calculus to be submitted assignmr.pdf

11
CALCULUS ASSIGNMENT COMPLEX NUMBERS RANA MUHAMMED AHMED BILAL EE-160 Department of Electrical Engineering JANUARY 27, 2016

Upload: ahmed-bilal

Post on 15-Jul-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: calculus to be submitted assignmr.pdf

CALCULUS ASSIGNMENT COMPLEX NUMBERS

RANA MUHAMMED AHMED BILAL EE-160

Department of Electrical Engineering

JANUARY 27, 2016

Page 2: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

1

Assignment Question # 1

π‘¨π’‘π’‘π’π’Šπ’„π’‚π’•π’Šπ’π’ 𝒐𝒇 𝑫𝒆 π‘΄π’π’Šπ’—π’†π’“β€²π’”π‘»π’‰π’†π’π’“π’†π’Ž

(𝒄𝒐𝒔 ∝ +π’Š π’”π’Šπ’ 𝜢)( 𝒄𝒐𝒔 𝜷 + π’Š π’”π’Šπ’ 𝜷)

(𝒄𝒐𝒔 𝜸 + π’Š π’”π’Šπ’ 𝜸)( 𝒄𝒐𝒔 𝝋 + π’Š π’”π’Šπ’ 𝝋)= π’„π’Šπ’”(𝜢 + 𝜷 βˆ’ 𝜸 βˆ’ 𝝋) ⟢ 𝑨

π’”π’π’π’–π’•π’Šπ’π’:

Consider: (𝒄𝒐𝒔 ∝ +π’Š π’”π’Šπ’ 𝜢)( 𝒄𝒐𝒔 𝜷 + π’Š π’”π’Šπ’ 𝜷)

upon multiplying:

= cos 𝛼 cos 𝛽 + cos 𝛼 𝑖 sin 𝛽 + cos 𝛽 𝑖 sin 𝛼 + sin 𝛼 sin 𝛽 𝑖2

= cos 𝛼 cos 𝛽 + 𝑖 cos 𝛼 sin 𝛽 + icos 𝛽 sin 𝛼 βˆ’ sin 𝛼 sin 𝛽

= (𝒄𝒐𝒔 𝜢 𝒄𝒐𝒔 𝜷 βˆ’ π’”π’Šπ’ 𝜢 π’”π’Šπ’ 𝜷) + π’Š(𝒄𝒐𝒔 𝜢 π’”π’Šπ’ 𝜷 + 𝒄𝒐𝒔 𝜷 π’”π’Šπ’ 𝜢)

Using formulae’s

(𝒄𝒐𝒔 ∝ +π’Š π’”π’Šπ’ 𝜢)( 𝒄𝒐𝒔 𝜷 + π’Š π’”π’Šπ’ 𝜷) = 𝒄𝒐𝒔(𝜢 + 𝜷) + π’Š π’”π’Šπ’(𝜢 + 𝜷) β†’ 1

Now; consider: (𝒄𝒐𝒔 𝜸 + π’Š π’”π’Šπ’ 𝜸)( 𝒄𝒐𝒔 𝝋 + π’Š π’”π’Šπ’ 𝝋) Upon Multiplying:

=cos 𝛾 cos πœ‘ + cos 𝛾 𝑖 sin πœ‘ + 𝑖 sin 𝛾 cos πœ‘ + 𝑖2 sin 𝛾 sin πœ‘

= cos 𝛾 cos πœ‘ + 𝑖 cos 𝛾 sin πœ‘ + 𝑖 sin 𝛾 cos πœ‘ βˆ’ sin 𝛾 sin πœ‘

= (𝒄𝒐𝒔 𝜸 𝒄𝒐𝒔 𝝋 βˆ’ π’”π’Šπ’ 𝜸 π’”π’Šπ’ 𝝋) + π’Š(𝒄𝒐𝒔 𝜸 π’”π’Šπ’ 𝝋 + π’”π’Šπ’ 𝜸 𝒄𝒐𝒔 𝝋)

