c.a. dominguez centre for theoretical physics & astrophysics university of cape town department of...

Download C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa VIII SILAFAE

If you can't read please download the document

Post on 19-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

  • Slide 1
  • C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa VIII SILAFAE VALPARAISO, CHILE, 6-12/ DEC /2010 DETERMINATION OF THE FUNDAMENTAL PARAMETERS OF QCD
  • Slide 2
  • WHY DO WE NEED THEORETICAL PHYSICISTS TO MEASURE THE QUARK MASSES & THE QUARK- GLUON COUPLING?
  • Slide 3
  • QUANTUM CHROMODYNAMICS
  • Slide 4
  • FUNDAMENTAL PARAMETERS OF QCD STRONG COUPLING s (q 2 ) 1/ ln(-q 2 / 2 ) QUARK MASSES m q (q 2 ) [1/ ln(-q 2 / 2 )] A fractal
  • Slide 5
  • STRONG COUPLING hadrons Z hadrons e + e - hadrons etc.
  • Slide 6
  • hadrons (s)
  • Slide 7
  • Slide 8
  • Slide 9
  • CURRENT CORRELATOR (GREEN FUNCTION)
  • Slide 10
  • Slide 11
  • QUARK-HADRON DUALITY
  • Slide 12
  • Slide 13
  • Slide 14
  • R -ratio
  • Slide 15
  • Slide 16
  • hadrons
  • Slide 17
  • Slide 18
  • CURRENT VALUES OF S (q 2 ) S (M 2 ) = 0.342 0.012 (Pich, 2010) S (M Z 2 ) = 0.1213 0.0014 S (M Z 2 ) = 0.1231 0.0038 (Bethke, 2010) S (M Z 2 ) = 0.1183 0.0008 (Lattice, 2010)
  • Slide 19
  • CONTENTIOUS ISSUE WORK IN PROGRESS
  • Slide 20
  • QUARK MASSES CPT: Light quark mass ratios Lattice QCD QCD Sum Rules (Operator Product Expansion)
  • Slide 21
  • Slide 22
  • NEXT TO LEADING ORDER ONLY ONE PARAMETER-FREE RELATION ( J. Gasser & H. Leutwyler 1985)
  • Slide 23
  • NEXT TO LEADING ORDER SCALE & RENORMALIZATION CONSTANT(S) DEPENDENT
  • Slide 24
  • BARYON MASS SPLITTING P. Minkowski & A. Zepeda (1980)
  • Slide 25
  • Q C D SUM RULES Shifman-Vainshtein-Zakharov (1979)
  • Slide 26
  • Q C DQ C D
  • Slide 27
  • HADRONIC
  • Slide 28
  • CONFINEMENT STRONG MODIFICATION TO QUARK & GLUON PROPAGATORS NEAR THE MASS SHELL INCORPORATE CONFINEMENT THROUGH A PARAMETRIZATION OF PROPAGATOR CORRECTIONS IN TERMS OF QUARK & GLUON VACUUM CONDENSATES
  • Slide 29
  • Slide 30
  • Slide 31
  • QUARK CONDENSATE
  • Slide 32
  • Slide 33
  • Slide 34
  • GLUON CONDENSATE
  • Slide 35
  • Slide 36
  • Q C D SUM RULES (SVZ)
  • Slide 37
  • QUARK-HADRON DUALITY
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • PROBLEM WITH Im (S)| resonance e + e - hadrons Im (s)| V hadrons Im (s)| V & Im (s)| A PSEUDOSCALAR CHANNEL (beyond pole): Not measured & not measurable SYSTEMATIC UNCERTAINTY
  • Slide 42
  • 1980s 2007-2008 CAD, Nasrallah, Schilcher (2007) CAD, Nasrallah, Rntsch, Schilcher (2008)
  • Slide 43
  • INTEGRATION KERNEL 5 (s) Analytic function ds (s) 5 (s) = 0
  • Slide 44
  • Slide 45
  • PURPOSE OF THE INTEGRATION KERNEL ENHANCE / SUPPRESS SPECIFIC CONTRIBUTIONS HADRONIC: resonance region: non-existing experimental data CAUCHYS THEOREM STILL VALID
  • Slide 46
  • HADRONIC SPECTRAL FUNCTION Pseudoscalar meson pole (pion, kaon) OK Resonances: (???) hadrons (J P = 0 - ) NOT FEASIBLE
  • Slide 47
  • PION (KAON) RADIAL EXCITATIONS (1300): M = 1300 100 MeV = 200 600 MeV (1800): M = 1812 14 MeV = 207 13 MeV K (1460) & K (1830) 250 MeV
  • Slide 48
  • SYSTEMATIC UNCERTAINTY MASS & WIDTH OF RESONANCES: NOT ENOUGH TO RECONSTRUCT HADRONIC SPECTRAL FUNCTION !!! HADRONIC BACKGROUND & CONSTRUCTIVE/DESTRUCTIVE INTERFERENCE COMPLETELY UNKNOWN
  • Slide 49
  • BEST MODEL THRESHOLD CONSTRAINT FROM CHPT 3-PION Pagels & Zepeda (1972) CAD (1984), CAD, de Rafael (1987), CAD, Pirovano, Schilcher (1998)
  • Slide 50
  • 5 (s) 5 (s) = 1 - a 0 s a 1 s 2 5 (M 1 2 ) = 5 (M 2 2 ) = 0
  • Slide 51
  • Realistic Spectral Function Im s E 2 s0s0
  • Slide 52
  • S 0 DEPENDENCE PHYSICAL QUANTITIES ARE INDEPENDENT OF S 0 IN PRACTICE : S 0 1 3 GeV 2
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • ERROR ANALYSIS 5 (Q 2 )| RESONANCE : factor 5 smaller than PQCD
  • Slide 57
  • RESULTS m s (2 GeV) = 102 8 MeV m d (2 GeV) = 5.3 0.4 MeV m u (2 GeV) = 2.9 0.2 MeV (m u + m d )/2 = 4.1 0.2 MeV
  • Slide 58
  • BARYON MASS SPLITTING P. Minkowski & A. Zepeda (1980))
  • Slide 59
  • Slide 60
  • Slide 61
  • HEAVY QUARKS CHARM & BOTTOM (+) DATA: e + e - hadrons ( c & b region) (-) (s) 1 + O( s ) + + O[ j (m 2 / s) i ]
  • Slide 62
  • Slide 63
  • CHARM QUARK MASS m c (3 GeV)| MS-bar KARLSRUHE GROUP: Chetyrkin, Kuhn, Maier, Maierhofer, Marquard, Steinhauser, Sturm CAPE TOWN-MAINZ-VALENCIA: Bodenstein, Bordes, CAD, Penarrocha, Schilcher
  • Slide 64
  • Slide 65
  • m c (3 GeV)| MS-bar 986 13 MeV Karlsruhe 1008 26 MeV CPT-Mainz-Valencia 986 6 MeV HPQCD (2010)
  • Slide 66
  • Slide 67
  • Slide 68