boson-fermion correspondence and jacobi triple product...

129
Boson-Fermion Correspondence and Jacobi Triple Product Identity Shun-Jen Cheng Department of Mathematics National Taiwan University Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.1/20

Upload: others

Post on 02-Jun-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Boson-Fermion Correspondence and JacobiTriple Product Identity

Shun-Jen Cheng

Department of Mathematics

National Taiwan University

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.1/20

Page 2: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 3: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

1. Representation Theory

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 4: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

1. Representation Theory

2. Example of Lie (super)algebras

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 5: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

1. Representation Theory

2. Example of Lie (super)algebras

3. Clifford Algebra and the fermionic Fock Space

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 6: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

1. Representation Theory

2. Example of Lie (super)algebras

3. Clifford Algebra and the fermionic Fock Space

4. Heisenberg Algebra and the bosonic Fock Space

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 7: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

1. Representation Theory

2. Example of Lie (super)algebras

3. Clifford Algebra and the fermionic Fock Space

4. Heisenberg Algebra and the bosonic Fock Space

5. Decomposition of the fermionic Fock Space

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 8: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Organization

1. Representation Theory

2. Example of Lie (super)algebras

3. Clifford Algebra and the fermionic Fock Space

4. Heisenberg Algebra and the bosonic Fock Space

5. Decomposition of the fermionic Fock Space

6. Computation of the Character and Jacobi Triple Product Identity

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.2/20

Page 9: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 10: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 11: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures asmatrices.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 12: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures asmatrices.

• Example: Take an abstract finite group G. A representation of G consists of twopieces of data:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 13: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures asmatrices.

• Example: Take an abstract finite group G. A representation of G consists of twopieces of data:

1. A vector space V over some field k.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 14: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures asmatrices.

• Example: Take an abstract finite group G. A representation of G consists of twopieces of data:

1. A vector space V over some field k.

2. A group homomorphism ρ : G → GLk(V ). Here GLk(V ) is just the group of allinvertible k-linear maps from V to V itself. So we can think of elements in GLk(V )

as matrices.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 15: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures asmatrices.

• Example: Take an abstract finite group G. A representation of G consists of twopieces of data:

1. A vector space V over some field k.

2. A group homomorphism ρ : G → GLk(V ). Here GLk(V ) is just the group of allinvertible k-linear maps from V to V itself. So we can think of elements in GLk(V )

as matrices.

• The fact that ρ is a group homomorphism means that

ρ(xy) = ρ(x)ρ(y),

and hence the group structure of G, namely the group multiplication, is preserved.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 16: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

1. Representation Theory

• What is representation theory all about?

• One may say that representation theory is the realization of abstract structures asmatrices.

• Example: Take an abstract finite group G. A representation of G consists of twopieces of data:

1. A vector space V over some field k.

2. A group homomorphism ρ : G → GLk(V ). Here GLk(V ) is just the group of allinvertible k-linear maps from V to V itself. So we can think of elements in GLk(V )

as matrices.

• The fact that ρ is a group homomorphism means that

ρ(xy) = ρ(x)ρ(y),

and hence the group structure of G, namely the group multiplication, is preserved.

• So representation is just a way of realizing something that may be very abstract asmatrices.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.3/20

Page 17: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 18: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 19: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

• What kind of representations do we know?

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 20: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensionalvector space over C itself.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 21: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensionalvector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C∗,

where C∗ = C − 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 22: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensionalvector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C∗,

where C∗ = C − 0.

Since we must have ρ(x2) = ρ(x)2 = ρ(e) = 1 we must have ρ(x) = ±1. So wehave only two representations here, namely

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 23: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensionalvector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C∗,

where C∗ = C − 0.

Since we must have ρ(x2) = ρ(x)2 = ρ(e) = 1 we must have ρ(x) = ±1. So wehave only two representations here, namely

• The trivial representationρ(e) = 1, ρ(x) = 1.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 24: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

An Easy Example

• Let us take G = Z2, the group of order 2. Let’s say that G = {e, x}, where x2 = e,and e is the identity element.

