第1章 高分子的链结构...

25
第1章 高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键 的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的 变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需 打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变 构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈 31 螺旋构象,而间规立构聚氯乙 烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排 斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过 C-C 键的旋转,形 成 31 螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所 以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子) 值愈大,柔顺性愈差; (2)特征比 Cn,Cn 值越小,链的柔顺性越好; (3)连段长度 b,b 值愈小,链愈柔顺。

Upload: others

Post on 23-Sep-2019

54 views

Category:

Documents


0 download

TRANSCRIPT

  • 第 1章 高分子的链结构

    1.写出聚氯丁二烯的各种可能构型。

    等。

    2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键

    的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?

    答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的

    变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需

    打破化学键,而构型的改变必须断裂化学键。

    (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变

    构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

    3.为什么等规立构聚丙乙烯分子链在晶体中呈 31 螺旋构象,而间规立构聚氯乙

    烯分子链在晶体中呈平面锯齿构象?

    答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排

    斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过 C-C 键的旋转,形

    成 31 螺旋构象,才能满足晶体分子链构象能最低原则。

    (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所

    以平面锯齿形构象是能量最低的构象。

    4.哪些参数可以表征高分子链的柔顺性?如何表征?

    答:(1)空间位阻参数(或称刚性因子) , 值愈大,柔顺性愈差;

    (2)特征比 Cn,Cn 值越小,链的柔顺性越好;

    (3)连段长度 b,b值愈小,链愈柔顺。

  • 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室

    温下为塑料而不是橡胶?

    答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为

    塑料而不是橡胶。

    6.从结构出发,简述下列各组聚合物的性能差异:

    (1)聚丙烯睛与碳纤维;

    (2)无规立构聚丙烯与等规立构聚丙烯;

    (3)顺式聚 1,4-异戊二烯(天然橡胶)与反式聚 1,4-异戊二烯(杜仲橡胶)。

    (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。

    7.比较下列四组高分子链的柔顺性并简要加以解释。

    解:

  • 8.某单烯类聚合物的聚合度为 104,试估算分子链完全伸展时的长度是其均方根

    末端距的多少倍?(假定该分子链为自由旋转链。)

    答:81.6 倍

    9.无规聚丙烯在环己烷或甲苯中、30℃时测得的空间位阻参数(即刚性因子)

    δ=1.76,试计算其等效自由连接链长度 b(已知碳—碳键长为 0.154nm,键角为

    109.5°)。

    解:b=1.17nm

    10.某聚苯乙烯试样的分子量为 416000,试估算其无扰链的均方末端距(已知特

    征比 Cn=12)。

    答:均方末端距为 2276.8nm2。

  • 第 2章 聚合物的凝聚态结构

    1.名词解释

    凝聚态,内聚能密度,晶系,结晶度,取向,高分子合金的相容性。

    凝聚态:为物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来

    区分的,通常包括固体、液体和气体。

    内聚能密度:CED 定义为单位体积凝聚体汽化时所需要的能量,单位:

    晶系:根据晶体的特征对称元素所进行的分类。

    结晶度:试样中的结晶部分所占的质量分数(质量结晶度 )或者体积分数(体

    积结晶度 )。

    取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作

    用方向的择优排列。

    高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度

    不等的共混物所具有的亲和性。

    2.什么叫内聚能密度?它与分子间作用力的关系如何?如何测定聚合物的内聚

    能密度?

    答:(1)内聚能密度:CED 定义为单位体积凝聚体汽化时所需要的能量,单位:

    (2)内聚能密度在 300 以下的聚合物,分子间作用力主要是色散力;内聚

    能密度在 400 以上的聚合物,分子链上有强的极性基团或者分子间能形成氢

    键;内聚能密度在 300-400 之间的聚合物,分子间相互作用居中。

    3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态

    的特征是什么?

    答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、

    伸直链晶体;

    (2)形态特征:

    单晶:分子链垂直于片晶平面排列,晶片厚度一般只有 10nm 左右;

    树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;

    球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;

    纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度;

    串晶:在电子显微镜下,串晶形如串珠;

    柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状;

    伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。

  • 4.测定聚合物的结晶度的方法有哪几种?简述其基本原理。不同方法测得的结晶

    度是否相同?为什么?

    答:(1)密度法,X射线衍射法,量热法;(2)密度法的依据:分子链在晶区

    规整堆砌,故晶区密度大于非晶区密度;X射线衍射法的依据:总的相干散射强

    度等于晶区和非晶区相干散射强度之和;量热法的依据:根据聚合物熔融过程中

    的热效应来测定结晶度的方法。(3)不同,因为结晶度的概念缺乏明确的物理

    意义,晶区和非晶区的界限很不明确,无法准确测定结晶部分的量,所以其数值

    随测定方法不同而不同。

    5.高分子液晶的分子结构有何特点?根据分子排列有序性的不同,液晶可以分为

    哪几种晶型?如何表征?

