brochure lgm anglais · – according to nfc standard 31010- the nominal overall diameter is...

28
Page 1 of 28 L.G.M is a company turns into service, quality and innovation. Improve quality of our service, make known or recognize the efficiency of our organization on the national and international market are targets that LGM renewed regularly since more than one half century. Our professionalism, our know-how and our reactivity enable us to extend our range regularly and to improve our service. Without distinction of quantity we take the greatest care to all our productions. Quality is the business of all. It concerns the management and the employees of the company whatever their functions. Our handbook of quality, at the disposal of our customers, summarizes the procedures formalizing the organization of work, the control of the processes, the self-checking, the manufacture and the follow-up of the orders, the maintenance of the materials. Our team, always at the listening of the customers, regularly develops new products and studies at the customer request special cables answering specific requirements. Moreover, datasheets resulting from our laboratories attest qualities of our products subjected to particular constraints. All these tests are based on our 67 years’ experience in the field of wires and cables for electronics and electrical engineering.

Upload: others

Post on 20-Jan-2020

49 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 1 of 28

L.G.M is a company turns into service, quality and innovation.

Improve quality of our service, make known or recognize the efficiency of our organization on the

national and international market are targets that LGM renewed regularly since more than one half

century.

Our professionalism, our know-how and our reactivity enable us to extend our range regularly and

to improve our service. Without distinction of quantity we take the greatest care to all our

productions.

Quality is the business of all. It concerns the management and the employees of the company

whatever their functions. Our handbook of quality, at the disposal of our customers, summarizes the

procedures formalizing the organization of work, the control of the processes, the self-checking, the

manufacture and the follow-up of the orders, the maintenance of the materials.

Our team, always at the listening of the customers, regularly develops new products and studies at

the customer request special cables answering specific requirements. Moreover, datasheets resulting

from our laboratories attest qualities of our products subjected to particular constraints.

All these tests are based on our 67 years’ experience in the field of wires and cables for electronics

and electrical engineering.

Page 2: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 2 of 28

PRESENTATION OF THE COMPANY

ACCESS PLAN LGM Company is located at the following address: LE GUIPAGE MODERNE 5, rue de Bicêtre 94247 L’HAY LES ROSES CEDEX You can also join us by phone or by fax: FRANCE Tél. : 01.46.75.96.96 Fax : 01.46.75.34.84

INTERNATIONAL Tél. : 33.1.46.75.96.96 Fax : 33.1.46.75.34.84

E-mail : [email protected]

Page 3: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 3 of 28

UNIT WIRES

On base of our covered or stranded wires, we use following materials:

AVAILABLE CONDUCTORS - Bare copper:

This annealed copper forms part of the main productions which do not require specific features. It is suitable with the standard NFC 31010.

Description of wire: Cu R - Oxygen-Free-High conductivity copper (OFHC):

It is used for his high conductivity. It is suitable with the standard NFC 31010. Description of wire: Cu OF - Aluminium:

Used in aeronautics because of his low density in comparison with copper: 2,7 instead of 8,9 (69 % less in weight). His electrical resistance (2,65 µΩ.c.m) is 50% more than copper. His thermal conductivity (237W.m-1.K-1) is 40% less than copper.

- Constantan:

Used in the production of thermoelectric couple sets of type TN after insulation by a double natural silk layer. Description of wire: Cu Ni 44

- Nickel, stainless steel, iron, etc.

Used in varied applications, after insulation by covering with: Cotton, Silk, Nylon, Kevlar, Kermel, Kapton, Teflon, etc.

- Silver plated copper wire or pure silver wire: Especially used in the Hi-fi field after insulation with natural silk or cotton.

THE DIFFERENT COATINGS OF COPPER

- Tin reference RE Description of wire: Cu RE - Enamel reference SF Class: F Temperature index: 155°C Solderability: good at 375°C Standard: IEC 317-20 / NFC 31670 Description of wire: Cu SF

- Enamel reference TA

Class: F with low temperature self-bonding layer Temperature index: 155°C Solderability: good at 375°C Standard: IEC 317-35 / NFC 1685 Description of wire: Cu TA

- Enamel reference SH Class: H Solderable Temperature index: 180°C Solderability: good at 390°C Standard: IEC 317-51 Description of wire: Cu SH - Enamel reference HP Class: H200 Temperature index: 200°C Solderability: bad. Impossible with tin Class: IEC 317-13 / NFC 31663 Description of wire: Cu HP - Silver reference Ag Description of wire: Cu Ag

Page 4: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 4 of 28

- Enamel reference TD Class: H+ with high temperature self-bonding layer Temperature index: 200°C Solderability: bad

Standard: IEC 317-38 / NFC 31688 Description of wire: Cu TD

THICKNESS OF ENAMEL’S LAYER

Grade 1 or 2

BASIC CONDUCTORS DIMENSIONS Nominal diameters of conductors are given without coatings. They measure from 0,032 mm to 3 mm The space factor of wires must be calculated with the biggest enamel layer that is possible. Overall diameter, copper cross section or constructions are available on request.

Page 5: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 5 of 28

INTERESTS OF LITZWIRES

TECHNICAL ADVANTAGES LITZ, this generic term designates the various cables realised with unit conductors in enamelled, solderable or tinned stranded copper wires and possibly insulated by textile covering. The use of those varnished wires and cables reduces the losses due to the skin effect, in order to improve the electrical efficiency of the windings working in high frequencies or in low frequencies with high harmonic rates.

APPLICATIONS 1 – INDUCTIVE SENSORS:

Litz wires, thanks to their low resistance to high frequencies, improve the quality factor.

This result increases with an insulation by a double silk layer covering. This is due to the low tan δ implied by the natural silk. Consequently, the Q factor increases. 2 – POWER ELECTRONICS:

In the production of transformers and coils for high frequencies, or high harmonic rates, Litz wires allow to get a better ratio between power and volume, with a higher reliability due to the output improvement.

Losses decrease thanks to a reduction of the HF resistance, by skin effect, using stranded wires. Moreover, in many transformers with ferrite-based magnetic circuit, it is necessary to create a small air gap which unfortunately increases leaks of the magnetic field. Those leaks cause overheatings in the windings by E.M.F. current. The use of stranded wires is an excellent remedy to overcome those parasitic overheatings.On the whole, Litz wires remove the drawback of slow carbonization of the central turns in a HF winding while allowing to create air gaps in order to avoid the magnetic circuit saturation.