• What kind of representations do we know?

• Take V = C the field of complex numbers, which we regard as a one-dimensionalvector space over C itself.

So we are now looking at homomorphisms

ρ : Z2 → GLC(C) = C∗,

where C∗ = C − 0.

Since we must have ρ(x2) = ρ(x)2 = ρ(e) = 1 we must have ρ(x) = ±1. So wehave only two representations here, namely

• The trivial representationρ(e) = 1, ρ(x) = 1.

• The sign representationρ(e) = 1, ρ(x) = −1.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.4/20

Page 25: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 26: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 27: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

• We can make V into a G-module by defining:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 28: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

• We can make V into a G-module by defining:

g · v := ρ(g)v, g ∈ G; v ∈ V.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 29: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

• We can make V into a G-module by defining:

g · v := ρ(g)v, g ∈ G; v ∈ V.

• Conversely given a G-module V we can define a representation ρ of G on V bydefining:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 30: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

• We can make V into a G-module by defining:

g · v := ρ(g)v, g ∈ G; v ∈ V.

• Conversely given a G-module V we can define a representation ρ of G on V bydefining:

ρ(g)(v) := g · v, g ∈ G; v ∈ V.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 31: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Representations and Modules

• Given a representation ρ of G on a vector space V over a field k.

• We can make V into a G-module by defining:

g · v := ρ(g)v, g ∈ G; v ∈ V.

• Conversely given a G-module V we can define a representation ρ of G on V bydefining:

ρ(g)(v) := g · v, g ∈ G; v ∈ V.

• So the notion of representation of G is the SAME as the notion of a G-module.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.5/20

Page 32: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 33: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras

• Finite groups are not the only thing we can represent.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 34: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 35: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 36: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 37: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 38: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

• Of particular interest in this talk are:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 39: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

• Of particular interest in this talk are:

representations of Lie algebras.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 40: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

• Of particular interest in this talk are:

representations of Lie algebras.

• A Lie algebra is a vector space L over a field k equipped with a bilinear map[·, ·] : L × L → L satisfying:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 41: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

• Of particular interest in this talk are:

representations of Lie algebras.

• A Lie algebra is a vector space L over a field k equipped with a bilinear map[·, ·] : L × L → L satisfying:

(1) [X, Y ] = −[Y, X], skew-symmetry and

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 42: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

2. Examples of Lie (super)algebras• Finite groups are not the only thing we can represent.

• We can represent many other abstract structures, for example

associative algebras

or

non-associative algebras.

• Of particular interest in this talk are:

representations of Lie algebras.

• A Lie algebra is a vector space L over a field k equipped with a bilinear map[·, ·] : L × L → L satisfying:

(1) [X, Y ] = −[Y, X], skew-symmetry and

(2) [X, [Y, Z]] = [[X, Y ], Z] + [Y, [X, Z]], for all X, Y, Z ∈ L. Jacobi identity.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.6/20

Page 43: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 44: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 45: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 46: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 47: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 48: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 49: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

• We need also notion of a Lie superalgebra.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 50: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

• We need also notion of a Lie superalgebra.

A Lie superalgebra L is a Z2-graded space, i.e. L is a direct sum of two vectorspaces

L = L0̄ ⊕ L1̄,

equipped with a degree-preserving (i.e. [Lε, Lδ] ⊆ Lε+δ , ε, δ ∈ Z2) bilinear map[·, ·] : L × L → L satisfying

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 51: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

• We need also notion of a Lie superalgebra.

A Lie superalgebra L is a Z2-graded space, i.e. L is a direct sum of two vectorspaces

L = L0̄ ⊕ L1̄,

equipped with a degree-preserving (i.e. [Lε, Lδ] ⊆ Lε+δ , ε, δ ∈ Z2) bilinear map[·, ·] : L × L → L satisfying

(1) [X, Y ] = −(−1)xy [Y, X], super-skew-symmetry and

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 52: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let V be any vector space over k and consider Endk(V ), the space of all k-linearmaps from V to V .