    答:(1)高分子液晶分子结构特点:

    1. 分子主干部分是棒状(筷形),平面状(碟形)或曲面片状(碗形)的刚性结构,以细长棒状最为常见;b.分子中含有对位苯撑,强极性基团,可

    高度极化或可形成氢键的基团,因而在液态下具有维持分子作某种有序排

    列所需要的凝聚力;c.分子上可能含有一定的柔性结构。

    (2)液晶晶型:a.完全没有平移有序—向列相即 N相,用单位矢量 表示;b.

    一维平移有序(层状液晶)—近晶 A( )和近晶 C( );c.手征性液晶,包括

    胆甾相(Ch)和手征性近晶相;d.盘状液晶相。

    (3)液晶态的表征一般为:a.偏光显微镜下用平行光系统观察;b.热分析法;

    c.X 射线衍射;

    d.电子衍射;e.核磁共振;f.电子自旋共振;g.流变学;h.流变光学。

    6.简述液晶高分子的研究现状,举例说明其应用价值。

    答:液晶高分子被用于制造防弹衣,缆绳及航空航天器大型结构部件,可用于新

    型的分子及原子复合材料,适用于光导纤维的被覆,微波炉件,显示器件信息传

    递变电检测

    7.取向度的测定方法有哪几种?举例说明聚合物取向的实际意义。

    (1)用光学显微镜测定双折射来计算;(2)用声速法测定;(3)广角 X射线衍射

    法;(4)红外二向色性;(5)偏正荧光法。

    8.某结晶聚合物的注射制品中,靠近模具的皮层具有双折射现象,而制品内部用

    偏光显微镜观察发现有 Maltese 黑十字,并且越靠近制品芯部,Maltese 黑十字

    越大。试解释产生上述现象的原因。如果降低模具的温度,皮层厚度将如何变化?

    答:(1)由于形成球晶,球晶具有双折射现象,自然光经过偏振片变为偏振光,

    通过球晶发生双折射,分成两束振动方向垂直的偏振光,两束偏振光在与检偏镜

    平行方向上存在分量,分量速度不同,产生相位差而干涉,使呈现黑十字消光图

    像,制品外部与模具接触,冷却速度快,球晶来不及生长而成多层片晶或小球晶,

  • 而制品芯部温度高,结晶时间充分,生长为大球晶,因此消光图像更大。

    (2)降低温度会增加过冷度,缩短结晶时间,因而皮层厚度增加。

    9.采用“共聚”和“共混”方法进行聚合物改性有何异同点?

    解:略。

    10.简述提高高分子合金相容性的手段

    答:提高高分子合金的相容性一般用加入第三组分增溶剂的方法。

    增溶剂可以是与 A、B两种高分子化学组成相同的嵌段或接枝共聚物,也可以是

    与 A、B的化学组成不同但能分别与之相容的嵌段或接枝共聚物。

    11.某一聚合物完全结晶时的密度为 0.936g/cm3,完全非晶态的密度为

    0.854g/cm3,现知该聚合物的实际密度为 0.900g/cm3,试问其体积结晶度应为多

    少?

    (体积结晶度为 0.561)

    12.已知聚乙烯晶体属斜方晶系,其晶胞参数 a=0.738nm,b=0.495nm,c=0.254nm.

    (1)根据晶胞参数,验证聚乙烯分子链在晶体中为平面锯齿形构象;

    (2)若聚乙烯无定形部分的密度ρa=0.83g/cm3,试计算密度ρ=0.97g/cm3 聚乙

    烯试样的质量结晶度。

    13.用声波传播测定拉伸涤纶纤维的取向度。若试验得到分子链在纤维轴方向的

    平均取向角 为 30。,试问该试样的取向度为多少?

    第 3章 高分子溶液

    1.溶度参数的含义是什么?“溶度参数相近原理”判断溶剂对聚合物溶解能力

    的依据是什么?

    答:(1)溶度参数:是指内聚能密度的平方根;

    (2)依据是: ,因为溶解过程 >0,要使

  • 3.Flory-Huggins 晶格模型理论推导高分子溶液混合熵时作了哪些假定?混合

    热表达式中 Huggins 参数的物理意义是什么?

    答:(1)假定:a.溶液中分子排列也像晶体中一样,为一种晶格排列;b.高分

    子链是柔性的,所有构象具有相同的能量;c.溶液中高分子“链段”是均匀分布

    的,即“链段”占有任一格子的几率相同。

    (2)物理意义:放映高分子与溶剂混合时相互作用能的变化。

    4.什么叫排斥体积效应?Flory-Kingbuam 稀溶液理论较之晶格模型理论有何进

    展?

    答:(1)排斥体积效应:在高分子稀溶液中,“链段”的分布实际上是不均匀

    的,高分子链以一个被溶剂化了的松懈的链球散布在纯溶剂中,每个链球都占有

    一定的体积,它不能被其他分子的“链段”占有。

    (2)进展:把“链段”间的排斥体积考虑进去,更符合实际。

    5.高分子合金相分离机理有哪两种?比较其异同点。

    解:略。

    6.苯乙烯-丁二烯共聚物(δ=16.7)难溶于戊烷(δ=14.4)和醋酸乙烯(δ=17.8)。

    若选用上述两种溶剂的混合物,什么配比时对共聚物的溶解能力最佳?

