calor decaimiento kastenberg

Upload: doris-herrera-tipan

Post on 16-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Calor Decaimiento Kastenberg

    1/10

    Nu c le a r En g in e e rin g a n d De s ig n /F u s io n 1 ( 1 9 8 4) 5 1 - 6 0 5 1

    No r th - Ho l l a n d , Ams te r d a m

    O N D E S I G N C R I T E R I A F O R A F T E R H E A T A N D D E C A Y H E A T R E M O V A L I N F U S I O N A N D

    F U S I O N - F I S S I O N P O W E R P L A N T S

    W i l l i a m E . K A S T E N B E R G

    School of Engineering and Ap plied Science Universi ty of Cali fornia Los Angeles Cali fornia 90024 USA

    Received May 1983

    Af te rhea t and decay hea t r emo val sys tems wil l be imp or tan t sa fe ty fea tures in fusion and fus ion- f is s ion hybr id power p lan ts.

    Decay heat removal considerations for f ission power reactors are reviewed and design cr iter ia discussed. Aspects of fusion and

    fus ion- f is s ion a f te rhea t and decay hea t r emoval a re a lso rev iewed. I t was found tha t a f te rhea t thermal loads in fus ion power

    reactors are a factor of 5 to 10 less than decay heat loads in f ission power plants . However, they remain relatively constant over

    time periods of interest (out to a year in designs employing stainless s teel) , as compared to f ission plants , whose decay heat

    loads drop an order of m agni tude dur ing the f i rs t day .

    Dete rm inis t ic c r i te r ia for a f te rhea t r emo val a re presented . Altho ugh based upon f is s ion reac tor experience , they a re modif ied

    to account for these d if fe rences. A prob abi l is t ic c ri te r ion was deve loped which is based o n pub l ic hea l th and econom ic

    cons idera t ions . A goa l of 15 10 -6 per r eac tor y ear was es tab l ished for a f te rhea t r emo val in fus ion .

    For fus ion- f is s io n hybr id reac tor s, a goa l r anging be tw een 6 x 10 -6 and 30 10 -6 per r eac tor year was es tab lished . The

    upper l imit cor responds to the recent NR C safe ty goa l qu ide l ine for core mel t f r equency (1 x 10-4 /yea r ) , which has been

    suggested for the decay heat removal function in Pressurized Water Reactors. These goals are to be applied to a reliability

    analysis where m ajor uncer ta in t ies can be quant i f ied .

    1 . I n t r o d u c t i o n

    A n i m p o r t a n t p h e n o m e n o n o f p o w e r p l a nt s u s in g

    n u c l e a r f u e l i s t h a t t h e y c o n t i n u e t o p r o d u c e e n e r g y a t

    l o w l e v e l s a f t e r t h e n u c l e a r r e a c t i o n s c e a s e . B e c a u s e o f

    t h is p h e n o m e n o n , s y st e m s a n d / o r f e at u r es m u s t b e

    i n c o r p o r a t e d i n t o t h e d e si g n o f t h e s e p l a n t s t o r e m o v e

    t h i s c o n t i n u e d p r o d u c t i o n o f e n e rg y , c a l le d d e c a y h e a t

    i n f i s s i o n r e a c t o r s a n d a f t e r h e a t i n f u s i o n r e a c t o r s .

    A l t h o u g h f i s s io n p o w e r r e a c t o r s h a v e b e e n b u i l t a n d

    o p e r a t e d f o r o v e r 25 y e a r s, t h e s u b j e c t o f d e c a y h e a t

    r e m o v a l i s a v e r y a c t i v e d e s i g n a n d r e g u l a t o r y i s s u e [ 1 ] .

    I n a f i s s i o n p l a n t , d e c a y h e a t i s p r i m a r i l y g e n e r a t e d

    b y t h e r a d i o a c t i v e d e c a y o f t h e f i s s i o n p r o d u c t s a n d

    s e c o n d a r i l y b y t h e d e c a y o f a c t i n i d e s a n d t h e i n d u c e d

    a c t i v i t y i n t h e s t r u c t u r a l m a t e r i a l . I n a f u s i o n p l a n t ,

    a f t e r h e a t i s p r i m a r i l y g e n e r a t e d b y t h e i n d u c e d a c t i v i t y

    i n t h e b l a n k e t , e . g . t h e f i r s t w a l l , t h e m a g n e t s h i e l d s ,

    r e f l e c to r s a n d t h e o t h e r s t r u c t u r a l m a t e r i a l . I n d u c e d

    r a d i o a c t i v i t y i n e i t h e r r e a c t o r i s p r i m a r i l y d u e t o n e u -

    t r o n i n t e r a c t i o n w i t h r e a c t o r c o m p o n e n t s . T h e i m p o r -

    * Work per formed while the au thor was a consul tan t to EPRI .

    t a n c e o f d e c a y h e a t o r a f t e r h e a t r e m o v a l f o l l o w i n g

    n o r m a l a n d o f f - n o r m a l o p e r a t i o n o f a p l a n t is t w o f o l d :

    t o p r o t e c t t h e e c o n o m i c i n v e s t m e n t b y i n s u r i n g t h e

    s t r u c t u r a l i n t e g r i t y o f t h e r e a c t o r , a n d t o p r o t e c t t h e

    h e a l t h a n d s a f e ty o f t h e p u b l i c b y p r e v e n t i n g t h e r e l e a se

    o f r a d i o a c t i v e m a t e r i a l .

    T h e o b j e c t i v e s o f t h i s p a p e r a r e a s f o l l o w s : ( 1 ) t o

    r e v i e w t h e s t a t u s o f d e c a y h e a t r e m o v a l f o r f i s s i o n

    p o w e r r e a c t o r s , ( 2 ) t o d i s c u s s t h e a f t e r h e a t a n d d e c a y

    h e a t r e m o v a l q u e s t i o n f o r fu s i o n a n d f u s i o n - f i s s i o n

    h y b r i d p o w e r r e a c t o rs , a n d ( 3) t o d e v e l o p s o m e g u i -

    d a n c e a n d c r i t e r i a f o r d e a l i n g w i t h t h e s e i s s u e s f o r

    f u s i o n a n d f u s i o n - f i s s i o n h y b r i d p o w e r re a c t o r s .

    A l t h o u g h g e n e r a l d e s i g n c r i t e r i a e x i s t f o r f i s s i o n r e -

    a c t o r s [ 2 ] , t h e r e s u l t s o f s e v e r a l s t u d i e s s h o w t h a t i m -

    p r o v e m e n t s i n d e c a y h e a t r e m o v a l c a p a b i l i t y c a n s i g n i fi -

    c a n t l y r e d u c e p u b l i c r i s k [ 3 - 5 ] . M o r e o v e r , w i t h t h e

    a d v e n t o f q u a n t i t a t i v e s a f e ty g o a l s f o r f i s si o n p l a n t s

    [ 6 , 7 ] , t h e r e i s a l s o a d e s i r e t o a u g m e n t t h e s e d e t e r m i n i s -

    t i c c r i t e r i a w i t h p r o b a b i l i s t i c c r i t e r i a [ 8 - 1 0 ] .

    F o r f u s i o n a n d f u s i o n - f i s s i o n h y b r i d p o w e r p la n t s , a

    n u m b e r o f c o n c e p t u a l d e s i g n st u d i e s h a v e b e e n e m -

    p l o y e d t o e x p l o r e t h e r e l a t iv e m e r i t s o f c a n d i d a t e b l a n -

    0 0 2 9 - 5 4 9 3 / 8 4 / 0 3 . 0 0 E l s e v i e r S c i e n c e P u b l i s h e r s B . V .

    ( N o r t h - H o l l a n d P h y s i c s P u b l i s h i n g D i v i s i o n )

  • 7/23/2019 Calor Decaimiento Kastenberg

    2/10

    52

    W E Kastenberg / Design criteria for afterheat and decay heat removal

    k e t m a t e r i a l s w i t h r e s p e c t t o i n d u c e d a c t i v i t y , b i o l o g i c a l

    h a z a r d p o t e n t i a l a n d a f t e r h e a t [ 1 1 - 1 5 ] . I t i s a g o a l o f

    t h i s p a p e r t o i n i t i a t e f u r t h e r c o n s i d e r a t i o n o f t h i s e s s e n -

    t i a l i s s u e a s f u s i o n a n d f u s i o n - f i s s i o n h y b r i d s m o v e

    f r o m t h e c o n c e p t u a l s t a g e t o t h e e n g i n e e r in g d e s i g n a n d

    d e v e l o p m e n t s t a g e .

