calculating proximal tubule cell number10.1208... · web viewusing these two values as the minimum...

31
Supplementary Material for “Key to Opening Kidney for In Vitro–In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data” by Scotcher et al. Contents 1. CALCULATING PROXIMAL TUBULE CELL NUMBER...............................1 2. TABLE S-I.............................................................3 3. TABLE S-II............................................................7 4. TABLE S-III..........................................................10 5. TABLE S-IV...........................................................13 6. REFERENCES FOR TABLES I AND IV AND FIGURE 3 IN MAIN TEXT.............15 7. REFERENCES...........................................................16 1. Calculating proximal tubule cell number Strategy 1. Multiplying “number of proximal tubule cells per mm proximal tubule” by “total length of proximal tubule in kidney” PTC d = 6.1 cells/ cross section proximal tubule (1) PTC l = 3.6 cells/ 100 µm proximal tubule length (1) L PT = 18 mm (2) N PT = 900,000 proximal tubules per kidney (3-5) PTC kidney =PTC d ×PTC l ×L PT ×N PT PTC kidney = 3.95 billion proximal tubule cells per kidney Where PTC d , PTC l and PTC kidney are the number of proximal tubule cells per cross section of proximal tubule, per 100 µm proximal tubule length and per human kidney, and L PT and N PT are the average length and number of proximal tubules per human kidney, respectively. The reported values of total proximal tubule cells per mm of proximal tubule (i.e. PTC d ×PTC l ) in rabbit were 278, 281 and 204 for segments S 1 , S 2 and S 3 , 300 and 825 cells/ mm tubule (6-8), although these were not measured using stereological methodology. Analogous 1

Upload: dangdiep

Post on 30-Mar-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

Supplementary Material for “Key to Opening Kidney for In Vitro–In Vivo Extrapolation Entrance in Health and Disease: Part I: In Vitro Systems and Physiological Data” by Scotcher et al.

Contents1. CALCULATING PROXIMAL TUBULE CELL NUMBER..................................................................................1

2. TABLE S-I.............................................................................................................................................. 3

3. TABLE S-II............................................................................................................................................. 7

4. TABLE S-III.......................................................................................................................................... 10

5. TABLE S-IV.......................................................................................................................................... 13

6. REFERENCES FOR TABLES I AND IV AND FIGURE 3 IN MAIN TEXT.........................................................15

7. REFERENCES....................................................................................................................................... 16

1. Calculating proximal tubule cell number Strategy 1. Multiplying “number of proximal tubule cells per mm proximal tubule” by “total length of proximal tubule in kidney”

PTCd = 6.1 cells/ cross section proximal tubule (1)

PTCl = 3.6 cells/ 100 µm proximal tubule length (1)

LPT = 18 mm (2)

NPT = 900,000 proximal tubules per kidney (3-5)

PTCkidney=PTCd× PTC l× LPT×N PT

PTCkidney = 3.95 billion proximal tubule cells per kidney

Where PTCd, PTCl and PTCkidney are the number of proximal tubule cells per cross section of proximal tubule, per 100 µm proximal tubule length and per human kidney, and LPT and NPT

are the average length and number of proximal tubules per human kidney, respectively.

The reported values of total proximal tubule cells per mm of proximal tubule (i.e. PTCd

×PTCl) in rabbit were 278, 281 and 204 for segments S1, S2 and S3, 300 and 825 cells/ mm tubule (6-8), although these were not measured using stereological methodology. Analogous values for the cellularity of other regions of the nephron have also been reported for rabbit (8). The corresponding value calculated as above for human was at the lower end of this range, 219.6 proximal tubule cells per mm proximal tubule.

Assuming a kidney weight of 131 g (4), it follows that there are approximately 30.2 million proximal tubule cells per gram kidney. Further assuming that the cortex contributes 72% of kidney volume (and also mass) (9), 41.9 million proximal tubule cells per gram cortical kidney tissue is calculated.

1

Strategy 2. Dividing total volume of proximal tubule epithelium wall by volume of a single proximal tubule cell.

If the volume of the proximal tubule epithelium is assumed to be 0.00148 mm3/ mm tubular length (10), and the proximal tubule length and number of proximal tubules per kidney assumed to be 18 mm and 900,000 tubules/ kidney as above, the total volume of proximal tubule epithelium can be calculated as 23976 mm3/ kidney. Alternatively, if the total volume of cortex is assumed to be 106 mL/ kidney (average of male and female for all ages) (9), and that 34.9% of cortex is proximal tubule epithelium by volume (10), then the total volume of proximal tubule epithelium can be calculated as 36990 mm3/ kidney.

Using these two values as the minimum (23976 mm3/ kidney) and maximum (36990 mm3/ kidney) volume of proximal tubule epithelium, and 1350 and 3521 µm3 as the minimum and maximum volumes of a single proximal tubule cell (11-13), the inferred number of proximal tubule cells ranges from 6.81 to 27.40 billion cells/ kidney. This equates to 52.0 to 209.2 million proximal tubule cells/ gram kidney (assuming kidney weight of 131 g (4)).

2

2. Table S-I Table S-I. Expression of SLC Family Drug Transporters in the Human and Rodent Kidney

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

hOCT1

(SLC22A1)

+ (RT-PCR; NS) (14)+ (MA; NS) (15)- (RT-PCR; NS) (16)+ (RT-PCR; NS) (17)+ (NS; NS) (18)- (RT-PCR; C) (19)+ (RT-PCR) (20)

PT, DT (IHC) (18) AP (IHC) (18) rOCT1

(Slc22a1)

5.20 fmol/µg (MS; K) (21) c

+++ (BDA; NS) (22)+ (BDA; NS) (23)+++ (MA; NS) (15)+ (BDA; NS) (24)

S2, S3>S1 (ISH) (25)S1, S2>S3 (IHC) (25)C>OS (IHC) (26)

BL (IHC, WB) (25)

mOCT1

(Slc22a1)

+++ (BDA; NS) (27)

hOCT2

(SLC22A2)

++ (RT-PCR; NS) (14)+++ (MA; NS) (15)++ (RT-PCR; NS) (16)++ (RT-PCR; NS) (17)++ (RT-PCR; C) (19)+ (RT-PCR; C) (28)

PT (IHC) (18)PT (IHC) (19)DT (ISH, IHC) (29) a

BL (IHC) (18)BL (IHC) (19)AP (IHC) (29)

rOct2

(Slc22a2)

+++ (BDA; NS) (22)+ (BDA; NS) (23)+++ (MA; NS) (15)+++ (BDA; NS) (24)

OS>C (ISH) (25)S2, S3>S1 (IHC) (25)OS>C (IHC) (26)

