bruce mayer, pe registered electrical & mechanical engineer bmayer@chabotcollege

49
[email protected] • ENGR-25_Functions-1.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Registered Electrical & Mechanical Engineer [email protected] Engr/Math/Physics 25 Chp3 MATLAB Functions: Part1

Upload: lainey

Post on 11-Feb-2016

23 views

Category:

Documents


0 download

DESCRIPTION

Engr/Math/Physics 25. Chp3 MATLAB Functions: Part1. Bruce Mayer, PE Registered Electrical & Mechanical Engineer [email protected]. Learning Goals. Understand the difference between Built-In and User-Defined Functions Write User Defined Functions - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt1

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Bruce Mayer, PERegistered Electrical & Mechanical Engineer

[email protected]

Engr/Math/Physics 25

Chp3 MATLABFunctions:

Part1

Page 2: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt2

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Learning Goals Understand the difference between

Built-In and User-Defined Functions Write User Defined Functions Describe Global and Local Variables When to use SUBfunctions as

opposed to NESTED-Functions Import Data from an External Data-File

• As generated, for example, by an Electronic Data-Acquisition System

Page 3: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt3

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Functions MATLAB Has Two Types of Functions1. Built-In Functions Provided by the

Softeware• e.g.; sqrt, exp, cos, sinh, etc.

2. User-Defined Functions are .m-files that can accept InPut Arguments and Return OutPut Values

Page 4: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt4

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Getting Help for Functions Use the lookfor command to find

functions that are relevant to your application

For example typing lookfor complex returns a list of functions that operate on complex numbers (more to come):

>> lookfor complexctranspose.m: %' Complex conjugate transpose. COMPLEX Construct complex result from real and imaginary parts.CONJ Complex conjugate.CPLXPAIR Sort numbers into complex conjugate pairs.IMAG Complex imaginary part.REAL Complex real part.CPLXMAP Plot a function of a complex variable.

Page 5: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt5

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Built-In Exponential FunctionsCommand Conventional Math Function

exp(x) Exponential; ex

sqrt(x) Square root; xlog(x) Natural logarithm; lnx

log10(x) Common (base 10) logarithm; logx = log10x

Note the use of log for NATURAL Logarithms and log10 for “normal” Logarithms• This a historical Artifact from the

FORTRAN Language – FORTRAN designers were concerned with confusing ln with “one-n”

Page 6: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt6

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Built-In Complex-No. Functions

Useful for Analyzing Periodic Systems• e.g., Sinusoidal Steady-

State Electrical Ckts

Command Conventional Math Functionabs(x) Absolute value (Magnitude or Modulus)

angle(x) Angle of a complex number (Argument)

conj(x) Complex Conjugate

imag(x) Imaginary part of a complex number

real(x) Real part of a complex number

Page 7: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt7

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Built-In Rounding FunctionsCommand Conventional Math Function

ceil(x) Round to nearest integer toward +fix(x) Round to nearest integer toward zero

floor(x) Round to nearest integer toward −round(x) Round toward nearest integer.

sign(x) Signum function:+1 if x > 0; 0 if x = 0; −1 if x < 0.

Graph

Page 8: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt8

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Engr/MTH/Phys 25

Complex Numbers

1- j 1- i

Page 9: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt9

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Numbers – Math What do We Do

with?

1- i

7x Factoring

7171 x Let’s Make-Up or

IMAGINE

Def.)(Engr 1

Def.)(Math 1

j

i

jx 646.2

Page 10: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt10

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex No.s – Basic Concept

World of REAL numbersa x2 + b x + c = 0 x =

± 2ab2– 4ac b

Discriminant D

Solution(s) of a quadratic equation exist only for non-negative values of D !

World of COMPLEX numbersSolution(s) of a quadratic equation exist also for negative values of D !

x =

± j 2a

|b2– 4ac| b 1jIn Engineering √(-1) = j in Math √(-1) = i

Page 11: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt11

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Number, z, Defined1 ji

z = x + j yReal partx = Re(z)

Imaginary party = Im(z)

Complex numbersIm(z) 0

Real numbersIm(z) = 0 Re(z)

Im(z)

Complex numbersReal

numbers

Page 12: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt12

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex No.s – Basic Rules

Powers of j j2 = –1 j3 = –j j4 = +1 j –1 = –j

j4n = +1; j4n+1 = +j ; j4n+2 = –1; j4n+3 = –j for n = 0, ±1, ± 2, …

Equality z1 = x1 + j y1 z2 = x2 + j y2

z1 = z2, x1 = x2 AND y1 = y2

Addition

z1 + z2, = (x1 + x2) + j ( y1 + y2)