    2 De c a y h e a t r e mo v a l in f i s s io n r e a c to r s

    U n d e r n o r m a l o p e r a t i o n , t h e e n e r g y p r o d u c e d i n a

    l i g h t w a t e r r e a c to r L W R ) i s re m o v e d a s p r e s s u r iz e d

    w a t e r o r s t e a m t o p r o d u c e e l e c t ri c i ty v i a t h e t u r b i n e

    g e n e r a t o r . F o l l o w i n g r e a c t o r s h u td o w n , t h e r e a c t o r p r o -

    d u c e s i n s u f f i c i e n t p o w e r t o o p e r a t e t h e t u r b i n e . T h e r e -

    f o r e o t h e r m e a s u r e s m u s t b e a v a i l a b l e t o r e m o v e d e c a y

    h e a t t o e n s u r e t h a t h i g h t e m p e r a t u r e s a n d p r e s s u r e s d o

    n o t d e v e l o p w h i c h c o u l d p o s e a t h r e a t t o t h e r e a c t o r .

    T h e s e m e a s u r e s h a v e a s t h e i r f u n c t i o n a l r e q u i r e m e n t s :

    1 ) p r o v i d i n g a m e a n s o f t r a n s f e r r i n g d e c a y h e a t f r o m

    t h e r e a c t o r c o o l a n t s y s te m t o a n u l t i m a t e h e a t s i n k a n d

    2 ) m a i n t a i n i n g s u f f i c i e n t w a t e r i n v e n t o r y i n s i d e t h e

    r e a c t o r t o e n s u r e t h a t t h e r e a c t o r c o o l a n t a d e q u a t e l y

    c o o l s t h e r e a c t o r f u e l.

    P r e s s u ri z e d w a t e r r e a c t o rs P W R s ) g e n e r a l l y h a v e

    t h r e e m e a n s o f r e m o v i n g d e c a y h e a t : t h e a u x i l i a r y

    f e e d w a t e r s y s t e m , t h e r e s i d u a l h e a t r e m o v a l s y s t e m a n d

    t h e t u r b i n e b y p a s s s y s t e m . R e a c t o r w a t e r i n v e n t o r y i s

    m a i n t a i n e d b y t h e h i g h p r e s s u r e s a fe t y i n j e c ti o n s y s t e m

    o r t h e c h e m i c a l a n d v o l u m e c o n t r o l s y s t e m [ 5 ] .

    B o i l i n g w a t e r r e a c to r s B W R s ) u s u a l l y c o m b i n e t h e s e

    t w o f u n c t i o n s w i t h t h e f o l l o w i n g s y s t e m s : t h e r e s i d u a l

    h e a t r e m o v a l s y s t e m , t h e r e a c t o r c o r e i s o l a t io n c o o l i n g

    s y s t e m R C I C ) a n d t h e t u r b i n e b y p a s s sy s t e m . T h e

    R C I C s y s t em o p e r a t e s a s a h i gh p r e s s u r e s y st e m , a n d i t

    i s b a c k e d u p b y a h i g h p r e s s u r e c o r e s p r a y s y st e m . I n a

    B W R , t h e r e si d u a l h e a t r e m o v a l sy s t e m c a n o p e r a t e i n a

    n u m b e r o f d i f fe r e n t m o d e s f o r b o t h l o w p r e s s u re i n j ec -

    t i o n a n d d e c a y h e a t r e m o v a l [ 5 ] .

    A r e c e n t s t u d y [ 1 6 ] d e s c r i b e s m a n y o f t h e d e s i g n

    v a r i a t i o n s t h a t h a v e e v o l v e d i n t h e U . S . a n d a b r o a d f o r

    P W R a n d B W R d e c a y h e a t r e m o v a l sy s t em s . In g e n e r a l ,

    t h e s e v a r ia t i o n s i n v o l v e t h e n u m b e r o f c o m p o n e n t s o r

    e q u i p m e n t t r a i n s e m p l o y e d t o m a k e u p t h e d e c a y h e a t

    r e m o v a l s y s t e m s . I n t h e U n i t e d S t a t e s a n d a b r o a d , t h e

    f o l l o w i n g d e t e r m i n i s t i c d e s i g n c r i t e r i a a r e u s e d f o r d e -

    c a y h e a t r e m o v a l s y s t e m s [ 2 ]:

    1 ) E n s u r e t h a t f u e l i n t e g r i ty a n d p r e s s u r e

    b o u n d a r i e s a r e m a i n t a i n e d .

    2 ) W i t h s t a n d f ir e , sa b o t a g e , n a t u r a l p h e n o m e n a ,

    a n d o t h e r e x t r e m e c o n d i t i o n s .

    3 ) O p e r a t e u n d e r n o r m a l a n d e m e r g e n c y p o w e r

    c o n d i t i o n s .

    4 ) P r o v i d e m a n u a l b a c k u p c o n t r o l c a p a b i l i t y fo r

    a u t o m a t i c s y s t e m s .

    5 ) M o n i t o r a n d m a i n t a i n r e a c t o r c o o l a n t p r e s s u r e

    b o u n d a r y t h r o u g h i n s p e c t i o n , l e a k d e te c t i o n , a n d

    i s o l a t i o n v a l v i n g .

    6 ) F u n c t i o n d e s p i t e t h e s i n g l e f a i l u r e o f a n a c t i v e

    c o m p o n e n t o r t h e o c c u r r e n c e o f s m a l l p i p e

    b r e a k s .

    7 ) P r e v e n t sh a r e d n o r m a l o r e m e r g e n c y e q u i p m e n t

    f r o m j e o p a r d i z i n g r e l ia b l e s a f e ty o p e r a t i o n s .

    8 ) P r o v i d e u n i n t e r r u p t e d c o o l i n g fo r t h i r ty d a y s .

    S e v e r a l n o n - U . S , c o u n t r i e s h a v e a d d i t i o n a l c r i t e r i a :

    9 ) I n i t i a t e a n d o p e r a t e a u t o m a t i c a l l y f o r a p e r i o d

    r a n g i n g f r o m 1 0 m i n u t e s t o 1 0 h o u r s .

    1 0 ) F u n c t i o n d e s p i t e t h e s i n g l e f a i l u r e o f a n a c t i v e

    o r p a s s iv e c o m p o n e n t i n c o m b i n a t i o n w i t h a

    m a i n t e n a n c e o u t a g e i n v o l v i n g a r e d u n d a n t s y s-

    tem.

    1 1 ) O p e r a t e w i t h o u t o n - s i t e r e p a i r a c t i o n f o r a t le a s t

    1 2 h o u r s a n d w i t h o u t o f f s i t e r e p a i r a c t i o n f o r a t

    l e a s t 4 8 h o u r s .

    M o r e d e t a i l e d s y s t e m i n f o r m a t i o n s u c h a s f l ow r a t e s

    a n d d e c a y h e a t l e v el s , n u m b e r o f t r a in s a n d p o w e r

    s u p p l i e s a r e g i v e n i n p l a n t s a f e t y a n a l y s i s r e p o r t s S A R s ) .

    H o w e v e r , m u c h o f t h i s in f o r m a t i o n p r e s e n t s d e s ig n d e -

    s c r i p t i o n s r a t h e r t h a n c r i t e r i a f o r a d e s i g n .

    T h e c u r r e n t r e g u l a t o r y i n t e re s t i n d e c a y h e a t r e m o v a l

    c o m e s a s a r e s u l t o f t h e R e a c t o r S a f e t y S t u d y [ 1 7 ] w h i c h

    f o cu s e d o n t h e S u r ry P W R a n d P e a c h b o t t o m B W R

    w h o s e d e c a y h e a t r e m o v a l s y s t e m s w e r e d e s i g n e d i n

    a c c o r d a n c e w i t h t h e g e n e r a l d e s i g n c r i t e r i a f o r U . S .

    p l a n t s l i s t e d a b o v e . A s n o t e d b y B e r r y a n d S a n d e r s [ 5],

    t h e f o l l o w in g o b s e r v a t i o n s c an b e m a d e f o r S u r r y a

    P W R ) :

    1 ) T r a n s i e n t s a n d c e r t a i n s m a l l l o s s o f c o o l a n t a c c i -

    d e n t s L O C A s ) p o s e t h e h i g h e s t p r o b a b i l i t y f o r

    c o r e m e l t d o w n .

    2 ) O f a l l t r a n s i e n t s a n d s m a l l L O C A s , t h o s e i n v o l v -

    i n g t h e f a i l u r e o f h i g h p r e s s u r e i n j e c t i o n a n d

    a u x i l i a r y f e e d w a t e r s y s t e m s f o r d e c a y h e a t r e -

    m o v a l ) p o s e t h e h i g h e s t p r o b a b i l i t y fo r c o r e

    m e l t d o w n .

    S i m i l a r l y t h e f o l lo w i n g o b s e r v a t io n s c a n b e m a d e f o r

    P e a c h b o t t o m a B W R ) :

    1 ) T r a n s i e n t s , t o g e t h e r w i t h f a i l u r e o f t h e r e s i d u a l

    h e a t r e m o v a l , s y s te m , o r t h e r e a c t o r p r o t e c t i o n

    s y s te m , p o s e t h e h i g h e s t p r o b a b i l i t y f o r c o r e

    m e l t d o w n .