BL (IHC, WB) (25) BL (WB) (26)

mOct2

(Slc22a2)

+++ (BDA; NS; Male) (27)++ (BDA; NS; Female) (27)

hOCT3

(SLC22A3)

+ (RT-PCR; NS) (14)+ (MA; NS) (15)+ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)+(RT-PCR; C) (19)

C>M; PT, DT (ISH) (30)

rOct3

(Slc22a3)

++ (BDA; NS) (22)+ (BDA; NS) (23)+ (MA; NS) (15)- (BDA; NS) (24)

mOct3

(Slc22a3)

- (MS; C; M) (31) b

- (BDA; NS) (27)

hOCTN1

(SLC22A4)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)- (RT-PCR; C) (19)

rOctn1

(Slc22a4)

++ (BDA; NS) (22)+ (BDA; NS) (23)++ (MA; NS) (15)- (BDA; NS) (24)

OS> C, M; G, PT, DT (ISH) (32)

mOctn1 + (BDA; NS) (27) C; PT (IHC) (33) AP (33)

3

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

(Slc22a4)

hOCTN2

(SLC22A5)

++ (RT-PCR; NS) (14)+++ (MA; NS) (15)+ (RT-PCR; NS) (16)++ (RT-PCR; NS) (17)+ (RT-PCR; C) (19)

PT (IHC) (34) AP (34) rOctn2

(Slc22a5)

+++ (BDA; NS) (22)+ (BDA; NS) (23)+++ (MA; NS) (15)+++ (BDA; NS) (24)

C; G, PT, DT (ISH) (35)PT (IHC) (36)

AP (IHC) (36)

mOctn2

(Slc22a5)

++ (BDA; NS) (27) C; PT (IHC) (33) AP (33)

rOctn3

(Slc22a9)

S2, S3 (IHC) (37) AP (IHC) (37)

mOctn3

(Slc22a9)

+ (RT-PCR, WB; NS) (38)- (BDA; NS) (27)

hOAT1

(SLC22A6)

+++ (RT-PCR; NS) (14)+++ (MA; NS) (15)+++ (RT-PCR; NS) (16)+++ (RT-PCR; NS) (17)++ (RT-PCR; C) (19)++ (RT-PCR; C) (28)

PT (IHC) (39)PT (IHC) (19)

BL (IHC) (39)BL (IHC) (19)BL (IHC) (28)

rOat1

(Slc22a6)

10.5 fmol/ µg (MS; K) (21) c

+++ (BDA; NS) (22)+++ (BDA; NS) (23)++ (BDA; NS) (24)

C (WB); PT (IHC) (40)PT, Male>Female (IHC) (41)

BL (IHC) (40)BL (IHC) (41)

mOat1

(Slc22a6)

12.7 fmol/ ug (MS; C) (31) b

3.00 fmol/ µg (MS; M) (31) b

C, PT (IHC) (42)S1, S2 (IHC) (43)

BL (IHC) (42)BL (IHC) (43)

hOAT2

(SLC22A7)

+ (RT-PCR NS) (14)+++ (MA; NS) (15)+ (RT-PCR; NS) (16)+ (RT-PCR; NS) (17)+ (RT-PCR; C) (19)++ (RT-PCR; C) (28)

PT (IHC) (44) BL (IHC) (44)BL (IHC) (28)

rOat2

(Slc22a7)

+ (BDA; NS) (22)++ (BDA; NS) (23)- (BDA; NS) (24)

TAL (IHC) (45)S3, F>M (IHC, WB) (46)

AP (IHC) (45)AP (IHC) (46)

mOat2

(Slc22a7)

S3, F>M (IHC, WB) (46)

AP (IHC) (46)

hOAT3

(SLC22A8)

+++ (RT-PCR; NS) (14)+++ (MA; NS) (15)++ (RT-PCR; NS) (16)+++ (RT-PCR; NS) (17)+++ (RT-PCR; C) (19)

PT (IHC) (47)PT (IHC) (19)

BL (IHC) (47)BL (IHC) (19)BL (IHC) (28)

rOat3

(Slc22a8)

6.71 fmol/ µg (MS; K) (21) c

+++ (BDA; NS) (22)+++ (BDA; NS) (23)+++ (BDA; NS) (24)

PT, TAL, CD (IHC) (45)S1, S2, S3 (IHC) (48)

BL (IHC) (45)BL (IHC) (48)

mOat3 4.66 fmol/ µg (MS; C) (31) b S1, S2, S3, TAL, DT, BL (IHC) (43)

4

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

+++ (RT-PCR; C) (28) (Slc22a8) 0.94 fmol/ µg (MS; M) (31) b CD (IHC) (43)

hOAT4

(SLC22A11)

++ (RT-PCR; NS) (14)+ (MA; NS) (15)++ (RT-PCR; NS) (16)+ (RT-PCR; C) (19)

PT (IHC) (49)PT (IHC) (50)PT (IHC) (51)

AP (IHC) (49)AP (IHC) (50)AP (IHC) (51)

rOat5

(SLC22A19)

+++ (RT-PCR; NS) (48) S2, S3 (IHC) (48) AP (48)

mOat5

(SLC22A19)

+++ (BDA; F; NS) (52)++ (BDA; M; NS) (52)

hPEPT1

(SLC15A1)

+ (RT-PCR; NS) (14)+ (MA; NS) (15)+ (RT-PCR; NS) (16)++ (RT-PCR; NS) (17)

rPept1

(Slc15a1)

+ (BDA; NS) (22)+ (BDA; NS) (23)- (BDA; NS) (24)++ (BDA; NS) (53)

S1 (PCR, ISH) (54)S1 (IHC) (55)

AP (IHC) (55)

mPept1

(Slc15a1)

- (BDA; NS) (53)

hPEPT2

(SLC15A2)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)

PT (IHC) (56) AP (IHC) (56) rPept2

(Slc15a2)

++ (BDA; NS) (22)++ (BDA; NS) (23)- (BDA; NS) (24)+++ (BDA; NS) (53)

S3 (PCR, ISH) (54)S3 (IHC) (55)

AP (IHC) (55)

mPept2

(Slc15a2)

+++ (BDA; NS) (53)

hMATE1

(SLC47A1)

+++ (BDA; NS) (34) PT (IHC) (34)PT, DT (IHC) (57)

AP (IHC) (34)AP (IHC) (57)

rMate1

(Slc47a1)

++ (WB; NS) (58) PT (IHC) (58) AP (IHC) (58)

mMate1 6.35 fmol/ µg (MS; C) (31) b

1.37 fmol/ µg (MS; M) (31) b

PT, LoH, CD (IHC) (57)

