bremsstrahlung function for abjm theorytristan/yrisw_2017/talks/... · 2017. 3. 7. ·...

22
Bremsstrahlung function for ABJM theory based on work in progress with L. Griguolo, M. Preti and D. Seminara Lorenzo Bianchi Universit¨ at Hamburg March 3 rd , 2017. YRISW, Dublin Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 1 / 13

Upload: others

Post on 20-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Bremsstrahlung function for ABJM theorybased on work in progress with L. Griguolo, M. Preti and D. Seminara

    Lorenzo Bianchi

    Universität Hamburg

    March 3rd , 2017.YRISW, Dublin

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 1 / 13

  • Introduction and goals

    Exact results in interacting QFTs are notoriously hard to achieve.

    We know few examples of superconformal field theories where integrability shows up(in this talk we look at 4d N = 4 SYM and 3d ABJM theory)For a restricted class (BPS) of observables, exact results may be achieved bysupersymmetric localization.

    One of these observables is the circular Wilson loop.

    In N = 4 SYM a beautiful formula relates the circular Wilson loop to the energyemitted by a moving heavy particle, i.e. the Bremsstrahlung function [Correa, Henn,Maldacena, Sever, 2012]

    B =1

    2⇡2�@� log hW�i

    Goal of this talk

    Prove a similar formula for ABJM theory.

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 2 / 13

  • Introduction and goals

    Exact results in interacting QFTs are notoriously hard to achieve.

    We know few examples of superconformal field theories where integrability shows up(in this talk we look at 4d N = 4 SYM and 3d ABJM theory)For a restricted class (BPS) of observables, exact results may be achieved bysupersymmetric localization.

    One of these observables is the circular Wilson loop.

    In N = 4 SYM a beautiful formula relates the circular Wilson loop to the energyemitted by a moving heavy particle, i.e. the Bremsstrahlung function [Correa, Henn,Maldacena, Sever, 2012]

    B =1

    2⇡2�@� log hW�i

    Goal of this talk

    Prove a similar formula for ABJM theory.

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 2 / 13

  • Conformal defects

    A defect breaks translation invariance

    @µTµa(x⌫) = �⌃(x) D

    a(x i ),

    Da(x i ) is the displacement operator

    It implements small modifications of the defect

    � hX iW = �Z

    dd�2x �xa(x i ) hDa(x i )X iW

    Its two-point function is fixed by symmetry

    hDa(x i )Db(0)iW = CD�ab

    |x i |2(d�1) .

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 3 / 13

  • Conformal defects

    A defect breaks translation invariance

    @µTµa(x⌫) = �⌃(x) D

    a(x i ),

    Da(x i ) is the displacement operator

    It implements small modifications of the defect

    � hX iW = �Z

    dd�2x �xa(x i ) hDa(x i )X iW

    Its two-point function is fixed by symmetry

    hDa(x i )Db(0)iW = CD�ab

    |x i |2(d�1) .

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 3 / 13

  • Conformal defects

    The defect breaks translation invariance

    @µTµa(x⌫) = �⌃(x) D

    a(x i ),

    Local operators acquire a non-vanishing one-pointfunction.

    The kinematics is fixed by conformal invariance

    hOiW ⌘hW OihW i =

    COr�

    For the stress tensor

    hTijiW = �h2⇡

    �ijrd

    hTabiW =h2⇡

    (d�1) �ab�d nanbrd

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 4 / 13

  • Emitted energy and CD

    Energy emitted by a moving electron (Liénard formula)

    �E = � 2e2

    3m2dpµ

    d⌧dpµd⌧

    =2e2

    3

    Zdt

    |v̇|2 � |v ⇥ v̇|2

    (1� |v|2)3

    For a heavy probe moving in a conformal field theory (Wilsonline) we can use conformal defect techniques. Consider a smalldeformation �x = 2 ✏ cos!t, the absorption probability is

    pabs = T |✏2|Z

    dte i!t hD(t)D(0)iW =⇡3|✏|2T!3CD

    Energy emitted by a heavy probe in a CFT

    �E =⇡6CD

    Zdt

    |v̇|2 � |v ⇥ v̇|2

    (1� |v|2)3

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 5 / 13

  • Emitted energy and CD

    Energy emitted by a moving electron (Liénard formula)

    �E = � 2e2

    3m2dpµ

    d⌧dpµd⌧

    =2e2

    3

    Zdt

    |v̇|2 � |v ⇥ v̇|2

    (1� |v|2)3

    For a heavy probe moving in a conformal field theory (Wilsonline) we can use conformal defect techniques. Consider a smalldeformation �x = 2 ✏ cos!t, the absorption probability is

    pabs = T |✏2|Z

    dte i!t hD(t)D(0)iW =⇡3|✏|2T!3CD

    Energy emitted by a heavy probe in a CFT

    �E =⇡6CD

    Zdt

    |v̇|2 � |v ⇥ v̇|2

    (1� |v|2)3

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 5 / 13

  • Cusped Wilson lines

    hWcuspi = e��cusp(�) logL✏

    In the limit of small angle the expectation value is again controlled by the displacementoperator.