3 – MICROELECTRONICS : For the high frequency, order of the Mega Hertz, we recommend Litzwires of very small cross sections. The compositions carried out starting from enamelled wires ranging between 32 microns and 50 microns give good results.

Page 6: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 6 of 28

For the problems of coupling in H.F., twisted wires composed by 2 or 3 strands and of diameters located enter 100 microns and 200 microns are interesting. But the pitch must short. LGM Company has a machine stock for the stranding of extra thin enamelled wires, for very small windings.

The pitch of twisting can be adjusted between 1 mm and 25 mm. We can accept several tolerances of pitch: ± 5%, ± 10% and ± 20 %. Tolerance and pitch’s length have an important effect on price. Enamelled wires used are: wires with low temperature self bonding layer, F Class, grade 1B with different colours or thermosolderable F Class, grade 1.

For examples:

4 x 0,032 – CU TA 1 – NG 5 x 0,050 – CU SF1 – NG 2 x 0,100 – CU SF2 – NG

On request we elaborate technic specification on wire asked:

- Number of units wires - Number of strands - Sort of enamelled copper - Diameter of strand - Pitch’s strength - Strand’s resistance

CALCULATION FORMULA

The skin EFFECT, or KELVIN EFFECT, is characteristic of the currents spreading in the conductors. It causes the resistance increase in comparison with its value in direct current. As the alternating current goes only through one part of the conductor, it tends to spread only on the wire periphery, all the more so since the frequency is higher.

The “conducting layer” depth can be calculated with the following formula:

δo = fπµ

ρand δo = 564

fµρ

with

δo = penetration depth in mm

ρ = conductor resistivity (for copper: ρ =1,75.10-8Ω.m at 20°C)

µ = magnetic permeability = µ 0 µ r

µ 0 = 4.x.10-7

And µ r = relative permeability of conductor material (µ r = 1 for copper and other non-magnetic materials)

f = frequency of the inducing current in hertz

Page 7: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 7 of 28

For a copper conductor:

δo=F

74 at 70°C, δo in mm

BUNCH

STRAND’S STRUCTURE

For bunches of Litzwires, dimensions are between 0,064 mm and 25 mm of diameter. Cables’ cross sections are located enters 0,004 mm² and 200 mm². We can shape it by rolling the wire in square or rectangular section. Rolling is possible on cables from 2,5 mm² to 150 mm². Number of strands can be between 2 and 56 000.

UNILAY-FREE Bunches are an assembly of several enamelled copper wires. For large cables, several stranded wires are bunched together. In this type of cable, the wires do not have a definite place in the conductor. In the majority of cases the assembly step direction is the same for all wires.

Litzwires are stranded on UNILAY -FREE, (bunches not tight or free). The winding’s direction of the layer is the same.

ASSEMBLY STEP DIRECTION

Our standard model direction is left hand lay S or Z on request, but we can also respect following structures.

UNILAY

WIRING’S DIRECTION

Page 8: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 8 of 28

Câblage Z (on right)

CALCULATION OF NOMINAL OVERALL DIAMETER OF WIRES CO NSTITUTED BY ASSEMBLING ELEMENTARY ENAMELLED WIRES UNDER TEXTILE LAYER

– ACCORDING TO NFC STANDARD 31010-

The nominal overall diameter is determined by the following formula:

D = n.ρ .d + thickness of covering

With:

D = nominal diameter of wire (on textile layer), p = space factor,

n = number of elementary enamelled wires,

d = overall diameter of an elementary enamelled wire

Number of elementary wires

Space factor

3 to 6 1,25

7 1,15

8 to 12 1,25

16 1,26

20 1,27

25 to 400 1,28

STRANDING PITCH

Short pitch: LITZ flex, good holding of each strand, better roundness.

Long pitch: LITZ stiffer, less good holding, better spreading for filling. Pitch can be adjusted between 1 and 500 mm. We can accept tolerances of ± 5%, ± 10% and ± 20% knowing that our standard one is ± 20% with a minimum of ± 1mm.

Câblage S (on left)

Wiring in alternative direction or wiring –S/-Z

Page 9: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 9 of 28

ME DE FABRICATION

U.S. CROSS SECTIONS (AWG)

AWG n° Unit wire diameter mm Section mm² Diameter inch Round section mils 5/0 13,12 135,1 .5165 266.8 M

4/0 11,68 107,2 .4600 211.6 M

3/0 10,40 85,0 .4096 167.8 M

2/0 9,27 67,5 .3648 133.1 M

0 8,25 53,4 .3249 105.5 M

1 7,35 42,4 .2893 83.69 M

2 6,54 33,6 .2576 66.37 M

3 5,83 26,7 .2294 52.63 M

4 5,19 21,2 .2043 41.74 M

5 4,62 16,8 .1819 33.10 M

6 4,11 13,3 .1620 26.25 M

7 3,67 10,6 .1443 20.82 M

8 3,26 8,35 .1285 16.51 M

9 2,91 6,62 .1144 13.09 M

10 2,59 5,27 .1019 10,38 M

11 2,30 4,15 .0907 8.234 M

12 2,05 3,31 .0808 6.530 M

13 1,83 2,63 .0720 5.178 M

14 1,63 2,08 .0641 4.107 M

15 1,45 1,65 .0571 3.257 M

16 1,29 1,31 .0508 2.583 M

17 1,15 1,04 .04526 2.048 M

18 1,024 0,823 .04030 1.624 M

19 0,912 0,653 .03589 1.288 M

20 0,812 0,512 .03196 1.022 M

21 0,723 0,412 .02846 810.1

22 0,644 0,325 .02535 642.4

23 0,573 0,259 .02257 509.5

24 0,511 0,205 .02010 404.0

25 0,455 0,163 .01790 320.4

26 0,405 0,128 .01594 254.1

27 0,361 0,102 .01420 201.5

28 0,321 0,0804 .01264 159.8

29 0,286 0,0646 .01126 126.7

30 0,255 0,0503 .01003 100.5

31 0,227 0,0400 .00893 79.70

32 0,202 0,0320 .00795 63.21

33 0,180 0,0252 .00708 50.13

34 0,160 0,0200 .00630 39.75

35 1,143 0,0161 .00561 31.52

36 0,127 0,0123 .00500 25.00

37 0,113 0,0100 .00445 19.83

38 0,101 0,00795 .00397 15.72

39 0,0897 0,00632 .00353 12.47

Page 10: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 10 of 28

GENERAL CHARACTERICS OF COVERED WIRES - ISULATORS :