    解:

    7.计算下列三种情况下溶液的混合熵,讨论所得结果的意义。

    (1)99e12 个小分子 A与 1e8 个小分子 B相混合(假定为理想溶液);

    (2)99e12 个小分子 A与 1e8 个小分子 B(设每个大分子“链段”数 x=1e4)相

    混合(假定符合均匀场理论);

    (3)99e12 个小分子 A与 1e12 个小分子 B相混合(假定为理想溶液)。

    答:(1) ;(2) ;(3) .

    结果说明,绝大多数高分子溶液,即使在浓度小时,性质也不服从理想溶液的规

    律,混合熵

    比小分子要大十几倍到数十倍,一个高分子在溶液中可以起到许多个小分子的作

    用,高分子溶液性质与理想溶液性质偏差的原因在于分子量大,分子链具有柔顺

    性,但一个高分子中每个链段是相互连接的,起不到 x(连段数)个小分子的作

    用,混合熵比 xN 个小分子来得小。

    8.在 20℃将 10-5mol 的聚甲基丙烯酸甲酯( =105, ρ=1.20g/cm3)溶于 179g

    氯仿(ρ=1.49 g/cm3)中,试计算溶液的混合熵、混合热和混合自由能。(已

    知χ1=0.377)

    答: ; ;

  • 9.假定共混体系中,两组分聚合物(非极性或弱极性)的分子量不同但均为单分

    散的,XA/XB=r。试写出计算临界共溶温度下组成关系的方程式,画出 r 分别为

    小于 1、等于 1和大于 1时,该体系的旋节线示意图。

    第 4章 聚合物的分子量和分子量分布

    1.什么叫分子量微分分布曲线和体积分布曲线?两者如何相互转换?

    (1)微分分布曲线:表示聚合物中分子量(M)不同的各个级分所占的质量分数

    或摩尔分数[x(M)];

    积分分布曲线:表示聚合物中分子量小于和等于某一值的所有级分所占的质量分

    数[I(M)]

    或摩尔分数。

    转换:

    2.测定聚合物数均和重均分子量的方法有哪几种?每种方法适用的分子量范围

    如何?

    答:(1)测定数均分子量的方法:端基分析法、沸点升高、冰点下降、气相渗透

    压(范围< )

    (2)测量重均分子量的方法:光散射法( )

    3.证明渗透压法测得的分子量为数均分子量。

    答:渗透法测定分子量依据为 时,

    所以:

    即渗透压法测得分子量为数均分子量。

    4.采用渗透压法测得试样A和B和摩尔质量分别为4.20e5g/mol和1.25e5g/mol,

    试计算 A、B两种试样等质量混合物的数均分子量和重均分子量。

    答: ;

  • 5.35℃时,环己烷为聚苯乙烯(无规立构)的θ溶剂。现将 300mg 聚苯乙烯

    (ρ=1.05g/cm3, =1.5e5)于 35℃溶于 150ml 环己烷中,试计算:(1)第二

    维利系数 A2;(2)溶液的渗透压。

    答:(1) ;(2)

    6.某聚苯乙烯试样经分级后得到 5个级分。用光散射法测定了各级分的重均分子

    量,用粘度法(22℃、二氯乙烯溶液)测定了各级分的特征粘度,结果如下所示:

    e-4 0.308 1.55 48.0 56.8 157

    [η],dl/g 0.0405 0.122 1.38 1.42 2.78

    试计算 Mark-Houwink 方程[η]=KMα中的两个参数 K和α。

    7.推导一点法测定特性粘度的公式:

    (1) [η]=

    (2) [η]= ??其中 /

    证明:(1)

  • (2)

    8.三醋酸纤维素-二甲基甲酰胺溶液的 Zimm 图如左所示。试计算该聚合物的分子

    量和旋转半径。(λ=5.461e-1nm,n(DMF)=1.429)

  • 9.现有一超高分子量的聚乙烯试样,欲采用 GPC 方法测定其分子量和分子量分

    布,试问:

    (1)能否选择 GPC 法的常用溶剂 THF?如果不行,应该选择何种溶剂?

    (2)常温下能进行测定吗?为什么?