    R e c o g n i z i n g t h e i m p o r t a n c e o f d e c a y h e a t r e m o v a l in

    p r e v e n t i n g c o r e m e l t d o w n , E b e r s o l e a n d O k r e n t [3 ] w e r e

    t h e f i r s t t o p r o p o s e a n a l t e r n a t i v e a p p r o a c h w h i c h i n -

    c l u d e d d e d i c a t e d s y s te m s t h e s y st e m s d e s c r i b e d a b o v e

  • 7/23/2019 Calor Decaimiento Kastenberg

    3/10

    W E Kastenberg / Design criteria fo r afterheat and decay heat removal

    53

    have other functio nal requirements as well as decay heat

    removal), dedicated rather than shared power supplies

    and was bunke red (i.e., especially protected from severe

    internal and external hazards such as a turbine blade

    missile, tornadoes, floods and sabotage).

    Quantitative estimates of potential risk reduction

    with improved decay heat removal has been the subject

    of inves tigation at Sandia Nat iona l Laborato ry [5,16].

    Thei r work can be summarized as follows:

    (1) For the three-train Surry high pressure system

    and auxiliary feedwater systems, system reliability im-

    provements of as much as a factor of ten will result in

    less than a factor of two decrease in overall core melt-

    down frequency.

    (2) For the two train Peachbottom residual heat

    removal system, improvement s of as much as a factor of

    ten in the reliability of either the residual heat removal

    and high pressure service water systems, or the reactor

    protection system will result in only about a factor of

    two decrease in overall core meltdown frequency.

    (3) In PWR's having two installed decay heat re-

    moval trains, estimated reductions in coremelt probabil-

    ity of at least a factor of ten were attained with the

    addition of an auxiliary feedwater or high pressure

    injection train.

    (4) For BWRs, an add-on single train suppression

    pool cooling/low pressure injection system gains a fac-

    tor of about six reduction in coremelt probability.

    .As noted in item 10 under design criteria, a philoso-

    phy has evolved in several European countries that

    requires safety systems to be able to sustain both a

    random failure of one train a nd a simultaneous maintai-

    nence outage of another train, and still retain 100%

    operational capacity. This philosophy was not adopted

    for improving decay heat removal reliability nor for

    reducing the probability of coremelt. Rather, it was

    adopted over a concern for special emergencies (e.g.,

    airplane crash and explosive pressure waves, etc.), char-

    acterized by low frequency. Hence, effort has been

    placed on p roviding three, four and sometimes six trains

    for decay heat removal, even though the safety benefits

    tend to decrease in a probabi listic sense beyond three

    trains.

    It is important to recognize that the Reactor Safety

    Study, as well as the Sandia studies, are based upon

    probabilistically evaluated events which do not include

    special emergencies (e.g., plane crashes, severe floods,

    tornadoes, etc.). The occurrence frequency and signifi-

    cance of special emergencies are not easily predicted,

    and hence are difficult to quantify. On the other hand,

    recent Probabilistic Risk Assessments (PRAs) for the

    Zion [18] and Indi an Point [ 19] power plants have

    treated severe external events parametrically and de-

    duced that while they do not dominate coremelt proba-

    bility, they do contri bute significantly to risk.

    Before turning to the question of afterheat in fusion

    and fusi on/f issi on hybrid reactors, it is of interest to

    ment ion decay heat removal in liquid metal, fast breeder

    reactors (LMFBRs) and in gas cooled reactors (GCRs).

    The decay heat removal system for the Clinch River

    Breeder Reactor (CRBR) is typical of what one might

    expect with a low pressure system and liquid metal

    coolant.

    In addition to the normal decay heat removal path

    consisting of the balance of plant steam/feedwater sys-

    tem (turbine bypass system) there are three backup

    systems [20]. The first are protected air-cooled con-

    densers which cool the steam drums, on each of the

    three coolant loops. A second heat sink can be made

    available by open ing the safety relief valve in the steam

    line between the steam drum and the turbine and vent-

    ing steam to the atmosphere. A protected water storage

    tank is available for supplying make-up (auxiliary) water,

    while two of the auxiliary feedwater pumps are electri-

    cally driven and one is steam driven. Lastly, a com-

    pletely separate direct heat removal service (DHRS),

    is provided to remove decay heat directly from the

    in-vessel, primary loop, and has as its heat sink, an air

    blast heat exchanger. The latter represents diversity

    from the water system in the steam loop.

    The decay heat removal systems using the primary

    and intermediate coolant loops depend on forced circu-

    lation by the main coolant pumps driven at approxi-

    mately 10% speed by small pony motors which depend

    on a source of electric power. Similarly the DHRS air

    blast heat exchangers rely on electric power. Although

    CRBR is designed with redundant and diverse power

    supplies, the capability for decay heat removal by natu-

    ral circu lation is a desirable feature. With natural circu-

    lation, the inherent safety of the plant is enhanced since

    no electric power is required to provide adequate circu-

    lation in the heat transport or steam generator systems

    following shutdown.

    Although CRBR and several other LMFBRs (the

    Germa n SNR-300 and the French Phrnix) are designed

    for natural convection cooling, and the transition from

    forced to natural circulation has been verified at the

    Fast Test F lux Facility [21], several questions must still

    be answered. These include demonstration under actual

    LMFBR normal and off-normal conditions, as well as

    the passivity of the ultimate heat sink (e.g., the air

    cooled condensers) [22].

    Gas cooled fast reactors (GCFRs) and high tempera-

    ture gas cooled thermal reactors (HTGRs) have also

  • 7/23/2019 Calor Decaimiento Kastenberg

    4/10

    54

    W E Kastenberg / Design criteria or afterheat and decay heat removal

    b e e n d e s i g n e d w i t h a l t e r n a t e a n d d i v e r se d e c a y h e a t

    r e m o v a l s y s t e m s , F o r G C F R s , t h e r e a r e t h r e e s e p a r a t e

    sys te ms [ 21] :

    ( 1 ) S t e a m b y p a s s t o t h e c o n d e n s e r u s i n g t h e n o r m a l

    p o w e r c o n v e r s i o n s y s t e m ,

    ( 2 ) O p e r a t i o n o f t h r e e sh u t d o w n c o o l i n g s y s t e m l o o p s

    u s i n g t h e s t e a m g e n e r a t o r s, a n d m a i n h e l i u m c i r -

    c u l a t o r s ( p u m p s ) d r i v e n b y p o n y m o t o r s , a n d

    ( 3 ) T h r e e C o r e A u x i l i a r y C o o l i n g S y s t e m ( C A C S )

    l o o p s .

    T h e C A C S l o o p s h a v e t h e i r o w n i n d e p e n d e n t a u x -

    i l i a r y c i r c u l a to r s a n d c o o l i n g w a t e r l o o p s . A n a i r - b l a s t

    t y p e h e a t e x c h a n g e r p r o v i d e s t h e u l t i m a t e h e a t s i n k . T h e

    C A C S i s d e si g n e d t o p r o v i d e c o r e c o o l i n g f o l lo w i n g a ll

    d e s i g n b a s i s e v e n t s , i n c l u d i n g t h e d e p r e s s u r i z a t i o n o f

    t h e p r i m a r y c o o l i n g s y st e m . I t h a s a l so b e e n a r g u e d t h a t

    t h e h e a t t r a n s f e r c o m p o n e n t s w i t h i n t h e C A C S a r e

    l o c a t e d a t s u f f i c i e n t e l e v a t i o n d i f f e r e n c e s s u c h t h a t n a t -

    u r a l c i r c u l a t i o n w i l l t r a n s f e r d e c a y h e a t f r o m t h e c o r e t o

    t h e u l t i m a t e h e a t s i n k , p r o v i d e d t h e s y s t e m i s p r e s -

    sur ized [ 23] , a l though th i s w as never ve r i f i ed .

    F o r H T G R s t h e r e a r e t w o m a i n m o d e s f o r r e m o v i n g

    d e c a y h e a t :

    ( 1 ) T h e M a i n L o o p C o o l i n g S y st e m ( M L C S ) , c o m -

    p o s e d o f t h e s t e a m g e n e r a t o r s , t h e m a i n h e l i u m

    c i r c u l a t o r s , t h e m a i n l o o p i s o l a t i o n v a l v e s , a n d

    t h e a s s o c i a t e d d u c t i n g .

    ( 2 ) T h e C o r e A u x i l i a r y C o o l i n g S y s t e m ( C A C S ) ,

    c o m p o s e d o f a c o r e a u x i l i a r y h e a t e x c h a n g e r , a n

    a u x i l i a r y c i r c u l a t o r , a n a u x i l i a r y c i r c u l a t o r s e r v i c e

    s y s t e m , a n d a c o r e a u x i l i a r y c o o l i n g w a t e r s y s t e m .

