boundary layer theorytoufiquehasan.buet.ac.bd/me 323-(jan 2020)-lec-4.pdf©dr. a.b.m. toufique hasan...

13
© Dr. A.B.M. Toufique Hasan (BUET) 1 L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020) ME 323: FLUID MECHANICS-II Dr. A.B.M. Toufique Hasan Professor Department of Mechanical Engineering Bangladesh University of Engineering and Technology (BUET), Dhaka Lecture-04 04/03/2020 toufiquehasan.buet.ac.bd [email protected] Boundary Layer Theory

Upload: others

Post on 06-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • © Dr. A.B.M. Toufique Hasan (BUET) 1L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    ME 323: FLUID MECHANICS-IIDr. A.B.M. Toufique Hasan

    Professor Department of Mechanical Engineering

    Bangladesh University of Engineering and Technology (BUET), Dhaka

    Lecture-0404/03/2020

    [email protected]

    Boundary Layer Theory

  • © Dr. A.B.M. Toufique Hasan (BUET) 2L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Recall RTT (ME 321 Fluid Mechanics‐I)

    sysCV CS

    ˆdB d ρ dV dAdt dt

    V n

    RTT (Reynolds Transport Theorem) relates between the system approach with finite controlvolume (CV) approach for a system property:

    B = any extensive property (such as mass, momentum, energy etc.)β = any intensive property per unit mass (such as mass per mass,momentum per mass, etc.)

    0ˆCS

    dAnV

    Conservation of mass for steady incompressible flow in integralformulation is (covered in ME 321)

    0ˆCSCV

    dAVddtd nV

    0

    const.

    syst

    systsys

    dtdm

    mB

    1massmass

  • © Dr. A.B.M. Toufique Hasan (BUET) 3L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Recall linear momentum equation (ME 321 Fluid Mechanics‐I)

    Newton’s second law of motion for a system is

    contents of the CV CScontrol volume ˆs BdF F F ρ dV dAdt

    V V V n

    ** Vector equation

    sys

    sys contents of thecontrol volume

    d mF F

    dt

    V

    For fluid dynamics:

    : External forces acting on the content of the control volume (CV)(such as pressure force, viscous shear force, gravity etc.)

    F

    Conservation of linear momentum(momentum)(momentum),

    (mass)mB m

    m VV V

    RTT takes the form of

    sys

    CV CSˆ

    d m d dV dAdt dt

    V

    V V V n

  • © Dr. A.B.M. Toufique Hasan (BUET) 4L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    The integrand in the mass flow rate integral represents the product of the component ofvelocity, V perpendicular to the small portion of the control surface and the differential area,dA. As shown in figure (dot product)

    veˆ nV ; +ve for flow out from the control volume veˆ nV ; -ve for flow in to the control volume

  • © Dr. A.B.M. Toufique Hasan (BUET) 5L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Momentum Integration Equation

    U

    U

    0ˆCS

    dAnV

    Conservation of mass for steady incompressibleflow in integral formulation is (covered in ME 321)

    000 )(00

    xh

    bdyubdyU

    )(

    0

    xdyuhU

    ① ② ③ ④

    …  … … . ……  (1)

    Consider a flat plate boundary layer and bound thisregion by a finite control volume with 4 controlsurfaces as shown in Fig.

  • © Dr. A.B.M. Toufique Hasan (BUET) 6L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Momentum Integration EquationConservation of linear momentum for steadyincompressible flow in integral formulation is(covered in ME 321)

    ① ② ③ ④

    CV CS ˆs BdF F F ρ dV dAdt

    V V V n

    CS

    ˆsF dA V V n

    ( )

    0 00 0

    h x

    DF U U bdy u u bdy

    ( )2 2

    0

    x

    DF U bh b u dy

    ( ) ( ) 2

    0 0

    x x

    DF U b udy b u dy

    )(

    0:)1(Eq.

    xdyuhU

    ( )

    0( )

    x

    DF b u U u dy

    FD

    Pressure is uniform, so there is nonet pressure force on the controlvolume

  • © Dr. A.B.M. Toufique Hasan (BUET) 7L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Momentum Integration Equation

    ( )2

    0( ) 1

    x

    Du uF x bU dyU U

    2( ) ... ... ... ... ... ... (2)DF x bU

    ( )

    01

    x u u dyU U

    Momentum thickness is thus a measure of total plate drag.