AP (IHC) (57)

5

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

(Slc47a1) +++ (BDA; NS) (59)

hMATE2-K

(SLC47A2)

+++ (BDA; NS) (34) PT (IHC) (34) AP (IHC) (34) mMate2

(Slc47a2)

- (BDA; NS) (59)

Key: +++ High; ++ Medium; + Low; - Absent or not quantified; NS Not specified; RT-PCR Real time polymerase chain reaction; WB Western Blot; IHC Immunohistochemistry; BDA Branched DNA assay; MA Microarray (hybridisation); MS liquid chromatography–tandem mass spectrometer (LC-MS/MS); ISH in situ hybridisation; K Whole kidney; C cortex; M medulla; OS outer stripe; G glomeruli, PT proximal tubule; S1/2/3 segment 1/2/3 of proximal tubule; TLH thin limb of loop of Henle, LoH Loop of Henle, TAL thick ascending limb of loop of Henle, DT distal tubule, CD collecting duct, BL basolateral membrane; AP brush-border (apical) membrane;

a Although an early study reported hOCT2 to be expressed at the apical membrane of distal tubule cells, the consensus opinion, based on subsequent studies, is that hOCT2 is expressed at the basolateral membrane of the proximal tubules (60); b Proteomics data per µg of plasma membrane protein (31); c Abundance per µg of total membrane protein (21)

6

3. Table S-II Table S-II. Expression of ABC Family Drug Transporters in the Human and Rodent Kidney

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

KidneyAbundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

hMDR1

(ABCB1)

++ (RT-PCR; NS) (14)++ (MA; NS) (15)++ (RT-PCR; NS) (16)+ (RT-PCR; NS) (17)++ (RT-PCR; NS) (61)

PT (IHC) (62)PT (IHC) (63)

AP (IHC) (62)AP (IHC) (63)

rMdr1a

(Abcb1a)

0.68 fmol/ µg (MS; K) (21) b

+ (BDA; NS) (22)- (BDA; NS) (23)- (BDA; NS) (24)++ (RT-PCR; NS) (61)

mMdr1a

(Abcb1a)

- (MS; C; M) (31) a

++ (RT-PCR; NS) (61)

rMdr1b

(Abcb1a)

+ (BDA; NS) (22)+ (BDA; NS) (23)- (BDA; NS) (24)++ (RT-PCR; NS) (61)

mMdr1b

(Abcb1a)

- (MS; C; M) (31) a

++ (RT-PCR; NS) (61)

hMRP1

(ABCC1)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

G, DT, CD (IHC) (64) BL (64) rMrp1

(Abcc1)

+ (BDA; NS) (22)+ (BDA; NS) (23)- (BDA; NS) (24)

mMrp1

(Abcc1)

- (MS; C; M) (31) a

+ (WB; NS) (64)+ (BDA; NS) (65)

G, DT, CD (IHC) (64)TLH, CD (IHC) (66)

BL (IHC) (64)

hMRP2

(ABCC2)

++ (RT-PCR; NS) (14)++ (MA; NS) (15)++ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

PT (IHC) (67)PT (IHC) (68)PT (IHC) (69)

AP (IHC) (67)AP (IHC) (68)AP (IHC) (69)

rMrp2

(Abcc2)

++ (BDA; NS) (22)+ (BDA; NS) (23)- (BDA; NS) (24)

S1, S2, S3 (IHC) (70) AP (IHC) (70)

mMrp2

(Abcc2)

4.94 fmol/ µg (MS; C) (31) a

- (MS; M) (31) a

++ (BDA; NS) (65)

7

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

KidneyAbundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

hMRP3

(ABCC3)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)-(RT-PCR; NS) (17)

TLH, CD (IHC) (71) rMrp3

(Abcc3)

+ (BDA; NS) (22)+ (BDA; NS) (23)- (BDA; NS) (24)

PT (IHC) (72) BL (IHC) (72)

mMrp3

(Abcc3)

- (MS; C; M) (31) a

+ (BDA; NS) (65)+ (BDA; M; NS) (73)++ (BDA; F; NS) (73)

hMRP4

(ABCC4)

++ (RT-PCR; NS) (14)+ (MA; NS) (15)++ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)+ (RT-PCR; NS) (61)

PT (IHC) (69) AP (IHC) (69) rMrp4

(Abcc4)

0.54 fmol/ µg (MS; K) (21) b

+ (BDA; NS) (22)+ (BDA; NS) (23)+ (BDA; NS) (24)+ (RT-PCR; NS) (61)

mMrp4

(Abcc4)

0.22 fmol/ µg (MS; M) (31) a

0.72 fmol/ µg (MS; C) (31) a

+ (BDA; M; NS) (65)++ (BDA; F; NS) (65)+ (RT-PCR; NS) (61)

hMRP5

(ABCC5)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

rMrp5

(Abcc5)

+ (BDA; NS) (22)- (BDA; NS) (23)- (BDA; NS) (24)

mMrp5

(Abcc5)

- (MS; C; M) (31) a

+ (BDA; NS) (65)

hMRP6

(ABCC6)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

PT (IHC) (68) BL (IHC) (68) rMrp6

(Abcc6)

+ (BDA; NS) (22)- (BDA; NS) (23)- (BDA; NS) (24)

mMrp6

(Abcc6)

- (MS; C; M) (31) a

- (BDA; NS) (24)+ (BDA; NS) (65)

8

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

KidneyAbundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

hBCRP

(ABCG2)

+ (RT-PCR; NS) (14)+ (MA; NS) (15)+ (RT-PCR; NS) (16)+ (RT-PCR; NS) (61)

PT (IHC) (61) BL (IHC) (61) rBCRP

(Abcg2)

15.9 fmol/ µg (MS; K) (21) b

+ (RT-PCR; NS) (61)

mBCRP

(Abcg2)

+ (RT-PCR; NS) (61)

Key: +++ High; ++ Medium; + Low; - Absent; NS Not specified; RT-PCR Real time polymerase chain reaction; IHC Immunohistochemistry; BDA Branched DNA assay; MA Microarray (hybridisation); MS liquid chromatography–tandem mass spectrometer; ISH in situ hybridisation; K Whole kidney; C cortex; M medulla; OS outer stripe; G glomeruli, PT proximal tubule; S1/2/3 segment 1/2/3 of proximal tubule; TLH thin limb of loop of Henle, DT distal tubule, CD collecting duct, BL basolateral membrane; AP brush-border (apical) membrane

a Abundance per µg of plasma membrane protein (31); b Abundance per µg of total membrane protein (21)

