buckling 19

17
1 1 Departemen Teknik Mesin Fakultas Teknik– Universitas Indonesia DTM FTUI BUCKLING (Tekukan) 2 Departemen Teknik Mesin Fakultas Teknik– Universitas Indonesia DTM FTUI Stability of Structures In the design of columns, cross-sectional area is selected such that - allowable stress is not exceeded all A P - deformation falls within specifications spec AE PL After these design calculations, may discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles.

Upload: dieter-rahmadiawan

Post on 18-Jul-2016

28 views

Category:

Documents


0 download

DESCRIPTION

d

TRANSCRIPT

Page 1: Buckling 19

1

1Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

BUCKLING(Tekukan)

2Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Stability of Structures

• In the design of columns, cross-sectional area is selected such that

- allowable stress is not exceeded

allAP

- deformation falls within specifications

specAEPL

• After these design calculations, may discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles.

Page 2: Buckling 19

2

3Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Stability of Structures

• Consider model with two rods and torsional spring. After a small perturbation,

moment ingdestabiliz 2

sin2

moment restoring 2

LPLP

K

• Column is stable (tends to return to aligned orientation) if

LKPP

KLP

cr4

22

4Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Stability of Structures

• Assume that a load P is applied. After a perturbation, the system settles to a new equilibrium configuration at a finite deflection angle.

sin4

2sin2

crPP

KPL

KLP

• Noting that sin < , the assumed configuration is only possible if P > Pcr.

Page 3: Buckling 19

3

5Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Euler’s Formula for Pin-Ended Beams• Consider an axially loaded beam.

After a small perturbation, the system reaches an equilibrium configuration such that

02

2

2

2

yEIP

dxyd

yEIP

EIM

dxyd

• Solution with assumed configuration can only be obtained if

2

2

2

22

2

2

rLE

ALArE

AP

LEIPP

cr

cr

6Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Euler’s Formula for Pin-Ended Beams

s ratioslendernesrL

tresscritical srLE

ALArE

AP

AP

LEIPP

cr

crcr

cr

2

2

2

22

2

2

• The value of stress corresponding to the critical load,

• Preceding analysis is limited to centric loadings.

Page 4: Buckling 19

4

7Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Extension of Euler’s Formula

• A column with one fixed and one free end, will behave as the upper-half of a pin-connected column.

• The critical loading is calculated from Euler’s formula,

length equivalent 2

2

2

2

2

LL

rLE

LEIP

e

ecr

ecr

8Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Extension of Euler’s Formula

Page 5: Buckling 19

5

9Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

ExampleAn aluminum column of length L and rectangular cross-section has a fixed end at B and supports a centric load at A. Two smooth and rounded fixed plates restrain end A from moving in one of the vertical planes of symmetry but allow it to move in the other plane.

a) Determine the ratio a/b of the two sides of the cross-section corresponding to the most efficient design against buckling.

b) Design the most efficient cross-section for the column.

L = 20 in.

E = 10.1 x 106 psi

P = 5 kips

FS = 2.5

10Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Example

• Buckling in xy Plane:

127.0

1212

,

23121

2

aL

rL

araabba

AIr

z

ze

zz

z

SOLUTION:

The most efficient design occurs when the resistance to buckling is equal in both planes of symmetry. This occurs when the slenderness ratios are equal.

Page 6: Buckling 19

6

11Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Example

• Buckling in xz Plane:

12/2

1212

,

23121

2

bL

rL

brbabab

AI

r

y

ye

yy

y

• Most efficient design:

27.0

12/2

127.0

,,

ba

bL

aL

rL

rL

y

ye

z

ze

35.0ba

12Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Example

L = 20 in.

E = 10.1 x 106 psi

P = 5 kips

FS = 2.5

a/b = 0.35

• Design:

2

62

2

62

2

2cr

cr

6.138psi101.10

0.35lbs 12500

6.138psi101.10

0.35lbs 12500

kips 5.12kips 55.2

6.13812in 202

122

bbb

brLE

bbAP

PFSP

bbbL

rL

e

cr

cr

y

e

in. 567.035.0

in. 620.1

ba

b

Page 7: Buckling 19

7

13Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Eccentric Loading; The Secant Formula• Eccentric loading is equivalent to a centric

load and a couple.• Bending occurs for any nonzero eccentricity.

Question of buckling becomes whether the resulting deflection is excessive.

