buddhism in culturally responsive engineering and science education

27
AUTHOR : MARISOL MERCADO SANTIAGO [SCHOOL OF ENGINEERING EDUCATION, PURDUE UNIVERSITY] SECOND AUTHORS : ALICE L. PAWLEY & DONALD W. MITCHELL 12 TH SAKYADHITA CONFERENCE 2011 Buddhism in Culturally Responsive Engineering and Science Education 1

Upload: judith

Post on 24-Feb-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Buddhism in Culturally Responsive Engineering and Science Education. Author : Marisol Mercado Santiago [School of Engineering education, purdue university] Second authors : Alice l. Pawley & Donald w. mitchell 12 th sakyadhita conference 2011. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Buddhism in Culturally Responsive Engineering and Science Education

1

A U T H O R : M A R I S O L M E R C A D O S A N T I A GO[ S C H O O L O F E N G I N E E R I N G E D U C AT I O N, P U R D U E U N I V E R S I T Y ]

S EC O N D A U T H O R S : A L I C E L . PAW L E Y & D O N A L D W. M I T C H E L L

12 T H SAKYADHITA CONFERENCE 2011

Buddhism in Culturally Responsive Engineering and Science Education

Page 2: Buddhism in Culturally Responsive Engineering and Science Education

3

Questions that we will explore in this presentation:

What does Buddhism have to offer to engineering and science education?

How do Buddhist concepts can be integrated in science and engineering education? (for Buddhist youngsters in Buddhist schools) For what purposes?

Page 3: Buddhism in Culturally Responsive Engineering and Science Education

4

Content

What is engineering?

Culturally relevant approach to education

Buddhist concepts that can be integrated in engineering and science education Case scenarios (examples) in teaching and learning

Page 4: Buddhism in Culturally Responsive Engineering and Science Education

5

What is Engineering?

Activities to design and develop technologies, systems, products,

processes, structures, buildings, etcetera. Industrial Revolution of the Western world (late 19th century) needed skilled workers academia started engineering programs. Civil engineering being one of the first ones.

Design

Implementation

(also known as:

construction, production,

development)

Page 5: Buddhism in Culturally Responsive Engineering and Science Education

6Example of Engineering Design Projects

Photos of projects done by pre-college and college students (Western context):

Robot that lifts aluminum cans (pre-college level)http://news.uns.purdue.edu/images/+2009/boiler-green-robots1.jpg

Building a ramp structure. It helps the child to explore physics (force and motion)(K-12 level)http://ecrp.uiuc.edu/beyond/seed/zan.html

Solar-powered low-cost neonatal incubator (college level)http://www.scu.edu/engineering/enews/2011winter/research.cfm

Page 6: Buddhism in Culturally Responsive Engineering and Science Education

7

Culturally relevant approach to education

Geneva Gay (2000):(1) Validates and respects the perspective of diverse cultural heritages(2) Establishes relationships between academic abstractions and the children’s sociocultural reality.(3) Uses diverse ways of teaching to fit in the different learning styles.(4) Incorporation of multicultural education

Page 7: Buddhism in Culturally Responsive Engineering and Science Education

8

Buddhist concepts

1. The Four Noble Truths2. Dependent Origination and

Interdependence3. Greed (lobha) as a Poison of the Mind that

Impacts the World4. The Principle of Ahimsa (non-violence or

non-harm)

Page 8: Buddhism in Culturally Responsive Engineering and Science Education

9

Case Scenario #1: The Four Noble Truths as a Framework for Engineering Design

A community teacher guides high school students in a village school to identify and design a solution for one of the village’s development problems.

Page 9: Buddhism in Culturally Responsive Engineering and Science Education

10

Case Scenario #1: The Four Noble Truths as a Framework for Engineering Design

Stage of the Engineering design

Teacher will help the students to:

(Preamble) Acquire basic knowledge of engineering and research: Why do we need to know this knowledge? How research is relevant in engineering? How will it help us in a future?...

First step Investigate about one development problem of the village

Second step Investigate about the causes of the problem. How it is affecting?

Third step Investigate about the desirable solution (outcomes)

Fourth step Design and create a prototype (small-scaled model that will solve the problem). Proposal and presentation.

Page 10: Buddhism in Culturally Responsive Engineering and Science Education

11

Dependent Origination

Related to interdependence (de Silva, 1998) and emptiness.