    (3)如何计算该试样的数均、重均和粘均分子量。

  • 第 5 章 聚合物的转变与松弛

    1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的 4 个

    区域,并讨论分子量对应力松弛模量-温度曲线的影响规律。 答:(1)a.玻璃态区,玻璃

    化温度以下,分子运动主要限于振动和短程的旋转运动;b.玻璃-橡胶转变区,可解析为远

    程、协同分子运动的开始;c.橡胶-弹性平台区,由于分子间存在几个链段平行排列的物理

    缠结,聚合物呈现远程橡胶弹性;d.末端流动区,物理缠结来不及松弛,材料仍然表现为橡

    胶行为,温度升高,发生解缠作用,导致整个分子产生滑移运动,即产生流

    动,这种流动是作为链段运动结果的整链运动。 (2)聚合物分子量越高,橡胶-弹性平台

    就越长。

    2.讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。

    解:略。

    3.写出四种测定聚合物玻璃化温度的方法,简述其基本原理。不同实验方法所得结果是否相

    同?为什么? 答:(1)a.膨胀计法,热膨胀的主要机理是克服原子间的主价力和次价力,

    膨胀系数较小;b.量热法,聚合物在玻璃化时的热学性质的变化;c.温度-形变法,利用聚

    合物玻璃化转变时形变量的变化来测定其玻璃化温度;d.核磁共振法,利用电磁性质

    的变化研究聚合物玻璃化转变的方法。 (2)不同,略。

    4.聚合物的玻璃化转变是否是热力学相变?为什么? 聚合物的玻璃化转变并不是一个真正

    的热力学相变。 因为非晶态聚合物发生玻璃化转变时,其体积,焓或熵是连续变化的,而

    K, α 和 INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image002.gif" \*

    MERGEFORMATINET 出现不连续的变化,要使体系达到热力学平衡,需要无限缓慢的变

    温速率和无限长的 测试时间,实验上不可能做到,因此,玻璃化温度的测定过程体系不能满足热力学平衡条件,

    转变过程是一个松弛过程,所测得的玻璃化温度不是一个真正的热力学相变。 5.试用玻璃

  • 化转变的自由体积理论解释:(1)非晶态聚合物冷却时体积收缩速率发生变化;(2)冷却

    速 度 愈 快 , 测 得 的 Tg 值 愈 高 。 答 :( 1 ) 在 INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004.gif" \*

    MERGEFORMATINET 以上,非晶态聚

    合物体积收缩时,包括聚合物分子占有体积的收缩以及自由体积的收缩,而在

    INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004_0000.gif" \*

    MERGEFORMATINET 以下,自由体积处于冻结状态,所以,聚合物体积收缩只有聚合物

    占有体积的收缩,因此,体积收缩速率会有变化。 (2)当冷却速度愈快,测得的

    INCLUDEPICTURE "http://www.cmse.sdu.edu.cn/mp

    /xiti/xiti/(5)_clip_image004_0001.gif" \* MERGEFORMATINET 偏大,这是因为:一

    方面,温度降低,体系的自由体积减小,同时,粘度增大,链段运动的松弛时间增加,另一

    方面,冷却速率决定了实验的观察时间,而玻璃化温度是链段运动的松弛时间与实验的观察

    时间相当时的温度,故冷却愈快,观察时间愈短,测得的 INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004_0002.

    gif" \* MERGEFORMATINET 值愈高。

    6.玻璃化转变的热力学理论基本观点是什么? 答:热力学研究表明,相转变过程中自由能

    是连续的,而与自由能的导数有关的性质发生不连续的变化。非晶态聚合物发生玻璃化转变

    时 , 其 体 积 、 焓 或 熵 是 连 续 变 化 的 , 但 K 、 INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image006.gif" \*

    MERGEFORMATINET 出现不连续的变化。实际上,玻璃化温度

    的测定过程体系不能满足热力学的平衡条件,转变过程是一个松弛过程,所得

    INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image008.gif" \*

    MERGEFORMATINET 值依赖于变温速率及测试方法(外力作用速率)

  • 7.聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原

    因是什么? 答:(1

    ��� � ���∂���ï ï ï ï ï         Ѐ摧㴗¸̀$□d□d□嬁 Ĥ□愁$摧㴗¸□

    ��ýЄĀā

    )小分子有分子晶体、原子晶体和离子晶体,而高分子晶体仅有分子晶体,且仅是分子链的

    一部分形成的晶体。这是由于高分子的分子链很长,可穿越多个晶胞。 (2)小分子的熔

    点是一个确定值,而高分子的熔点是一个范围值。 (3)高分子有结晶度的概念,而小分

    子没有。这是由于高分子结构的复杂性,使得聚合物结晶要比小分子结晶有更多的缺陷,所

    以结晶总是很不完善,有晶区和非晶区,用结晶读表示。 (4)高聚物的结晶过程分一次

    结晶(主结晶)和二次结晶(次级结晶)。这是由于高分子的相对分子质量大,体系黏度大,

    分子运动迟缓所引起的。

    8.测定聚合物结晶速度有哪些方法?简述其原理和主要步骤。 答:(1)膨胀计法、光学解

    偏振法和示差扫描量热法(DSC)。原理:聚合物结晶过程中,从无序的非晶态排列成高度有

    序的晶态,由于密度变大,会发生体积收缩即可研究结晶过程。主要步骤:方法是将试样与

    跟踪液(通常是水银)装入一膨胀计中,加热到聚合物熔点以上,使其全部熔融。然后将膨胀

    计移入恒温槽内,观察毛细管内液柱的高度随时间的变化。 (2)偏光显微镜法和小角激

    光光散射法。原理:用单位时间里球晶半径增加的长度作为观察温度下球晶的径向生长速度。

    主要步骤:将试 样熔融后立即进行等温结晶,观察球晶的半径随时间的增长变化,以球晶半径对时间作图,

    可得一直线。 9.比较下列各组聚合物的 Tg 高低并说明理由: (1)聚二甲基硅氧烷,顺

    式 聚 1 , 4- 丁 二 烯 ; INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004_0003.gif" \*