    T h e C A C S f o r a n H T G R i s a n e n g i n e e r e d s a f e ty

    f e a t u r e f o r d e c a y h e a t r e m o v a l i n t h e e v e n t t h e m a i n

    l o o p s a r e u n a v a i l a b l e . A t y p i c a l 11 00 M W c H T G R

    d e s i g n c a l l s f o r s ix m a i n l o o p s a n d 3 a u x i l i a r y l o o p s ,

    e a c h w i t h i t s o w n c i r c u l a to r s , h e a t e x c h a n g e r s a n d s t e a m

    g e n e r a t o r s . A r e c e n t s t u d y b y W a s h b u r n [ 2 4 ] i n d i c a t e d

    t h a t t h e i n i t i a t i n g e v e n t s o f g r e a t e s t i m p o r t a n c e t o

    c o r e m e l t f r e q u e n c y a r e , ( a ) l o s s o f a d e q u a t e a - c p o w e r ,

    ( b ) l o s s o f C A C S s h u t d o w n h e a t - r e m o v a l a n d ( c ) t h e

    l o s s o f m a i n l o o p s h u t d o w n h e a t r e m o v a l .

    d e c a y h e a t i s p r i m a r i l y g e n e ra t e d b y t h e f i ss i o n p r o d -

    u c t s , a n d a l t h o u g h t h e r e l a t i v e y i e l d s c h a n g e w i t h n e u -

    t r o n s p e c t r u m , t h e d e c a y h e a t c u r v e is s o m e w h a t u n i v e r-

    s a l. It is a p p r o x i m a t e l y 7 o f o p e r a t i n g p o w e r a t s h u t -

    d o w n , 2 a t 1 h o u r , 1 a t 5 h o u r s , 0 .5 a t 1 d a y a n d

    0 .1 a t 10 day s .

    3 1 Fusion systems

    S i n c e a f t e r h e a t i n f u s i o n p o w e r p l a n t c o n c e p t u a l

    d e s i g n s is d u e t o n e u t r o n i n d u c e d a c t i v i ty in t h e b l a n -

    k e t , a n d p r i m a r i l y i n t h e f i r s t w a l l , i t is m a t e r i a l d e p e n -

    d e n t . V o g e l s a n g e t a l . [ 1 1 ] e x a m i n e d a f t e r h e a t a s a

    f u n c t i o n o f b o t h t i m e a f t e r s t a r t u p a n d t i m e a f t e r s h u t -

    d o w n f o r t h r e e s t r u c t u r a l m a t e r i a l s m a k i n g u p t h e f i r s t

    5 0 c m o f t h e b l a n k e t , i n t h e U W M A K - I d e s i g n ( 5 0 0 0

    M W t h ) . A f t e r 1 0 w e e k s o f o p e r a t i o n , t h e t h r e e m a t e r i a l s

    ( t y p e 3 16 s t a i n le s s s t ee l , v a n a d i u m - 2 0 t i t a n i u m a n d

    n i o b i u m - l z i rc o n iu m ) a p p r o a c h e d a n a f te r h e at v a l u e

    o f 2 2 M W a t s h u t d o w n , o r 0 .4 o f o p e r a t i n g p o w e r . A t

    t e n y e a r s o f o p e r a t i o n t h e t y p e 3 1 6 s t a i n l e s s - s t e e l ( 3 1 6

    S S ) a n d t h e n i o b i u m - l z i rc o n i u m ( N b - l Z r ) a ft e rh e a t

    r e a c h 0 .6 o f o p e r a t i n g p o w e r a t s h u t d o w n . T h e

    v a n a d i u m - 2 0 t i t a n i u m ( V - 2 0 T i ) r e m a i n e d r e l a ti v e l y

    c o n s t a n t b e t w e e n 1 0 w e e k s a n d 2 0 y e a r s a t 0 .4 p o w e r .

    F o l l o w i n g s h u t d o w n ( a f t e r 10 y e a r s o f o p e r a t i o n ) t h e

    N b - l Z r s t r u c tu r e a ft e r h e a t r e m a i n e d f a i rl y c o n s t a n t

    ( - 0 .5 o p e r a t i n g p o w e r ) o u t to 1 0 d a y s . T h e r e a f t e r , i t

    d r o p s d r a s t i c a l l y ( a f a c t o r o f 1 0 r e d u c t i o n a f t e r 1 0

    w e e k s ) . T h e T y p e 3 1 6 S S a f t e r h e a t r e m a i n s f a i r l y c o n -

    s t a n t b e y o n d 1 d a y (a t 0 .4 o p e r a t i n g p o w e r ), d r o p s t o

    0 .2 o p e r a t i n g p o w e r a t 1 y e a r , a n d t o 0 .0 6 ( a n o r d e r

    o f m a g n i t u d e ) a t 2 y e a rs . T h e V - 2 0 T i s t r u c t u re a f t e r h e a t

    d e c a y e d t h e q u i c k e s t ; f r o m 0.4 o p e r a t i n g p o w e r t o

    0 .1 i n 1 h o u r , t o a b o u t 0 .0 5 i n 1 d a y ( a n o r d e r o f

    m a g n i t u d e r e d u c t i o n ) . I t a p p e a r s t h e n , t h a t t h e 3 1 6 S S

    b l a n k e t s t r u c t u r e m a i n t a i n s , o n t h e a v e r a g e , a r e l a t i v e l y

    c o n s t a n t a f t e r h e a t v a l u e f o r s e v e r a l y e a r s a f t e r s h u t -

    d o w n c o m p a r e d t o o t h e r m a t e r i a l s .

    I n a f u r t h e r s t u d y o f f i r s t w a l l / b l a n k e t m a t e r i a l s ,

    C o n n e t a l . [1 2] c o m p a r e d i n d u c e d a c t i v i t y a n d a f t e r h e a t

    i n f i v e d e s i g n s t u d i e s a s f o l l o w s :

    3 Afterheat considerations in fusion and fu sion /fiss ion

    sys tems

    B e f o r e a t t e m p t i n g t o p o s t u l a t e d e s i g n c r i t e r i a f o r

    f u s i o n a n d f u s i o n / f i s s i o n h y b r i d r e a c t o r s it i s o f i n t e re s t

    t o e x a m i n e t h e n a t u r e o f a f t e r h e a t i n t h e s e s y s t e m s .

    D e c a y h e a t r e m o v a l i n f i s s i o n p o w e r r e a c t o r s i s b a s e d

    u p o n a s t a n d a r d d e c a y h e a t c u r v e w h i c h g i v e s t h e

    p e r c e n t o f o p e r a t i n g p o w e r a s a f u n c t i o n o f t i m e . S in c e

    Afterheat as power

    Designer M aterial Shutdown 1 Week

    1 Wisconsin 316 SS 0.4 0.4

    2 LL L 316 SS 0.4 0.4

    3 OR NL niobium 0.2 0.01

    4 BNL SAP a 2.0 1.0

    5 Princeton PE-16 b 5.0 0.5

    SAP = Sintered Aluminum Product (88~ AI, 12 Al2 03).

    b Pc-16 = 43 nickel, 39 iron , 18 chrom e.

  • 7/23/2019 Calor Decaimiento Kastenberg

    5/10

    W.E. Kastenberg / Design criteria for afterheat and decay heat removal

    55

    A detail of the first 100 minutes (1 hours) showed a

    fairly constant power rating for all cases but the niobium

    which dropped by a factor of 5 within the first six

    seconds and then remained constant.

    Blankets including the mater ials TZM (0.45

    titanium, 0.1 zirconium, remainder molybedinum), and

    2024 A1 (aluminum) were also compared i n UW MAK-I

    by Vogelsang [13]. The total afterheat, at shu tdown

    following two years of operation for TZM and V-2 0 Ti

    was 1.4 and 1.5 of operating power respectively. The

    2024 AI and 316 SS had afterheat on the order of 1

    full power. Except for the V-20 Ti which dropped a

    factor of 5 in the first hour, the others remained fairly

    constant out to one day. In this study, the entire blanket

    was considered, rather than 50 cm.

    Recently, Youssef and Corm [15] have examined

    induced radioactivity and influence of materials selec-

    tion in DD and DT fusion reactors. For the SATYR

    design using a deute riu m-deut erium fuel cycle, a SAP

    blan ket at shutdown has a power rating that is 13 of

    operating power. For a ferritic steel blanket (HT-9), the

    afterheat is 0.6 operati ng power. Within 1 hour, the

    SAP blanket is down to 1 afterheat, and down to

    at one day. In the HT-9 blanket the afterheat is con-

    stant to 1-hour, and then drops an order of magnitude.

    Thereafter, it remains fairly constant (-0. 02 ) in the

    time frame of 1 day to 1 year; after which it drops

    drastically (an order of magnitude) due to the decay of

    the Fe 55.

    These reactors were compared with the WITAMIR-I

    design [25] using HT-9 and the STARFIRE design [26],

    using PCA (2 molybdenum, 16 nickel, remainder steel).

    The afterheat at shutdown in the two reactors are ap-

    proximately 0.9 operati ng power, or about 30 and 40

    MWth respectively. Both are fairly constant for several

    months.

    3 .2 . Fu s io n f i s s i o n sys t ems

    Afterheat in fus ion-fission (hybrid) power pl ant de-

    signs is due to structural activation (first wall/blanket),

    fission product decay, and decay of actinide and trans-

    urani c elements. Hybrid systems have been proposed as

    power producers, fissile fuel producers and actinide

    burners.