The preferential insulators used are:

- Natural silk (1, 2 layers or more) - Nylon (1, 2 layers or more) - Cotton (1, 2 layers or more)

MECHANICAL, THERMAL AND ELECTRICAL CHARACTERISTICS

- NATURAL SILK: High flexibility Low space factor: 4/100 mm for 1 layer, 8/100 mm for 2 layers (diametrical reinforcement). Low resistance to abrasion. Recommended for thin wires: Ø < à 0,14 mm To be used at a maximum temperature of 80°C Dielectric strength: on request following the structure Colours: white, red, green, blue

- NYLON: 66 Polyamide-based fiber Higher space factor than silk: 5/100 mm for 1 layer – 10/100 mm for 2 layers Better resistance to abrasion (50% higher than silk) Recommended for wires with Ø ≥ 0,15 mm To be used at a maximum temperature of 160°C, F Class Dielectric strength: on request following the structure Colour: white

- COTTON: Colours: white or red. Other colours on request

- POLYESTER: Colours: blue, yellow or white

- ARTIFICAL SILK

- ACETATE

Page 11: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 11 of 28

STRANDED WIRES (L ITZ )

- LITZ WIRES: High frequency from 250 KHz to 5MHz - SILK INSULATED for low space factor windings, high insulation and high coefficient of overvoltage - HALF-COVERED WIRES (garland) 1 or 2 layers of white natural silk (it can be an other colour).

White nylon. - NYLON INSULATED for windings working at high temperature.

CHARACTERISTICS - Elementary strand diameter: 0,032 – 0,040 – 0,050 – 0,063 – 0,071 – 0,080 mm - Copper cross section: 0,003 to 200 mm² - Overall diameter: 0,08 to 30 mm - STRAND WIRES (LITZ) : From 100 kHz or 250 kHz. - COVERED OR NOT-COVERED WIRES: for windings on magnetic circuits, ferrites, working in rectangular or sinusoidal currents (decreasing of the overheatings caused by skin effect and, above all, by E.M.F. current).

CHARACTERISTICS - Unit strand diameter: 0,10 – 0,14 – 0,20 – 0,28 (other diameters on request). Annealed copper. Grade 1

solderable enamel. F Class (155°C) solderable at 375°C or H class (180°C) solderable at 390°C. - Assembling: it depends of the copper cross section which defines the number of strands. On request

constructions that give an optimal permutation to conductors are available. - Copper cross section: 5 to160 mm² - Overall diameter: 0,6 to 25 mm. -Overall wrapping: Polyamide fiber (Nylon) allowing the impregnation of the winding with F Class varnish – Glass fiber tape (CETAVER)

Page 12: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 12 of 28

STRANDED CABLES (L ITZ )

- STRANDED CABLES (L ITZ ) Frequency ≥ 10 KHz to≤ 100 KHz - COVERED OR NOT COVERED: for windings which require to minimize losses by skin effect and E.M.F. current.

CHARACTERISTICS - - Unit wire diameter: 0,28 – 0,40 – 0,63 (other diameters on request). Annealed copper, Grade 1

solderable enamel - F Class (155°C) solderable at 375°C or H Class (180°C) solderable at 390°C - - Assembling: it depends of the copper cross section which defines the number of strands. On request

constructions that give an optimal permutation to conductors are available. - Copper cross section: 5 to 120 mm² - Overall diameter: 3 to 25 mm - Overall covering: F Class polyester felt tape allowing impregnation by varnish. H Class Polyamide paper tape – Fiber Glass Tape (CETAVER).

Page 13: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 13 of 28

SELF-BONDING LITZWIRES

WINDINGS OF INDUCTIVE SENSORS

TINNING - WELDING

Direct, without striping, by soldering iron or tin bath. The fusion welding temperature advised is about 390 °C.

WINDING

Respect the admissible tensile strength.

Page 14: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 14 of 28

BONDING

The necessary temperature to bond is contained between 140°C and 170°C. The time required to stick depends on the cable size and on the energy source.

METHODS OF BONDING

• By heat supplying during the winding.

• In the oven, after winding.

• By short electric impulse.

1 – Polymerization with heat

By blowing heat, the layer of thermoplastic is softening and that dragging a bonding of the wires. Heat draught temperature depends of the enamel’s type, diameter of the wire and grade of enamel. It is also in function of the speed, shape of winding and distance between the blow and the wire. Usual temperatures of this blow are from 190 °C to 230°C.

2 – Polymerization in the oven

As the reel is finished, it is warmed in oven. This drags a polymerization of the wire’s mass. The time of warming depends of the size and shape of coil. It must be measured in order to obtain a heating well-shared. This process is relatively long.

It is recommended for wires with diameters higher than 0,10 mm.

3 – Polymerization by short electric impulses

The winding is warmed by using of a constant pulling strength that dragging a bonding of the wires. The process of polymerization is regulated by electrical power and timing. It should be great to obtain by the period of polymerization a homogeneous sharing of temperature in the winding.

It is recommended for wires with diameters higher than 0,10 mm.

4 – Polymerization with solvents

During the winding, wire receives a solvent that dissolves the layer of low temperature self-bonding. In drying the solvent, wires are bonding together. As solvent, we use several alcohols like methanol and ethanol. Acetone is not appropriate because it attacks enamel on base. To drain off the solvent, it is recommended to heat the reel in an oven after winding.

Using limited to windings with low numbers of turn. Recommanded for diameters until 0,10 mm.

Page 15: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 15 of 28

SPECIAL WRAPPED WIRES

KAPTON, NOMEX, POLYESTER, MICA, GLASS BRAID

These wires can be unitaries or twisted. Usually, they are realized with round enamelled copper wires, and they can be rolled. For bare copper wire or enamelled strip, we can study your specific request.

Table of standard productions – L.G.M.

*

INSULATION : The insulation is realized by wrapping Covering: 30% or more

(1) Thickness: see table above (other thicknesses on request). LOSS FACTOR (2) : KAPTON 0,0025 NOMEX 0,010 R.H.: 50%. Frequency: 103 HZ POLYESTER 0,005 (2) The figures indicated below are averages: they must not be considered as specification.