    MERGEFORMATINET :聚二甲基硅氧烷〈 顺式聚 1,4-丁二烯 (2)聚己二酸乙二醇酯,

    聚对苯二甲酸乙二醇酯; INC

    LUDEPICTURE

  • "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004_0004.gif" \*

    MERGEFORMATINET :聚己二酸乙二醇酯〈 聚对苯二甲酸乙二醇酯 (3)聚丙烯,聚

    4- 甲 基 -1- 戊 烯 ; INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004_0005.gif" \*

    MERGEFORMATINET :聚

    丙烯 〈 聚 4-甲基-1-戊烯 (4)聚氯乙烯,聚偏二氯乙烯。 INCLUDEPICTURE

    "http://www.cmse.sdu.edu.cn/mp/xiti/xiti/(5)_clip_image004_0006.gif" \*

    MERGEFORMATINET :聚氯乙烯 〉聚偏二氯乙烯 10.以结构观点讨论下列聚合物的结晶

    能力:聚乙烯、尼龙 66、聚异丁烯。 聚乙烯,结构简单,对称又规整,所以非常容易结晶。

    尼龙 66,化学结构及几何结构均较规整,没有键接方式问题,也较容易结晶。

    聚异丁烯,分子链具有较高的对称性,可以结晶,但由于取代基的空间位阻以及化学结构的

    不规整性,使其较难结晶。

    11.均聚物 A 熔点为 200℃,熔融热为 8374J/mol 重复单元。如果在结晶的 AB 无规共聚

    物中,单体 B 不能进入晶格,试预测含单体 B10%摩尔分数的共聚物的熔点。 答:451.8k.12.

    现有某种聚丙烯试样,将其熔体 10ml 于 150℃在膨胀计中进行等温结晶,不同时间测得

    聚合物的体积如下: t/min 3.2 4.7 7.1 12.6 2

    0 V/ml 9.9981 9.9924 9.9765 9.8418 9.5752 已知聚丙烯晶胞密度为

    0.96g/cm3,结晶完全时体积结晶度为 50%。试用 Avrami 方程计算该试样的结晶速度常数

    K 和 Avrami 指数 n。

    答:K=0.00316,n=3.02。

  • (5)_clip_image004_0001�䕴瑘潓瑦慷敲䴀捩潲潳瑦传晦捩罥㗭q䤱䅄�揓쁠 □�《�□

    〰‱�  戀縹선쐅偼�Э㋄온

    考㤮Ķ む老̱ㆀ〵考〲 İ̀�䚀污敳老�䢀獡灓捡�亀来瑡癩 � 亀浵敢呲灹 � 厀畯捲噥污敵耄䍔

    䍓耈湕瑩慎敭

    3 3 s3 3 3 s3 3 3 s s 3 s s 3 s 3 攚 溏 9�A�C 川

    C�T 炾 j�k䵑n㥉曚�㎚±²ڗ㴗¸攅 À 楬 Í䴍Ñ�Ó�â 巉é䭇ì竸ì�ð 沜ó䃿考

    �İ��������㷿䃿峿巿廿  ÿ�嬀笀뜀���� � ะ�����㯿寿   ÿ□ソソソソソソ 렽� �㕻

     ⁺  娀�楔葲汶 ๓繎��

    第 6章 橡胶弹性

    1.高弹性有哪些特征?为什么聚合物具有高弹性?在什么情况下要求聚合物充

    分体现高弹性?什么情况下应设法避免高弹性?

    答:(1)高弹性特征:a.弹性模量很小;b.形变量很大;c.弹性模量随绝对温度

    的升高正比的增加;d.形变时有明显的热效应。

    (2)略(3)略

    2.试述交联橡胶平衡态髙弾形变热力学分析的依据和所得结果的物理意义。

    答:依据:热力学第一定律和第二定律,

    物理意义:橡胶变形后的张应力可以看成是由熵的变化和内能的变化两部分组

    成。只有熵才能贡献的弹性叫熵弹性,橡胶拉伸时内能变化很小,主要是熵的变

    化。内能的变化是橡胶拉伸时放热的原因。

    3.简述橡胶弹性统计理论的研究现状与展望,说明橡胶弹性唯象理论的优缺点。

    答:略。

    4.什么叫热塑性弹性体?举例说明其结构与性能关系。

    答:(1)热塑性弹性体是一种兼有塑料和橡胶特性、在常温下显示橡胶高弹性、

    高温下又能塑化成型的高分子材料,又称为第三代橡胶。

    (2)苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS),PB 分散相 Tg 高于室温,构

    成物理交联区域;故 SBS 室温下为弹性体,高温下发生粘性流动,可以塑化成型。

    5.一交联橡胶试片,长 2.8cm、宽 1.0cm、厚 0.2cm、重 0.518g,于 25℃时拉长

    1倍,测定张力为 9.8N。请计算该试样网链的平均分子量。

    答:8185g/mol

  • 6. 某硫化橡胶试样,其网链平均分子量为 10000,密度为 1g/cm3。问 25℃时拉

    伸 1倍需要多大的应力?(R=8.314J/K·mol)