    For a fast fission blanket, Kastenberg et al. [27]

    determined that the fission product i nvento ry of a hy-

    brid should not differ significantly from that of fission

    reactors. In this regard then, a hybrid reactor would

    posses both the afterheat requirements of pure fusion

    with respect to the first wall and structural materials

    and the decay heat removal requirements of a fission

    reactor.

    Recently there has been interest in fission suppressed

    blankets for producing fissile fuel [28-30]. Since the

    fission product decay heat would domina te a hybrid, the

    suppression of fission for breeding purposes, should

    also lower the decay heat removal requirements. This is

    shown in table 1, which is reproduced from ref. [28].

    Examination of table 1 shows several important trends.

    For fast fission blankets the decay heat power density

    produced in the fertile zone, approaches the afterheat

    produced in the first wall, in about a day. For the

    fission suppressed blanket, the first wall afterheat

    dominates within an hour of shutdown.

    3 . 3 . R e m a r k s

    The brief survey presented here indicates that

    afterheat removal in fusion systems is materials depen-

    dent. However, a general trend seems to be present;

    afterheat thermal loads will be about a factor 5-10 less

    than fission decay heat thermal loads, but will remain

    Table 1

    Total volumetric afterheat production rates a (W/cm3) at shutdown, and at 1 h and 6 h after shutdown

    Blanket concept a

    Hours after shutdown

    First wall Fertile zone

    0 1 6 0 1 6

    Uranium fast-fission 0.9

    Thorium fast-fission 0.9

    Thorium fission suppressed 0.9

    Pure fusion 0.9

    0.7 0.5 3.8 1.4 1.0

    0.7 0.5 2.6 0.9 0.6

    0.7 0.5 0.9 0.3 0.2

    0.7 0.5 - - -

    a Based on 4000 MWth total power.

  • 7/23/2019 Calor Decaimiento Kastenberg

    6/10

    56

    W E Kastenberg / Design criteria fo r afterheat and decay heat removal

    r e l a ti v e l y c o n s t a n t o v e r p e r i o d s o f i n te r e s t f r o m s h u t -

    d o w n t o 1 d a y , f o r s t a i n l e s s s t e e l o u t t o o n e y e a r ) . T h i s

    l a t t e r a t t r i b u t e d i f f e r s f r o m f i s s i o n d e c a y h e a t w h i c h

    d r o p s a n o r d e r o f m a g n i t u d e w i t h i n 1 d a y . F o r

    f u s i o n - f i s s i o n h y b r i d s , t h e c o m b i n e d h e a t l o a d d e c a y

    p l u s a f t e r h e a t ) i s a l s o s e n s i t i v e t o t h e b l a n k e t d e s i g n .

    F o r t h e f i r s t d a y , f a s t f i s s i o n b l a n k e t s r e s e m b l e f i s s i o n

    r e a c t o r d e c a y h e a t l o a d s . F o r f i s s i o n s u p p r e s s e d b l a n -

    k e t s , a f t e r h e a t d o m i n a t e s a f t e r 1 h o u r .

    4 Criter ia for fusion and fu sio n/ f i ss ion afterheat and

    decay heat removal systems

    I t h a s b e e n r e c o g n i z e d t h a t l o s s o f a f t e r h e a t a n d

    d e c a y h e a t r e m o v a l c a p a b i l i t y i n f u s io n a n d f u s i o n - f i s -

    s i o n h y b r i d p o w e r p l a n t s w i ll b e a m a j o r c o n t r i b u t o r t o

    r i s k [ 2 9 - 3 1 ] . I n t h i s c o n t e x t , r i s k c a n b e t a k e n i n t h e

    p r o b a b i l i s t i c s e n s e: f r e q u e n c y t i m e s c o n s eq u e n c e . F u r -

    t h e r m o r e , c o n s e q u e n c e i n c l u d e s b o t h h e a l t h e f f e ct s a n d

    e c o n o m i c l o s s .

    A n u m b e r o f c o n c e p t u a l d e s i g n s h a v e b e e n c o m -

    p l e t e d f o r v a r i o u s f u s i o n a n d f u s i o n - f i s s i o n s y s t e m s ,

    b u t l i t tl e a t t e n t i o n h a s b e e n p a i d t o t h i s s a fe t y q u e s t i o n

    a s a d e s i g n i s s u e . B a l a n c e o f p l a n t d e s i g n s u s u a l l y

    i n c l u d e s y s t e m s a n d c o m p o n e n t s f o r n o r m a l p o w e r o p -

    e r a t i o n e . g ., p u m p s , s t e a m g e n e r a t o r s , l o o p s , t u r b i n e s ,

    e t c . ) , b u t n o t f o r a f t e r h e a t a n d d e c a y h e a t r e m o v a l .

    F r o m a s a f e t y v ie w p o i n t , c a lc u l a t i o n s a re p e r f o r m e d f o r

    a v a r i e t y o f s c e n a r i o s s u c h a s l o s s o f f l o w a n d l o s s o f

    c o o l a n t , a n d t i m e - t o - m e l t o r t i m e - t o - s t r u c t u ra l f a il u r e

    a r e u s e d a s f i g u r e s o f m e r i t . A l t h o u g h t h e s e c o n s i d e r a -

    t i o n s a r e i m p o r t a n t i n d e t e r m i n i n g t h e c o n s e q u e n c e s o f

    a c c i d e n t s , a n d i n t h e i n i t i a l c h o i c e o f m a t e r i a l s a n d

    c o o l a n t s , t h e y a r e o f l i t t l e u s e t o t h e d e s i g n e r i n l a y i n g

    o u t t h e b a l a n c e o f p l a n t . I n t h i s s e c t i o n t w o t y p e s o f

    c r i t e r ia a r e p r o p o s e d f o r d e s ig n c o n s i d e r a t io n .

    4 1 D e te r m in i s t i c c r i te r ia

    I n s e c t i o n 2 , e le v e n g e n e r a l d e s i g n c r i t e r i a w e r e g i v e n

    f o r d e c a y h e a t r e m o v a l s y s t e m s i n f i s si o n p o w e r p l a n t s .

    B e f o r e d e t e r m i n i n g t h e a p p l i c a b i l i t y o f t h e s e c r i te r i a

    a n d / o r m o d i f y i n g t h em , s e v e ra l p o i n t s s h o u l d b e d is -

    c u s s e d . A f t e r h e a t g e n e r a t i o n i n f i r s t w a l l / b l a n k e t

    m a t e r i a l s r e p r e s e n t a s m a l l e r p e r c e n t a g e o n t h e o r d e r o f

    1 ~ o r l e s s o p e r a t i n g p o w e r ) t h a n f i s s i o n r e a c t o r d e c a y

    h e a t o n t h e o r d e r o f 7 ~ ) a t s h u td o w n . O n t h e o t h e r

    h a n d , a f t e r h e a t g e n e r a ti o n t e n d s t o b e f a i r l y c o n s t a n t

    f o r u p t o a y e a r f o r s ta i n l e s s s t e e l ) f o l l o w i n g s h u t d o w n ,

    w h i l e d e c a y h e a t g e n e r a t i o n d r o p s a n o r d e r o f m a g n i -

    t u d e w i t h i n a d a y . H e n c e , u p t o 5 0 M W t h m a y h a v e t o

    b e r e m o v e d f o r p e r i o d s o f 1 w e e k t o 1 y e a r i n a f u s i o n

    p l a n t .

    W i t h t h e s e c o m m e n t s i n m i n d , t h e f o l l o w in g c ri t e ri a

    a p p e a r t o b e a p p r o p r i a t e :

    1 . E n s u r e t h a t b l a n k e t a n d f u e l s t r u c t u r a l i n t e g r i t y ,

    a n d p r e s s u re b o u n d a r i e s a r e m a i n t a i n e d .

    2 . W i t h s t a n d f i r e , s a b o t a g e , n a t u r a l p h e n o m e n a , a n d

    o t h e r e x t r e m e c o n d i t i o n s .

    3 . O p e r a t e u n d e r n o r m a l a n d e m e r g e n c y p o w e r c o n d i -

    t ions .

    4 . M o n i t o r a n d m a i n t a i n c o o l a n t b o u n d a r y t h r o u g h

    i n s p e c t i o n , l e a k d e t e c t i o n a n d i s o l a t i o n v a l v i n g .

    5 . P r e v e n t s h a r e d n o r m a l o r e m e r g e n c y e q u i p m e n t

    f r o m j e o p a r d i z i n g r e l i a b l e s a f e ty o p e r a t i o n s .

    6 . I n i t i a t e a n d o p e r a t e a u t o m a t i c a l l y f o r a p e r i o d r a n g -

    i n g f r o m 1 h o u r t o 1 d a y .

    7 . P r o v i d e m a n u a l b a c k u p c o n t r o l c a p a b i l i t y f o r a u t o -

    m a t i c s y s t e m s .

    8 . P r o v i d e u n i n t e r r u p t e d c o o l i n g fo r u p t o t w o m o n t h s .