Page 16: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 16 of 28

LITZWIRES COVERED KAPTON

FOR COILS AND TRANSFORMER WINDINGS

In new technical designs meant to extreme conditions of temperature (-273°C to +220°C)

GENERAL POINTS :

Kapton, F Type used for insulation of coil, guarantee thermic class 220°C. It has a good resistance to the flame (the best in the standard UL 94). Kapton does not maintain or propagate the flame. It does not melt and it does not weaken.

KAPTON:

It can assure his function after a short exposure to + 260°C, It is still supple at 273 °C with no detriment of his properties. Moreover it conserves its dielectric strength at high temperatures. It is compatible with high temperature varnishes, including Polyamide, Extrémides, Epoxy, Silicone, Amides-Imides and Organo-Silicones.

PRODUCTION RANGE OF WINDING WIRES (CHARACTERISTICS AT 25°C)

NAME BRINS ELEMENTAIRES

DIAMETRE DES FILS OU

CABLES SECTION CUIVRE

ISOLATION KAPTON MIN . MAX . MIN . MAX . MIN . MAX . mm mm mm mm mm² mm²

ROUNDS WIRES - - 0,80 2,5 0,50 4,9 25-50-75 microns

LITZ WIRES stranded wires

0,10 1,2 0,80 18 0,50 160 25-50-75 microns

USUAL INSULATION : It is realised by “Kapton” wrapping. Minimum 30 % covering.

DIELECTRIC STRENGTH (FREQUENCY 50HZ): 5 000 Volta (25 microns) 8 000 Volta (50 microns) 11 000 Volta (75 microns)

We have in stock Kapton tape with a thickness of 25 microns.

DISSIPATION FACTOR : Tan δ< à 50.10-4, the favourable value of the dielectric constant and of the dissipation factor combine to reduce the weakening of the high frequency signals to minimum.

NOTA: Our technical services are at your disposal for all studies you would like to entrust them. Calculations of diameter and of main characteristics, on phone call or fax We use the following description: 250 x 0,200 – CU SH1 – 1Kp Rb 15 – Rc 30% This product is realized with 250 strands of 0,20 mm, in solderable enamel copper, H Class, grade 1, and wrapped with one layer of KAPTON (width : 15 mm ; covering : 30%).

Page 17: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 17 of 28

LITZCABLES OF HIGH POWER

STRUCTURES

From enamelled wires Grade 1 or 2 Unit wires diameter: 0,20 mm Frequency: 0 to 250 KHz

ENAMELLED WIRES CLASS (must be precised on the order)

F Class 155°C solderable at 375°C (IEC 317-20) H Class 180°C solderable at 390°C (IEC 317-21) H Class 180°C not solderable (IEC 317-22) H Class 200°C not solderable (IEC 317-13) C Class 220°C not solderable (IEC 317-7)

STANDARD RANGE (See table below)

(enamelled copper wire H Class 180°C solderable at 390°C 317-21)

NOMINAL

CROSS

SECTION

NUMBER

STRANDS OVERALL DIAMETER .

IN MM (GR.1) RESISTIVITY AT 20 °C

(OHM /KM ) LENGTH

PER KG

SOLDERING

TIME (1)

Cu mm² Nb Mini Maxi Mini Maxi Sec. 20 (19,79) 630 6,97 7,26 0,831 0,914 5,37 25 40 (39,60) 1260 9,72 10,27 0,415 0,456 2,69 30 60 (60,30) 1920 12,00 12,68 0,273 0,299 1,75 40 80 (79,10) 2520 13,75 14,52 0,208 0,229 1,33 60 100 (98,90) 3150 15,37 16,24 0,166 0,184 1,07 80 120 (118,70) 3780 16,84 17,79 0,138 0,153 0,89 100

(1) Soldering time is given only for information. It concerns a end of a cable submerged in a soldering bath at 390 °C. It is necessary to ensure that decomposition of enamel is total in the middle of the strand. Copper wire must be tinned and be brilliant neither enamel residue, nor waste of carbonization (see page 22).

The range above can be realized from unit wires of different nominal cross sections. However, we recommend you to choose preferably in the list below:

Diameters: 0,20 – 0,28 – 0,40 – 0,56 – 0,63 mm For bare copper wires, diameters on request.

SORT OF WRAPPING

Désignation Classe de température Tension de claquage Nomex tape 50 μ 180°C > 1 000 V eff.

Kapton tape 25μ 220°C > 4 000 V eff.

Polyester tape 23μ 130°C > 3 000 V eff.

Mica tape 250°C > 1 000 V eff.

Fiber glass tape thickness 200 μ (CETA VER)

300°C Suivant composition

Standard covering: 30% mini, 50 % and more on request.

Page 18: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 18 of 28

STRANDED WIRES ROLLED

The shape of cross section into rectangular form reduces bulk of the cable. In case of power transformers the flat Litzwires enhance a lot the filling factor. For example, we realize a flat stranded wire:

300 x 0,200 – Cu SF1 – 5,6 x 3,5 – 2N

This wire is manufacturing with 300 strands of 0,200 mm of diameter, in solderable enamelled copper, F Class, grade 1, rectangular section 5,6 mm x 3,5 mm and covered by 2 layers of nylon.

We are at your disposal for every calculation of shaping.

PRODUCTION’S PROGRAM

LITZWIRES OR LITZCABLES ROUND OR RECTANGULAR

RANGE OF PRODUCTION

Unit wires: from 2 to 50 000 (or more). Insulation:

• Enamelled copper wires grade 1 or grade 2 : F Class 155°C solderable F/H Class 175°C solderable H Class 180°C Brasable H+ Class 200°C Brasable

• Bare copper wires

• Tinned copper wires Constructions: strand, bunch or rope Cross sections:

• Round: 0,080 to 200 mm²

• Square or rectangular: 2,5 to 160 mm². Coverings:

• Textile coverings: Silk, Nylon, Cotton, Tergal, Fiberglass and Polyester.

• Wrapping: Nomex, Kapton, Polyester, Mica.

Other solutions on request.