Emptiness – everything lacks of inherent existence; thus, in reality everything is interconnected in a nexus of interdependence.

How can we associate dependent origination with engineering and sustainability education?

Page 11: Buddhism in Culturally Responsive Engineering and Science Education

12

Case scenario #2: Production of biofuels in a bigger picture1

CO2

CO2

CO2

CO2

CO2

CO2

CO2

CO2CO

2

CO2

Page 12: Buddhism in Culturally Responsive Engineering and Science Education

13

Greenhouse effect

AtmosphereSun

Radiation from the sun

Greenhouse gases (such as carbon dioxide (CO2)) absorb heat and contribute to the increase of global warming, which is in itself a natural process of the Earth.

Increase of heat in Earth results in:• Change in animals migration

patterns.• Increase of floods, heavy rain in

some areas.• Melting of ice in the poles, rising

sea levels.• Drying of forests.• Loss of wildlife…

Page 13: Buddhism in Culturally Responsive Engineering and Science Education

14

Greed (lobha) as a Poison of the Mind that Impacts the World

Greed high consumerism more demand in Earth’s natural resources and services contribute in the increment of CO2 greenhouse effect.

Many authors have related greed to practices that have made a strong negative impact in the environment (e.g., Swearer, 1997; Sivaraksa, 2000; Sure, 2010).

Page 14: Buddhism in Culturally Responsive Engineering and Science Education

15

Greed (lobha) as a Poison of the Mind that Impacts the World

Engineering contribute to industries and manufacturing of products that support the chain of consumerism:

“Engineers create factories in towns and cause villagers to move away from their families to find work. Engineers contribute more than possibly any other profession (apart from business itself) to the movement of capital throughout the world which causes all developing countries to become increasingly market driven. These are what we need to guard against, are responsible for and can do something about” (Baillie, 2009, p. 83)

Page 15: Buddhism in Culturally Responsive Engineering and Science Education

16

Case Scenario #3: Impermanence and the Product Lifecycle

Teacher-students reflective dialogue about the impact of greed and high consumerism: what happens when a society keeps cultivating an urge to consume, not being satisfied with what they have.

Teacher can bring knowledge about the products lifecycle and connect it to the principle of impermanence. What happens when people keep consuming non-

biodegradable products without proper recycling?

Page 16: Buddhism in Culturally Responsive Engineering and Science Education

17

Case Scenario #3: Impermanence and the Product Lifecycle

Story of Stuff (2010) International Website – video that explains the products lifecycle, linked to consumerism, and environmental pollution.

http://www.storyofstuff.com/international/

Page 17: Buddhism in Culturally Responsive Engineering and Science Education

18

Industrial Products Life Cycle

Extraction of Earth’sresources

Production

Engineers

Transportation

Selling

Product use

What other alternatives to

discard the product do we have?

Page 18: Buddhism in Culturally Responsive Engineering and Science Education

19

The Principle of Ahimsa (non-violence or non-harm)

Ahimsa is a commitment to non-harm (Sure, 2010, p. 67).

Teacher-students reflective dialogue about the relationship between unethical manufacturing activities (where many engineers work) and environmental pollution

What can we do about it if we would have the opportunity to become engineers?:

“While consumer good manufacturers may not intentionally choose to cause harm, their actions nonetheless often leave death and injury in their wake. [….] Producers justify tremendous harm to many forms of life to meet the bottom line of profit and gain” (Kaza, 2005, p. 143)

Page 19: Buddhism in Culturally Responsive Engineering and Science Education

20Case Scenario #4: Importance of ethics in engineering

Teacher-students reflective dialogue about the importance of ethics in engineering2:

Each field of engineering has its own professional ethics code.

We can guide our engineering and science practices through Buddhist ethics as well.

How do the teachings of the Buddha can be applied to ethical conduct in engineering? The interdependence of individual and society Social responsibility Karma and conditioning

Page 20: Buddhism in Culturally Responsive Engineering and Science Education

21Case Scenario #4: Importance of mindfulness in engineering

Teacher-students reflective dialogue about the importance of mindfulness in engineering design and implementation: How do current and future engineers can protect

the environment while at the same time meet the needs of the people?

