bright green-to-yellow emitting cu(i) complexes based on bis ...s1 supporting information bright...

21
S1 Supporting Information Bright green-to-yellow emitting Cu(I) complexes based on bis(2-pyridyl)phosphine oxides: synthesis, structure and effective thermally activated-delayed fluorescence Alexander V. Artem’ev,* a Maxim R. Ryzhikov, a,b Ilya V. Taidakov, c,d Mariana I. Rakhmanova, a Evgenia A. Varaksina, c Irina Yu. Bagryanskaya, b,e Svetlana F. Malysheva, f Nataliya A. Belogorlova f a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation b Novosibirsk State University, (National Research University), Department of Natural Sciences, 2, Pirogova Str., Novosibirsk 630090, Russian Federation c P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation d Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation e N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation f A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation *Author for correspondence: [email protected] (Alexander V. Artem’ev) Table of Contents Pages S2-3 X-Ray crystallography S4-8 FT-IR spectra of 1-8 S8-9 ESI-MS spectra of 1, 3 and 5 S9 V.T. 31 P NMR spectra of 5 S10-17 Photophysical data S18-20 Computation details S20-21 TGA/DTA curves for 1 and 6 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2018

Upload: others

Post on 05-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • S1

    Supporting Information Bright green-to-yellow emitting Cu(I) complexes based on bis(2-pyridyl)phosphine oxides: synthesis, structure and effective thermally activated-delayed fluorescence Alexander V. Artem’ev,*a Maxim R. Ryzhikov,a,b Ilya V. Taidakov,c,d Mariana I. Rakhmanova,a Evgenia A. Varaksina,c Irina Yu. Bagryanskaya,b,e Svetlana F. Malysheva,f Nataliya A. Belogorlovaf

    a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation b Novosibirsk State University, (National Research University), Department of Natural Sciences, 2, Pirogova Str., Novosibirsk 630090, Russian Federation c P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation d Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation e N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation f A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation *Author for correspondence: [email protected] (Alexander V. Artem’ev)

    Table of Contents Pages

    S2-3 X-Ray crystallography

    S4-8 FT-IR spectra of 1-8

    S8-9 ESI-MS spectra of 1, 3 and 5

    S9 V.T. 31P NMR spectra of 5

    S10-17 Photophysical data

    S18-20 Computation details

    S20-21 TGA/DTA curves for 1 and 6

    Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2018

  • S2

    X-Ray crystallography

    Table S1. Data collection and refinement parameters for 2–7.

    Compound 2 3·2/3MeCN 4 5 6 7

    CCDC number 1550541 1550542 1550543 1577810 1550544 1550545

    Empirical formula C24H26Cu2I2N4O2P2 C39.33H56Cu2I2N4.67O2P2 C34H30Cu2I2N4O2P2 C42H34Cu2I2N4O2P2 C24H22Cu2N6O2P2S2 C30H34Cu2N6O2P2S2

    Formula mass [g/mol] 845.31 1069.04 969.44 1069.55 679.62 763.77

    Space group C2/c P-1 C2/c P-1 P-1 P-1

    a [Å] 8.6569(3) 9.9811(4) 22.6984(7) 12.8420(9) 8.4316(4) 8.8655(10)

    b [Å] 15.0992(5) 18.1601(8) 13.3472(4) 19.1700(12) 8.5325(4) 14.2395(16)

    c [Å] 21.8930(8) 19.7982(9) 23.1883(6) 20.1670(13) 11.4693(6) 14.5066(16)

    α [°] 90.00 71.782(2) 90.00 111.493(3) 74.268(2) 109.975(5)

    β [°] 92.3170(10) 80.077(2) 90.8620(10) 94.250(3) 71.999(2) 90.384(5)

    γ [°] 90.00 84.603(2) 90.00 108.188(3) 62.187(2) 103.193(5)

    V [Å3] 2859.34(17) 3354.6(3) 7024.3(4) 4287.8(5) 686.14(6) 1668.5(3)

    Z 4 3 8 4 1 2

    Dcalcd. [g·cm-3] 1.964 1.588 1.833 1.657 1.645 1.520

    μ [mm-1] 3.788 2.440 3.097 2.546 1.853 1.533

    Temperature [K] 296(2) 200(2) 200(2) 296(2) 296(2) 296(2)