Page 19: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 19 of 28

LITZWIRES INSULATED BY EXTRA SUPPLE EXTRUSION

STRANDED WIRES INSULATED WITH TEFLON

We produce Litzwires according to customer’s specifications, covered by white FEP extrusion (other colours on request). This FEP jacked is known as a thin wall due to his fine thickness (about 0,3 mm). These Litzwires work at a high temperature, they can be submerged on oil and it stays well supple. Possible range: diameter 0,65 mm to 20 mm maximum. To define this cable, we ask you for precising characteristics below:

Cross section of copper in mm² Insulation’s voltage Breakdown voltage test (dielectric strength) Frequency Maxima overall diameter

For example : 2600 x 0,100 CU SH1 – 1FEP Construction: It is a litzwire of 2600 strands from 0,100 mm of nominal diameter, in enamelled copper. Solderable H Class Grade 1, covered with one layer of FEP. Copper cross section: 17,5 mm² Maximal overall diameter: 8,5 mm Wall thickness: 0,5 mm Dielectric strength: 3KV Insulation: good resistance to mineral oils Using temperature: from -90°C to +205°C.

STRANDED WIRES INSULATED WITH SILICONE This high-temperatured elastomer, with a thick layer, presents good electrical properties.

Page 20: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 20 of 28

LITZWIRES INSULATED WITH POLYETHYLENE

As they are covered, these strands present a good resistance to abrasion and are used for followings: Waterproof cables These wires can be submerged or buried to realize sensors. Temperature: from -10°C to +70 °C Possible range: diameter from 1mm to 10 mm maximum. Polyethylene insulation for Litzwires generates an important bulk but is still more economical than FEP. Our reference for this sort of cables is:

648 x 0,280 – Cu SF2 – 1PE

This bunch is composed of 648 strands in diameter 0,280 mm, in solderable copper, F Class, grade 2, covered with one layer of extruded polyethylene.

Page 21: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 21 of 28

TECHNICAL NOTE FOR THE TINING OF SOLDERABLE ENAMELLED COPPER STRANDED WIRES GRADE 1 OR

2 TEMPERATURE 155 °C OR 180 °C

SOLDERING BATH :

The tinning bath is prepared at a temperature of approximatly 400°C. Soldering temperature: Solderable wire F Class: 375°C ± 5% Solderable wire H Class: 390°C ± 5% At this temperature, the cable conductors for high frequency are tinned and soldered together (au-below 370 °C, the enamel does not remove totally, and above 425°C,the enamel carbonizes on the wire). It is important to own a regulated enamel bath adjustable at 400 °C. To respect the new ROHS conformance, the bath has to be clean without lead, (even lead dust). The solder has to be mainly composed of tin (with eventually silver balance) but without lead.

METHOD :

1) Wet the tinning part in a soldering flux. 2) Before the dip soldering, it is not necessary to remove the enamel nor the silk or nylon covering. 3) To stop the wick effect, surround two or three times the cable with a not-solderable twisted wire

where the rising of the soldering is not wanted. 4) The time of tinning depends on the cross diameter, as noted in the table below, or on

specifications edited by Le Guipage Moderne (LGM).

TABLE OF IMMERSION TIME IN THE SOLDERING BATH :

NOMINAL CROSS SECTION OF THE HIGH FREQUENCY STRANDED WIRE (mm²)

IMMERSION TIME

From To Seconds

0,003 0,080 3

0,080 0,125 4

0,125 0,200 5

0,200 0,300 6

0,300 0,500 8

0,500 0,800 10

0,800 1,600 > 10*

* to be determined by tests

Page 22: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 22 of 28

TAKING OUT A COVERING FROM A TERMINAL CONDUCTOR : The welding of the wire or cable of Litz, in the barrel of a thimble, is carried out in the following way: After the enamel bath, insert quickly the tinned part (still hot) in a terminal conductor before hand put in the tool which will allow hot crimping. For each wire and according to the tinning equipment, the immersion should be as short as possible since a high temperature of the enamel bath surface, and an increase of copper are the most harmless effects. What is really to be avoided is the danger of the cross section decrease and the wire hammering, during a too long immersion in the bath.

PREPARATION PROCEDURE BEFORE TINNING NOT -SOLDERABLE LITZ WIRES

TEMPERATURE INDEX ≥ 180°C

Enamel –H 200 °C For a wrapping with additional insulation as Kapton, Nomex, mineral fibers, first remove this

insulation by a mechanical method. To take the enamel off:

SEVERAL METHODS EXIST :

1) Mechanical action like scraping 2) With an acid solution. The problem of this process is the risk of oxidation if the operation is not

properly done. 3) The enamel burning with a soft fire (gas stove or alcohol).

When the enamel is burned and the wires are still red, dip quickly in an alcohol bath in order to remove oxidation.

Page 23: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 23 of 28

WINDING INSTALLATION OF LITZ WIRE

The Litz wire winding must be put on a reel with rotating a braking spindle in order to support o continuous traction on wire. This is essential to avoid the formation of loops and knots.

Nota: The Litzwire is twisted: it cannot withstand further twistings or detwistings.

BRAKING

TENSIOMETER REEL

STATIC REEL

The static reel is inadvisable for Litzwire: it causes a formation of loops and knots. It is necessary to avoid braking by

friction on wire.

Page 24: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 24 of 28

TABLE OF AVAILABLE REELS

We propose following reels but they can be modified on request.

Reels type

d1 d2 d3 a mini. Angle deg

L1 L2 Weig

ht Average capacity in copper

wire

Average capacity in

Litz mm mm mm mm mm mm

g

DIN 100 100 63 16 0 100 80 90 1,00 kg 0,50 kg

DIN 125 125 80 16 0 30 125 100 200 2,00 kg 1,50 kg

DIN JP3 130 80 20 0 110 90 215 3,00 kg

DIN 160 160 100 22 0 30 160 128 350 6,00 kg 4,50 kg

DIN 200 200 125 36 0 30 200 160 600 10,00 kg 8,00 kg

DIN 250 250 160 36 0 30 200 160 1050 20,00 kg 14,00 kg

DIN 355 355 224 36 0 30 200 160 1850 48,00 kg 25,00 kg

DIN 500 500 315 36 0 30 250 180 7650

This table is given only for information, it has no contractual dimension.

Page 25: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 25 of 28

STRUCTURE CROSS SECTION

OVERALL DIAMETER G1

RESISTANCE Ohm/m

LENGTH m/Kg

TRACTION STRENGTH

TINNING TIME

Number Covering CU mm² Mini. Nomin. Maxi. Mini. Number Covering CU mm² Mini.