1 ji

Page 13: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt13

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex No.s – Basic Rules cont

z1 = x1 + j y1 z2 = x2 + j y2

Multiplication z1 z2, = (x1 x2 – y1 y2) + j (x1 y2 + x2 y1)

The complex conjugate

z = x + j y z* = x – j y

(z + z*) = x Re(z)21 (z – z*) = j y j Im(z)2

1z z* = x2 + y2

Division z2

z1 = (x22 + y2

2)z2 z2*z1z2* =

x1 x2 + y1 y2 + j (x22 + y2

2)y1 x2 – x1 y2

1 ji

Page 14: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt14

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex No.s – Graphically

x

yr

z = x + i y

Im(z)

Re(z)

The Argand diagram Modulus (magnitude) of z

arctan = arg z =

xy + p, if x < 0

arctan xy , if x > 0

r = mod z = |z| = x2 + y2

x = r cos

y = r sin

Argument (angle) of z

Polar form of a complex number z

z = r (cos + j sin

1 ji

Page 15: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt15

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex No.s – Polar Formz1 = r1 (cos 1 + j sin 1 z2 = r2 (cos 2 + j sin 2

x

yr

z = x + j y

Im(z)

Re(z)

|z1z2| = |z1| |z2| ; arg(z1z2) = arg(z1) + arg(z2)

z1 z2 = r1r2 (cos (1 + 2) + j sin(1 + 2))

= (cos (1 – 2) + j sin(1 – 2))z2

z1

r2

r1

= ; arg( ) = arg(z1) – arg(z2) |z2||z1|

z2

z1

z2

z1

Multiplication

Division

1 ji

Page 16: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt16

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Polar Multiplication Proof Consider:

22221111 sincossincos jdwjdw

Then 21

221212121

22112121

sinsincossinsincoscoscos

sincossincos

jjjdd

jjddww

But 12 j Then factoring out j, & Grouping 212121212121 sincoscossinsinsincoscos jddww

Recall Trig IDs

sinsincoscossincossinsincoscos

1 ji

Page 17: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt17

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Polar Multiplication Proof cont

Using Trig ID in the Loooong Expression

So Finally

21212121 sincos jddww

21cos

212121212121 sincoscossinsinsincoscos jddww

21sin

1 ji

Page 18: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt18

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

De Moivre’s Formulaz1 z2 = r1r2 (cos (1 + 2) + j sin(1 + 2))

z1 z2…zn = r1r2 …rn [cos (1 + 2 …+ n) + j sin(1 + 2 …+ n)]

zn = rn (cos (n) + j sin(n))z1 = z2=…= zn

r = 1 (cos + j sin )n = cos (n) + j sin(n)

French Mathematician Abraham de Moivre (1667-1754)

1 ji

Page 19: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt19

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Functions

f(x) = g(x) + j h(x)

A complex function

Real function

Real function

A complex conjugate functionf*(x) = g(x) – j h(x) f(x) f*(x) = g2(x) + h2(x)

Example: f(z) = z2 + 2z + 1; z = x + j y

f(z) = g(x,y) + j h(x,y)g(x,y) = (x2 – y2 + 2x + 1)h(x,y) = 2y (x + 1)

1 ji

Page 20: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt20

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Verify by MuPad From the last Line

(collect comand) collect real and imaginary parts

12,

22,12, 22

xyyxhyxyyxhxyxyxg

Page 21: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt21

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Euler’s Formula

A complex conjugate is also inverse

A power series for an exponential

!

u!

uueu

321

32

5!3!4!2!1

3!)(j

2!)(1

5342

32

θθθθθ

θjθjθe jθ

j

θ sin θez jθ j cos

jθu ei

Im(z)

Re(z)

1

1

–1

–1–

e–i

jθ-jθ

jθ-jθ

eej

θ

eeθ

21 sin

21 cos

θ sin θezz* -jθ j cos-1

1 ji

cos(θ) sin(θ)

Page 22: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt22

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Numbers – Engineering

Page 23: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt23

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Number Calcs Consider a General

Complex Number

This Can Be thought of as a VECTOR in the Complex Plane

This Vector Can be Expressed in Polar (exponential) Form Thru the Euler Identity

Where

)sin(cos

jrrejyxz j

jyxz

11 jjj Then from the Vector Plot

xy

yxr

1

22

tan

x

yr

z = x + j y

Im(z)

Re(z)