We can make Endk(V ) into a Lie algebra by defining [·, ·] by:

[X, Y ] := XY − Y X, ∀X, Y ∈ Endk(V ).

Then skew-symmetry and Jacobi identity are satisfied.

So Endk(V ) is naturally a Lie algebra.

• We need also notion of a Lie superalgebra.

A Lie superalgebra L is a Z2-graded space, i.e. L is a direct sum of two vectorspaces

L = L0̄ ⊕ L1̄,

equipped with a degree-preserving (i.e. [Lε, Lδ] ⊆ Lε+δ , ε, δ ∈ Z2) bilinear map[·, ·] : L × L → L satisfying

(1) [X, Y ] = −(−1)xy [Y, X], super-skew-symmetry and

(2) [X, [Y, Z]] = [[X, Y ], Z] + (−1)xy [Y, [X, Z]]. super Jacobi identity.

Above X, Y, Z are all homogeneous elements of L and x = ε, if X ∈ Lε.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.7/20

Page 53: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 54: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space

• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 55: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 56: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+r , ψ−

r , r ∈1

2+ Z.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 57: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+r , ψ−

r , r ∈1

2+ Z.

Set L0̄ = C1 and L1̄ =∑

r Cψ+r +

r Cψ−r .

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 58: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+r , ψ−

r , r ∈1

2+ Z.

Set L0̄ = C1 and L1̄ =∑

r Cψ+r +

r Cψ−r .

Define the only non-zero Lie super-bracket [·, ·] on C by

[ψ+r , ψ−

s ] = [ψ−s , ψ+

r ] = δr+s,01.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 59: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+r , ψ−

r , r ∈1

2+ Z.

Set L0̄ = C1 and L1̄ =∑

r Cψ+r +

r Cψ−r .

Define the only non-zero Lie super-bracket [·, ·] on C by

[ψ+r , ψ−

s ] = [ψ−s , ψ+

r ] = δr+s,01.

Then the super-skew-symmetry is satisfied by definition, while Jacobi identity istrivially satisfied.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 60: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

3. Clifford superalgebra and the fermionic Fock Space• Here is an easy way to define a Lie superalgebra, called the Clifford superalgebra.

• Let C be the vector space spanned by the following basis elements:

1, ψ+r , ψ−

r , r ∈1

2+ Z.

Set L0̄ = C1 and L1̄ =∑

r Cψ+r +

r Cψ−r .

Define the only non-zero Lie super-bracket [·, ·] on C by

[ψ+r , ψ−

s ] = [ψ−s , ψ+

r ] = δr+s,01.

Then the super-skew-symmetry is satisfied by definition, while Jacobi identity istrivially satisfied.

This is an example of an infinite-dimensional Lie superalgebra.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.8/20

Page 61: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let’s construct the following representation F of C. F is called the fermionic Fockspace.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.9/20

Page 62: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let’s construct the following representation F of C. F is called the fermionic Fockspace.

F is the space spanned by basis elements of the form

ψ+

−rkψ+

−rk−1· · ·ψ+

−r1ψ−−sl

ψ−−sl−1

· · ·ψ−−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.9/20

Page 63: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let’s construct the following representation F of C. F is called the fermionic Fockspace.

F is the space spanned by basis elements of the form

ψ+

−rkψ+

−rk−1· · ·ψ+

−r1ψ−−sl

ψ−−sl−1

· · ·ψ−−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Here is how C acts on F:

ψ±r |0〉 := 0, r > 0,

1|0〉 := |0〉.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.9/20

Page 64: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let’s construct the following representation F of C. F is called the fermionic Fockspace.