    9 . F u n c t i o n d e s p i t e t h e s i n g l e f a i l u r e o f a n a c t i v e o r

    p a s s i v e c o m p o n e n t i n c o m b i n a t i o n w i t h a m a i n t a i -

    n e n c e o u t a g e i n v o l v i n g a r e d u n d a n t s y s t e m .

    1 0 . O p e r a t e w i t h o u t o n - s i t e r e p a i r a c t i o n f o r a t l e a s t 5

    d a y s a n d w i t h o u t o f f - s i t e r e p a i r a c t i o n f o r a t l e a s t 1

    m o n t h .

    T h e b a s i c a p p r o a c h i n f o r m u l a t i n g t h e s e c r it e r ia w a s

    t o a d o p t f i s s i o n r e a c t o r c r i t e r i a a s a p p r o p r i a t e b u t

    a c c o u n t f o r t h e p r o l o n g e d g e n e r a t i o n o f a f t e r h e a t . I t

    s h o u l d b e p o i n t e d o u t t h a t t h e v a r y i n g t i m e s c a l e s

    r e f l e c t t h e d e p e n d e n c e o f t h e a f t e r h e a t l o a d o n t h e

    m a t e r i a l s e m p l o y e d . A m o r e c o n s e r v a ti v e a p p r o a c h w a s

    t a k e n t o t h e s in g l e f a i l u r e c r i t e r i o n n u m b e r 9 ) b e c a u s e

    o f t h e p o t e n t i a l l y la r g e e c o n o m i c l o s s s h o u l d a f t e r h e a t

    r e m o v a l f a i l .

    4 2 Prob abi l is t ic c r i te r ia

    Q u a n t i t a t i v e o r p r o b a b i l i s t i c s a f e t y c r i te r i a t o p r o -

    v i d e g u i d a n c e t o r e a c t o r d e s i g n e r s h a v e b e e n u s e d i n t h e

    U K f o r s ev e r a l y e a r s a n d h a v e b e e n f o u n d t o b e a u s e fu l

    t o o l i n t h e d e s i g n p r o c e s s [ 3 2 ] . W i t h t h e i n c r e a s e d

    e m p h a s i s o n t h e u s e o f a q u a n t i t a t i v e a p p r o a c h i n t h e

    U S , t h e r e i s n o w a n i n t e r e st i n d e v e l o p i n g q u a n t i t a t i v e

    c r i t e r i a f o r t h e m a i n s a f e t y f u n c t i o n s o f f i s s i o n r e a c t o r s ,

    b o t h f o r a ss e s si n g t h e a d e q u a c y o f t h e s a f e t y s y s t e m s in

    e x i s t in g p l a n t s a n d f o r p r o v i d i n g g u i d a n c e t o t h e d e s i g -

    n e r s o f n e w p l a n t s .

    R e c e n t l y C a v e e t a l . [ 1 0 ] d e v e l o p e d a s c r e e n i n g

    c r i t e r ia f o r e v a l u a t i o n o f d e c a y h e a t r e m o v a l i n P W R s .

    T h e s t a r t in g p o i n t i s a s e t o f s a f e t y g o a ls f o r L W R s t h a t

    w a s p u b l i s h e d b y t h e N R C f o r p u b l i c c o m m e n t [7 ]. T h e

    p r i n c i p a l g o a l s i n t h i s s e t a r e b a s e d o n p u b l i c h e a l t h

  • 7/23/2019 Calor Decaimiento Kastenberg

    7/10

    W E Kastenberg / Design criteria for afterheat and decay heat removal

    Table 2

    Risks for evaluation of afterheat removal

    57

    Public health Onsite economic Offsite economic

    Early fatalities Cost of energy replacement

    Delayed fatalities

    Early illness

    Delayed illness

    Genetic effects

    Repair costs

    Clean up costs

    Decommissioningcosts

    Occupational health costs

    Capital investment loss

    Public damage (loss of gross national product

    due to interdiction)

    Lost wages

    Decontamination costs

    Public health costs

    Evacuation/rehousing costs

    Secondary costs (higher electricity costs affect

    industrial production)

    risk, and there is a supporting goal relating to the

    acceptable pr obabi lity of coremelt, i.e., 10 -4 per reactor

    year, median value. An allocation scheme was devel-

    oped which appropriated 25 x 10 -6 per reactor year to

    the shutdown decay heat removal phase (scram to hot

    shutdown) and 5 10 -7 for the residual heat removal

    phase (hot shutdown to cold shutdown) for PWRs.

    Because fusion power plants will have very large

    capital costs, economic as well as public health risks

    should be included in developing criteria for afterheat

    removal. Examples of the risks that should be consid-

    ered are shown in table 2.

    The work of Kazimi and Sawdye [33] is particularly

    useful in developing criteria for afterheat removal sys-

    tems. Beginning with the premise that the potenti al

    radiological hazards associated with accidents in fusion

    reactors should be less than those of commercial light

    water reactors, Kazimi and Sawdye determined maxi-

    mum tolerable frequencies for large accidents. These

    frequencies were defined so as to assure that releases of

    fusion reactor induced radioactivity (not tritium) do not

    imply a greater radiological hazard than in either the

    WASH 1400 PWR or BWR.

    Utilizing the UWMAK-I (316 SS blanket) and the

    UWMAK -II I (TZM blanket) designs, it was determined

    that maxim um tolerable release frequencies were 10 -5

    and 4 x 10 -6 per reactor year, respectively. Noting tha t

    the radioactivity inventories used were among the highest

    possible in Tokamak reactors, and that no release miti-

    gation factors were employed, it was concluded that

    these numbers represent lower bounds.

    From an economic viewpoint, the work of Stucker et

    al. [34] and Strip [35] are part icularly useful. Stucker et

    al. focused on the costs of closing the Indian Point

    Nuclea r Power Plants (two units) before their useful life

    was over. They estimated that the costs would be be-

    tween 7.7 billion and 17.4 billion and was composed

    of the incremental generating costs (Indian Point pro-

    duces the cheapest electricity in the New York City

    area), one time costs and savings, business costs and

    secondary costs (net costs to the local economy). The

    major component was the replacement power cost,

    estimated at about 8 billion for the two units (ap-

    proximately 2000 MWe).

    Strip estimated the financial risks of. nuclear power

    accidents as a function of accident severity and location

    for several power plant types. Included were onsite and

    offsite health costs, and onsite and offsite economic

    costs. Strip's results, although site dependent, indicate

    that onsite costs (i ncluding replacement power costs)

    dominate, with offsite costs a close second. Onsite costs

    varied between 1 and 10 billion, with clean-up costs

    cont ribu ting 1 and 2 billion. For the most severe

    accidents, offsite costs were as high as 10 billion. For

    less severe accidents, the replacement costs could be

    less, if the plant was repaired, and put back on-line.

    For the purposes of the analysis here, the following

    can be considered. A large accident at a fusion or

    fusion-fiss ion power plant involving loss of the blanket

    and part of the primary coolant system due to a loss of

    afterheat or decay heat removal would involve loss of

    capital investment, replacement power costs and clean

    up costs. Nuclear power plants costs such as CRBR and

    Shoreham are approaching 3 billion. Fusion plants

    have been estimated to cost between 2 and 10 billion.

    Replacement power for a large fusion plan t might be on

    the order of the two units at Indian Point ( 8 billion)

    and clean-up costs might be similar to those estimated

    for Three Mile Island ( 2 billion). Although it is recog-

    nized that the capital investment cost must account for

    depreciation, it can be assumed that loss of a fusion

    plant might approach 10 billion dollars. If the blanket

    wa repairable or replaceable, the loss might approach 5

    billi on dollars.

    Taking 10 -5 per year as an upper limit for loss of

    the blanket, and 10 billion dollars as the total potential

  • 7/23/2019 Calor Decaimiento Kastenberg

    8/10

    58

    W E Kastenberg / Design criteria fo r afterheat and decay heat removal

    loss, the expected risk (loss) is l0 s dol lars /year,

    ( 10 0000 /year ). If the goal were relaxed to 10 -4 per

    year, the expected loss would be 106 dollars/year ( 1

    million/year). An expected loss of 106 dollars/year

    appears to be at the high end of acceptability. Since

    10 -5 per year for a loss of the blanket may be conserva-

    tive from a public health viewpoint, and 10 -4 per year

    intolerable from a financial viewpoint, a value between

    them o f 5 10 -5 per year might appear appropriate . If

    this value is adopted, two other considerations must be

    dealt with:

    (a) The provision for adequate margin against the

    effects of uncertainties in the estimation of the

    risks, and

    (b) an appropriate allocation of the goal due to loss

    of afterheat removal and to other functions whose

    failure could lead to loss of the blanket structure,

    and release.

    Uncertainties can be divided into three categories:

    (1) Uncerta inties due to variations in data and which

    can be quantified;

    (2) uncertainties due to describing extreme events

    such as severe earthquakes, floods, etc., and ex-

    treme phenomena (the so-called special emergency

    situations described in section 2), and

    (3) uncertainties due to human errors, design errors,

    and extreme human acts (sabotage).