2

2max

2

2

12

sece

crcr L

EIPPPey

EIPePy

dxyd

• The deflection become infinite when P = Pcr

• Maximum stress

rL

EAP

rec

AP

rcey

AP

e21sec1

1

2

2max

max

14Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Eccentric Loading; The Secant Formula

rL

EAP

rec

AP e

Y 21sec1 2max

Page 8: Buckling 19

8

15Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

ProblemThe uniform column consists of an 8-ft section of structural tubing having the cross-section shown.

a) Using Euler’s formula and a factor of safety of two, determine the allowable centric load for the column and the corresponding normal stress.

b) Assuming that the allowable load, found in part a, is applied at a point 0.75 in. from the geometric axis of the column, determine the horizontal deflection of the top of the column and the maximum normal stress in the column.

.psi1029 6E

SF=2

16Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

ProblemSOLUTION:

• Maximum allowable centric load:

in. 192 ft 16ft 82 eL

- Effective length,

kips 1.62

in 192in 0.8psi 1029

2

462

2

2

ecr

LEIP

- Critical load,

2in 3.54kips 1.312kips 1.62

AP

FSPP

all

crall

kips 1.31allP

ksi 79.8

- Allowable load,

Page 9: Buckling 19

9

17Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Problem• Eccentric load:

in. 939.0my

122

secin 075.0

12

sec

crm P

Pey

- End deflection,

22sec

in 1.50in 2in 75.01

in 3.54kips 31.1

2sec1

22

2

crm P

Prec

AP

ksi 0.22m

- Maximum normal stress,

18Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Design of Columns Under Centric Load

• Previous analyses assumed stresses below the proportional limit and initially straight, homogeneous columns

• Experimental data demonstrate

- for large Le/r, cr follows Euler’s formula and depends upon E but not Y.

- for intermediate Le/r, crdepends on both Y and E.

- for small Le/r, cr is determined by the yield strength Y and not E.

Page 10: Buckling 19

10

19Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Design of Columns Under Centric LoadStructural Steel

American Inst. of Steel Construction

• For Le/r > Cc

92.1

/ 2

2

FS

FSrLE cr

alle

cr

• For Le/r > Cc

3

2

2

/81/

83

35

2/1

c

e

c

e

crall

c

eYcr

CrL

CrLFS

FSCrL

• At Le/r = Cc

YcYcr

EC

22

21 2

20Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Design of Columns Under Centric LoadAluminum

Aluminum Association, Inc.

• Alloy 6061-T6Le/r < 66:

MPa /868.0139

ksi /126.02.20

rL

rL

e

eall

Le/r > 66:

23

2 /MPa 10513

/ksi 51000

rLrL eeall

• Alloy 2014-T6Le/r < 55:

MPa /585.1212

ksi /23.07.30

rL

rL

e

eall

Le/r > 66:

23

2 /MPa 10273

/ksi 54000

rLrL eeall

Page 11: Buckling 19

11

21Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Problem

Using the aluminum alloy 2014-T6, determine the smallest diameter rod which can be used to support the centric load P = 60 kN if a) L = 750 mm, b) L = 300 mm

22Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Problem

SOLUTION:

• With the diameter unknown, the slenderness ration can not be evaluated. Must make an assumption on which slenderness ratio regime to utilize.

• Calculate required diameter for assumed slenderness ratio regime.

• Evaluate slenderness ratio and verify initial assumption. Repeat if necessary.

Page 12: Buckling 19

12

23Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Problem

24

gyration of radius

radiuscylinder

2

4 cc

cAI

r

c

• For L = 750 mm, assume L/r > 55

• Determine cylinder radius:

mm44.18

c/2m 0.750MPa 103721060

rLMPa 10372

2

3

2

3

2

3

cc

N

AP

all

• Check slenderness ratio assumption:

553.81

mm 18.44mm750

2/

cL

rL

assumption was correct

mm 9.362 cd

24Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Problem• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:

mm00.12

Pa102/m 3.0585.12121060

MPa 585.1212

62

3

c

ccN

rL

AP

all

• Check slenderness ratio assumption:

5550

mm 12.00mm 003

2/

cL

rL

assumption was correct

mm 0.242 cd

Page 13: Buckling 19

13

25Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Design of Columns Under an Eccentric Load

• Allowable stress method:

allIMc

AP

• Interaction method:

1

bendingallcentricall

IMcAP

• An eccentric load P can be replaced by a centric load P and a couple M = Pe.