1 ji

Page 24: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt24

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Number Calcs cont

Consider Two Complex Numbers

The SUM, Σ, and DIFFERENCE, , for these numbers

The PRODUCT n•m

j

j

Fejdcm

Aejban

Complex DIVISION is Painfully Tedious• See Next Slide

dbjcamndbjcamn

jjj AFeFeAemn

adbcjbdacbdjadbcjac

jdcjbamn2

1 ji

Page 25: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt25

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Number Division For the Quotient n/m in

Rectangular Form

The Generally accepted Form of a Complex Quotient Does NOT contain Complex or Imaginary DENOMINATORS

Use the Complex CONJUGATE to Clear the Complex Denominator

jdcjba

mn

The Exponential Form is Cleaner• See Next Slide

22

22

2

dcadbcjbdac

mn

dcddcjcbdjadbcjac

mn

jdcjdc

jdcjba

mn

1 ji

Page 26: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt26

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Number Division cont.

For the Quotient n/m in Exponential Form

However Must Still Calculate the Magnitudes and Angles

j

j

j

eFAFeAe

mn

Look for lotsof this inENGR43

1 ji

Page 27: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt27

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Root of a Complex Number How to Find?

3 197 j

jrejyxz Use Euler

xy

yxr

1

22

tan

In This Case

Note that θ is in the 2nd Quadrant

Thus

2.1107

19tan

25.20197

1

22

r

3 2.110

3

25.20

197

je

j

Page 28: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt28

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Root of A Complex Number Now use

Properites of Exponents

Use Euler in Reverse

74.36

32.110

31

2.11031

31

2.110

3 2.110

726.2

726.2

25.20

25.20

25.20

j

j

j

j

j

e

e

e

e

e sincos jrz

In this Case

631.11841.274.36sin74.36cos726.2

jjz

By MATLAB(-7+19j)^(1/3)ans = 2.1841 + 1.6305i

Page 29: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt29

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

ln of a NEGATIVE Number (1) What is Im(z)

Re(z)

r

–r

–r = πz=(-19,0) 19ln

180

190arctan19019 22

p

r

State −19 as a complex no.

019 jz

Find Euler Reln Quantities r, & θ

Page 30: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt30

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

ln of a NEGATIVE Number (2) Note that θ is

180º, NOT Zero Thus the Polar

form of −19

Im(z)

Re(z)

r

–r

–r = πz=(-19,0)

pjez

jz

19

019

Taking the ln

eje

ezj

j

ln9444.2ln19ln

19lnln

p

p

p

1416.39444.2ln jz

Page 31: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt31

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Log of a NEGATIVE Number Recall complex

forms for −19

Im(z)

Re(z)

r

–r

–r = πz=(-19,0)

pjez

jz

19

019

Taking the common (Base-10) log

ej

e

ezj

j

log2788.1log19log

19loglog

p

p

p

3644.12788.1

4343.02788.119loglog

jjez j

p

p

Page 32: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt32

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

sin or cos of Complex number Recall from Euler Development

By Sum & Difference Formulas

sinh22

sin2

1sin

cosh22

cos2

cos

jeejeejjeej

eeeejee

jjjjjj

jjjjjj

jy

x

sinsincoscossincossinsincoscos

Page 33: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt33

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

sin or cos of Complex number Thus

From PreviousSlide

So Finally

jyxjyxyx

jyxjyxjyxsincoscossinsin

sinsincoscoscos

yjjy

yjysinhsin

coshcos

yxjyxyx

yxjyxjyxsinhcoscoshsinsin

sinhsincoshcoscos

Page 34: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt34

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

MATLAB Complex Operations>> a = 3+2j;>> b = -4+5i;>> c = -5-j*4;>> d = i;

>> ac = a*cac = -7.0000 -22.0000i

>> Mag_b = abs(b)Mag_b = 6.4031

>> c_star = conj(c)c_star = -5.0000 + 4.0000i

1 ji

Page 35: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt35

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Ops

>> b_d = b/db_d = 5.0000 + 4.0000i

>> c_b = c/bc_b = 0 + 1.0000i

>> c_a = c/ac_a = -1.7692 - 0.1538i

>> Re_d = real(d)Re_d = 0

>> Im_b = imag(b)Im_b = 5

Page 36: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt36

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Ops

>> b_sq = b^2b_sq = -9.0000 -40.0000i

>> b_cu = b^3b_cu = 2.3600e+002 +1.1500e+002i

>> cos_a = cos(a)cos_a = -3.7245 - 0.5118i

>> exp_c = exp(c)exp_c = -0.0044 + 0.0051i

>> log_b = log10(b)log_b = 0.8064 + 0.9752i

Page 37: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt37

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Ops>> r = 73;>> theta = 2*pi/11;>> theta_deg = 180*theta/pitheta_deg = 32.7273

