bulk crystal growth

Upload: ramakrishnan-ram

Post on 02-Jun-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Bulk Crystal Growth

    1/24

    Sebastian Lourdudoss 1

    BULK CRYSTAL GROWTH and LIQUID PHASE EPITAXYBULK CRYSTAL GROWTH and LIQUID PHASE EPITAXY

    Lecture-3, 2B 1700, 2B1823 - Advanced Semiconductor Materials

    Bulk crystal growth techniques

    Need for bulk crytals

    Horizontal/Vertical Bridgman technique

    Liquid Encapsulated Czochralski technique

    Dopant distribution

    Wafer specification

    Liquid Phase Epitaxy

    Various epitaxial techniques

    Liquid phase epitaxy Growth procedure and reactors

    LPE phase diagrams

  • 8/10/2019 Bulk Crystal Growth

    2/24

  • 8/10/2019 Bulk Crystal Growth

    3/24

  • 8/10/2019 Bulk Crystal Growth

    4/24

    Sebastian Lourdudoss 4

    Practical Difficulties with certain

    III-V semiconductors

    1) In general, high melting points=> Crucibles normally silica

    (silica becomes soft at 1100 -

    1200 oC) graphite or

    pyrolytic boron nitride (PBN)

    2) Vapour pressures high at m.pt.for InP, GaP and GaAs ( low for

    InSb, GaSb and InAs)

    3) Decomposition near the

    melting point

    => loss of one of the elements=> defects

    (Remedy = Evacuated and

    closed systems)

    Compound M.Pt.(oC)

    Vap. Pr.at M.pt.(atm)

    InSb 525 4x10

    -8

    GaSb 712 1x10-6

    InAs 943 0.33

    GaAs 1238 1.0

    InP 1062 27.5

    GaP 1465 32

    HgSe 799

    HgTe 670 12.5

    CdSe 1239 0.3

    CdTe 1092 0.65

    ZnSe 1526 0.5

    ZnTe 1300 0.6

    Ge 960

    Si 1420From Compound Semiconductor Devices,

    Structures and Processing, Ed. K.A.Jackson,

    Willey-VCH, Weinheim, 1998.

  • 8/10/2019 Bulk Crystal Growth

    5/24

    Sebastian Lourdudoss 5

    Phase diagram for the Ga-As

    system

  • 8/10/2019 Bulk Crystal Growth

    6/24

  • 8/10/2019 Bulk Crystal Growth

    7/24

    Sebastian Lourdudoss 7

    LIQUID ENCAPSULATED CZOCHRALSKI (LEC)

    METHOD

    Cold wall system High pressure with inert gas / active gas

    Encapsulant (B2O3) hinders vapour escape from

    the melt + wets the growing surface

    Normally higher dislocation density than in

    Bridgman technique (because of thermal

    non-uniformity)

    Contamination from the surrounding material

    (e.g. carbon from graphite parts)

    Low pressure LEC ( Dissociation pressure < 2 atm)

    High pressure LEC (Dissociation pressure > 2 atm)

    => inert gas or active gas used

  • 8/10/2019 Bulk Crystal Growth

    8/24

    Sebastian Lourdudoss 8

    CzochralskiCzochralski Growth MethodGrowth Method

  • 8/10/2019 Bulk Crystal Growth

    9/24

    Sebastian Lourdudoss 9

  • 8/10/2019 Bulk Crystal Growth

    10/24

    Sebastian Lourdudoss 10

    Dopants

    k0, eqm. Distribution coefficient = Cs/Cli

    Cli = concentration in the melt at the interface (weight/g melt)

    Cs = concentration in the solid (weight/g solid)

    ke, Effective distribution

    coefficient = Cs/Cl where

    Cl = concentration in the

    melt far from the interface

    (weight/1g melt)

    v = crystal growth rate

    = diffusion barrier width

    D = diff. coeff. of dopant inthe melt

    Dv

    l

    s

    e

    ekk

    k

    C

    Ck

    +==

    )1(00

    0

    From S.M.Sze,Semiconductor

    devices, Physics and

    Technology, John

    Wiley, NY, 2nd ed.,

    2001

  • 8/10/2019 Bulk Crystal Growth

    11/24

    Sebastian Lourdudoss 11

    Equilibrium segregation coefficients for dopants

    in silicon and GaAs

    From S.M.Sze,

    Semiconductordevices, Physics and

    Technology, John

    Wiley, NY, 2nd ed.,

    2001

  • 8/10/2019 Bulk Crystal Growth

    12/24

    Sebastian Lourdudoss 12

    Dopant concentration in the solid Cs :

    where k0, eqm. distribution coefficient

    = Cs/Cl (Cl is the concn. in the melt),

    C0 = Initial concentration in the melt and

    M/M0 = Fraction of the melt solidified

    10

    0

    100

    =

    k

    M

    MCk

    sC

    As solidification progress, i.e.As solidification progress, i.e.