• Normal stresses can be found from superposing the stresses due to the centric load and couple,

IMc

AP

bendingcentric

max

26Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

t

Calculation of Punch Strength (example)

1. Calculating of punching force

)σstrength x tensile0.8(τ material of resistance Shearing : τ

[mm] thicknessMaterial : t [mm]length profile Punching : tτ Pmax

[kgf] Pmax. force punching Maximum

B

mm 37.7 12 3.14 d π tτ Pmax ln

: mm 1 of thicnessa with (hard) plate steelsilicon ain punched be tois mm 12 ofdiameter a with hole round

a when force punching maximum thecalculate To 1] [Example

kgf 2110 56 1 37.7 Pmax Thus, .2kgf/mm 56 is τresistance shearing that theis 1 Table fromresult The

Ref. Product Information : Technical Data of Dicoat Punch.

Page 14: Buckling 19

14

27Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

27

2. Fracture of punch tip

d / t 4 P/A ) 4/ d : punch tip round afor ( mm punch tip of area sectional Cross A

) t d : punch tip round afor ( kgf force, punching Maximum PP/A

][kgf/mm punch tipon exerted Stress

2

2

2

28Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

28

Page 15: Buckling 19

15

29Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

Ref. Product Information : Technical Data of DicoatPunch.

30Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

30

Minimum punching diameter

dmin :diameter punching Minimum

][kgf/mm steel toolofstrength Fatigue : / t 4 dmin

2

2kgf/mm 97 is punching, of shots 100,000 tosubjected

SKH51, of strength fatigue that theis Fig.1 fromresult The mm. 2.1

26/97 2 4 / t 4 dmin

:punch SKH51 a using moreor shots 100,000 mm 2 of thicknessa with plates

SPCCpunch topossibleit makes that diameter punching minimum obtain the To [Example]

Page 16: Buckling 19

16

31Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

31

32Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

32

As expected from Euler’s formula, to improve buckling strength P, it is recommended that a stripper guide and amaterial with higher Young’s modulus ( SKD, SKH, and HAP in increasing order of Young’s modulus ) be used,and that the punch tip length be reduced.The buckling load P represents the value of the load when a buckled punch fractures. When selecting a punch,therefore, the safety factor should be taking account.When selecting a punch for small holes, special attention should be paid to buckling load and stress exerted on the punch.[Example] To obtain the buckling load P for SHAL5 – 60 – P2.00 – BC30, the punch is used without a stripper guide:

)4(B / I E n [kgf] P load Buckling 22

56000 : V3023000 : HAP4022000 : SKH5121000 : SKD11

][kgf/mm modulus sYoung' : E 4

30 Blength Punch tip 2.0 ddiameter Punch tip kgf 190

kgf/mm 22000 E 30/785.0220001 SKH51 : materialPunch B / I E n P

222

22

If the tip is too long, a punch will be buckle under a relatively small load.(when B = 13 [standard punch tip length], the buckling load is 1010 kgf.)

[mm]length Punch tip : B64/d Ipunch round afor

][mm inertia ofmoment Secondary : Iguidestripper With ; 2 n

guidestripper Without ; 1 n t Coefficien :n

4

4

Page 17: Buckling 19

17

33Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

33

Buckling and traverse tests• Test conditions

As shown in [Fig.3], buckling loads and traverse rupture loads were applied to test pieces at velocity of 1 mm/min. (the

traverse rupture loads were applied to the point 0.5 mm fromthe end of a punch tip, using a knife-edge-shaped presser), and respective maximum load under which the punch rupture was found.

• Test resultsBoth buckling strength and traverse rupture strength increasein the order of SKD11, SKH51, and HAP40. Especially, HAP40 maintains high hardness, and thus it is excellent in

compression resistance. The metal structure of HAP40 is very fine, and it contains high alloy components (W, V, Co, etc), which makes the HAP40 punch excellent in toughness. Therefore, the HAP40 punch is most suitable for punching that may cause fracture of chipping.

Since the TD processed punches are degraded in base material hardness, they are also slightly low in buckling strength and traverse rupture strength.

Ref. Product Information : Technical Data of Dicoat Punch.

34Departemen Teknik MesinFakultas Teknik– Universitas Indonesia

DTM FTUI

34

References

1. Ferdinand P. Beer, E. Russell Johnston & John T. DeWolf ; Mechanics of Material, McGraw-Hill; 2002

2. Bernard J. Hamrock. Fundamental of Machine Elements. Mc-Graw Hill.1999

3. R.S Khurmi & J.K Gupta. A Text Book of Machine Element. Eurasia Publishing House. 1987

4. Popov. Mechanics of Material. Prentice-Hall, 1976.

5. Timoshenko. Strength of Material. 1965

6. Product Information : Technical Data of Dicoat Punch.