    答: Pa

    7.一硫化橡胶试样,应力为 1.5×106N/m2 时拉伸比为 2.5.试计算该试样 1cm3

    中的网链数。

    答:

    8.(1)利用橡胶弹性理论,计算交联点间平均分子量为 5000、密度为 0.925g/cm3

    的弹性体在 23℃时的拉伸模量和切变模量。(R=8.3145J/K·mol)

    (2)若考虑自由末端校正,模量将怎样改变?(已知试样的 =100000)

    答:(1)E=1.366Mpa, G=0.455 Mpa

    (2) E=1.229Mpa, G=0.410 Mpa

    9.称取交联后的天然橡胶试样,于 25℃在正癸烷溶剂中溶胀。达溶胀平衡时,

    测得体积溶胀比为 4.0。已知高分子-溶剂相互作用参数χ1=0.42,聚合物的密度ρ2=0.925g/cm3,溶剂的摩尔体积为 195.86cm3/mol,试计算该试样的剪切模

    量 G(R=8.3145J/K·mol)。

    答: 。

    第 7 章 聚合物的粘弹性

    1.举例说明聚合物的蠕变、应力松弛、滞后和内耗现象。为什么聚合物具有这些

    现象?这些现象对其的使用性能存在哪些利弊?

    2.简述温度和外力作用频率对聚合物内耗大小的影响。画出聚合物的动态力学普

    示意图,举出两例说明谱图在研究聚合物结构与性能方面的应用。

    3.指出 Maxwell 模型、Kelvin 模型和四元件模型分别适宜于模拟哪一类型聚合

    物的那一种力学松弛过程?

    答:Maxwell 模型适宜于模拟线形聚合物的应力松弛过程,Kelvin 模型适宜于模

    拟交联聚合物的蠕变过程,四元件模型适宜于模拟线形聚合物的蠕变过程。

    4.什么是时温等效原理?该原理在预测聚合物材料的长期使用性能方面和在聚

    合物加工过程中各有哪些指导意义?

    答:(1)升高温度与延长时间对分子运动是等效的,对聚合物的粘弹行为也是

    等效的,这就是时温等效原理。

    (2)需要在室温条件下几年甚至上百年完成的应力松弛实验实际上是不能实现

    的,但可以在高温条件下短期内完成;或者需要在室温条件下几十万分之一秒或

    几百万分之一秒中完成的应力松弛实验,可以在低温条件下几个小时甚至几天内

    完成。

  • 5.定量说明松弛时间的含意。为什么说作用力的时间相当时,松弛现象才能被明

    显地观察到?

    答:(1)松弛时间 是粘性系数和弹性系数的比值;

    (2)如果外加应力作用时间极短,材料中的粘性部分还来不及响应,观察到的

    是弹性应变。反之,若应力作用的时间极长,弹性应变已经回复,观察到的仅是

    粘性流体贡献的应变,材料可考虑为一个简单的牛顿流体。只有在适中的应力作

    用时间,材料的粘弹性才会呈现,应力随时间逐渐衰减到零,这个适中的时间正

    是松弛现象的内部时间尺度松弛时间τ。

    6.简述聚合物粘弹理论的研究现状与展望。

    答:略。

    7.一某种聚合物材料作为两根管子接口法兰的密封垫圈,假设该材料的力学行为

    可以用 Maxwell 模型来描述。已知垫圈压缩应变为 0.2,初始模量为 3e6N/m2,

    材料应力松弛时间为 300d,管内流体的压力为 0.3e6N/m2,试问多少天后接口处

    将发生泄露?

    答:208d。

    8.将一块橡胶试片一端夹紧,另一端加上负荷,使之自由振动。已知振动周期为

    0.60s,振幅每一周期减少 5%,试计算:

    (1)橡胶试片在该频率(或振幅)下的对数减量(△)和损耗角正切(tgδ);

    (2)假若△=0.02,问多少周期后试样的振动振幅将减少到起始值的一半?

    答:(1) ;

    (2)21。

    9.分别写出纯粘性液体(粘滞系数η)、理想弹性体(弹性模量 E)、Maxwell

    单元(EM、

    ηM)和 Kelvin 单元(EK, Ηk)在 t=0 时加上一恒定应变速度 K后应力(δ)随

    时间(t)的变化关系,并以图形表示之。

    解:(1)δ=KEt, 图形为一过原点直线。

  • (2)δ=Kη, 图形为一水平直线。

    (3)δ=Kη-ηexp(-Et/η), 图形为一条斜率逐渐减小的曲线。

    (4)δ=KEt+ηK 图形为一直线,与纵轴交点在横轴上方。

    10.设聚丙烯为线性粘弹体,其柔量为 D(t)=1.2t0.1(GPa)-1(t 的单位为 s),

    应力状态如下:

    δ=0 t

  • δ=1MPa 0≦t≦1000s

    δ=1.5MPa 1000s≦t≦2000s

    试计算 1500s 时,该材料的应变值。

    答:

    11.在频率为 1Hz 条件下进行聚苯乙烯试样的动态力学性能实验,125℃出现内耗

    峰。请计算在频率 1000Hz 条件下进行上述实验时,出现内耗峰的温度。(已知

    聚苯乙烯的 Tg=100℃)