    Category 1 uncertainties are those included in de-

    sign. Category 2 and 3 uncertainties are unquantifiable

    at present, and can be treated as design margins.

    Following Cave et al. [10], adequate margin can be

    attained by assigning 40% of the goal to Category 1

    uncertainties, with the remainder divided equally be-

    tween Category 2 and 3. Hence for system design, the

    loss of blanke t frequency goal would be 20 10 -6 per

    year.

    The allocation between the afterheat removal func-

    tion and the others required to prevent loss of blanket

    integrity should be arrived at from a plant specific

    probabilistic risk assessment. Examination of the rela-

    tive demand for these functions would optimize the

    suballocation. In PWRs, experience leads to a 75%

    allocation to decay heat removal function and 25% to

    others, such as large break loss of coolant accidents and

    other transients [17].

    The most effective mechanism for releasing radioac-

    tive blanket material is oxidation following a lithium

    fire in the UWMAK systems with lithium coolant fol-

    lowing a loss of coolant [33]. Plasma disruption may be

    a further cause for release, but appears to be localized in

    nature [36]. For gas (helium) cooled systems, depressuri-

    zation accidents have also been shown to be less of a

    contributor to risk than loss of decay heat removal

    capability [24]. In summary, there is little evidence to

    believe that the split between the afterheat removal

    function and the other safety functions will be much

    different than that for fission reactors. Hence a 75/25

    split is assumed, and will be varied below.

    This final allocation yields a reliability requirement

    of 15 10 -6 per year for afterheat removal in a fusion

    reactor. This value may not be too far from optimum

    for the following reasons. If the Category 2 and 3

    uncertainties were reduced by a factor of five (12%

    allocation), the allocation for afterheat removal would

    double ; i.e., it wou ld be 33 10 -6 per reactor year.

    Similarly, if it were found that other safety functions

    were equal to afterheat removal; (as in BWRs) the goal

    becomes 10 10 -6 per r eactor year. Hence the range

    10 x 10 -6 to 33 x 10 -6 , with a goal of 15 x 10 -6 ap-

    pears reasonable. This analysis is summarized in table 3.

    For fusion-fission hybrid reactors, the combined

    afterheat and decay heat removal functions must be

    considered. At one extreme, the blanket could be con-

    sidered a fission reactor, and the NRC safety goal

    applied. Using the arguments above, (40% for Category

    1 uncertainties, 75% for decay heat removal function)

    one arrives at an allocation of 30 10 -6 per reactor

    Table 3

    Allocation of afterheat removal reliability goal

    Allocation Value Totals

    Base case

    Afterheat function

    Other functions

    Category 1 uncertainty (40%)

    Category 2 uncertainty (30~)

    Category 3 uncertainty (305g)

    15 10- 6/year

    5 10- 6/year

    20 x 10- 6/year

    15 10-6/yea r

    15 x 10- 6/year

    5 x 10- 5/year

    Reduced uncertainty

    Afterheat function

    Other functions

    Category 1 uncertainty (88~)

    Category 2 uncertainty (6~)

    Category 3 uncertainty (6~)

    33x10 -6

    l l x l 0 - s

    4410 -6

    310 -6

    3X10 -6

    5 x 10-5 /year

    Reduced function

    Afterheat function

    Other functions

    Category I uncertainty

    1010 -6

    lOxlO -6

    20x10 -6

  • 7/23/2019 Calor Decaimiento Kastenberg

    9/10

    W E Kastenberg / Design criteria or afterheat and decay heat removal 59

    year as the design goal. This extreme represents public

    health. From an economic viewpoint, the loss of a

    hybrid also represents the loss of an assured fuel supply

    to a number of fission reactors. Hence some multiplier,

    in terms of expected loss must be used.

    Assuming that the monetary loss of a hybrid is a

    factor of 5 greater than the monetary loss of a pure

    fus ion power reactor , or 50 bil lion dollars ( 50 109),

    and that the upper limit on expected loss is 1 million

    dollars per year; the goal would become 20 10 -6 per

    reactor year. Allocating for uncertainty and function as

    before, the combined afterheat-decay heat function-goal

    would be 6 10 -6 per reactor year. Hence a range of

    6 10 -6 to 30 10 -6 per reactor year may be ap-

    propriate for hybrids.

    and can be used in a variety of ways. They can be used

    to determine the number of loops, steam generators

    and/or heat sinks required in the balance of plant. Or,

    on the subsystem level, they can determine the number

    of trains, pumps, valves, etc. needed to provide such

    things as auxilliary feedwater.

    It should be noted that one approach for insuring the

    decay heat removal function in liquid metal cooled

    systems is by natural circulation. Although some fusion

    systems are designed with lithium coolants, the geome-

    tries employed might preclude its use as a viable option.

    For fusion-f ission hybrids, gas cooling appears to be

    the favored approach, which necessitates high pressure.

    Since depressurization is a design basis event, natural

    circulation might be precluded as well.

    5 Sum mary and conclusions

    Design criteria for afterheat and decay heat removal

    in fusion and f usion-fiss ion power plants were pro-

    posed in this paper. Deterministic criteria were derived

    by reviewing the general design criteria for fission plants

    and modifying them to account for the different fea-

    tures of fusion and fusion-fiss ion after- and decay heat.

    The fraction of full power for afterheat (fusion)

    tends to be an order of magnitude less than that for

    decay heat (fission) and it decays rather slowly by

    comparison. However, if fusion reactors produce high

    thermal power (5000 MWth ) the total heat load will be

    comparable over the time of interest (1 day to 1 week).

    As a result, it is proposed that the general design

    criteria for fission plants be made more conservative for

    fusion reactors: in particular it is proposed that the

    afterheat removal system function despite

    both

    a single

    failure of an active or passive component in combination

    with a maintenanc e outage involving a redunant system.

    Moreover, the time for automatic operation, and on-site

    and off-site repair action are extended.

    Probabilistic criteria were developed from both an

    economic and a public health viewpoint. Using a lower

    limit for public health risk and an upper limit for

    financial loss, an allocation scheme was proposed to

    account for uncertainty and function. The following

    design criteria are proposed:

    Reactor Function Criterion

    Fusion Afterheat removal 15 10-6/year

    Fusion-fission Afterheat/ 6 10- 6 to

    decay heat removal 30 10-6/year

    These values are meant to be target values for design

    Acknowledgement

    This work was supported by the Electric Power

    Research Institute. The author wishes to thank Dr. Noel

    Amherd for his interest, support, and encouragement.

    References

    [1] U.S. Nuclear Regulatory Commission, Plan for the resolu-

    tion of generic safety, Issue A-45: Decay heat removal

    (November 1981).

    [2] Code of Federal Regulations, Title 10, Part 50, Licensing

    of production and utilization facilities, Appendix A, Gen-

    eral design criteria for nuclear power plants.

    [3] J.C. Ebersole and D. Okrent, An integrated safe shutdown

    heat removal system for light water reactors, UCLA-

    ENG-7651 (May 1976).

    [4] U.S. Nuclear Regulatory Commission, Plan for research to

    improve the safety of light water nuclear power plants, A

    Report to the Congress of the United States of America,

    NUREG-0438 (April 12, 1978).

    [5] D.L. Berry and G.A. Sanders, A study of the value and

    impact of alternative decay heat removal concepts for light

    water reactors, NUREG/CR-2883, Sandia National

    Laboratory Report, SAND 82-1976 (February 1983).

    [6] U.S. Nuclear Regulatory Commission, Advisory Comittce

    on Reactor Safeguards, An approach to quantitative safety

    goals for nuclear power plants, NUREG-0739 (October

    1980).

    [7] U.S. Nuclear Regulatory Commission, Proposed safety

    criteria for nuclear power plants, NUREG-0880 (October

    1982).

    [8] U.S. Nuclear Regulatory Commission, Action plan to

    implement the Commission's proposed safety goal policy

    statement, Draft (June 1982).

    [9] U.S. Nuclear Regulatory Commission,Plan to evaluate the

  • 7/23/2019 Calor Decaimiento Kastenberg

    10/10

    6 0 W E Kastenberg / Design criteria for afterheat and decay heat removal

    C o m m i s s i o n s s a f e t y g o al p o l ic y s t a t e m e n t , D r a f t ( J a n u a r y

    1983).

    [ 10 ] L . C a v e a n d W .E . K a s t e n b e r g , T h e d e v e l o p m e n t o f

    Q u a n t i t a t i v e c ri t e r i a f o r t h e d e c a y h e a t r e v o c a l f u n c t i o n o f

    L W R s , P r o c e e d i n g s o f t h e C S N I S p e c i a l i s t M e e t i n g o n

    D e c a y H e a t R e m o v a l S y s t e m s , A p r i l 2 5 - 2 9 , 1 9 83 .

    [11] W.F . Voge lsang , G .L . Kulc insk i , R .G. Lo t t and T .Y. Sung ,

    T r a n s m u t a t i o n s , r a d i o a c t i v i t y a n d a f t e r h e a t i n a d e -

    u t e r i u m - t r i t i u m t o k a m a k f u s i o n r e a c t o r , N u c l . T e c h n o l .