Using formulae’s

(𝒄𝒐𝒔 𝜸 + π’Š π’”π’Šπ’ 𝜸)( 𝒄𝒐𝒔 𝝋 + π’Š π’”π’Šπ’ 𝝋) = 𝒄𝒐𝒔(𝜸 + 𝝋) + π’Š π’”π’Šπ’(𝜸 + 𝝋) β†’ 2

π’‘π’–π’•π’•π’Šπ’π’ˆ 𝒗𝒂𝒍𝒖𝒆𝒔 π’‡π’“π’π’Ž 𝟏 & 𝟐 π’Šπ’π’•π’ 𝒆𝒒 ′𝑨′

β†’ (cos ∝ +𝑖 sin 𝛼)( cos 𝛽 + 𝑖 sin 𝛽)

(cos 𝛾 + 𝑖 sin 𝛾)( cos πœ‘ + 𝑖 sin πœ‘)=

cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽)

cos(𝛾 + πœ‘) + 𝑖 sin(𝛾 + πœ‘)

Using De Moiver’s theorem:

{cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽)} {cos(𝛾 + πœ‘) + 𝑖 sin(𝛾 + πœ‘)}-1

{𝒄𝒐𝒔(𝜢 + 𝜷) + π’Š π’”π’Šπ’(𝜢 + 𝜷)}{𝒄𝒐𝒔(βˆ’πœΈ βˆ’ 𝝋) + π’Š π’”π’Šπ’(βˆ’πœΈ βˆ’ 𝝋)}

Let u = (𝛼 + 𝛽)

And v =(βˆ’π›Ύ βˆ’ πœ‘)

Then the equation will transform as follows

(𝒄𝒐𝒔 𝒖 + π’Š π’”π’Šπ’ 𝒖)(𝒄𝒐𝒔 𝒗 + π’Š π’”π’Šπ’ 𝒗)

= cos 𝑒 cos 𝑣 + 𝑖 cos 𝑒 sin 𝑣 + 𝑖 sin 𝑒 cos 𝑣 + 𝑖2 sin 𝑒 sin 𝑣

= cos 𝑒 cos 𝑣 βˆ’ sin 𝑒 sin 𝑣 + 𝑖(sin 𝑒 cos 𝑣 + cos 𝑒 sin 𝑣)

using formulae’s;

= 𝒄𝒐𝒔(𝒖 + 𝒗) + π’Š π’”π’Šπ’(𝒖 + 𝒗)

Page 3: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

2

putting values of u and v

= cos(𝛼 + 𝛽 βˆ’ 𝛾 βˆ’ πœ‘) + 𝑖 sin(𝛼 + 𝛽 βˆ’ 𝛾 βˆ’ πœ‘)

= π‘ͺπ’Šπ’”(𝜢 + 𝜷 βˆ’ 𝜸 βˆ’ 𝝋)

↔ 𝐏𝐫𝐨𝐯𝐞𝐝

Assignment Question # 2

π’Šπ’π’—π’†π’“π’”π’† π’‰π’šπ’‘π’†π’“π’ƒπ’π’π’Šπ’„ π’‡π’–π’π’„π’•π’Šπ’π’:

I. π’„π’π’”π’‰βˆ’πŸ 𝒛 = 𝒍𝒏(𝒛 + βˆšπ’›πŸ βˆ’ 𝟏)

Solution:

β‡’ 𝐿. 𝐻. 𝑆

Let π‘₯ = coshβˆ’1 𝑧

𝑧 = cosh π‘₯

We know that

cosh2 π‘₯ βˆ’ sinh2 π‘₯ = 1

𝑧2 βˆ’ sinh2 π‘₯ = 1

sinh π‘₯ = βˆšπ‘§2 βˆ’ 1 ⟢ 1

We also know that

𝑒π‘₯ = sinh π‘₯ + cosh π‘₯

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š 1

𝑒π‘₯ = βˆšπ‘§2 βˆ’ 1 + 𝑧

Re arranging

𝑒π‘₯ = 𝑧 + βˆšπ‘§2 βˆ’ 1

ln 𝑒π‘₯ = ln (𝑧 + βˆšπ‘§2 βˆ’ 1 )