    答:151.3℃

    12.某聚合物试样,25℃时应力松弛到模量为 1e5N/m^2 需要 10h。试计算-20℃

    时松弛到同一模量需要多少时间?(已知该聚合物的 Tg=-70℃)

    答:

    13.某聚合物的粘弹行为服从 Kelvin 模型,其中η值服从 WLF 方程,E值服从

    橡胶弹性统计理论。该聚合物的玻璃化温度为 5℃,该温度下粘度为 1e12Pa·s,

    有效网链密度为 1e-4mol/cm^3。试写出 30℃、1e6Pa 应力作用下该聚合物的蠕

    变方程。

    答:

    第 8章 聚合物的屈服和断裂

    1.名词解释:

    脆-韧转变点;细颈;剪切带;银纹;应力集中;疲劳。

    脆-韧转变点:在一定应变速率下,作断裂应力和屈服应力分别与温度 T的关系

    曲线,两条曲线的交点就是脆韧屈服转变点。

    细颈:高分子材料试样条在拉伸实验中,试条某点的横截面突然快速下降的现象。

    剪切带:只发生在局部带状区域内的剪切变形。

    银纹:聚合物在张应力作用下,于材料某些薄弱地方出现应力集中而产生局部的

    塑性形变和取向,以至在材料表面或内部垂直于应力方向上出现长度为 100μm、

    宽度为 10μm 左右、厚度约为 1μm的微细凹槽。

    应力集中:受力材料在形状、尺寸急剧变化的局部或内部缺陷(孔、裂缝等)的

    附近出现应力显著增大的现象。

    疲劳:材料或构件在周期应力作用下断裂或失效的现象,是材料在实际使用中常

    见的破裂

    形式。

    2.画出非晶态和晶态聚合物拉伸时典型的应力-应变曲线,指出曲线上的特征点

  • 及相应的应力、应变名称。

    3.讨论温度、应变速度、流体静态压力对上述应力-应变曲线的影响规律。

    4.简述几种组合应力作用下材料的屈服判据,比较不同判据之间的差异。

    答:(1)单参数屈服判据(Tresca 判据和最大形变能理论),只受正应力和切

    应力;(2)双参数屈服判据(Coulomb 判据或 MC 判据),受正应力、切应力和

    正压力。此外考虑流体静压力的改进的 Tresca 和 Von Mises 判据也适用。

    5.何谓聚合物的强度?为什么理论强度比实际强度高很多倍?

    6.简述聚合物增强、增韧的途径和机理。

    答:聚合物增强途径:通过添加增强剂来形成复合材料;

    机理:形成复合材料,可以传递应力,避免基体应力集中,提高力学强度。

    聚合物的增韧途径:添加增塑剂。

    机理:银纹机理、银纹-剪切带机理、三轴应力空化机理、刚性粒子增韧机理。

    7.下列几种聚合物的抗冲击性能如何?为什么?(T

  • 1.什么是假塑性流体?绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈

    现假塑性流体的性质?试用缠结理论加以解释。

    答:(1)流动指数 n

  • 切粘度:等于单位速度梯度时单位面积上所受到的切应力,其值放映了液体分子

    间由于相互作用而产生的流动阻力即内摩擦力的大小,单位为帕秒(Pa s)。

    拉伸粘度:等于单位速度梯度时单位面积上所受到的拉伸应力。

    (3)真实粘度和表观粘度;

    真实粘度:单位速度梯度时单位面积上所受到的切应力。

    表观粘度:在粘性流动中,流体具有剪切速率依赖性时的剪切应力与剪切速率之

    比值。

    (4)非牛顿指数和稠度系数;

    非牛顿指数:n= ,对切变速率非牛顿的校正。

    稠度系数:描述非牛顿流体流动行为可用下述幂律方程: ,其中 K为稠

    度系数。

    (5)不稳定流动与熔体破裂。

    不稳定流动与熔体破裂:聚合物熔体在挤出时,如果切应力超过一极限值时,熔

    体往往会出现不稳定流动,挤出物外表不再是光滑的,最后导致不规则的挤出物

    断裂,称为熔体破裂。

    7.为什么涤纶采用熔融纺丝方法,而腈纶却用湿法纺丝?

    答:由于聚丙烯腈的熔点很高(318℃),分解温度(220℃)低于熔点,所以不

    能用熔融纺丝。由于聚对苯二甲酸乙二酯的熔点为 260~270℃,低于分解温度(约

    为 350℃),可用熔融纺丝。

    8.某一聚苯乙烯试样,已知 160℃时粘度为 1e3Pa·s,试估算 Tg(100℃)时及

    120℃时的粘度。

    答:Tg(100℃)时为 ?Pa·s,120℃时为 ?Pa·s。

    9.一种聚合物在加工中劣化,其重均分子量从 1e6 下降到 8e5.问加工前后的熔

    融粘度之比是多少?