9

4. Table S-III Table S-III. Expression of OATP Family Drug Transporters n the Human and Rodent Kidney

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

KidneyAbundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

rOatp1a1

(Slco1a1)

+++ (BDA; NS) (22)- (BDA; NS) (23)+ (BDA; NS) (24)

S3 (IHC) (74) AP (IHC) (74)

mOatp1a1

(Slco1a1)

12.1 fmol/ µg (MS; C) (31) a

2.86 fmol/ µg (MS; M) (31) a

M>F (75)

hOATP1A2

(SLCO1A2)

+ (RT-PCR; NS) (14)- (MA; NS) (15)- (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

DT (IHC) (76) AP (IHC) (76)

rOatp1a3

(Slco1a3)

+++ (BDA; NS) (22)+ (BDA; NS) (23)+++ (BDA; NS) (24)

rOatp1a4

(Slco1a4)

+ (BDA; NS) (22)- (BDA; NS) (23)- (BDA; NS) (24)

mOatp1a4

(Slco1a4)

- (MS; C; M) (31) a

rOatp1a5

(Slco1a5)

+ (BDA; NS) (22)- (BDA; NS) (23)- (BDA; NS) (24)

rOatp1a6

(Slco1a6)

+++ (BDA; NS) (22)+++ (BDA; NS) (23)+++ (BDA; NS) (24)

hOATP1B1 - (RT-PCR; NS) (14)- (MA; NS) (15)

10

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

KidneyAbundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

(SLCO1B1) - (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

rOatp1b2

(Slco1b2)

+ (BDA; NS) (22)- (BDA; NS) (23)- (BDA; NS) (24)

hOATP1B3

(SLCO1B3)

+ (RT-PCR; NS) (14)- (MA; NS) (15)

hOATP1C1

(SLCO1C1)

+ (RT-PCR; NS) (14)- (MA; NS) (15)- (RT-PCR; NS) (16)

rOatp1c1

(Slco1c1)

- (MS; C; M) (31) a

hOATP2A1

(SLCO2A1)

++ (MA; NS) (15) rOatp2a1

(Slco2a1)

CD (IHC) (77)DT, CD (IHC) (78)

AP (IHC) (77)

hOATP2B1

(SLCO2B1)

+ (RT-PCR; NS) (14)+ (MA; NS) (15)+ (RT-PCR; NS) (16)+ (RT-PCR; NS) (17)

rOatp2b1

(Slco2b1)

+ (BDA; NS) (22)+ (BDA; NS) (23)- (BDA; NS) (24)

hOATP3A1

(SLCO3A1)

+ (RT-PCR; NS) (14)++ (MA; NS) (15)+ (RT-PCR; NS) (16)- (RT-PCR; NS) (17)

rOatp3a1

(Slco3a1)

M>F (75) DT, CD (IHC) (78)

hOATP4A1

(SLCO4A1)

+ (RT-PCR; NS) (14)+ (MA; NS) (15)+ (RT-PCR; NS) (16)

rOatp4a1

(Slco4a1)

+ (BDA; NS)(22)+ (BDA; NS) (23)- (BDA; NS) (24)

hOATP4C1

(SLCO4C1)

++ (RT-PCR; NS) (14)+++ (MA; NS) (15)

rOatp4c1

(Slco4c1)

S1, S2, S3 (RT-PCR, IHC) (79)

BL (IHC) (79)

hOATP5A1

(SLCO5A1)

- (MA; NS) (15)- (RT-PCR; NS) (16)

rOatp5a1

(Slco5s1)

11

Human Rodent

Transporter(Gene)

Kidney Abundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

Transporter(Gene)

KidneyAbundance(Method; Region)

KidneyLocalisation(Method)

Cell Localisation(Method)

hOATP6A1

(SLCO6A1)

rOatp6b1

(Slco6b1)

- (BDA; NS) (22)

Key: +++ High; ++ Medium; + Low; - Absent; NS Not specified; RT-PCR Real time polymerase chain reaction; IHC Immunohistochemistry; BDA Branched DNA assay; MA Microarray (hybridisation); ISH in situ hybridisation; K Whole kidney; C cortex; M medulla; OS outer stripe; S1/2/3 segment 1/2/3 of proximal tubule; DT distal tubule, CD collecting duct, BL basolateral membrane; AP brush-border (apical) membrane

a Proteomics data per µg of plasma membrane protein (31)

12

5. References for tables I and IV and figure 2 in main text

5.1 References for Table IProtein References

CYP3A5 (80-87)

CYP2D6 (86-90)

FMO1 (86, 87, 91-97)

ADH/ ALDH (87, 97-100)

CES2 (87, 97, 101-107)

AKR1A1 (87, 108-111)

UGT1A9 (86, 87, 97, 112-120)

UGT2B7 (86, 87, 97, 113, 114, 117-124)

GSTM3 (97, 125, 126)(87, 127-132)

GSTP1 (87, 125, 129-134)

MGST1/2/3 (87, 131, 135-137)

5.2 References for Table IV

Disease References

Autosomal dominant polycystic kidney disease (138, 139)

Acquired cystic kidney disease (140-143)

Hypertensive nephrosclerosis (144)

Chronic ischaemic renal disease (144, 145)

Chronic glomerulonephritis (1, 144, 146, 147)

Diabetic nephropathy (144, 147-151)

HIV-associated nephropathy (152)

CKD – aetiology unspecified/ mixed (153-156)

13

6. References 1. Garcia-Caceres U, Ortega J. Studies of tubular alterations in diffuse renal disease. II. Quantitative evaluation of cellularity and length of proximal convoluted tubules in the kidney of lupus nephritis. Am J Pathol. 1967;50(6):1009–26.2. Pitts RF. Physiology of the kidney and body fluids: An introductory text: Chicago: Year Book Medical Publishers; 1974.3. Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF. A stereological study of glomerular number and volume: Preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int. 2003;63:S31-S7.4. Nyengaard J, Bendtsen T. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec. 1992;232(2):194-201.5. Puelles VG, Hoy WE, Hughson MD, Diouf B, Douglas-Denton RN, Bertram JF. Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens. 2011;20(1):7-15.6. Welling L, Welling D, Holsapple J, Evan A. Morphometric analysis of distinct microanatomy near the base of proximal tubule cells. Am J Physiol Renal Physiol. 1987;253(1):F126-F40.7. Welling LW, Welling DJ. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron. Kidney Int. 1976;9(5):385-94.8. Garg L, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol Renal Physiol. 1981;240(6):F536-F44.9. Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int. 2014;85(3):677-85.10. Møller JC, Skriver E. Quantitative ultrastructure of human proximal tubules and cortical interstitium in chronic renal disease (hydronephrosis). Virchows Archiv A. 1985;406(4):389-406.11. Tiedemann K, Welling LW, Basto P. Structural and functional comparison of mesonephric and metanephric proximal tubules. Pediatr Nephrol. 1987;1(3):297-304.12. Nyengaard J, Flyvbjerg A, Rasch R. The impact of renal growth, regression and regrowth in experimental diabetes mellitus on number and size of proximal and distal tubular cells in the rat kidney. Diabetologia. 1993;36(11):1126-31.13. Gonçalves V, Sobrinho-Simões M. Comparative morphometric study of the cells of the third proximal segment of the rat kidney under different conditions of fixation. Experientia. 1977;33(6):761-2.14. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos. 2007;35(8):1333-40.15. Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: A resource for investigations into drug disposition. Xenobiotica. 2006;36(10-11):963-88.16. Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005;20(6):452-77.17. Alcorn J, Lu X, Moscow JA, McNamara PJ. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J Pharmacol Exp Ther. 2002;303(2):487-96.18. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T, Sehrt D, et al. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther. 2009;86(3):299-306.