>> z = r*exp(j*theta)z = 61.4115 +39.4668i

>> abs(z)ans = 73

>> 180*angle(z)/pians = 32.7273

>> x = -23; y = 19;>> z2 = complex(x,y)z2 = -23.0000 +19.0000i

1 ji

Page 38: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt38

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Caveat MATLAB Accepts>> z2 = 3+7j;>> z3 = 5 + i*11;>> z4 = 7 + 13*j;>> z2z2 = 3.0000 + 7.0000i>> z3z3 = 5.0000 +11.0000i>> z4z4 = 7.0000 +13.0000i

But NOT>> z5 = 7 + j5;??? Undefined function or variable 'j5'.

1 ji

Page 39: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt39

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

All Done for Today

LeonhardEuler

(1707-1783)

Page 40: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt40

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Engr/Math/Physics 25

Appendix

6972 23 xxxxf

Page 41: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt41

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Page 42: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt42

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Complex Integration Example

I = xbxeax dcos I = Re xee ibxax d I = Re xe ib)x(a d

22

cos sinsin cos

sin cos

babx b bx aibx b bx ae

ibabx i bxe

ibaexe

ax

axib)x(a

ib)x(a d

22sin coscos

babx b bx aexbxe axax

d

22cos sinsin

babx b bx aexbxe axax

d

1 ji

Us EULER to Faciltitate (Nasty) AntiDerivation

Page 43: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt43

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Illuminate Previous Slide By EULER

xbxibxexeeI axibxaxC dsincosd

Using Term-by-Term Integration xbxeixbxexbxiexbxeI axaxaxax

C dsindcosdsindcos

• As “i” is just a CONSTANT Taking the REAL Part of the above

xbxeixbxeII axaxC dsindcosReRe

Cibxaxax IxeexbxeI RedRedcos

Page 44: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt44

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Rotation OperatorPolar form of a complex number

z = r (cos + j sin jθe r αθjjθjαjα eeezez' r r

z(x,y)

Im(z)

Re(z)

r

–r

–rz'(x',y')

α)(θ sin α)cos(θr

θ sin cosθr

j y'jx'z'j yjx z

x'= r cos( + = r(cos cos – sin sin y'= r sin( + = r(sin cos + cos sin

x'= x cos – y sin y'= x sin + y cos

The function ej can be regarded as a representation of the rotation operator R(x,y) which transforms the coordinates (x,y) of a point z into coordinates (x',y') of the rotated point z' : R(x,y) = (x',y') .

1 ji

Page 45: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt45

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Periodicity

z' = 2πjjθeez' = 2πθjez = jθe

zej e jθjθ sin2πcos2πz'

2, 1, 0,2π nee jθnθj ,

The function ej occurs in the natural sciences whenever periodic motion is described or when a system has periodic structure.

1 ji

Page 46: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt46

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Periodicity on a Circleor n nth roots of 1

z0

Im(z)

Re(z)1

z1

z2

2

z0 = ej0 ; z1 = ej 2p/3 ; z2 = ej 4p/3

zk = ej 2pk/3, where k = 0,1,2

zk3 = (ej 2pk/3)3 = ej 2pk = 1 1 = zk

3

z0 = ej0 = 1 z1 = ej 2p/3 = - + j

z2 = ej 4p/3 = - – j

21

21

23

23 zk = ej 2pk/3, where k = 0, ±1

3 roots of third degree of 1

1 ji

Page 47: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt47

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Periodicity on a Circle contor n nth roots of 1

z0 = ej0 = 1 z±1 = e±j p/3 = ± j

z±2 = e ±j 2p/3 = - ± j

21

21

23

23

6 sixth roots of 1

z0

Im(z)

Re(z)

z1z2

z3

z-2 z-1

Used for description of the properties of the benzene molecule.

n nth roots of 1

zk = ej 2pk/n for k =0, ±1, ±2, ... , ±(n –1)/2 if n is odd

0, ±1, ±2, ... , ±(n/2 –1), n/2 if n is even

Such functions are important for the description of systems with circular periodicity.

1 ji

Page 48: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt48

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Periodicity on a Line

Such functions are important for the description of periodic systems such as crystals.

... a a a a a

f(x) = f(x + a) f(x) = x/aje 2π

Periodic function

Generalization for three-dimensional periodic systems

f(x,y,z) = z/cjy/bjx/aj eee 2π2π2π

1 ji

Page 49: Bruce Mayer, PE Registered Electrical & Mechanical Engineer BMayer@ChabotCollege

[email protected] • ENGR-25_Functions-1.ppt49

Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods

Trig on complex numbers