600000 700000

P(Pa)

Q(P

a)

Q=MP

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0,E+00 5,E-02 1,E-01 2,E-01 2,E-01 3,E-01

eps1

Q(P

a)

élastique

radoucissement état critique

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0 100000 200000 300000 400000 500000 600000 700000

P(Pa)

Q(P

a)

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0,E+00 5,E-02 1,E-01 2,E-01 2,E-01 3,E-01 3,E-01 4,E-01eps1

Q (P

a)

durcissement

Etat critique

0,00E+00

1,00E+05

2,00E+05

3,00E+05

4,00E+05

5,00E+05

6,00E+05

0 100000 200000 300000 400000 500000 600000 700000P (Pa)

Q(P

a)

Q=MP

Page 29: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 29/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

5 Appendix: Tangent operator into implicit. Option FULL_MECA

We present in this appendix of the elements of computation of the coherent tangent operator.

5.1 General case

5.1.1 Processing of the deviatoric part

One considers here that the variation of loading is purely deviatoric δP=0 .The increment of the deviatoric stress is written in the form:

Δsij=2μ Δ ε ij−Δ εijp éq 8.1.1-1

Around the point of equilibrium σ−Δσ , one considers a variation δs of the deviatoric part of the

stress:

δs kl=2μ δ ε kl−δ εklp éq 8.1.1-2

Computation of δ εklp :

It is known that:

Δ ε klp=3Λ skl éq 8.1.1-3

By deriving this deviatoric equation compared to the forced, one obtains:

δ εklp= 3 δ Λ skl 3 Λ δ skl éq 8.1.1-4

Computation of : One a:

Λ=1H p

[∂ f∂ σ

mn

Δσmn]=1H p

[∂ f∂ s

mn

Δsmn∂ f∂P

ΔP ]=

1H p

[3smn Δsmn2M2 P−Pcr ΔP ]éq 8.1.1-5

If one considers only the evolution of the deviatoric part of σ δP=0 , then:

δ Λ H p =δ ΛH pΛδH p=[3δsmn Δsmn3smn δsmn ]−2M2 ΔPδPcr éq 8.1.1-6

Gold: δ Pcr=kP cr δ ε vP .

Comme Δεvp=2ΛM2 P−Pcr , on a δεV

p=2δΛM2 P−Pcr −2M2 ΛδP cr , éq 8.1.1-7

From where:

2δ ΛM 2 P−Pcr =[ 1kPcr

2ΛM2 ]δPcr . éq 8.1.1-8

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 30: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 30/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

In addition,

H p=4 kM 4 PP cr P−Pcr et δ H p=4 kM 4 P P−2Pcr δ Pcr . éq 8.1.1-9

By injecting this last equation in the equation [éq 5.3.1-6], one obtains:

δ ΛH p [4Λ kM 4 P P−2Pcr 2M2 ΔP ] δ Pcr = [3δsmn Δsmn3smn δsmn ] éq 8.1.1-10

By means of the relation [éq 5.3.1-8], it comes then:

δ Λ =[3δsmn Δsmn3smn δsmn ]

H p Aéq 8.1.1-11

with A=[ 4k ΛM 4 P P−2Pcr 2M2 ΔP ][

M 2 P−Pcr

12kPcr

ΛM 2 ]

One then obtains immediately the variation of the deviatoric part of the plastic strain:

( ) ( ) klcrp

klmnmnp

klmnmnklmnmnp

pkl sPPPM

Hsss

Hssssss

AHδδδδεδ ∆−+∆++∆

+= 269

)(

9~

éq 8.1.1-12

δsij is written then:

δsij=2 μδ { εij−18 μ H pA

[ Δskl sij δsklskl sij δskl ]−18 μH p

skl Δskl δsij−12 μH p

M 2 P−Pcr ΔPδsij

éq 8.1.1-13

which becomes by separating the terms in variation from stresses and the term in variation of total deflection:

éq 8.1.1-14

or in tensorial writing:

{I 4d 112 μ

H p

M 2 P−Pcr ΔP18 μH p

Δs: s18 μ H pA

sΔs ⊗s}δs=2 μδ { ε} q8.1.1-15

that one can still write by symmetrizing the tensor sΔs ⊗s :

{I 4d 112 μ

H p

M 2 P−Pcr ΔP18 μH p

Δs: s18 μ H pA

ℵ}δs=2 μδ { ε } éq 8.1.1-16

with: ℵ=12

[ sΔs ⊗s s⊗ sΔs T ]