14

19. Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002;13(4):866-74.20. Morrissey K, Wen C, Johns S, Zhang L, Huang S, Giacomini K. The UCSF-FDA transportal: A public drug transporter database. Clin Pharmacol Ther. 2012;92(5):545-6.21. Uchida Y, Toyohara T, Ohtsuki S, Moriyama Y, Abe T, Terasaki T. Quantitative targeted absolute proteomics for 28 transporters in brush‐border and basolateral membrane fractions of rat kidney. J Pharm Sci. 2016;105(2):1011-6.22. Augustine LM, Markelewicz RJ, Jr., Boekelheide K, Cherrington NJ. Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. Drug Metab Dispos. 2005;33(1):182-9.23. Leazer TM, Klaassen CD. The presence of xenobiotic transporters in rat placenta. Drug Metab Dispos. 2003;31(2):153-67.24. Choudhuri S, Cherrington NJ, Li N, Klaassen CD. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos. 2003;31(11):1337-45.25. Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, et al. Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol. 2000;279(4):F679-F87.26. Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, et al. Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol. 2000;114(3):175-80.27. Alnouti Y, Petrick JS, Klaassen CD. Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab Dispos. 2006;34(3):477-82.28. Cheng Y, Vapurcuyan A, Shahidullah M, Aleksunes LM, Pelis RM. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab Dispos. 2012;40(3):617-24.29. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871-81.30. Wu XA, Huang W, Ganapathy ME, Wang HP, Kekuda R, Conway SJ, et al. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol. 2000;279(3):F449-F58.31. Kamiie J, Ohtsuki S, Iwase R, Unine K, Katsukura Y, Yanai K, et al. Quantitative atlas of membrane transporter proteins: Development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res. 2008;25(6):1469-83.32. Wu X, George RL, Huang W, Wang HP, Conway SJ, Leibach FH, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. BBA-Biomembranes. 2000;1466(1-2):315-27.33. Tamai I, Nakanishi T, Kobayashi D, China K, Kosugi Y, Nezu J, et al. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol Pharm. 2004;1(1):57-66.34. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17(8):2127-35.35. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290(3):1482-92.36. Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, et al. Na+-coupled transport of l-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. BBA-Biomembranes. 2001;1512(2):273-84.

15

37. Cano MM, Calonge ML, Ilundain AA. Expression of OCTN2 and OCTN3 in the apical membrane of rat renal cortex and medulla. J Cell Physiol. 2010;223(2):451-9.38. Tamai I, Ohashi R, Nezu J, Sai Y, Kobayashi D, Oku A, et al. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem. 2000;275(51):40064-72.39. Hosoyamada M, Sekine T, Kanai Y, Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol Renal Physiol. 1999;276(1):F122-F8.40. Tojo A, Sekine T, Nakajima N, Hosoyamada M, Kanai Y, Kimura K, et al. Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J Am Soc Nephrol. 1999;10(3):464-71.41. Ljubojevic M, Herak-Kramberger CM, Hagos Y, Bahn A, Endou H, Burckhardt G, et al. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol. 2004;287(1):F124-F38.42. Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem. 2006;281(8):5072-83.43. Bahn A, Ljubojevic M, Lorenz H, Schultz C, Ghebremedhin E, Ugele B, et al. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am J Physiol Cell Physiol. 2005;289(5):C1075-C84.44. Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J Pharmacol Exp Ther. 2002;301(3):797-802.45. Kojima R, Sekine T, Kawachi M, Cha SH, Suzuki Y, Endou H. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J Am Soc Nephrol. 2002;13(4).46. Leschziner GD, Andrew T, Pirmohamed M, Johnson MR. ABCB1 genotype and pgp expression, function and therapeutic drug response: A critical review and recommendations for future research. Pharmacogenom J. 2007;7(3):154-79.47. Cha SH, Sekine T, Fukushima J, Kanai Y, Kobayashi Y, Goya T, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277-86.48. Anzai N, Jutabha P, Enomoto A, Yokoyama H, Nonoguchi H, Hirata T, et al. Functional characterization of rat organic anion transporter 5 (slc22a19) at the apical membrane of renal proximal tubules. J Pharmacol Exp Ther. 2005;315(2):534-44.49. Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin a. BBA-Mol Cell Res. 2002;1590(1):64-75.50. Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297-304.51. Ikarashi R, Shibasaki K, Yamaguchi A. Immunohistochemical studies of organic anion transporters and urate transporter 1 expression in human salivary gland. Acta Odontol Scand. 2013;71(2):312-6.52. Cheng XG, Klaassen CD. Tissue distribution, ontogeny, and hormonal regulation of xenobiotic transporters in mouse kidneys. Drug Metab Dispos. 2009;37(11):2178-85.53. Lu H, Klaassen C. Tissue distribution and thyroid hormone regulation of Pept1 and Pept2 mRNA in rodents. Peptides. 2006;27(4):850-7.54. Smith DE, Pavlova A, Berger UV, Hediger MA, Yang TX, Huang YNG, et al. Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res. 1998;15(8):1244-9.