    �cusp(�) ⇠ �B�2 = �12�2

    Zd⌧ hD(⌧)D(0)i = �CD

    12�2

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 6 / 13

  • In summary

    �cusp(�) ⇠ �B �2 �E ⇠ 2⇡ BZ

    dtv̇ 2 hDa(x i )Db(0)iW =12B �ab

    |x i |2(d�1)

    Generalized cusp in N = 4 SYM

    W = TrPe iHA·x+

    H|dx|nA�A A = 1, ..., 6

    ✓ = nAn0A

    �cusp(�, ✓) ⇠ B(✓2 � �2) + O((�2 � ✓2)2)

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 7 / 13

  • In summary

    �cusp(�) ⇠ �B �2 �E ⇠ 2⇡ BZ

    dtv̇ 2 hDa(x i )Db(0)iW =12B �ab

    |x i |2(d�1)

    Generalized cusp in N = 4 SYM

    W = TrPe iHA·x+

    H|dx|nA�A A = 1, ..., 6

    ✓ = nAn0A

    �cusp(�, ✓) ⇠ B(✓2 � �2) + O((�2 � ✓2)2)

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 7 / 13

  • ABJ(M) theory

    Three-dimensional N = 6 super Chern-Simons theory with matter.Gauge group U(N)⇥ U(M), but here M = N.

    R-symmetry group SU(4) ⇠ SO(6). CI (C̄ I ) in (anti-)fundamental.String theory dual in AdS4 ⇥ CP3.Integrable structure at large N, with non-trivial interpolating function h(�).

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 8 / 13

  • Wilson loops in ABJM theory

    W = 12N

    Tr

    P exp

    ✓�i

    Zd⌧L(⌧)

    ◆�

    In this case L(⌧) is a supermatrix in U(N|N)

    L =✓Aµẋµ � iMJ ICI C̄ J �i⌘I ̄I

    �i I ⌘̄I µẋµ � iMJ I C̄ JCI

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 9 / 13

  • Wilson loops in ABJM theory

    W = 12N

    Tr

    P exp

    ✓�i

    Zd⌧L(⌧)

    ◆�

    In this case L(⌧) is a supermatrix in U(N|N)

    L =✓Aµẋµ � iMJ ICI C̄ J �i⌘I ̄I

    �i I ⌘̄I µẋµ � iMJ I C̄ JCI

    Straight line - 12 BPS configuration

    MI J =

    0

    BB@

    �1 0 0 00 1 0 00 0 1 00 0 0 1

    1

    CCA ,

    ⌘↵I =

    0

    BB@

    1000

    1

    CCA

    I

    �1 1

    �↵, ⌘̄I↵ = i

    �1 0 0 0

    �I✓11

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 9 / 13

  • Wilson loops in ABJM theory

    W = 12N

    Tr

    P exp

    ✓�i

    Zd⌧L(⌧)

    ◆�

    In this case L(⌧) is a supermatrix in U(N|N)

    L =✓Aµẋµ � iMJ ICI C̄ J �i⌘I ̄I

    �i I ⌘̄I µẋµ � iMJ I C̄ JCI

    Generalized cusp

    MI J =

    0

    BB@

    � cos ✓ sin ✓ 0 0sin ✓ cos ✓ 0 00 0 1 00 0 0 1

    1

    CCA ,

    ⌘↵I =

    0

    BB@

    cos ✓2� sin ✓2

    00

    1

    CCA

    I

    �1 1

    �↵, ⌘̄I↵ = i

    �cos ✓2 � sin

    ✓2 0 0

    �I✓11

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 9 / 13

  • Bremsstrahlung function for ABJM theory

    �cusp(�, ✓) ⇠ B(✓2 � �2) + O((�2 � ✓2)2)L(⌧)= L(0)(⌧) + ✓L(1)(⌧) + O(✓2)

    �cusp(�, ✓)⇠ @2@✓2 log hWi���✓=0

    = � R 10 ds1 R s10 ds2 hL(1)(s1)L(1)(s2)iW0

    Write B in terms of defect two-point functions of local operators

    Scalar operator

    hO(⌧1)Ō(⌧2)iWline =cs

    |⌧1 � ⌧2|2�O

    for us O(⌧) = CC̄ and �O = 1

    Fermionic operator

    h ̄↵(⌧1) �(⌧2)iWline =icf (x1(⌧1)� x2(⌧2))µ�µ

    |⌧1 � ⌧2|2� +1

    for us � = 1

    B(�) =1N

    ✓cs(�)�

    14cf (�)