Computation of ℵ , while posing: T ij=sijΔsij

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 31: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 31/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

T ⊗s= [T 11 s11 T 11 s22 T 11 s33 2T 11 s12 2T 11 s23 2T 11 s31

T 22 s11 T 22 s22 T 22 s33 2T 22 s12 2T 22 s23 2T 22 s31

T 33 s11 T 33 s22 T 33 s33 2T 33 s12 2T 33 s23 2T 33 s31

2T 12 s11 2T 12 s22 2T 12 s33 2T12 s12 2T12 s23 2T12 s31

2T 23 s11 2T 23 s22 2T 23 s33 2T23 s12 2T23 s23 2T23 s31

2T 31 s11 2T 31 s22 2T 31 s33 T 31 s12 2T31 s23 2T31 s31

] éq 8.1.1-17

ℵ=12

[T ⊗s T⊗s T ] éq 8.1.1-18

Is:

C={I 4d 1

6H p

M 2 P−Pcr ΔP9

H p

Δs: s 9 H pA

ℵ} éq 8.1.1-19

one poses:

c=9

H p

Δs: s éq 8.1.1-20

and

d =6

H p

M 2 P−Pcr ΔP éq 8.1.1-21

the symmetric matrix C of dimensions (6,6) is too large to be presented whole, one breaks up it into

4 parts C1 C2 , C3 and C4 :

C=[C1 C2

C3 C4]

with

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 32: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 32/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

C1=[1

2μcd

9H pA

s11T 119

2 H pAT 11 s22T 22 s11

92 H pA

T 11 s33T 33 s11

92 H pA

T 22 s11T 11 s22 1

2μcd

9H pA

T 22 s229

2 H pA T 22 s33T 33 s22

92 H pA

T 33 s11T 11 s33 9

2 H pAT 22 s33T 33 s22

12μ

cd 9

H pA T 33 s33

]éq 8.1.1-22

C2=[92

2 H pAT 11 s12s11 T 12

922 H pA

T 11 s23 s11T 23 92

2 H pAT 11 s13s11 T 13

9 22 H pA

T 22 s12s22T 1292

2 H pAT 22 s23 s22 T 23

9 22 H pA

T 22 s13s22T 13

9 22 H pA

T 33 s12s33T 12 92

2 H pAT 33 s23 s33 T 23

922 H pA

T 33 s13s33T 13 ]

éq 8.1.1-23

C3=C2 éq 8.1.1-24

C4=[1

2μcd

18 H pA

s12 T 129

H pA T 12 s23T 23 s12

9 H pA

T 12 s23T 23 s12

9 H pA

T 23 s12T 12 s23 1

2μcd

18 H pA

T 23 s239

H pAT 23 s13T 13 s23

9 H pA

T 13 s12T 12 s139

H pA T 13 s23T 23 s13

12μ

cd18 H pA

T 13 s13]

éq 8.1.1-25

Computation of the rate of variation of volume:

Δεvp=2M2 Λ P−Pcr , δεv

p=2M2 δΛ P−Pcr −2M2 Λδ Pcr=Bδ Λ=

3B H pA

sΔs .δ s

éq 8.1.1-26

with: B=2M2 P−Pcr −2M2 Λ

M 2 P−Pcr

12kP cr

M 2 Λ.

éq 8.1.1-27

or by means of [éq 5.3.1-11]

δεvp=

3B H pA

sΔs . δ s éq 8.1.1-28

One thus has:

δ εij=C ijkl−B

H pA sΔs kl δij δ skl éq 8.1.1-29

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 33: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 33/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

5.1.2 Processing of the hydrostatic part

One considers now that the variation of loading is purely spherical ( δ s=0 ).The increment of P is written in the form:

ΔP=P−exp k0 Δεve −P−

éq 8.1.2-1

the derivative of this equation gives:

δP=k 0 P δεv−δεvp éq 8.1.2-2

Computation of δεvp :

It is known that:

Δεvp=Λ2M 2 P−Pcr éq 8.1.2-3

By differentiating this equation, one obtains:

δεvp=2M2 δ Λ P−Pcr Λ δP−δPcr éq 8.1.2-4

One knows the statement of Λ :