    when M/Mwhen M/M00 increases,increases,

    CCss/C/C00 increases if kincreases if k00 < 1 and< 1 and

    CCss/C/C00 decreases if kdecreases if k00 > 1> 1

    (M/M0)

    Seed endSeed end Tail endTail end

    From S.M.Sze, Semiconductor

    devices, Physics and Technology,John Wiley, NY, 2nd ed., 2001

  • 8/10/2019 Bulk Crystal Growth

    13/24

    Sebastian Lourdudoss 13

  • 8/10/2019 Bulk Crystal Growth

    14/24

    Sebastian Lourdudoss 14

    Orientation flat, index flat, G-type, J-type

  • 8/10/2019 Bulk Crystal Growth

    15/24

    Sebastian Lourdudoss 15

    Dovetail groove and V-groove

  • 8/10/2019 Bulk Crystal Growth

    16/24

    Sebastian Lourdudoss 16

  • 8/10/2019 Bulk Crystal Growth

    17/24

    Sebastian Lourdudoss 17

  • 8/10/2019 Bulk Crystal Growth

    18/24

    Sebastian Lourdudoss 18

    SEVERAL EPITAXIAL TECHNIQUES

    Liquid Phase Epitaxy (LPE)Liquid Phase Epitaxy (LPE)-- Semiconductor solid from a liquid solutionSemiconductor solid from a liquid solution

    -- An equilibrium process usingAn equilibrium process using liquidusliquidus -- solidussolidus

    equilibriumequilibrium

    Vapour Phase Epitaxy (VPE)Vapour Phase Epitaxy (VPE)-- Semiconductor solid from gas sourcesSemiconductor solid from gas sources

    -- A special case of Chemical Vapour Deposition (CVD)A special case of Chemical Vapour Deposition (CVD)

    Molecular Beam Epitaxy (MBE)Molecular Beam Epitaxy (MBE)-- Semiconductor solid from atomic or molecular beamsSemiconductor solid from atomic or molecular beams

    -- Beams arrive directly on the growth surface withoutBeams arrive directly on the growth surface without

    any priorany prior interferanceinterferance or interaction (feasible in anor interaction (feasible in an

    ultra high vacuum environment)ultra high vacuum environment)

  • 8/10/2019 Bulk Crystal Growth

    19/24

    Sebastian Lourdudoss 19

    Liquid Phase Epitaxy

    Observations:

    1) III-V comounds decompose before reaching their melting points (melting

    points are very high)

    This means normally Hfusion

    /H0formation

    > 1

    AlSb 0.848 GaAs 1.26

    GaSb 1.48 InAs 1.35

    InSb 1.43

    NaCl 0.07 KF 0.05

    2) High vapour pressure of V species at the congruent melting point

    Remedy:

    Dissolve V species (solutes) in III species (solvents) Use solidus liquidus equilibrium to carry out epitaxy

    THIS IS LPE!

    Implication:

    Growth predicted by thermodynamics almost accurately

  • 8/10/2019 Bulk Crystal Growth

    20/24

    Sebastian Lourdudoss 20

    Liquid Phase Epitaxy reactors

  • 8/10/2019 Bulk Crystal Growth

    21/24

    Sebastian Lourdudoss 21

    LPE PHASE DIAGRAMSLPE PHASE DIAGRAMS

  • 8/10/2019 Bulk Crystal Growth

    22/24

    Sebastian Lourdudoss 22

    Doping ofDoping of InGaAsPInGaAsP latticelattice

    matched to InP with LPEmatched to InP with LPE

  • 8/10/2019 Bulk Crystal Growth

    23/24

    Sebastian Lourdudoss 23

    p-quaternary

    contact layer

    p-InP

    cladding layer

    n-InP

    p-InP

    n-InP

    substrate

    Regrowth by LPERegrowth by LPE

    Active layer

  • 8/10/2019 Bulk Crystal Growth

    24/24

    Sebastian Lourdudoss 24

    ADVANTAGES OF LPE

    Simple

    Inexpensive

    Rather non-hazardous Suitable for selective growth

    Al and Sb compounds possible

    => Highly suitable for simple structures

    DISADVATAGES OF LPE

    Too simple to grow quantum structures

    Thickness control and composition control difficult

    Redissolution of the grown material High growth temperatures for certain compounds

    (e.g. GaAs at ~ 800-900 oC but InP at ~ 600 oC)

    Fe doping (for semi-insulation) difficult because of low

    distribution coefficient