π‘₯ ln 𝑒 = ln(𝑧 + βˆšπ‘§2 βˆ’ 1)

π‘₯ = ln(𝑧 + βˆšπ‘§2 βˆ’ 1) ∡ ln 𝑒 = 1

cschβˆ’1 𝑧 = ln (𝑧 + βˆšπ‘§2 βˆ’ 1) ∎ ∡ π‘₯ = cschβˆ’1 𝑧

II. π’„π’π’•π’‰βˆ’πŸ 𝒛 =𝟏

πŸπ’π’ (

𝒁+𝟏

π’βˆ’πŸ )

Solution:

𝐿𝑒𝑑

π‘₯ = cothβˆ’1 𝑧

Page 4: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

3

𝑧 = coth π‘₯

𝑧 =cosh π‘₯

sinh π‘₯

𝑧 =

𝑒π‘₯ + π‘’βˆ’π‘₯

2𝑒π‘₯ βˆ’ π‘’βˆ’π‘₯

2

∡ cosh π‘₯ =𝑒π‘₯ + π‘’βˆ’π‘₯

2; sinh π‘₯ =

𝑒π‘₯ βˆ’ π‘’βˆ’π‘₯

2

z =𝑒π‘₯ + π‘’βˆ’π‘₯

𝑒π‘₯ βˆ’ π‘’βˆ’π‘₯

β‡’ 𝑧 =𝑒π‘₯ + π‘’βˆ’π‘₯

𝑒π‘₯ βˆ’ π‘’βˆ’π‘₯Γ—

𝑒π‘₯

𝑒π‘₯

𝑧 =𝑒2π‘₯ + π‘’βˆ’π‘₯+π‘₯

𝑒2π‘₯ βˆ’ π‘’βˆ’π‘₯+π‘₯

𝑧 =𝑒2π‘₯ + 𝑒0

𝑒2π‘₯ βˆ’ 𝑒0⟹ 𝑧 =

𝑒2π‘₯ + 1

𝑒2π‘₯ βˆ’ 1

𝑧(𝑒2π‘₯ βˆ’ 1) = 𝑒2π‘₯ + 1

𝑧𝑒2π‘₯ βˆ’ 𝑧 = 𝑒2π‘₯ + 1

𝑧𝑒2π‘₯ βˆ’ 𝑒2π‘₯ = 𝑧 + 1

𝑒2π‘₯(𝑧 βˆ’ 1) = 𝑧 + 1

𝑒2π‘₯ = (𝑧 + 1)

(𝑧 βˆ’ 1)

ln 𝑒2π‘₯ = ln(𝑧 + 1)

(𝑧 βˆ’ 1)

2π‘₯ ln 𝑒 = ln(𝑧 + 1)

(𝑧 βˆ’ 1) ∡ ln 𝑒 = 1

2π‘₯ = ln(𝑧 + 1)

(𝑧 βˆ’ 1)

π‘₯ =1

2ln

(𝑧 + 1)

(𝑧 βˆ’ 1)

cothβˆ’1 𝑧 =1

2ln

(𝑧 + 1)

(𝑧 βˆ’ 1)∎ ∡ π‘₯ = cothβˆ’1 𝑧

III. π’”π’†π’„π’‰βˆ’πŸ 𝒛 = 𝒍𝒏 (𝟏+βˆšπŸβˆ’π’›πŸ

𝒛)

Solution:

𝐿𝑒𝑑

π‘₯ = sechβˆ’1 𝑧

𝑧 = sech π‘₯

Using

Page 5: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

4

1 βˆ’ tanh2 π‘₯ = sech2 π‘₯

1 βˆ’ sech2 π‘₯ = tanh2 π‘₯

1 βˆ’ 𝑧2 = tanh2 π‘₯

tanh π‘₯ = √1 βˆ’ 𝑧2 ⟢ 1

𝑀𝑒 π‘˜π‘›π‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘

𝑒π‘₯ = cosh π‘₯ + sinh π‘₯

𝑒π‘₯ =1

sech π‘₯+

sinh π‘₯

cosh π‘₯Γ— cosh π‘₯ ∡ cosh π‘₯ =

1

sech π‘₯

𝑒π‘₯ =1

sech π‘₯+ tanh π‘₯. cosh π‘₯ ∡

sinh π‘₯

cosh π‘₯= tanh π‘₯

𝑒π‘₯ =1

sech π‘₯+

tanh π‘₯

sech π‘₯

𝑒π‘₯ =1 + tanh π‘₯

sech π‘₯

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š π‘’π‘ž 1

𝑒π‘₯ =1 + √1 βˆ’ 𝑧2

𝑧

π‘‡π‘Žπ‘˜π‘–π‘›π‘” 𝑙𝑛 π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒π‘₯ = ln (1 + √1 βˆ’ 𝑧2

𝑧)

π‘₯ ln 𝑒 = ln (1 + √1 βˆ’ 𝑧2

𝑧)

π‘₯ = ln (1 + √1 βˆ’ 𝑧2

𝑧)

sechβˆ’1 π‘₯ = ln (1 + √1 βˆ’ 𝑧2

𝑧) ∎

IV. π’„π’”π’„π’‰βˆ’πŸ 𝒛 = 𝒍𝒏 (𝟏+√𝟏+π’›πŸ

𝒛)

Solution:

𝑳𝒆𝒕

π‘₯ = cschβˆ’1 𝑧

csch π‘₯ = 𝑧

1 + csch2 π‘₯ = coth2 π‘₯

1 + 𝑧2 = coth2 π‘₯

coth π‘₯ = √1 + 𝑧2 ⟢ 1

Page 6: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

5

𝑒𝑠𝑖𝑛𝑔

𝑒π‘₯ = cosh π‘₯ + sinh π‘₯

𝑒π‘₯ = sinh π‘₯ Γ—cosh π‘₯

sinh π‘₯+ sinh π‘₯

𝑒π‘₯ = sinh π‘₯ . coth π‘₯ + sinh π‘₯

𝑒π‘₯ =1

csch π‘₯. coth π‘₯ +

1

csch π‘₯

𝑒π‘₯ =coth π‘₯

csch π‘₯+

1

csch π‘₯

𝑒π‘₯ =1 + coth π‘₯

csch π‘₯

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š 1

𝑒π‘₯ =1 + √1 + 𝑧2

𝑧

π‘‡π‘Žπ‘˜π‘–π‘›π‘” 𝑙𝑛 π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒π‘₯ = ln (1 + √1 + 𝑧2

𝑧)

π‘₯ ln 𝑒 = ln (1 + √1 + 𝑧2

𝑧)

π‘₯ = ln (1 + √1 + 𝑧2

𝑧)

sechβˆ’1 π‘₯ = ln (1 + √1 + 𝑧2

𝑧) ∎

Assignment Question # 3

π’Šπ’π’—π’†π’“π’”π’† π’•π’“π’Šπ’ˆπ’π’π’Žπ’†π’•π’“π’Šπ’„ π’‡π’–π’π’„π’•π’Šπ’π’:

I. πœπ¨π¬βˆ’πŸ 𝒛 =𝟏

π’Šπ₯𝐧(𝒛 + βˆšπ’›πŸ βˆ’ 𝟏)

Solution:

𝑙𝑒𝑑

π‘₯ = cosβˆ’1 𝑧

𝑧 = cos π‘₯ ⟢ 1

𝑒𝑠𝑖𝑛𝑔

sin2 π‘₯ +cos2 π‘₯ = 1

sin2 π‘₯ = 1 βˆ’ cos2 π‘₯

sin π‘₯ = √1 βˆ’ cos2 π‘₯

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š π‘’π‘ž 1

Page 7: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

6

sin π‘₯ = √1 βˆ’ 𝑧2

𝑒𝑠𝑖𝑛𝑔

𝑒𝑖π‘₯ = cos π‘₯ + 𝑖 sin π‘₯

𝑒𝑖π‘₯ = 𝑧 + π‘–βˆš1 βˆ’ 𝑧2

𝑒𝑖π‘₯ = 𝑧 + βˆšβˆ’1√1 βˆ’ 𝑧2 ∡ 𝑖 = βˆšβˆ’1

𝑒𝑖π‘₯ = 𝑧 + βˆšπ‘§2 βˆ’ 1

π‘‘π‘Žπ‘˜π‘–π‘›π‘” 𝑙𝑛 π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒𝑖π‘₯ = ln (𝑧 + βˆšπ‘§2 βˆ’ 1)

𝑖π‘₯ ln 𝑒 = ln (𝑧 + βˆšπ‘§2 βˆ’ 1)

π‘₯ =1

𝑖ln (𝑧 + βˆšπ‘§2 βˆ’ 1) ∡ ln 𝑒 = 1

cosβˆ’1 𝑧 =1

𝑖ln (𝑧 + βˆšπ‘§2 βˆ’ 1) ∎

II. π’•π’‚π’βˆ’πŸ 𝒛 =𝟏

πŸπ’Šπ’π’ (

𝟏+π’Šπ’›

πŸβˆ’π’Šπ’›)

Solution:

𝑙𝑒𝑑

π‘₯ = π‘‘π‘Žπ‘›βˆ’1 𝑧

tan π‘₯ = 𝑧

𝑧 =sin π‘₯

cos π‘₯

𝑧 =

𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

2𝑖𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯

2

∡ 𝑆𝑖𝑛 π‘₯ =𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

2𝑖; πΆπ‘œπ‘  π‘₯ =

𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯

2

𝑧 =𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

𝑖(𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯)

𝑧 =𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

𝑖(𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯)Γ—

𝑒𝑖π‘₯

𝑒𝑖π‘₯

𝑧 =𝑒𝑖π‘₯+𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯+𝑖π‘₯

𝑖(𝑒𝑖π‘₯+𝑖π‘₯ + π‘’βˆ’π‘–π‘₯+𝑖π‘₯)

𝑧 =𝑒2𝑖π‘₯ βˆ’ 𝑒0

𝑖(𝑒2𝑖π‘₯ + 𝑒0)

𝑧 =𝑒2𝑖π‘₯ βˆ’ 1

𝑖(𝑒2𝑖π‘₯ + 1) ∡ 𝑒0=1

𝑧𝑖(𝑒2𝑖π‘₯ + 1) = 𝑒2𝑖π‘₯ βˆ’ 1

Page 8: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

7

𝑧𝑒2𝑖π‘₯ + 𝑧𝑖 = 𝑒2𝑖π‘₯ βˆ’ 1

𝑧𝑖𝑒2𝑖π‘₯ βˆ’ 𝑒2𝑖π‘₯ = βˆ’π‘–π‘§ βˆ’ 1

𝑒2𝑖π‘₯(𝑧𝑖 βˆ’ 1) = βˆ’(𝑖𝑧 + 1)

βˆ’π‘’2𝑖π‘₯(𝑧𝑖 βˆ’ 1) = (𝑖𝑧 + 1)

𝑒2𝑖π‘₯(1 βˆ’ 𝑖𝑧) = (1 + 𝑖𝑧)

𝑒2𝑖π‘₯ =(1 + 𝑖𝑧)

(1 βˆ’ 𝑖𝑧)

π‘‘π‘Žπ‘˜π‘–π‘›π‘” ln π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒2𝑖π‘₯ = ln(1 + 𝑖𝑧)

(1 βˆ’ 𝑖𝑧)

2𝑖π‘₯𝑙𝑛 𝑒 = ln(1 + 𝑖𝑧)

(1 βˆ’ 𝑖𝑧)

π‘₯ ln 𝑒 =1

2𝑖ln

(1 + 𝑖𝑧)

(1 βˆ’ 𝑖𝑧)

tanβˆ’1 𝑧 =1

2𝑖ln

(1 + 𝑖𝑧)