Λ=2M2 P−Pcr ΔP3sΔs

H p

=b

H p

éq 8.1.2-5

by posing

b=2M2 P−Pcr ΔP3sΔs éq 8.1.2-6

While differentiating ΔΛ , it comes:

δΛ=2M2

H p[ P−Pcr δP δP−δPcr ΔP ]−

4kM 4 b

H p2 [ δ PPcr 2P−Pcr δP cr P P−2Pcr ]

éq 8.1.2-7

One seeks the statement of δP cr according to δΛ :

There is

δP cr=kPcr δεvp éq 8.1.2-8

One can write:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 34: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 34/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

δPcr

kPcr

=δΛ2M 2 P−Pcr Λ2M 2 δP−δPcr éq 8.1.2-9

δP cr 1Λ2M 2 kPcr

kPcr=δΛ2M 2 P−Pcr Λ2M 2δP éq 8.1.2-10

δP cr= 2M2 P−Pcr kPcr

12 kPcr ΛM 2 δΛ 2ΛM2 kPcr

12 kPcr ΛM 2 δP éq 8.1.2-11

One poses

c=2M2 kPcr P−Pcr

[12M2 kPcr Λ ], éq 8.1.2-12

a=2M2kPcr Λ

[12M2 kPcr Λ ]éq 8.1.2-13

One has then:

δP cr=aδPcδΛ éq 8.1.2-14

By replacing the statement of δP cr in δΛ [éq 5.3.2-7], one finds:

δΛ= [2M2 P−Pcr δP2M2 δP−cδΛ−aδP ΔP ] .1H p

−4 kM 4 bH p

2 [ δ PPcr 2P−Pcr cδΛaδP P P−2Pcr ]éq 8.1.2-15

By gathering the terms in δΛ and those in δP , one finds:

δΛ=fe

δP éq 8.1.2-16

with,

f =1H p

[2M2 P−Pcr 2M2 ΔP−2 aM 2 ΔP ]

−4 kM 4 bH p

2 [ 2P−Pcr PcraP P−2Pcr ]éq 8.1.2-17

e=12cM 2 ΔP

H p

4 bckM 4

H p2

P P−2Pcr éq 8.1.2-18

the statement of δεvp thus becomes:

δεvp=2M2 [Λ−aΛ−Λc

fe

fe

P−Pcr ]δP éq 8.1.2-19

from where the statement of δεv according to δP :

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 35: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 35/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

δP=k 0 P

Gδεv éq 8.1.2-20

G=12M2 k 0 P Λ−aΛ−Λfe

cfe

P−Pcr éq 8.1.2-21

Calculus of the variation of deviatoric strain:

δ εij = δ ε p= 3δ Λ s=3

fe

δ Psij éq 8.1.2-22

One thus has finally:

δε ij=F ij δP éq 8.1.2-23

with

F=3fe

s−G

3k0 P1d

éq 8.1.2-24

5.1.3 tangent Operator

the tangent operator connects the variation of total stress to the variation of total deflection. Since the increment of the total deflection under loading deviatoric is written:

δ εij=C ijkl−B

H pA sΔs kl δij Dklmn

1 δ σ mn , éq 8.1.3-1

with:

D1=[2/3 −1 /3 −1 /3 0 0 0

−1 /3 2/3 −1 /3 0 0 0−1 /3 −1 /3 2/3 0 0 0

0 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1

] éq 8.1.3-2

projection in space deviatoric,

and that under spherical loading one a:

δ εij= F ij D kl2 δ σ kl éq 8.1.3-3

with:

D2=[−1/3−1/3−1/3

000

] éq 8.1.3-4

hydrostatic projection, one has then:

δσ ij=Aijkl δεkl éq 8.1.3-5

with:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 36: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 36/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

Aijkl=[C ijmn−B

H pA sΔs mn δij D

mnkl1F ij Dkl2 ]

−1

éq 8.1.3-6

the discretized tangent operator.

5.2 Tangent operator at the point criticizes

If the point of load is at the critical point P=Pcr , the general statement of the tangent operator is

not more valid. This appears in particular by divide by 0 (see the equations of [§ 5.3.1]). One details in what follows the coherent tangent operator to the critical point while passing as for the general case by partly deviatoric and partly hydrostatic decomposition.