0,032 10 1. S 0,0082 0,176 0,218 0,260 1,913 2,454 11059 53 3 12 1. S 0,0096 0,187 0,231 0,276 1,594 2,045 9383 63 3 16 1. S 0,0129 0,210 0,257 0,303 1,196 1,534 7481 84 3 20 1. S 0,0161 0,228 0,277 0,326 0,956 1,228 5848 105 3 25 1. S 0,0201 0,250 0,302 0,354 0,765 0,982 4720 131 3 32 1. S 0,0257 0,276 0,331 0,387 0,597 0,767 3738 167 3 40 1. S 0,0322 0,302 0,361 0,420 0,477 0,614 2992 210 3 50 1. S 0,0402 0,331 0,395 0,458 0,382 0,490 2394 262 3 60 1. S 0,0483 0,358 0,426 0,493 0,318 0,409 1995 314 3 80 1. S 0,0643 0,407 0,481 0,554 0,239 0,307 1496 418 3 100 1. S 0,0804 0,450 0,529 0,607 0,191 0,245 1197 523 4 120 1. S 0,0965 0,488 0,572 0,655 0,158 0,205 997 628 4 160 2. S 0,1287 0,555 0,648 0,741 0,118 0,153 748 837 5 200 2. S 0,1608 0,615 0,716 0,817 0,094 0,123 599 1045 5 250 2. S 0,2011 0,682 0,792 0,902 0,076 0,098 478 1307 6 320 2. S 0,2573 0,765 0,887 1,01 0,059 0,076 374 1673 6

0,040 6 1. S 0,0075 0,171 0,214 0,257 2,046 2,611 11552 49 3 8 1. S 0,0101 0,190 0,235 0,281 1,535 1,958 8907 66 3 10 1. S 0,0126 0,207 0,254 0,301 1,228 1,567 7173 82 3 12 1. S 0,0151 0,222 0,271 0,321 1,023 1,306 6054 98 3 16 1. S 0,0201 0,240 0,297 0,355 0,767 0,979 4624 131 3 20 1. S 0,0251 0,272 0,328 0,385 0,614 0,783 3811 163 3 25 1. S 0,0314 0,299 0,359 0,419 0,491 0,627 3014 204 3 32 1. S 0,0402 0,331 0,396 0,461 0,489 0,489 2379 261 3 40 1. S 0,0503 0,365 0,434 0,503 0,307 0,392 1906 327 3 50 1. S 0,0629 0,402 0,476 0,551 0,246 0,313 1524 409 3 60 1. S 0,0754 0,436 0,514 0,593 0,205 0,261 1270 490 3 80 1. S 0,1006 0,497 0,583 0,670 0,154 0,196 952 654 4 100 1. S 0,1257 0,550 0,643 0,737 0,123 0,157 762 817 5 120 2. S 0,1508 0,596 0,697 0,798 0,102 0,131 635 980 5 160 2. S 0,2011 0,681 0,793 0,906 0,076 0,098 476 1307 6 200 2. S 0,2514 0,756 0,878 1,000 0,061 0,078 381 1634 6 250 2. S 0,3142 0,840 0,975 1,110 0,049 0,063 305 2042 8 320 2. S 0,4022 0,944 1,092 1,239 0,038 0,049 238 2614 8

0,050 5 1. S 0,0098 0,188 0,231 0,275 1,584 1,993 9207 64 3 6 1. S 0,0118 0,202 0,247 0,292 1,320 1,661 7753 77 3 8 1. S 0,0157 0,225 0,273 0,321 0,990 1,245 5946 102 3 10 1. S 0,0196 0,246 0,296 0,347 0,792 0,997 4898 127 3 12 1. S 0,0236 0,265 0,317 0,370 0,660 0,830 4022 153 3 16 1. S 0,0314 0,300 0,356 0,412 0,495 0,623 3061 204 3 20 1. S 0,0393 0,328 0,388 0,448 0,396 0,498 2449 255 3 25 1. S 0,0491 0,362 0,426 0,490 0,317 0,399 1959 319 3 32 1. S 0,0628 0,403 0,472 0,542 0,247 0,311 1531 408 3 40 1. S 0,0785 0,444 0,519 0,594 0,198 0,250 1224 510 3 50 1. S 0,0982 0,490 0,571 0,652 0,158 0,199 980 638 4 60 1. S 0,1178 0,533 0,618 0,704 0,132 0,167 816 766 5 80 2. S 0,157 0,608 0,703 0,798 0,099 0,125 612 1020 5 100 2. S 0,1963 0,674 0,782 0,890 0,079 0,100 490 1276 5 120 2. S 0,2356 0,733 0,844 0,955 0,066 0,083 408 1531 6 160 2. S 0,3141 0,840 0,963 1,087 0,049 0,063 306 2042 8 200 2. S 0,3926 0,932 1,068 1,204 0,039 0,050 244 2552 8 250 2. S 0,4908 1,038 1,186 1,334 0,032 0,040 195 3190 8 320 2. S 0,6282 1,168 1,334 1,500 0,025 0,032 153 4083 10 420 2. S 0,8047 1,330 1,515 1,700 0,019 0,024 116 5110 11 840 2. S 1,6094 1,860 2,110 2,361 0,009 0,012 58 10210 19 960 2. S 1,8393 1,985 2,251 2,517 0,008 0,011 51 11700 21 1020 2. S 1,9543 2,045 2,318 2,592 0,007 0,010 48 12400 23 3060 2. S 5,8629 3,506 3,960 4,415 0,002 0,033 16 37200 60

Page 26: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 26 of 28

STRUCTURE CROSS

SECTION OVERALL DIAMETER

G1 RESISTANCE

Ohm/m LENGTH

m/Kg

Covering

TRACTION STRENGTH

TINNING TIME

Number Covering CU mm² Mini. Nomin. Maxi. Mini. Number CU mm² Mini.