    答:2.14

    10.用毛细管流变仪挤出顺丁橡胶试样,不同柱塞速度ν条件下,得到载荷下的

    数值如下:

    V(mm/min) 0.6 2 6 20 60 200

    F(mm/min) 2067.8 3332 4606 5831 6918.8 7781.2

    已知柱塞直径dp=0.9525cm,毛细管直径D=0.127cm,毛细管长径比L/D=4,忽略入

    口校正,试作出熔体的τw- 曲线和ηa- 曲线。

    答:略。

    第 10 章 聚合物的电性能、热性能、光学性能和表面与界面性能

  • 1. 名词解释: 取向极化;介电损耗;电击穿;介电松弛谱;Cole-Cole 图;非线性光学性

    质;全反射

    取向极化:又称偶极极化,是具有永久偶极矩的极性分子沿外场方向排列的

    现象。

    介电损耗:在外电场作用下,由于分子极化引起的电能的损耗,用介电损耗

    角正切 tan 表示。

    电击穿:当电场强度达到某些临界数值(这对不同材料是不同的)时,载流

    子从外部电场所获得的能量大大超过它们与周围碰撞所损失的部分能量,将

    使被撞击的高分子链发生电离,产生新的载流子,如此继续,就会发生所谓

    的“雪崩”现象,以致电流急剧上升,聚合物发生击穿。这类击穿叫做电击

    穿。

    介电松弛谱:完成取向极化所需的时间范围很宽,与力学松弛时间谱类似的

    一个时间谱。

    Cole-Cole 图:根据公式

    以 对 作图,得到圆心在(

    ,0)、半径为

    非线性光学性质:光波作为一种电磁波,在很高的电场强度下,极化强度与电场

    强度之间呈现非线性关系的性质。

    全反射:折射光消失,入射光全部反射。

    2.比较聚合物介电松弛和力学松弛的异同点。

    3.讨论影响聚合物介电常数和介电损耗的因素。

    答:影响因素(1)电场频率的影响:在低频区,介电常数达到最大值,而介电

    损耗最小;在光频区,介电常数很小,介电损耗也小。

    (2)温度的影响:温度过低 和 都很小;升高温度, 和 都增大;进一步

    升高温度, 又变得很小,而介电常数通过一个峰值后缓慢的随温度升高而下

    降。

    (3)增塑剂的影响:介电损耗随增塑剂含量的增加而移向低温。

    (4)杂质的影响:对于非极性高聚物来说,杂质是引起介电损耗的主要原因。

    4.什么叫聚合物的驻极体?什么叫热释电流法(TSC)?该法为什么能有效的研究

    聚合物的分子运动?

    答:(1)驻极体是具有被冻结的长寿命(相对于观察时间而言)非平衡偶极矩

    的电介质。

    (2)将驻极体在无外电场作用下加热,驻极体内原先被冻结的取向偶极矩会解

  • 取向(退极化);被俘获在陷阱内的真实电荷会解俘获,电极极板上的感应电荷

    会释放出来,从而产生电流,这种方法就热释电流法(TSC)。

    (3)用热释电流法测出电流—温度谱(TSC 谱),曲线上α、β和γ峰反映

    主链链段与局部模式分子运动所贡献的热释电流,ρ峰归属于陷阱载流子解俘

    获电流,一般出现在极化温度以上。

    5.结构型导电聚合物的分子结构与导电性关系如何?举例说明。

    答:(1)具有共轭双键的高聚物:聚乙炔,聚苯乙炔等,可用作半导体或导体;

    (2)电荷转移络合物和自由基-离子化合物:聚 2-乙烯吡啶-碘,TCNQ 为电子接

    受体的聚合物等,导电率不高,但拉伸形变达到 80%时,导电性仍能不受破坏;

    (3)金属有机共轭结构高聚物:将金属引入高聚物主链即得到金属有机高聚物。

    如聚铜钛菁。

    6.简述导电聚合物的研究意义。

    答:高性能导电聚合物即新一代的有机电子功能材料的研制,将为高密度信息处

    理、高效能量转换等高科技的发展作出贡献。

    7.什么叫聚合物的耐热性和热稳定性?如何提高聚合物的耐热性和热稳定性?

    答:(1)耐热性:聚合物材料抵抗热变形和热分解的能力。

    热稳定性:聚合物耐热降解或老化的性能。

    (2)提高聚合物耐热性的方法:a.增加高分子链的刚性;b.提高聚合物的结晶性;

    c.进行交联。

    提高热稳定性的方法:a.在高分子链中避免弱键;b.在高分子主链中避免一长串

    连接的亚甲基,并尽量引入较大比例的环状结构;c.合成“梯形”、“螺形”和

    “片状”结构的聚合物。

    8.讨论提高聚合物透明性的途径。

    答:a.加防反射膜;b.使聚合物在可见光频率区无基准振动;c.增加聚合物非晶

    成分;d.添加成核剂,采用急冷结晶的方法得到微细结晶。

    9.简述影响聚合物界面张力的因素。如何降低聚合物之间的界面张力?

    答:(1)温度、极性、分子量和添加剂;

    (2)升高温度;降低接触两相聚合物的极性差异;降低分子量:加入添加剂。

    10.讨论聚合物表面改性的研究现状与展望。

    答:略。