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 10 / 13

  • Bremsstrahlung function for ABJM theory

    �cusp(�, ✓) ⇠ B(✓2 � �2) + O((�2 � ✓2)2)L(⌧)= L(0)(⌧) + ✓L(1)(⌧) + O(✓2)

    �cusp(�, ✓)⇠ @2@✓2 log hWi���✓=0

    = � R 10 ds1 R s10 ds2 hL(1)(s1)L(1)(s2)iW0Write B in terms of defect two-point functions of local operators

    Scalar operator

    hO(⌧1)Ō(⌧2)iWline =cs

    |⌧1 � ⌧2|2�O

    for us O(⌧) = CC̄ and �O = 1

    Fermionic operator

    h ̄↵(⌧1) �(⌧2)iWline =icf (x1(⌧1)� x2(⌧2))µ�µ

    |⌧1 � ⌧2|2� +1

    for us � = 1

    B(�) =1N

    ✓cs(�)�

    14cf (�)

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 10 / 13

  • Bremsstrahlung function for ABJM theory

    �cusp(�, ✓) ⇠ B(✓2 � �2) + O((�2 � ✓2)2)L(⌧)= L(0)(⌧) + ✓L(1)(⌧) + O(✓2)

    �cusp(�, ✓)⇠ @2@✓2 log hWi���✓=0

    = � R 10 ds1 R s10 ds2 hL(1)(s1)L(1)(s2)iW0Write B in terms of defect two-point functions of local operators

    Scalar operator

    hO(⌧1)Ō(⌧2)iWline =cs

    |⌧1 � ⌧2|2�O

    for us O(⌧) = CC̄ and �O = 1

    Fermionic operator

    h ̄↵(⌧1) �(⌧2)iWline =icf (x1(⌧1)� x2(⌧2))µ�µ

    |⌧1 � ⌧2|2� +1

    for us � = 1

    B(�) =1N

    ✓cs(�)�

    14cf (�)

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 10 / 13

  • Circular Wilson loops for ABJM

    W� = TrP exp

    ✓�i

    Zd⌧L(⌧)

    ◆�

    L(⌧) is again a supermatrix in U(N|N)

    L =✓Aµẋµ � iMJ ICI C̄ J �i⌘I ̄I

    �i I ⌘̄I µẋµ � iMJ I C̄ JCI

    Circular WL - 12 BPS configuration

    MI J =

    0B@�1 0 0 00 1 0 00 0 1 00 0 0 1

    1CA ,

    ⌘↵I = ei⌧2

    0B@1000

    1CAI

    �1 �ie�i⌧� , ⌘̄I↵ = ie �i⌧2 �1 0 0 0�I ✓ 1iei⌧

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 11 / 13

  • Circular Wilson loops for ABJM

    W� = TrP exp

    ✓�i

    Zd⌧L(⌧)

    ◆�

    L(⌧) is again a supermatrix in U(N|N)

    L =✓Aµẋµ � iMJ ICI C̄ J �i⌘I ̄I

    �i I ⌘̄I µẋµ � iMJ I C̄ JCI

    “Latitude” WL - 14 BPS configuration (⌫ = cos ✓ sin 2↵)

    MI J =

    0BB@�⌫ e�i⌧p1 � ⌫2 0 0

    ei⌧p1 � ⌫2 ⌫ 0 00 0 1 00 0 0 1

    1CCA ,

    ⌘↵I =ei⌫⌧2p2

    0BB@p1 + ⌫

    �p1 � ⌫ei⌧00

    1CCAI

    �1 �ie�i⌧� , ⌘̄I↵ = i e �i⌫⌧2p

    2

    �p1 + ⌫ �p1 � ⌫e�i⌧ 0 0�I ✓ 1

    iei⌧

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 11 / 13

  • Final result and comments

    14⇡2

    @@⌫

    log hW�i����⌫=1

    =1N

    ✓cs(�)�

    14cf (�)

    ◆= B(�)

    Comments

    This formula was conjectured based on a two-loop computation [M. Bianchi, Griguolo,Leoni, Penati, Seminara, 2014]

    The 14 BPS Wilson line can be computed by localization, although exploiting somenon-trivial cohomological equivalence.

    Comparison with the result from integrability would allow to finally determine theinterpolating function h(�) (the full QSC for this system has been derived in[Bombardelli, Cavaglià, Fioravanti, Gromov, Tateo, 2016/2017]), testing the conjecture of[Gromov, Sizov, 2014].

    Our formula for the Bremsstrahlung function in terms of cs and cf simplifies theperturbative computation of B(�).

    The Bremsstrahlung function in ABJM has been related to the one-point function ofthe stress tensor B = 2h [Maldacena, Lewkowycz 2013]. This relation is much moremysterious than the others and particularly interesting from a dCFT point of view.

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 12 / 13

  • THANK YOU

    Lorenzo Bianchi (HH) Bremsstrahlung for ABJM 03/03/2017 13 / 13