5.2.1 Processing of the deviatoric part

Let us recall that at the critical point, the statements of the plastic multiplier Λ and its derivative δΛ are written in the following way:

Λ= Q e

Q−1/6μ and δΛ=

δQe

6μQ−

Qe δQ

6μQ2éq 8.2.1-1

with,

δQe=32

se δse

Q e and δQ=

32

sδsQ

éq 8.2.1-2

from where the statement of δΛ :

δΛ=1

6μ32 [ se δse

Qe Q−

Q e sδs

Q3 ] éq 8.2.1-3

Let us point out in the same way the statement of δs :

δsij=2μ δ εij−3δΛsij−3Λδsij

While replacing Λ and δΛ by their statements, one can write:

δsij=2 μδ { εij−32

skle δskl

e

Qe Qsij

32

Qe

Q3skl δskl sij−Q e

Q−1δsij ¿ éq 8.2.1-4

δs kl [δ ijklQe

Qδijkl−δ ijkl−

32

Qe

Q3skl . sij]=2μ[δ ijkl−

32

skle . sij

QeQ ]δ εkléq 8.2.1-5

or in tensorial writing:

δs [ Qe

QI 4

d−32

Qe

Q3s⊗s ]

G

=2μ[ I 4d−

32

se⊗sQe Q ]

H

δ εéq 8.2.1-6

As δs does not depend on δε v , one can confuse δ ε with δε .

By means of the tensor of projection within the space of deviatoric stresses D1 [éq 5.3.3-2], one can write:

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 37: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 37/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

δε=D1 . G . H−1

2 μ. δσ éq 8.2.1-7

5.2.2 Processing of the hydrostatic part

In tensorial writing, one has the following relation:

I d δP=k0 P δεv .éq 8.2.2-1

according to the equation [éq 5.3.2-2] with δεvp=0 at the critical point.

As δP does not depend on δ ε then one can confuse with δε .

I d δP=k 0 P δε éq 8.2.2-2

By means of the tensor of projection within the space of hydrostatic stresses D2 [éq 5.3.3-4], one can write:

δε=I d

k0 PD2 δσ éq 8.2.2-3

5.2.3 tangent Operator

By combining the contributions of the two parts deviatoric and hydrostatic, one finds the writing of the tangent operator who connects the variation of the total stress to the variation of the total deflection at the critical point:

δε=[ D1 .G . H −1

I d

k0 PD2 ] . δσ

or

δσ ij=Aijkl δεkl éq 8.2.2-4

with

Aijkl=[ D1 .G . H−1

I d

k 0 PD2]

−1

éq 8.2.2-5

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Page 38: CAM CLAY The model - code-aster.org · Code_Aster Version default Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 1/38 Responsable : Sarah PLESSIS Clé : R7.01.14 Révision

Code_Aster Version default

Titre : Loi de comportement CAM_CLAY Date : 09/02/2011 Page : 38/38Responsable : Sarah PLESSIS Clé : R7.01.14 Révision : 5579

6 Bibliography• I.B BURLAND, K.H. ROSCOE: One the generalized stress strain behavior of wet clay, Engineering

plasticity Cambridge Heyman-Leckie, 1968.

• PH. A. CHARLEZ (Total Ratio): Example of model poroplastic: the model of Camwood - Clay.

• M.ABBAS: Quasi-static nonlinear algorithm. Documentation of reference Aster [R5.03.01].

•J. LEMAITRE, J.L. CHABOCHE: mechanics of the solid materials, Dunod 1985

1 Checking

constitutive law CAM_CLAY is checked by the following tests:

SSNP136 Test of foundation slipping by with the model of CAM_CLAY [V6.03.136]

SSNV160 Test hydrostatic with model CAM_CLAY [V6.04.160]

SSNV202 Test œdometric drained with the model of CAM_CLAY [V6.04.202]

WTNV122 triaxial Compression test not drained with model CAM_CLAY [V7.31.122]

2 Description of the versions of the document

Version Aster

Author (S) Organization (S)

Description of the modifications

6.4 J.EL-GHARIB, G.DEBRUYNEEDF-R&D/AMA

initial Text

7.3 J.El-Gharib, EDF-R&D/AMA tangent Operator for the point criticizes9.4 J.El-Gharib, EDF-R&D/AMA Modification tangent operator, addition of local

variables, cf files REX 10585 and 10700

Warning : The translation process used on this website is a "Machine Translation". It may be imprecise and inaccurate in whole or in part and is provided as a convenience.

Licensed under the terms of the GNU FDL (http://www.gnu.org/copyleft/fdl.html)