    Reflections collected 17174 29117 66274 62633 12135 18525

    Independent reflections

    3293 [Rint = 0.0448]

    11792 [Rint = 0.0317]

    9742 [Rint = 0.0432]

    14604 [Rint = 0.0553]

    3615 [Rint = 0.0295]

    5640 [Rint = 0.0475]

    R1, wR2 [I > 2σ(I)] 0.0256, 0.0652 0.0750, 0.1820 0.0259, 0.0595 0.0873, 0.1821 0.0269, 0.0755 0.0834, 0.1904

    R1, wR2 (all data) 0.0291, 0.0767 0.1018, 0.1986 0.0358, 0.0645 0.1673, 0.2381 0.0309, 0.0787 0.1384, 0.2095

    Goodness of fit 1.145 1.089 1.032 1.046 1.077 1.066

    Largest diff peak and hole [e/Å3]

    1.10 and -0.79 2.56 and -2.13 1.22 and -1.03 2.91 and -2.12 0.40 and -0.38 1.88 and -0.60

  • S3

    Table S2. The structures of the three independent molecules in 3·2/3MeCN and their selected bond lengths [Å] and angles [deg].

    Cu–Cu 2.7187(19) Cu–I 2.6816(13) Cu–I’ 2.5797(13) Cu–N1 2.077(7) Cu–N2 2.088(7) I–Cu–I 117.81(4) Cu–I–Cu 62.19(4) N1–Cu–N2 100.4(3) I–Cu–I–Cu 0.0

    Cu–Cu 2.623(2) Cu–I 2.6639(16) Cu–I’ 2.5582(15) Cu–N1 2.098(10) Cu–N2 2.5583(15) I–Cu–I 119.74(5) Cu–I–Cu 60.27(5) N1–Cu–N2 100.3(4) I–Cu–I–Cu 0.0

    Cu–Cu 2.6913(19) Cu–I 2.5651(13) Cu–I’ 2.6697(14) Cu–N1 2.079(7) Cu–N2 2.070(8) I–Cu–I 118.16(4) Cu–I–Cu 61.84(4) N1–Cu–N2 101.8(3) I–Cu–I–Cu 0.0

    Figure S1. The structure of asymmetric unit of 5.

    Figure S2. Molecular structure of 5 (the H atoms are omitted for clarity). Selected bond lengths [Å]: Cu(1A)–Cu(1B) 2.7444(19), Cu(1A)–I(1A) 2.5828(17), Cu(1A)–I(1B) 2.6573(18), Cu(1B)–I(1A) 2.6784(18), Cu(1B)–I(1B) 2.5660(17), Cu(1A)–N(1A) 2.090(10), Cu(1A)–N(2A) 2.097(11), Cu(1B)–N(2B) 2.079(10), Cu(1B)–N(1B) 2.088(11), P(1A)–O(1A) 1.490(8), P(1B)–O(1B) 1.481(9).

  • S4

    FT-IR spectra of 1-8

    Figure S3. FT-IR spectrum of {Cu2I2[Py2(Me)P=O]2} (1) (top) and comparison (bottom) of experimental (black line) FT-IR spectrum of {Cu2I2[Py2(Me)P=O]2} (1) and theoretical IR spectra for 1-Ci (red line) and 1-C2 (blue dashed line). Calculated spectra are scaled by 0.97 factor.

    B-15 1.spc

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400Wavenumber (cm-1)

    30823051 2972

    2899

    1580

    1450 1425

    12981271

    12401209

    11551148

    11361086

    1047

    1003905

    880

    756704

    633

    505

    417382

  • S5

    Figure S4. FT-IR spectrum of {Cu2I2[Py2(Et)P=O]2} (2).

    B-18 1.spc

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400Wavenumber (cm-1)

    30903059

    297029262897

    2874

    15801562

    14501425

    13931371

    12831234

    12021153

    11461134

    1090 1001989

    907880

    772752

    733691

    635617

    548505

    453428413

    Figure S5. FT-IR spectrum of {Cu2I2[Py2(n-C9H19)P=O]2} (3).