F is the space spanned by basis elements of the form

ψ+

−rkψ+

−rk−1· · ·ψ+

−r1ψ−−sl

ψ−−sl−1

· · ·ψ−−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Here is how C acts on F:

ψ±r |0〉 := 0, r > 0,

1|0〉 := |0〉.

and the remaining action is determined by the relation

ψ+r ψ−

s + ψ−s ψ+

r = δrs1,

ψ+r ψ+

s + ψ+s ψ+

r = 0,

ψ−r ψ−

s + ψ−s ψ−

r = 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.9/20

Page 65: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let’s construct the following representation F of C. F is called the fermionic Fockspace.

F is the space spanned by basis elements of the form

ψ+

−rkψ+

−rk−1· · ·ψ+

−r1ψ−−sl

ψ−−sl−1

· · ·ψ−−s1

|0〉,

where rk > rk−1 > · · · > r1 > 0 and sl > sl−1 > · · · > s1 > 0.

Here is how C acts on F:

ψ±r |0〉 := 0, r > 0,

1|0〉 := |0〉.

and the remaining action is determined by the relation

ψ+r ψ−

s + ψ−s ψ+

r = δrs1,

ψ+r ψ+

s + ψ+s ψ+

r = 0,

ψ−r ψ−

s + ψ−s ψ−

r = 0.

For example: ψ+12

· ψ−

− 12

|0〉 = −ψ−

− 12

· ψ+12

|0〉 + 1|0〉 = |0〉.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.9/20

Page 66: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 67: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 68: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 69: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 70: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Define the only non-zero Lie bracket to be

[αm, αn] = mδm+n,01.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 71: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Define the only non-zero Lie bracket to be

[αm, αn] = mδm+n,01.

Again skew-symmetry is satisfied by definition, while the Jacobi identity is triviallysatisfied.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 72: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

4. Heisenberg Algebra and the bosonic Fock space

• Here is an easy example of a Lie algebra, called the Heisenberg algebra.

Take H to be the vector space spanned by the basis elements

1, αm, m ∈ Z.

Define the only non-zero Lie bracket to be

[αm, αn] = mδm+n,01.

Again skew-symmetry is satisfied by definition, while the Jacobi identity is triviallysatisfied.

This is an example of an infinite-dimensional Lie algebra.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.10/20

Page 73: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let us construct representations of H:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.11/20

Page 74: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables{x1, x2, x3, · · · }.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.11/20

Page 75: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence arepresentation of H) by the formulas:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.11/20

Page 76: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence arepresentation of H) by the formulas:

α−m := mxm, m > 0,

αm :=∂

∂xm

, m > 0,

α0 := λ.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.11/20

Page 77: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence arepresentation of H) by the formulas:

α−m := mxm, m > 0,

αm :=∂

∂xm

, m > 0,

α0 := λ.

Above the formulas give the way the elements αm acts on a polynomial inC[x1, x2, · · · ], for example

α1 · x1 = 1; α−1x1 = x21; α0x1 = λx1.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.11/20

Page 78: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Let us construct representations of H:

Let C[x1, x2, x3, · · · ] be the polynomial ring in infinitely many variables{x1, x2, x3, · · · }.

For any fixed complex number λ ∈ C define an H-module (and hence arepresentation of H) by the formulas:

α−m := mxm, m > 0,

αm :=∂

∂xm

, m > 0,

α0 := λ.

Above the formulas give the way the elements αm acts on a polynomial inC[x1, x2, · · · ], for example

α1 · x1 = 1; α−1x1 = x21; α0x1 = λx1.

This way we obtain a one-parameter family of H-modules, which we will denote by

Vλ, λ ∈ C.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.11/20

Page 79: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

5. Decomposition of the fermionic Fock Space

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.12/20

Page 80: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

5. Decomposition of the fermionic Fock Space• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.12/20

Page 81: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

5. Decomposition of the fermionic Fock Space• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible withthe Lie bracket of H.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.12/20

Page 82: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

5. Decomposition of the fermionic Fock Space• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible withthe Lie bracket of H.