Design mindful of impermanence: What will happen to the product after it will cease to be

useful? Consider:

• Biodegradable materials• Ways to reduce CO2 in the production and

distribution of the product

Page 21: Buddhism in Culturally Responsive Engineering and Science Education

22

Conclusion

Overview of culturally responsive education and engineering

Connected four Buddhist concepts with examples of teaching and learning engineering and science for youngsters in Buddhist schools.

We hope that these examples may support grassroots educational initiatives connecting engineering, science, ethics, sustainability, and Buddhism.

Page 22: Buddhism in Culturally Responsive Engineering and Science Education

23

Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.

Marisol is grateful to the following people: Professors A.L. Pawley, D. W. Mitchell, D. Evangelou,

and B. Jesiek Tibetan Mongolian Buddhist Cultural Center

(Bloomington, Indiana, United States) Carlos A. Santiago Quintana Buddhist communities of Puerto Rico

Page 23: Buddhism in Culturally Responsive Engineering and Science Education

24

Update

Working paper: Connection of an engineering design activity with the Four Noble Truths and a Buddhist leadership model. Second author: Donald W. Mitchell (Dept. of

Philosophy, Purdue University)

Future doctoral dissertation: development and research of an introduction to engineering for Tibetans in a school in India (probably Dharamsala).

Page 24: Buddhism in Culturally Responsive Engineering and Science Education

25

Note

I would love to keep in contact with you if this paper helps in your school or if you need my support in any way.

After I finish my doctoral degree it is my intention to help support Buddhist nunneries and children’s schools.

Page 25: Buddhism in Culturally Responsive Engineering and Science Education

26

Questions? Suggestions?

Marisol Mercado Santiago: [email protected] Purdue University

School of Engineering EducationArmstrong Hall

701 West Stadium AvenueWest Lafayette, IN 47907-2045

Dr. Alice L. Pawley: [email protected] [School of Eng. Ed.]

Dr. Donald. W. Mitchell: [email protected] [Dept. of Philosophy]

Page 26: Buddhism in Culturally Responsive Engineering and Science Education

27

References

Please, see entire list of references in the paper Baillie, C. (2009). Engineering and society: Working towards social justice part I:

Engineering and society. Morgan & Claypool Publishers. doi: 10.2200/S00136ED1V01Y200905ETS008

de Silva, P. (1998). Environmental philosophy and ethics in Buddhism. New York, NY: St. Martin’s Press, Inc.

Gay, G. (2000). Culturally responsive teaching: Theory, research, and practice. New York: Teachers College.

Kaza, S. (2005). Penetrating the tangle. In S. Kaza (Ed.), Hooked!: Buddhist writings on greed, desire, and the urge to consume (pp. 139-151). Boston, MA: Shambhala Publications, Inc.

Kemavuthanon, S., & Duberley, J. (2009). A Buddhist view of leadership: the case of the OTOP project. Leadership & Organization Development Journal, 30(8), 737-758. doi:10.1108/01437730911003902  

Punnadhammo, A. (2010). Dependent origination and the causes and conditions behind the climate crisis. In D. W. Mitchell & W. Skudlarek, OSB (Eds.), Green monasticism: A Buddhist-Catholic response to an environmental calamity (pp. 39-46). Brooklyn, New York: Lantern Books.

Page 27: Buddhism in Culturally Responsive Engineering and Science Education

28

References

Sivaraksa, S. (2000). Development as if people mattered. In S. Kaza & K. Kraft (Eds.), Dharma rain: Sources of Buddhist environmentalism (pp. 183-190). Boston, MA: Shambhala Publications, Inc.

Sure, H. (2010). The monastic rules of Theravada and Mahayana Buddhism: The Bhikshu Pattimokha and the ten major and forty-eight minor Bodhisattva precepts from the Net of Brahma (Brahmajmala) Sutra. In D. W. Mitchell & W. Skudlarek, OSB (Eds.), Green monasticism: A Buddhist-Catholic response to an environmental calamity (pp. 61-75). Brooklyn, New York: Lantern Books.

Swearer, D. K. (1997). The hermeneutics of Buddhist ecology in contemporary Thailand: Buddhadāsa and Dhammapitaka. In M. E. Tucker & D. R. Williams, Buddhism and ecology: The interconnection of dharma and deeds (pp. 21-44). Cambridge, MA: Harvard University Press.

The Story of Stuff. (2010). The story of stuff with Annie Leonard. Retrieved from http://www.storyofstuff.com/international/index.html