0,063 4 1. S 0,0125 0,206 0,252 0,298 1,261 1,555 7454 81 3 5 1. S 0,0156 0,225 0,273 0,321 1,009 1,244 6044 101 3 6 1. S 0,0187 0,241 0,292 0,343 0,840 1,037 5082 122 3 8 1. S 0,0249 0,271 0,325 0,380 0,630 0,777 3870 162 3 10 1. S 0,0312 0,298 0,355 0,413 0,504 0,622 3096 203 3 12 1. S 0,0374 0,321 0,382 0,443 0,420 0,519 2580 243 3 16 1. S 0,0499 0,364 0,430 0,496 0,315 0,389 1935 324 3 20 1. S 0,0623 0,401 0,471 0,542 0,252 0,311 1548 405 3 25 1. S 0,0779 0,442 0,518 0,594 0,201 0,249 1233 506 3 32 1. S 0,0997 0,494 0,576 0,659 0,157 0,195 967 648 4 40 2. S 0,1247 0,547 0,636 0,725 0,126 0,156 774 811 5 50 2. S 0,1558 0,605 0,702 0,799 0,100 0,125 619 1013 5 60 2. S 0,187 0,658 0,762 0,866 0,084 0,104 516 1216 5 80 2. S 0,2494 0,763 0,868 0,984 0,063 0,078 387 1621 6 100 2. S 0,3117 0,836 0,962 1,089 0,050 0,063 309 2026 8 120 2. S 0,374 0,911 1,047 1,183 0,042 0,052 258 2431 8 160 2. S 0,4987 1,045 1,197 1,350 0,031 0,039 193 3242 10 200 2. S 0,6234 1,162 1,330 1,498 0,025 0,032 154 4052 10 250 2. S 0,7793 1,294 1,478 1,663 0,020 0,025 123 5065 10 320 2. S 0,9974 1,457 1,662 1,868 0,015 0,020 96 6481 10 560 2. S 1,7469 1,912 2,175 2,439 0,009 0,011 55 11340 11

0,071 3 1. S 0,0119 0,200 0,240 0,290 1,314 1,662 7768,6 77 3 4 1. S 0,0158 0,220 0,270 0,320 0,985 1,246 5967,8 103 3 5 1. S 0,0198 0,240 0,290 0,340 0,788 0,998 4826,2 128 3 6 1. S 0,0238 0,260 0,310 0,367 0,657 0,831 4051,3 154 3 8 1. S 0,0317 0,290 0,350 0,410 0,493 0,624 2982,5 205 3 10 1. S 0,0396 0,320 0,380 0,450 0,394 0,499 2439,0 256 3 12 1. S 0,0475 0,350 0,410 0,480 0,328 0,416 2032,5 307 3 16 1. S 0,0633 0,400 0,470 0,540 0,246 0,312 1524,4 409 3 20 1. S 0,0792 0,440 0,520 0,590 0,197 0,249 1219,5 511 3 25 2. S 0,099 0,490 0,570 0,650 0,158 0,200 975,6 639 4 32 2. S 0,1267 0,550 0,630 0,720 0,123 0,155 762,2 817 5 40 2. S 0,1584 0,610 0,700 0,790 0,099 0,125 609,7 1021 5 50 2. S 0,198 0,670 0,770 0,870 0,079 0,100 487,8 1276 5 60 2. S 0,2377 0,737 0,840 0,950 0,066 0,083 406,5 1532 6 80 2. S 0,3169 0,840 0,960 1,080 0,049 0,062 304,9 2042 8 100 2. S 0,3962 0,930 1,070 1,200 0,039 0,049 243,9 2552 8 120 2. S 0,4754 1,020 1,160 1,300 0,033 0,042 203,2 3063 8 160 2. S 0,6339 1,170 1,320 1,480 0,025 0,032 152,4 4084 10 200 2. S 0,7924 1,300 1,470 1,650 0,020 0,025 121,9 5104 10 250 2. S 0,990 1,450 1,640 1,830 0,016 0,020 97,6 6380 12 320 2. S 1,2679 1,630 1,840 2,050 0,012 0,016 76,2 8167 12 405 2. S 0,6047 1,830 2,060 2,300 0,010 0,013 60,2 10336 19 630 2. S 2,4962 2,270 2,550 2,840 0,006 0,008 38,7 16078 28 720 2. S 2,8528 2,430 2,730 3,030 0,005 0,007 33,9 18375 31 1060 2. S 4,1999 2,930 3,29 3,660 0,004 0,005 23,0 27052 31 1458 2. S 5,7760 3,430 3,850 4,270 0,003 0,004 16,7 37209 32 3360 2. S 13,3130 5,190 5,820 6,430 0,001 0,002 7,3 85748 32

Page 27: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 27 of 28

STRUCTURE CROSS

SECTION OVERALL DIAMETER

G1 RESISTANCE

Ohm/m LENGTH

m/Kg

Covering

TRACTION STRENGTH

TINNING TIME

Number Covering CU mm² Mini. Nomin. Maxi. Mini. Number CU mm² Mini.

0,100 10 1. N 0,0785 0,444 0,512 0,581 203,4 245 1234 0,51 3 12 1. N 0,0942 0,482 0,554 0,627 169,5 204,1 1029 0,612 4 16 1. N 0,1257 0,540 0,624 0,709 127,1 153,1 771 0,817 5 20 1. N 0,1571 0,608 0,694 0,781 101,7 122,5 617 1,021 5 25 1. N 0,1964 0,674 0,767 0,861 81,35 97,99 493 1,277 5 32 1. N 0,2513 0,756 0,858 0,961 63,55 76,56 385 1,633 6 40 1. N 0,3142 0,839 0,950 1,062 50,84 61,25 360 2,042 7 50 1. N 0,3927 0,932 1,054 1,176 40,67 49,00 246 2,552 8 60 1. N 0,4712 1,017 1,148 1,279 33,9 40,83 205 3,063 8 80 2. N 0,6283 1,167 1,314 1,461 25,42 30,62 154 4,084 9 100 2. N 0,7854 1,300 1,461 1,622 20,34 24,50 123 5,105 10 128 2. N 1,0053 1,463 1,642 1,821 15,88 19,14 96 6,532 11 160 2. N 1,2566 1,630 1,827 2,024 12,70 15,32 77 8,168 12 200 2. N 1,5708 1,816 2,034 2,252 10,16 12,25 61 10,21 14 250 2. N 1,9635 2,025 2,265 2,505 8,13 9,80 49 12,763 15 320 2. N 2,5133 2,285 2,553 2,821 6,35 7,65 38 16,336 17 360 2. N 2,8274 2,420 2,703 2,986 5,65 6,81 34 18,378 18 384 2. N 3,0159 2,498 2,789 3,081 5,30 6,38 32 19,603 18 400 2. N 3,1416 2,550 2,846 3,143 5,08 6,13 30 20,42 19 520 2. N 4,084 2,900 3,234 3,569 3,91 4,71 23 26,55 23 648 2. N 5,0893 3,230 3,601 3,972 3,14 3,78 19 33,1 26 855 2. N 6,7151 3,704 4,126 4,548 2,38 2,87 14 43,65 32 1275 2. N 10,0138 4,512 5,022 5,532 1,59 1,92 9 65,1 45 3360 2. N 7,294 8,105 8,917 0,60 0,73 3