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600Wavenumber (cm-1)

    3055 2947 2924

    2851 1578

    14541423

    12731200

    114611341088

    10451003

    910

    756733

    633606

  • S6

    Figure S6. FT-IR spectrum of {Cu2I2[Py2(PhCH2)P=O]2} (4). analises2016-06.bsp(5) ATR Artemyev B2 Solid 16.06.spc

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600Wavenumber (cm-1)

    3055

    3032

    29282901

    2855

    1740 1578

    1493 14541423

    139612771234 1207

    11531123108410651049

    10301007

    910 826768

    737 698664633

    590563

    Figure S7. FT-IR spectrum of {Cu2I2[Py2(1-NpCH2)P=O]2} (5).

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600Wavenumber (cm-1)

    3094 30553005 2924

    29012855

    1578

    150814541423

    1396

    12651204

    11501130

    10881049

    1007907868 833

    799772

    748718

    694637

    590555

  • S7

    Figure S8. FT-IR spectrum of {Cu2(SCN)2[Py2(Me)P=O]2} (6).

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400Wavenumber (cm-1)

    30863055

    2974 28952862

    2097

    15801562

    14501427

    1404

    12961279

    12421207

    11551136

    1082 1005968

    905889

    872

    758731

    702631

    505449

    413388

    Figure S9. FT-IR spectrum of {Cu2(SCN)2[Py2(Bu)P=O]2} (7).

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400Wavenumber (cm-1)

    3055 29612932

    2911 2860

    2095

    1582 14541427

    13951346 1281

    12211206

    11501134

    108810491003

    970935

    907870 799

    777766

    748731

    635

    548513

    459446

    413388

  • S8

    Figure S10. FT-IR spectrum of {Cu2(SCN)2[Py2(PhCH2)P=O]2} (8)

    3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400Wavenumber (cm-1)

    30963055

    29452899

    2868

    21062056

    16011580

    15621495

    14541429

    1393

    12811227

    120611571144

    11341092

    10471003

    970 912

    826770

    748698

    635590

    528501

    457415

    ESI-MS spectra of 1, 3 and 5

    Figure S11. ESI-Mass spectra of 1 in positive- (a) and negative-ion (b) modes (MeCN).

    B15_esi_2_Centroid

    24002200200018001600140012001000800600400m/z

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Rel

    ativ

    e In

    tens

    ity (%

    )

    [CuL*MeCN]+

    [CuL2]+

    2412209619001643153111621047881

    499

    322

    B15_esi_1_Centroid

    24002200200018001600140012001000800600400m/z

    8

    16

    24

    32

    40

    48

    56

    64

    72

    80

    88

    96

    Rel

    ativ

    e In

    tens

    ity (%

    )

    509

    24152221

    1841

    1650

    1460

    1270

    1080

    888

    698

    317

    (a) (b)

  • S9

    Figure S12. ESI-Mass spectra of 3 in positive- (a) and negative-ion (b) modes (MeCN).

    B1_esi_2_Centroid

    850800750700650600550500450400m/z

    8

    16

    24

    32

    40

    48

    56

    64

    72

    80

    88

    96

    Rel

    ativ

    e In

    tens

    ity (%

    )

    864836737

    723

    661611533466

    434

    369

    B1_esi_1_Centroid

    24002200200018001600140012001000800600400m/z

    8

    16

    24

    32

    40

    48

    56

    64

    72

    80

    88

    96

    Rel

    ativ

    e In

    tens

    ity (%

    )

    2453

    22631885

    1650

    1460

    1274

    1078

    888507

    317

    Figure S13. ESI-Mass spectra of 5 in positive- (a) and negative-ion (b) modes (MeCN).

    B12_esi_2_Centroid

    850800750700650600550500450400m/z

    8

    16

    24

    32

    40

    48

    56

    64

    72

    80

    88

    96

    Rel

    ativ

    e In

    tens

    ity (%

    )

    891842

    751

    711

    657586558485

    448

    383

    B12_esi_1_Centroid

    24002200200018001600140012001000800600400m/z

    8

    16

    24

    32

    40

    48

    56

    64

    72

    80

    88

    96

    Rel

    ativ

    e In

    tens

    ity (%

    )

    698

    2033

    24152220

    1839

    1653

    14601270

    1080

    888

    508

    317

    V.T. 31P NMR spectra of 5

    Figure S14. 31Р{1H} NMR spectra of 5 measured at 23 and –60 oC in CDCl3 solution.