    22 ( June 1974) 379-391 .

    [ 12 ] R .W . C o n n , T .Y . S u n g a n d M .A . A b d o u , C o m p a r a t i v e

    s t u d y o f r a d i o a c t i v i ty a n d a f t e r h e a t i n s e v e r a l f u s i o n r e a c -

    t o r b l a n k e t d e s i g n s , N u c l . T e c h n o l . 2 6 ( A u g u s t 1 9 7 5 )

    3 9 1 - 3 9 9 .

    [ 13 ] W .F . V o g e l s an g , R a d i o a c t i v i t y a n d a s s o c i a t e d p r o b l e m s i n

    t h e r m o n u c l e a r r e a c t o r s , U n i v e r s i t y o f W i s c o n s i n R e p o r t ,

    U W F D M - 1 7 8 ( S e p t e m b e r 1 9 76 ).

    [ 14 ] R .W . C o n n , K . O k u l a a n d A .W . J o h n s o n , M i n i m i z i n g

    r a d i o a c t i v i t y a n d o t h e r f e a t u r e s o f e l e m e n t a l a n d i s o t o p i c

    ta i lo r ing o f ma te r ia l s fo r fus ion reac to r s , Nuc l . Tech no l .

    4 1 ( D e c e m b e r 1 9 78 ) 3 8 9 - 4 0 0 .

    [ 15 ] M .Z . Y o u s s e f a n d R .W . C o n n , I n d u c e d r a d i o a c t i v i t y a n d

    i n f l u e n c e o f m a t e r i a l s s e l e c ti o n in D D a n d D T f u s i o n

    r e a c t o rs , N u c l . T e c h n o l . F u s i o n 3 ( 1 9 8 3 ) 3 6 1 - 3 8 4 .

    [ 16 ] D .L . B e r r y, S t u d y o f a l t e r n a t i v e d e c a y h e a t r e m o v a l c o n -

    c e p ts f o r L W R s - - C u r r e n t s y s te m s a n d p r o p o s e d o p t io n s ,

    N U R E G / C R 1 55 6 S an d ia N a t io n a l L a b o ra t o ry R e p o r t

    SAND 80-0929 (Apr i l 1981) .

    [ 17 ] U .S . N u c l e a r R e g u l a t o r y C o m m i s s i o n , R e a c t o r s a f e t y

    s t u d y - - A n a s s e s s m e n t o f a c c i d e n t r i s k s i n U .S . c o m m e r -

    c ia l n uc l e a r p o w e r p l a n ts , W A S H - 1 4 00 , N U R E G 7 5 / 0 1 4

    (October 1975) .

    [ 18 ] T h e Z i o n p r o b a b i l i s t i c ri s k a s s e s s m e n t , C o m m o n w e a l t h

    E d i s o n C o m p a n y ( 19 8 1) .

    [ 1 9 ] T h e I n d i a n P o i n t p r o b a b i l i s t i c r i s k a s s e s s m e n t , C o n s o l i -

    da ted Ed ison Co . (1982) .

    [ 2 0 ] C l i n c h R i v e r B r e e d e r R e a c t o r P l a n t , P r e l i m i n a r y S a f e t y

    A n a l y s i s R e p o r t , P r o j e c t M a n a g e m e n t C o r p o r a t i o n ( 19 7 5) .

    [ 2 1 ] A .E . W a l t a r a n d A .B . R e y n o l d s , F a s t B r e e d e r R e a c t o r s

    (Pergamon Press , New York , 1982) .

    [ 2 2 ] S u m m a r y r e p o r t o n t h e c u r r e n t a s s e s s m e n t o f t h e n a t u r a l

    c i r c u l a t i o n c a p a b i l i t y w i t h t h e h e t e r o g e n e o u s c o r e ,

    C R B R P - A R D - 0 3 0 8 , W e s t i n g h o u s e E l e c t r i c C o r p o r a t i o n

    (February 1982) .

    [ 23 ] M . C r o f t , J.V . D e l B e n e a n d A . T o r r i , N a t u r a l c o n v e c t i o n

    e f f e c t s i n a G C F R s u b a s s e m b l y d u r i n g l o s s o f f l o w w i t h

    s c r a m c o n d i t i o n s , P r o c . o f t h e I n t e r n a t i o n a l M e e t i n g o n

    F a s t R e a c t o r T e c h n o l o g y , S e a t tl e , W a s h i n g t o n 1 9 7 9.

    [ 2 4 ] B .W . W a s h b u r n , A c c i d e n t D e l i n e a t i o n a n d e v a l u a t i o n o f

    t h e h i g h - t e m p e r a t u r e g a s - co o l e d r e a c t o r s y s t e m c o n c e p t s ,

    N U R E G / C R - 1 2 0 0 , L A - 8 1 7 9 - M S , L o s A l a m o s S c i e n t i f i c

    R e p o r t ( D e c e m b e r 1 9 7 9 ) .

    [ 25 ] B. B a d g e r e t a l. , W I T A M I R - I , a t a n d e m m i r r o r r e a c t o r

    s a f e t y , U F W D M - 4 0 0 , F u s i o n R e s e a r c h P r o g r a m , U n i v e r -

    s i t y o f W i s c o n s i n ( D e c e m b e r 1 9 77 ).

    [ 2 6 ] S T A R F I R E , a c o m m e r c i a l t o k a m a k f u s i o n p o w e r p l a n t

    s t ud y , A r g o n n e N a t i o n a l L a b o r a t o r y R e p o r t , A N L / F P P -

    80-1, Vol. I - I I (Sep tem ber 1980) .

    [ .27] W.E . Ka s tenbe rg , D . O kren t e t a l. , On the sa fe ty o f

    c o n c e p t u a l f u s i o n - f i s s i o n h y b r i d r e a c t o r s , N u c l . E n g r g .

    Des . 51 (February 1979) 311-359 .

    [ 28 ] H y b r i d R e a c t o r S a f e t y S t u d y - S e c o n d A n n u a l R e p o r t ,

    G e n e r a l A t o m i c C o m p a n y , G A - A 1 6 1 8 5 ( D e c e m b e r 1 9 8 0 ) .

    [29] J .A . M anisca lco , D .H . B erwald e t a l ., Lase r fus ion d r iven

    b r e e d e r d e s i g n st u d y , T R W S y s t e m s ( D e c e m b e r 1 9 8 0 ), s e e

    a l s o : R e c e n t p r o g r e s s i n f u s i o n - - f i s s i o n r e a c t o r d e s i g n

    s t u d i es , N u c l . T e c h n o l . / F u s i o n 1 (O c t . 1 9 8 1) 4 1 9.

    [30] J .D . Lee , R .W. M oi r e t a l. , Feas ib i l i ty s tudy o f a f i s s ion-

    s u p p r e s s e d t a n d e m - m i r r o r h y b r i d re a c t o r , U C I D - 1 9 3 2 7 ,

    L a w r e n c e L i v e r m o r e L a b o r a t o r y ( A p r i l 1 9 8 2 ).

    [ 31 ] J .D . L e e a n d R .W . M o i r , F i s s i o n - s u p p r e s s e d b l a n k e t s f o r

    f i s s i l e fue l b reed ing fus ion reac to r s , Lawrence L ivermore

    L a b o r a t o r y , U C R L - 8 4 1 0 4 ( A p r i l 22 , 1 9 8 0) .

    [32] L . Cave , S .R . Ha r r i son , A .L . M arche se and J .N . Tweedy ,

    T h e p r a c t i c a l a p p l i c a t i o n o f q u a n t i t a t i v e c r i t e r ia f o r n u c l e a r

    p o w e r p l a n ts , P r oc . o f A N S / E N S T o p i c a l M e e t in g o n

    P r o b a b i l i s t i c R i s k A s s e s s m e n t , N e w Y o r k , S e p t e m b e r 1 9 81 .

    [33] M.S . Kaz imi and R .W . Sawdye , Rad io lo g ica l a spec t s o f

    f u s i o n r e a c t o r s a f e t y : R i s k c o n s t r a i n t s i n s e v e r e a c c i d e n t s ,

    J . o f Fus ion Energy 1 (1 ) (1981) .

    [34] J .P . S tuck er e t a l. , Cos t s o f C los ing the In d ian Po in t

    n u c l e a r p o w e r p l a n t , T h e R a n d C o r p o r a t io n , R - 2 8 5 7 -N Y O

    ( N o v e m b e r 1 9 81 ).

    [ 35 ] D .R . S t r i p , E s t i m a t e s o f t h e f i n a n c i a l r is k s o f n u c l e a r

    p o w e r r e ac t o r a c c id e n t s, N U R E G / C R - 2 7 2 3 ( M a y 1 9 82 ).

    [36] D . Okren t e t a l . , On the sa fe ty o f tokamak- type , cen t ra l

    s ta t io n power reac to r s , Nuc . Engrg . Des . 39 (Oc t . 1976)

    2 1 5 - 2 3 8 .