16

55. Shen H, Smith DE, Yang TX, Huang YNG, Schnermann JB, Brosius FC. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Physiol Renal Physiol. 1999;276(5):F658-F65.56. Noshiro R, Anzai N, Sakata T, Miyazaki H, Terada T, Shin H, et al. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Kidney Int. 2006;70(2):275-82.57. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005;102(50):17923-8.58. Nishihara K, Masuda S, Ji L, Katsura T, Inui KI. Pharmacokinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol. 2007;73(9):1482-90.59. Lickteig AJ, Cheng XG, Augustine LM, Klaassen CD, Cherrington NJ. Tissue distribution, ontogeny and induction of the transporters multidrug and toxin extrusion (MATE) 1 and MATE2 mRNA expression levels in mice. Life Sci. 2008;83(1-2):59-64.60. Fujita T, Urban TJ, Leabman MK, Fujita K, Giacomini KM. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J Pharm Sci. 2006;95(1):25-36.61. Huls M, Brown C, Windass A, Sayer R, van den Heuvel J, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73(2):220-5.62. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular-localization of the multidrug-resistance gene-product p-glycoprotein in normal human-tissues. Proc Natl Acad Sci U S A. 1987;84(21):7735-8.63. Haenisch S, Zimmermann U, Dazert E, Wruck CJ, Dazert P, Siegmund S, et al. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenom J. 2007;7(1):56-65.64. Peng KC, Cluzeaud F, Bens M, Duong Van Huyen JP, Wioland MA, Lacave R, et al. Tissue and cell distribution of the multidrug resistance-associated protein (MRP) in mouse intestine and kidney. J Histochem Cytochem. 1999;47(6):757-68.65. Maher JM, Slitt AL, Cherrington NJ, Cheng XG, Klaassen CD. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (MRP) family in mice. Drug Metab Dispos. 2005;33(7):947-55.66. Wijnholds J, Scheffer GL, van der Valk M, van der Valk P, Beijnen JH, Scheper RJ, et al. Multidrug resistance protein 1 protects the oropharyngeal mucosal layer and the testicular tubules against drug-induced damage. J Exp Med. 1998;188(5):797-808.67. Schaub TP, Kartenbeck J, Konig J, Spring H, Dorsam J, Staehler G, et al. Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. J Am Soc Nephrol. 1999;10(6):1159-69.68. Scheffer GL, Hu HF, Pijnenborg ACLM, Wijnholds J, Bergen AAB, Scheper RJ. MRP6 (ABCC6) detection in normal human tissues and tumors. Lab Invest. 2002;82(4):515-8.69. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: Putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol. 2002;13(3):595-603.70. Schaub TP, Kartenbeck J, Konig J, Vogel O, Witzgall R, Kriz W, et al. Expression of the conjugate export pump encoded by the mrp2 gene in the apical membrane of kidney proximal tubules. J Am Soc Nephrol. 1997;8(8):1213-21.71. Scheffer GL, Kool M, Heijn M, de Haas M, Pijnenborg AC, Wijnholds J, et al. Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 p-glycoprotein with a panel of monoclonal antibodies. Cancer Res. 2000;60(18):5269-77.72. Kuroda M, Kobayashi Y, Tanaka Y, Itani T, Mifuji R, Araki J, et al. Increased hepatic and renal expressions of multidrug resistance-associated protein 3 in eisai hyperbilirubinuria rats. J Gastroenterol Hepatol. 2004;19(2):146-53.

17

73. Maher JM, Cheng X, Tanaka Y, Scheffer GL, Klaassen CD. Hormonal regulation of renal multidrug resistance-associated proteins 3 and 4 (Mrp3 and Mrp4) in mice. Biochem Pharmacol. 2006;71(10):1470-8.74. Bergwerk AJ, Shi XY, Ford AC, Kanai N, Jacquemin E, Burk RD, et al. Immunologic distribution of an organic anion transport protein in rat liver and kidney. Am J Physiol Gastrointest Liver Physiol. 1996;271(2):G231-G8.75. Cheng XG, Maher J, Lu H, Klaassen CD. Endocrine regulation of gender-divergent mouse organic anion-transporting polypeptide (Oatp) expression. Mol Pharmacol. 2006;70(4):1291-7.76. Lee W, Glaeser H, Smith LH, Roberts RL, Moeckel GW, Gervasini G, et al. Polymorphisms in human organic anion-transporting polypeptide 1a2 (oatp1a2) - implications for altered drug disposition and central nervous system drug entry. J Biol Chem. 2005;280(10):9610-7.77. Nomura T, Chang HY, Lu R, Hankin J, Murphy RC, Schuster VL. Prostaglandin signaling in the renal collecting duct - release, reuptake, and oxidation in the same cell. J Biol Chem. 2005;280(31):28424-9.78. Adachi H, Suzuki T, Abe M, Asano N, Mizutamari H, Tanemoto M, et al. Molecular characterization of human and rat organic anion transporter OATP-d. Am J Physiol Renal Physiol. 2003;285(6):F1188-F97.79. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci U S A. 2004;101(10):3569-74.80. Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O, et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos. 2002;30(10):1108-14.81. Haehner BD, Gorski JC, Vandenbranden M, Wrighton SA, Janardan SK, Watkins PB, et al. Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol. 1996;50(1):52-9.82. McCune JS, Risler LJ, Phillips BR, Thummel KE, Blough D, Shen DD. Contribution of CYP3A5 to hepatic and renal ifosfamide n-dechloroethylation. Drug Metab Dispos. 2005;33(7):1074-81.83. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383-91.84. Schuetz EG, Schuetz JD, Grogan WM, Narayfejestoth A, Fejestoth G, Raucy J, et al. Expression of cytochrome-P450 3a in amphibian, rat, and human kidney. Arch Biochem Biophys. 1992;294(1):206-14.85. Bolbrinker J, Seeberg S, Schostak M, Kempkensteffen C, Baelde H, de Heer E, et al. CYP3A5 genotype-phenotype analysis in the human kidney reveals a strong site-specific expression of CYP3A5 in the proximal tubule in carriers of the CYP3A5* 1 allele. Drug Metab Dispos. 2012;40(4):639-41.86. Zientek MA, Youdim K. Reaction phenotyping: Advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(1):163-81.87. Appendix: Drug metabolizing enzymes and biotransformation reactions. In: Zhang D, Surapaneni S, editors. ADME-enabling technologies in drug design and development. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. p. 545-65.88. Pavek P, Dvorak Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 superfamily in human extrahepatic tissues. Curr Drug Metab. 2008;9(2):129-43.89. Baker JR, Satarug S, Reilly PEB, Edwards RJ, Ariyoshi N, Kamataki T, et al. Relationships between non-occupational cadmium exposure and expression of nine cytochrome P450 forms in human liver and kidney cortex samples. Biochem Pharmacol. 2001;62(6):713-21.