    Drag also equals the integrated wall shear stress along the plate:

    0( ) ( )

    ( ) .... .... ... ... ....(3)

    x

    D w

    Dw

    F x b x dx

    dF b xdx

    FD

  • © Dr. A.B.M. Toufique Hasan (BUET) 8L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Momentum Integration Equation

    2 ... ... ... ... ... ... (4)DdF dbUdx dx

    Constant for 0 (ZPG flow)dpUdx

    Combining Eq. (3) and (4):

    The derivative of Eq. (2):

    2Dw

    dF dbU bdx dx

    2w

    dUdx

    Momentum integral equation applied to a general boundary layerflows (laminar/turbulent).And is of general use in deriving further important relations in theboundary layer flows.

    θ = f(x)

    FD

  • © Dr. A.B.M. Toufique Hasan (BUET) 9L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Application of Momentum Integral EquationLaminar flowsVelocity profile inside a laminar boundary layer can be approximated by: 

    y

    xyyy

    Uyxu

    for1

    )(0for2),(2

    U∞U∞

    δ(x)

    x

    y

    (0,0)

    Laminar

    ( )

    0

    2 2( )

    0

    1

    2 21

    ... ... ... ... ... ... ...

    ... ... ... ... ... ... ...

    x

    x

    u u dyU U

    y y y y dy

    Momentum thickness for this given velocity profile:

    215lam lam

  • © Dr. A.B.M. Toufique Hasan (BUET) 10L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Application of Momentum Integral Equation

    Again the shear stress can be calculated as:

    0

    2

    0

    2

    y

    w

    yw

    yyUy

    yu

    U∞U∞

    δ(x)

    x

    y

    (0,0)

    Laminar

    Uw

    2

    From momentum integral equation:

    ;15

    1522 2

    2

    dxU

    d

    dxdUUdxdUw

  • © Dr. A.B.M. Toufique Hasan (BUET) 11L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Application of Momentum Integral EquationOn integrating the above equation; and considering 

    U∞U∞

    δ(x)

    x

    y

    (0,0)

    Laminar

    Ux 15

    2

    2

    )platetheonlocation -at(;)platetheofedgeleadingat(0;0

    xxxx

    21

    5.5

    xUx

    x

    lam

    xx

    Re5.5)(

    x

    lam

    xx

    Re0.5)(

    (1908))solutionBlasius(Exact

    δ(x) = f(x)

    Growth of laminar boundary layer thickness with distance.Laminar boundary layer thickness along a flat plate varies inverselywith the square root of the length Reynolds number.

    xU

    xRe

  • © Dr. A.B.M. Toufique Hasan (BUET) 12L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Application of Momentum Integral Equation

    Displacement thickness, δ*

    x

    x

    d

    dUu

    dyUu

    Re5.5

    31

    31

    3

    21

    1

    1

    *

    *

    1

    0

    32*

    1

    0

    2*

    1

    0

    *

    0

    *

    ; Change of variable from y/δ to η

    ddyy

    x

    lam

    xx

    Re83.1)(*

    U∞U∞

    δ(x)

    x

    y

    (0,0)

    Laminar

    y

    xyUyxu

    for1)(0for2),( 2

    x

    lam

    xx

    Re721.1)(*

    (1908))solutionBlasius(Exact

    Growth of laminar boundary layer displacementthickness with distance.

  • © Dr. A.B.M. Toufique Hasan (BUET) 13L-3 T-2, Dept. of ME ME 323: Fluid Mechanics-II (Jan. 2020)

    Application of Momentum Integral Equation

    Momentum thickness, θ

    xlam

    xRe5.5

    152

    U∞U∞

    δ(x)

    x

    y

    (0,0)

    Laminar

    x

    lam

    xx

    Re664.0)(

    (1908))solutionBlasius(Exact

    215lam

    x

    lam

    xx

    Re733.0)(

    Growth of laminar boundary layer momentumthickness with distance.