    (a) (b)

    (a) (b)

    23 oC –60 oC

  • S10

    Photophysical data

    Figure S15. Photographs of the powder 1 under ambient light (left) and UV-light (right).

    Figure S16. Excitation (at 300 K) and emission spectra ( = 400 nm) of 1 in the solid state at 77 and 300 K.

    Figure S17. Excitation (at 300 K) and emission spectra ( = 470 nm) of 2 in the solid state at 77 and 300 K.

  • S11

    Figure S18. Excitation (at 300 K) and emission spectra ( = 450 nm) of 3 in the solid state at 77 and 300 K.

    Figure S19. Excitation (at 300 K) and emission spectra ( = 450 nm) of 4 in the solid state at 77 and 300 K.

    Figure S20. Excitation (at 300 K) and emission spectra ( = 450 nm) of 5 in the solid state at 77 and 300 K.

  • S12

    Figure S21. Excitation (at 300 K) and emission spectra ( = 400 nm) of 6 in the solid state at 77 and 300 K.

    Figure S22. Excitation (at 300 K) and emission spectra ( = 480 nm) of 7 in the solid state at 77 and 300 K.

    Figure S23. Excitation (at 300 K) and emission spectra ( = 450 nm) of 8 in the solid state at 77 and 300 K.

  • S13

    0 50 100 150 200 250 300 350 400 450 500 550 600 6500,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    Inte

    nsity

    , cou

    nts

    Time, mks

    Model ExpDec1

    Equationy = A1*exp(-x/t1) + y0

    Reduced Chi-Sqr

    4,80541E-5

    Adj. R-Square 0,99796Value Standard Error

    Normalized1

    y0 0,00811 5,38875E-5A1 0,96311 2,7111E-4t1 69,82805 0,03079y0 0,007 4,11323E-5A1 1,25345 0,00103t1 10,83523 0,00978

    T=77K

    T=300K

    Figure S24. Emission decays for complex 1 in the solid state at 77 K and 300 К ( = 560 nm, = 355 nm).

    0 5000 10000 15000 20000 25000 300000

    100

    200

    300

    400

    500

    600

    Inte

    nsity

    , cou

    nts

    t, ns

    Model ExpDec2

    Equationy = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

    Reduced Chi-Sqr

    95,78056

    Adj. R-Square 0,98876Value Standard Error

    C y0 9,92396 0,55492C A1 308,91461 2,21915C t1 7043,00832 76,58587

    C A2 253,28119 3,4944

    C t2 906,80327 23,75789

    Figure S25. Emission decays for complex 2 in the solid state at 300 К ( = 575 nm, = 470 nm).

    0 5000 10000 15000 20000 25000 300000

    100

    200

    300

    400

    500

    600

    Inte

    nsity

    , cou

    nts

    t, ns

    Model ExpDec2

    Equationy = A1*exp(-x/t1) + A2*exp(-x/t2) + y0

    Reduced Chi-Sqr

    66,33608

    Adj. R-Square 0,97098Value Standard Error

    C y0 25,43426 0,56777C A1 945,20809 12,76565C t1 356,27586 3,6986C A2 103,18087 0,66285C t2 9090,89579 182,56495

    Figure S26. Emission decays for complex 3 in the solid state at 300 К ( = 537 nm, = 450 nm).

  • S14

    0 5000 10000 15000 20000 25000 300000

    250

    500

    750

    1000

    Inte

    nsity

    , cou

    nts

    t, ns

    Model ExpDec1

    Equationy = A1*exp(-x/t1) + y0

    Reduced Chi-Sqr

    308,80482

    Adj. R-Square 0,99181Value Standard Error

    C y0 79,80738 0,607C A1 814,99986 1,31004C t1 5891,40351 20,94498

    Figure S27. Emission decays for complex 4 in the solid state at 300 К ( = 536 nm, = 450 nm).