18

90. Ekins S, Wrighton SA. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab Rev. 1999;31(3):719-54.91. Yeung CK, Lang DH, Thummel KE, Rettie AE. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos. 2000;28(9):1107-11.92. Dolphin CT, Cullingford TE, Shephard EA, Smith RL, Phillips IR. Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FMO4. Eur J Biochem. 1996;235(3):683-9.93. Cashman JR, Zhang J. Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol. 2006;46:65-100.94. Furnes B, Schlenk D. Evaluation of xenobiotic n- and s-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol Sci. 2004;78(2):196-203.95. Pike MG, Mays DC, Macomber DW, Lipsky JJ. Metabolism of a disulfiram metabolite, s-methyl n,n-diethyldithiocarbamate by flavin monooxygenase in human renal microsomes. Drug Metab Dispos. 2001;29(2):127-32.96. Uno Y, Shimizu M, Yamazaki H. Molecular and functional characterization of flavin-containing monooxygenases in cynomolgus macaque. Biochem Pharmacol. 2013;85(12):1837-47.97. Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet. 2006;21(5):357-74.98. Buhler R, Pestalozzi D, Hess M, Vonwartburg JP. Immunohistochemical localization of alcohol-dehydrogenase in human-kidney, endocrine organs and brain. Pharmacol Biochem Behav. 1983;18:55-9.99. Ambroziak W, Izaguirre G, Pietruszko R. Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem. 1999;274(47):33366-73.100. Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact. 2000;129(1-2):1-19.101. Barthel BL, Torres RC, Hyatt JL, Edwards CC, Hatfield MJ, Potter PM, et al. Identification of human intestinal carboxylesterase as the primary enzyme for activation of a doxazolidine carbamate prodrug. J Med Chem. 2008;51(2):298-304.102. Hosokawa M. Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules. 2008;13(2):412-31.103. Holmes RS, Wright MW, Laulederkind SJF, Cox LA, Hosokawa M, Imai T, et al. Recommended nomenclature for five mammalian carboxylesterase gene families: Human, mouse, and rat genes and proteins. Mamm Genome. 2010;21(9-10):427-41.104. Hatfield MJ, Tsurkan L, Garrett M, Shaver TM, Hyatt JL, Edwards CC, et al. Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem Pharmacol. 2011;81(1):24-31.105. Kubo T, Kim SR, Sai K, Saito Y, Nakajima T, Matsumoto K, et al. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (hce-2). Drug Metab Dispos. 2005;33(10):1482-7.106. Xu G, Zhang WH, Ma MK, McLeod HL. Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res. 2002;8(8):2605-11.107. Nishimuta H, Houston JB, Galetin A. Hepatic, intestinal, renal, and plasma hydrolysis of prodrugs in human, cynomolgus monkey, dog, and rat: Implications for in vitro–in vivo extrapolation of clearance of prodrugs. Drug Metab Dispos. 2014;42(9):1522-31.108. Knight LP, Primiano T, Groopman JD, Kensler TW, Sutter TR. cDNA cloning, expression and activity of a second human aflatoxin b1-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis. 1999;20(7):1215-23.

19

109. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40(4):553-624.110. Bains OS, Takahashi RH, Pfeifer TA, Grigliatti TA, Reid RE, Riggs KW. Two allelic variants of aldo-keto reductase 1A1 exhibit reduced in vitro metabolism of daunorubicin. Drug Metab Dispos. 2008;36(5):904-10.111. Barski OA, Papusha VZ, Ivanova MM, Rudman DM, Finegold MJ. Developmental expression and function of aldehyde reductase in proximal tubules of the kidney. Am J Physiol Renal Physiol. 2005;289(1):F200-F7.112. Ma LP, Sun JG, Peng Y, Zhang R, Shao F, Hu XL, et al. Glucuronidation of edaravone by human liver and kidney microsomes: Biphasic kinetics and identification of UGT1A9 as the major UDP-glucuronosyltransferase isoform. Drug Metab Dispos. 2012;40(4):734-41.113. Harbourt DE, Fallon JK, Ito S, Baba T, Ritter JK, Glish GL, et al. Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. Anal Chem. 2012;84(1):98-105.114. Sadeque AJM, Usmani KA, Palamar S, Cerny MA, Chen WCG. Identification of human UDP-glucuronosyltransferases involved in n-carbamoyl glucuronidation of lorcaserin. Drug Metab Dispos. 2012;40(4):772-8.115. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics. 2005;15(10):677-85.116. Villeneuve L, Girard H, Fortier LC, Gagne JF, Guillemette C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in caucasian and african-american subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther. 2003;307(1):117-28.117. Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: Comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825-35.118. Margaillan G, Rouleau M, Fallon JK, Caron P, Villeneuve L, Turcotte V, et al. Quantitative profiling of human renal UDP-glucuronosyltransferases and glucuronidation activity: A comparison of normal and tumoral kidney tissues. Drug Metab Dispos. 2015;43(4):611-9.119. Sato Y, Nagata M, Tetsuka K, Tamura K, Miyashita A, Kawamura A, et al. Optimized methods for targeted peptide-based quantification of human uridine 5′-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography–tandem mass spectrometry. Drug Metab Dispos. 2014;42(5):885-9.120. Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, et al. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: Altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos. 2012;40(5):1051-65.121. Gu YC, Tingle MD, Wilson WR. Glucuronidation of anticancer prodrug PR-104A: Species differences, identification of human UDP-glucuronosyltransferases, and implications for therapy. J Pharmacol Exp Ther. 2011;337(3):692-702.122. Knights KM, Miners JO. Renal UDP-glucuronosyltransferases and the glucuronidation of xenobiotics and endogenous mediators. Drug Metab Rev. 2010;42(1):63-73.123. Gaganis P, Miners JO, Brennan JS, Thomas A, Knights KM. Human renal cortical and medullary UDP-glucuronosyltransferases (UGTs): Immunohistochemical localization of UGT2B7 and UGT1A enzymes and kinetic characterization of s-naproxen glucuronidation. J Pharmacol Exp Ther. 2007;323(2):422-30.