0,200 3 1. N 0,0942 0,482 0,545 0,609 174,55 197,99 1050 0,613 4 4 1. N 0,1257 0,550 0,619 0,688 130,91 148,50 787 0,817 5 5 1. N 0,1571 0,608 0,682 0,757 104,73 118,80 630 1,021 5 6 1. N 0,1885 0,661 0,740 0,820 87,27 99,00 525 1,225 5 7 1. N 0,2199 0,710 0,794 0,878 74,80 84,86 450 1,43 6 8 1. N 0,2513 0,756 0,843 0,931 65,45 74,25 393 1,634 6 10 2. N 0,3142 0,839 0,934 1,030 52,37 59,40 315 2,042 7 12 2. N 0,377 0,915 1,016 1,118 43,63 49,50 262 2,45 8 15 2. N 0,4712 1,017 1,127 1,238 34,90 39,60 210 3,063 8 16 2. N 0,5027 1,050 1,163 1,276 32,72 37,13 196 3,267 8 18 2. N 0,5655 1,109 1,228 1,347 29,08 33,00 175 3,676 9 20 2. N 0,6283 1,167 1,290 1,414 26,17 29,70 157 4,084 9 25 2. N 0,7854 1,300 1,435 1,570 20,94 23,76 126 5,105 10 32 2. N 1,0053 1,463 1,612 1,762 16,35 18,57 98 6,534 11 40 2. N 1,2566 1,630 1,794 1,959 13,08 14,85 78 8,168 12 50 2. N 1,5708 1,816 1,996 2,176 10,46 11,88 63 10,21 14 60 2. N 1,885 1,985 2,180 2,376 8,72 9,88 52 12,252 15 80 2. N 2,5133 2,285 2,506 2,728 6,53 7,43 39 16,336 17 90 2. N 2,8274 2,420 2,654 2,888 5,81 6,60 35 18,378 18 100 2. N 3,1416 2,550 2,794 3,039 5,24 5,94 31 20,42 19 550 2. N 17,292 5,912 6,451 6,990 0,952 1,080 6 135,85 30

Page 28: Brochure LGM Anglais · – ACCORDING TO NFC STANDARD 31010- The nominal overall diameter is determined by the following formula: D = ρ. n .d + thickness of covering With: D = nominal

Page 28 of 28

STRUCTURE CROSS SECTION

OVERALL DIAMETER G1

RESISTANCE Ohm/m

LENGTH m/Kg

TRACTION STRENGTH

TINNING TIME

Number Covering CU mm² Mini. Nomin. Maxi. Mini. Number Covering CU mm² Mini. 0,280

8 1. N 0,493 1,038 1,143 1,248 33,45 37,83 199 3,2 8 10 1. N 0,616 1,155 1,269 1,383 26,76 30,26 159 4 9 12 1. N 0,739 1,261 1,383 1,506 22,30 25,22 133 4,8 9 15 1. N 0,924 1,405 1,538 1,671 17,84 20,17 106 6 10 16 1. N 0,985 1,450 1,586 1,723 16,72 18,91 100 6,4 10 20 1. N 1,232 1,614 1,764 1,914 13,38 15,13 80 8 11 25 1. N 1,54 1,800 1,964 2,129 10,70 12,10 63 10 12 32 1. N 1,97 2,028 2,211 2,395 8,36 9,46 50 12,8 13 36 2. N 2,217 2,150 2,342 2,534 7,43 8,41 44 14,4 13 40 2. N 2,463 2,262 2,464 2,666 6,69 7,57 40 16 14 50 2. N 3,079 2,524 2,746 2,969 5,35 6,05 32 20 15 60 2. N 3,695 2,760 3,001 3,242 4,46 5,05 27 24 16 72 2. N 4,433 3,018 3,280 3,542 3,71 4,21 22 28,8 17 81 2. N 4,988 3,200 3,475 3,750 3,30 3,74 20 32,4 19 100 2. N 6,158 3,550 3,853 4,157 2,67 3,03 16 40 20 120 2. N 7,389 3,883 4,213 4,544 2,23 2,52 13 48 22 126 2. N 7,758 3,978 4,315 4,652 2,12 2,40 13 50,4 23 144 2. N 8,867 4,250 4,608 4,967 1,86 2,10 11 57,6 24 162 2. N 9,975 4,504 4,883 5,262 1,65 1,87 10 64,8 25 180 2. N 11,084 4,745 5,143 5,542 1,49 1,68 9 72 26 192 2. N 11,8224 4,899 5,309 5,720 1,394 1,58 8 62,2 28 243 2 NM 14,9627 5,506 5,965 6,423 1,10 1,25 7 78,8 30 360 2 NM 22,167 6,691 7,243 7,796 0,74 0,84 4 116,6 60 405 2 NM 24,9378 7,093 7,677 8,262 0,66 0,75 4 131,2 60 540 2 NM 33,2505 8,183 8,854 9,525 0,49 0,56 3 175 80 945 2 NM 58,18883 10,809 11,688 12,568 0,28 0,32 2 306,2 100 1350 2 NM 83,1262 12,909 13,956 15,003 0,19 0,22 1 437,4 120

0,315 51 2. N 3,9745 2,861 3,100 3,340 4,15 4,67 25 31,76 16 81 2. N 6,3124 3,593 3,888 4,183 2,61 2,94 16 50,45 20 108 2. N 8,4165 4,141 4,478 4,815 1,96 2,21 12 67,27 23 144 2. N 11,222 4,775 5,159 5,544 1,47 1,66 9 89,7 26

0,400 5 2. N 0,6288 1,168 1,272 1,376 26,32 29,50 157 4,73 9 10 2. N 1,2576 1,631 1,767 1,904 13,16 14,77 79 9,46 11 20 2. N 2,5152 2,286 2,469 2,652 6,58 7,39 39 18,92 14 40 2. N 5,0304 3,212 3,460 3,709 3,29 3,69 20 37,84 19 77 2. N 9,6835 4,437 4,772 5,108 1,71 1,92 10 72,84 24 250 2. N 31,44 7,955 8,539 9,124 0,53 0,59 3 236,50 75

0,560 23 2. N 5,6649 3,407 3,642 3,878 2,92 3,26 17 37,22 18