    0 5000 10000 15000 20000 25000 300000

    200

    400

    600

    800

    1000

    1200

    1400

    Inte

    nsity

    , cou

    nts

    t, ns

    Model ExpDecay3

    Equation

    y = y0 + A1*exp(-(x-x0)/t1) + A2*exp(-(x-x0)/t2) + A3*exp(-(x-x0)/t3)

    Reduced Chi-Sqr

    66,61207

    Adj. R-Square 0,99686Value Standard Error

    C

    y0 12,39661 0,33092x0 255,84514 2,55932E7A1 87,33237 477550,545t1 4680,38015 293,98727A2 755,83457 1,67787E7t2 1152,90414 32,50618A3 499,95629 3,6188E7t3 353,58408 13,86996

    Figure S28. Emission decays for complex 5 in the solid state at 300 К ( = 536 nm, = 450 nm).

    0 100 200

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1,1

    T=77K

    T=300K

    Inte

    nsity

    , cou

    nts

    Time, mks

    Model ExpDec1

    Equationy = A1*exp(-x/t1) + y0

    Reduced Chi-Sqr

    3,23279E-5 2,22737E-5

    Adj. R-Square 0,99888 0,99956Value Standard Error

    Normalized1

    y0 0,00471 3,83444E-5A1 1,03708 2,7728E-4t1 43,00425 0,01672y0 -0,00288 2,63602E-4A1 1,40932 0,00142t1 5,95905 0,00813

    Figure S29. Emission decays for complex 6 in the solid state at 77 K and 300 К ( = 580 nm, = 355 nm).

  • S15

    0 5000 10000 15000 20000 25000 300000

    100

    200

    300

    400

    500

    600

    Inte

    nsity

    , cou

    nts

    t, ns

    Model ExpDec1

    Equationy = A1*exp(-x/t1) + y0

    Reduced Chi-Sqr

    200,28743

    Adj. R-Square 0,98464Value Standard Error

    C y0 56,72659 0,65602C A1 461,24175 0,93227C t1 7461,3588 41,16433

    Figure S30. Emission decays for complex 7 in the solid state at 300 К ( = 560 nm, = 480 nm).

    0 5000 10000 15000 20000 25000 300000

    200

    400

    600

    800

    1000

    1200

    Inte

    nsity

    , cou

    nts

    t, ns

    Model ExpDec1

    Equationy = A1*exp(-x/t1) + y0

    Reduced Chi-Sqr

    196,80255

    Adj. R-Square 0,99614Value Standard Error

    C y0 36,6432 0,33142

    C A1 1092,80672 1,4054

    C t1 3722,43385 7,86749

    Figure S31. Emission decays for complex 8 in the solid state at 300 К ( = 592 nm, = 450 nm).

    Figure S32. Absorption, excitation and emission (λex = 400 mn) spectra of 6. The absorption spectrum is recorded for a MeCN solution, while excitation and emission spectra are given for a powder of 6.

  • S16

    Figure S33. Absorption spectra of 3 (a), 4 (b) and 5 (c) measured for MeCN solution.

    Figure S34. The solid-state UV–Vis absorption spectra of 1 (left) and 6 (right).

    (a) (b)

    (c)

  • S17

    Figure S35. Comparison of excitation and solid-state UV–Vis absorption spectra for 1 (left) and 6 (right).

  • S18

    Computation details

    Figure S36. Near Fermi level molecular orbitals for T1 state of complex 1-Ci.

  • S19

    Figure S37. Near Fermi level molecular orbitals for S0 state of complex 6.

  • S20

    Figure S38. ELF map for S0 state of complex 6. Table S3. Selected optimized and experimental geometrical parameters for complex 6 and calculated energetic parameters for its different states. E (kcal/mol) is formation energy, ΔE (kcal/mol) is energy difference between ground state (S0) and exited states (S1 and T1), DCu–Cu (Å), DCu–N (Å), DCu–S (Å) and DC–N (Å) are Cu–Cu, Cu–N, Cu–S and C–N distances, α (°) is N–Cu–S angle.

    Structure E ∆E DCu–Cu DCu–N DCu–S DC–N α N–Cu–S 6 S0 -10208.46 0 5.026 1.932 2.394 1.165 109.4 6 S1 -10166.17 42.29 5.267 1.929 2.403 1.163 99.1 6 T1 -10166.41 42.05 5.189 1.928 2.402 1.164 100.5 X-ray structure 6 (Fig. 4) n/a n/a 5.103 1.952 2.391 1.148 105.7

    TGA/DTA curves for 1 and 6

    Figure S39. The TGA/DTA curves for 1.

  • S21

    Figure S40. The TGA/DTA curves for 6.