20

124. Kaji H, Kume T. Regioselective glucuronidation of denopamine: Marked species differences and identification of human UDP-glucuronosyltransferase isoform. Drug Metab Dispos. 2005;33(3):403-12.125. Parker LJ, Ciccone S, Italiano LC, Primavera A, Oakley AJ, Morton CJ, et al. The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase p1-1: Kinetic properties and crystallographic characterisation of allelic variants. J Mol Biol. 2008;380(1):131-44.126. Simic T, Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Mimic-Oka J. Glutathione s-transferases in kidney and urinary bladder tumors. Nature Reviews Urology. 2009;6(5):281-9.127. Lo H-W, Ali-Osman F. Genetic polymorphism and function of glutathione s-transferases in tumor drug resistance. Curr Opin Pharm. 2007;7(4):367-74.128. Lien S, Larsson A-K, Mannervik B. The polymorphic human glutathione transferase t1-1, the most efficient glutathione transferase in the denitrosation and inactivation of the anticancer drug 1, 3-bis (2-chloroethyl)-1-nitrosourea. Biochem Pharmacol. 2002;63(2):191-7.129. Uno Y, Murayama N, Kunori M, Yamazaki H. Systematic identification and characterization of glutathione s-transferases in cynomolgus macaque. Biochem Pharmacol. 2013;86(5):679-90.130. Rodlilla V, Benzie A, Veitch J, Murray G, Rowe J, Hawksworth G. Glutathione s-transferases in human renal cortex and neoplastic tissue: Enzymatic activity, isoenzyme profile and immunohistochemical localization. Xenobiotica. 1998;28(5):443-56.131. Harrison D, Kharbanda R, Cunningham DS, McLellan L, Hayes J. Distribution of glutathione s-transferase isoenzymes in human kidney: Basis for possible markers of renal injury. J Clin Pathol. 1989;42(6):624-8.132. Rowe J, Nieves E, Listowsky I. Subunit diversity and tissue distribution of human glutathione s-transferases: Interpretations based on electrospray ionization-ms and peptide sequence-specific antisera. Biochem J. 1997;325(Pt 2):481.133. Delbanco EH, Bolt HM, Huber WW, Beken S, Geller F, Philippou S, et al. Glutathione transferase activities in renal carcinomas and adjacent normal renal tissues: Factors influencing renal carcinogenesis induced by xenobiotics. Arch Toxicol. 2001;74(11):688-94.134. Cummings BS, Lasker JM, Lash LH. Expression of glutathione-dependent enzymes and cytochrome p450s in freshly isolated and primary cultures of proximal tubular cells from human kidney. J Pharmacol Exp Ther. 2000;293(2):677-85.135. Estonius M, Forsberg L, Danielsson O, Weinander R, Kelner MJ, Morgenstern R. Distribution of microsomal glutathione transferase 1 in mammalian tissues. Eur J Biochem. 1999;260(2):409-13.136. DeJong J, Morgenstern R, Jörnvall H, DePierre J, Tu C. Gene expression of rat and human microsomal glutathione s-transferases. J Biol Chem. 1988;263(17):8430-6.137. Zhang J, Ye Z, Lou Y. Metabolism of chlorambucil by rat liver microsomal glutathione s-transferase. Chem Biol Interact. 2004;149(1):61-7.138. King BF, Reed JE, Bergstralh EJ, Sheedy PF, Torres VE. Quantification and longitudinal trends of kidney, renal cyst, and renal parenchyma volumes in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2000;11(8):1505-11.139. Chapman AB, Bost JE, Torres VE, Guay-Woodford L, Bae KT, Landsittel D, et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2012;7(3):479-86.140. Al-Said J, O'Neill WC. Reduced kidney size in patients with simple renal cysts. Kidney Int. 2003;64(3):1059-64.141. Al-Said J, Brumback MA, Moghazi S, Baumgarten DA, O'Neill WC. Reduced renal function in patients with simple renal cysts. Kidney Int. 2004;65(6):2303-8.142. Lee HS, Kim EJ, Kim SJ, Lee YK, Yoon JW, Noh JW. The changes of renal function in apparent healthy individuals with a simple renal cyst. Kidney Res Clin Pract. 2007;26(5):554-8.

21

143. Ponte B, Pruijm M, Ackermann D, Vuistiner P, Guessous I, Ehret G, et al. Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol. 2014;26(6):1415-25.144. Kariyanna SS, Light RP, Agarwal R. A longitudinal study of kidney structure and function in adults. Nephrol Dial Transplant. 2010;25(4):1120-6.145. Mounier-Vehier C, Lions C, Devos P, Jaboureck O, Willoteaux S, Carre A, et al. Cortical thickness: An early morphological marker of atherosclerotic renal disease. Kidney Int. 2002;61(2):591-8.146. Sanusi AA, Arogundade FA, Famurewa O, Akintomide AO, Soyinka FO, Ojo OE, et al. Relationship of ultrasonographically determined kidney volume with measured GFR, calculated creatinine clearance and other parameters in chronic kidney disease (CKD). Nephrol Dial Transplant. 2009;24(5):1690-4.147. Buturović-Ponikvar J, Višnar-Perovič A. Ultrasonography in chronic renal failure. Eur J Radiol. 2003;46(2):115-22.148. Matsumoto N, Ishimura E, Taniwaki H, Emoto M, Shoji T, Kawagishi T, et al. Diabetes mellitus worsens intrarenal hemodynamic abnormalities in nondialyzed patients with chronic renal failure. Nephron. 2000;86(1):44-51.149. Gragnoli G, Signorini AM, Tanganelli I, Fondelli C, Borgogni P, Borgogni L, et al. Prevalence of glomerular hyperfiltration and nephromegaly in normo-and microalbuminuric type 2 diabetic patients. Nephron. 1993;65(2):206-11.150. Ismail N, Becker B, Strzelczyk P, Ritz E. Renal disease and hypertension in non–insulin-dependent diabetes mellitus. Kidney Int. 1999;55(1):1-28.151. Inomata S. Renal hypertrophy as a prognostic index for the progression of diabetic renal disease in non-insulin-dependent diabetes mellitus. J Diabetes Complications. 1993;7(1):28-33.152. Atta MG, Longenecker JC, Fine DM, Nagajothi N, Grover DS, Wu J, et al. Sonography as a predictor of human immunodeficiency virus–associated nephropathy. J Ultrasound Med. 2004;23(5):603-10.153. Beland MD, Walle NL, Machan JT, Cronan JJ. Renal cortical thickness measured at ultrasound: Is it better than renal length as an indicator of renal function in chronic kidney disease? Am J Roentgenol. 2010;195(2):W146-W9.154. Mustafiz M, Rahman M, Islam M, Mohiuddin A. Correlation of ultrasonographically determined renal cortical thickness and renal length with estimated glomerular filtration rate in chronic kidney disease patients. Bangladesh Med Res Counc Bull. 2014;39(2):91-2.155. Kim HC, Yang DM, Jin W, Lee SH. Relation between total renal volume and renal function: Usefulness of 3D sonographic measurements with a matrix array transducer. Am J Roentgenol. 2010;194(2):W186-W92.156. Jovanovic D, Gasic B, Pavlovic S, Naumovic R. Correlation of kidney size with kidney function and anthropometric parameters in healthy subjects and patients with chronic kidney diseases. Ren Fail. 2013;35(6):896-900.

22