(1 βˆ’ 𝑖𝑧)∎ ∡ ln 𝑒 = 1

III. πœπ¨π­βˆ’πŸ 𝐳 =𝟏

𝟐𝐒π₯𝐧

( 𝐒+𝐳 )

( π³βˆ’π’ )

Solution

𝑙𝑒𝑑

π‘₯ = cotβˆ’1 𝑧

β‡’ 𝑧 = cot π‘₯

𝑧 =cos π‘₯

sin π‘₯

𝑧 =

𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯

2𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

2𝑖

∡ 𝑆𝑖𝑛 π‘₯ =𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

2𝑖; πΆπ‘œπ‘  π‘₯ =

𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯

2

𝑧 = (𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯)𝑖

𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯

𝑧 =(𝑒𝑖π‘₯ + π‘’βˆ’π‘–π‘₯)𝑖

𝑒𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯Γ—

𝑒𝑖π‘₯

𝑒𝑖π‘₯

𝑧 =𝑖(𝑒𝑖π‘₯+𝑖π‘₯ βˆ’ π‘’βˆ’π‘–π‘₯+𝑖π‘₯)

(𝑒𝑖π‘₯+𝑖π‘₯ + π‘’βˆ’π‘–π‘₯+𝑖π‘₯)

𝑧 =𝑖(𝑒2𝑖π‘₯ βˆ’ 𝑒0)

(𝑒2𝑖π‘₯ + 𝑒0)

Page 9: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

8

𝑧 =𝑖(𝑒2𝑖π‘₯ βˆ’ 1)

(𝑒2𝑖π‘₯ + 1)

𝑧(𝑒2𝑖π‘₯ + 1) = 𝑖(𝑒2𝑖π‘₯ βˆ’ 1)

𝑧𝑒2𝑖π‘₯ + 𝑧 = 𝑖𝑒2𝑖π‘₯ βˆ’ 𝑖

𝑧𝑒2𝑖π‘₯ βˆ’ 𝑖𝑒2𝑖π‘₯ = βˆ’π‘– βˆ’ 𝑧

𝑒2𝑖π‘₯(𝑧 βˆ’ 𝑖) = βˆ’(𝑧 + 𝑖)

βˆ’π‘’2𝑖π‘₯(𝑧 βˆ’ 𝑖) = (𝑖 + 𝑧)

𝑒2𝑖π‘₯(𝑖 βˆ’ 𝑧) = (𝑖 + 𝑧)

𝑒2𝑖π‘₯ =(𝑖 + 𝑧)

(𝑖 βˆ’ 𝑧)

π‘‘π‘Žπ‘˜π‘–π‘›π‘” ln π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒2𝑖π‘₯ = ln(𝑖 + 𝑧)

(𝑖 βˆ’ 𝑧)

2𝑖π‘₯ ln 𝑒 = ln(𝑖 + 𝑧)

(𝑖 βˆ’ 𝑧)

2𝑖π‘₯ = ln(𝑖 + 𝑧)

(𝑖 βˆ’ 𝑧)

π‘₯ =1

2𝑖ln

(𝑖 + 𝑧)

(𝑖 βˆ’ 𝑧)

cotβˆ’1 𝑧 =1

2𝑖ln

(𝑖 + 𝑧)

(𝑖 βˆ’ 𝑧)

IV. secβˆ’1 𝑧 =1

𝑖ln

1+√1βˆ’π‘§2

𝑧

π’”π’π’π’–π’•π’Šπ’π’:

𝑙𝑒𝑑

π‘₯ = π‘ π‘’π‘βˆ’1 𝑧

sec π‘₯ = 𝑧 ⟢ 1

𝑒𝑠𝑖𝑛𝑔

1 + tan2 π‘₯ = sec2 π‘₯

sec2 π‘₯ βˆ’ 1 = tan2 π‘₯

tan π‘₯ = √sec2 π‘₯ βˆ’ 1 ⟢ 2

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š 1

tan π‘₯ = βˆšπ‘§2 βˆ’ 1

Page 10: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

9

𝑒𝑠𝑖𝑛𝑔

𝑒𝑖π‘₯ = cos π‘₯ + 𝑖 sin π‘₯

𝑒𝑖π‘₯ =1

sec π‘₯+ 𝑖

sin π‘₯

cos π‘₯Γ— cos π‘₯

𝑒𝑖π‘₯ =1

sec π‘₯+ 𝑖

tan π‘₯

sec π‘₯

𝑒𝑖π‘₯ =1 + 𝑖 tan π‘₯

sec π‘₯

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š 1 π‘Žπ‘›π‘‘ 2

𝑒𝑖π‘₯ =1 + π‘–βˆšπ‘§2 βˆ’ 1

𝑧

𝑒𝑖π‘₯ =1 + βˆšβˆ’1βˆšπ‘§2 βˆ’ 1

𝑧 ∡ 𝑖 = βˆšβˆ’1

𝑒𝑖π‘₯ =1 + √1 βˆ’ 𝑧2

𝑧

π‘‘π‘Žπ‘˜π‘–π‘›π‘” ln π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒𝑖π‘₯ = ln (1 + √1 βˆ’ 𝑧2

𝑧)

𝑖π‘₯ ln 𝑒 = ln (1 + √1 βˆ’ 𝑧2

𝑧)

π‘₯ =1

𝑖ln (

1 + √1 βˆ’ 𝑧2

𝑧) ∡ ln 𝑒 = 1

secβˆ’1 𝑧 = 1

𝑖ln (

1 + √1 βˆ’ 𝑧2

𝑧) ∎ ∡ π‘₯ = secβˆ’1 𝑧

V. cscβˆ’1 𝑧 =1

𝑖ln (

1+βˆšπ‘§2βˆ’1

𝑧)

π’”π’π’π’–π’•π’Šπ’π’:

𝑙𝑒𝑑

π‘₯ = cscβˆ’1 𝑧

csc π‘₯ = 𝑧 ⟢ 1

𝑒𝑠𝑖𝑛𝑔

1 + cot2π‘₯ = csc2 π‘₯

csc2 π‘₯ βˆ’ 1 = cot2π‘₯

𝑧2 βˆ’ 1 = cot2π‘₯

cot π‘₯ = βˆšπ‘§2 βˆ’ 1 ⟢ 2

𝑒𝑠𝑖𝑛𝑔

Page 11: calculus to be submitted assignmr.pdf

π‘π‘Žπ‘™π‘π‘’π‘™π‘’π‘ 

10

𝑒𝑖π‘₯ = cos π‘₯ + 𝑖 sin π‘₯

𝑒𝑖π‘₯ = sin π‘₯ Γ—cos π‘₯

sin π‘₯+

𝑖

csc π‘₯

𝑒𝑖π‘₯ =cot π‘₯

csc π‘₯+

𝑖

csc π‘₯

𝑒𝑖π‘₯ =𝑖 + cot π‘₯

csc π‘₯

𝑝𝑒𝑑𝑑𝑖𝑛𝑔 π‘£π‘Žπ‘™π‘’π‘’π‘  π‘“π‘Ÿπ‘œπ‘š 1 π‘Žπ‘›π‘‘ 2

𝑒𝑖π‘₯ =𝑖 + βˆšπ‘§2 βˆ’ 1

𝑧

π‘‘π‘Žπ‘˜π‘–π‘›π‘” ln π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

ln 𝑒𝑖π‘₯ = ln𝑖 + βˆšπ‘§2 βˆ’ 1

𝑧

𝑖π‘₯ 𝑙𝑛 𝑒 = ln𝑖 + βˆšπ‘§2 βˆ’ 1

𝑧

π‘₯ =1

𝑖ln

𝑖 + βˆšπ‘§2 βˆ’ 1

𝑧 ∡ ln 𝑒 = 1

cscβˆ’1 𝑧 =1

𝑖ln

𝑖 + βˆšπ‘§2 βˆ’ 1

π‘§βˆŽ ∡ π‘₯ = cscβˆ’1 𝑧