Let us define the normal ordering : ·· : of two ψ operators by

: ψ±r ψ±

s : = −ψ±s ψ±

r , if s < 0 and r > 0,

: ψ±r ψ±

s : = ψ±r ψ±

s , otherwise.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.12/20

Page 83: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

5. Decomposition of the fermionic Fock Space• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible withthe Lie bracket of H.

Let us define the normal ordering : ·· : of two ψ operators by

: ψ±r ψ±

s : = −ψ±s ψ±

r , if s < 0 and r > 0,

: ψ±r ψ±

s : = ψ±r ψ±

s , otherwise.

Similarly define the normal ordering : ·· : of two α operators by

: αmαn : = αnαm, if n < 0 and m > 0,

: αmαn : = αmαn, otherwise.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.12/20

Page 84: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

5. Decomposition of the fermionic Fock Space• Now there is an action of the Heisenberg Lie algebra H on the fermionic Fock

space F. We can see this as follows:

We need to find a way to have αm act on F, for all m ∈ Z, in a way compatible withthe Lie bracket of H.

Let us define the normal ordering : ·· : of two ψ operators by

: ψ±r ψ±

s : = −ψ±s ψ±

r , if s < 0 and r > 0,

: ψ±r ψ±

s : = ψ±r ψ±

s , otherwise.

Similarly define the normal ordering : ·· : of two α operators by

: αmαn : = αnαm, if n < 0 and m > 0,

: αmαn : = αmαn, otherwise.

• Introduce three generating series (z an indeterminate):

ψ±(z) :=∑

r∈ 12+Z

ψ±r z−r− 1

2 ,

α(z) :=∑

m∈Z

αmz−m−1.Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.12/20

Page 85: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Then we have the following:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20

Page 86: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20

Page 87: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20

Page 88: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

If we write A(z) =: ψ+(z)ψ−(z) : by collecting all the powers of z, thenA(z) =

m∈ZAmz−m−1. The statement simply means that

[Am, An] = AmAn − AnAm = mδm+n,0 · 1.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20

Page 89: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

If we write A(z) =: ψ+(z)ψ−(z) : by collecting all the powers of z, thenA(z) =

m∈ZAmz−m−1. The statement simply means that

[Am, An] = AmAn − AnAm = mδm+n,0 · 1.

Hence if we let αm act by Am and 1 act by 1, then F is a representation of H.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20

Page 90: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Then we have the following:

α(z) =: ψ+(z)ψ−(z) :

The statement above means the following:

If we write A(z) =: ψ+(z)ψ−(z) : by collecting all the powers of z, thenA(z) =

m∈ZAmz−m−1. The statement simply means that

[Am, An] = AmAn − AnAm = mδm+n,0 · 1.

Hence if we let αm act by Am and 1 act by 1, then F is a representation of H.

• Note that Am is always a sum of infinitely many operators. Let us write down forexample

A0 :=∑

r∈ 12+Z

: ψ+r ψ−

−r := α0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.13/20

Page 91: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• The Fock space F as a H-module is decomposed as follows:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20

Page 92: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• The Fock space F as a H-module is decomposed as follows:

F =⊕

λ∈Z

Vλ.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20

Page 93: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• The Fock space F as a H-module is decomposed as follows:

F =⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of itas C[x1, x2, · · · ].

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20

Page 94: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• The Fock space F as a H-module is decomposed as follows:

F =⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of itas C[x1, x2, · · · ].

So in Vλ there is a vector corresponding to 1 ∈ C[x1, x2, · · · ].

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20

Page 95: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• The Fock space F as a H-module is decomposed as follows:

F =⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of itas C[x1, x2, · · · ].

So in Vλ there is a vector corresponding to 1 ∈ C[x1, x2, · · · ].

We can write the formula for this vector in F, which we denote by |λ〉:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20

Page 96: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• The Fock space F as a H-module is decomposed as follows:

F =⊕

λ∈Z

Vλ.

We know from earlier that, when thinking of Vλ as an H-module, we can think of itas C[x1, x2, · · · ].

So in Vλ there is a vector corresponding to 1 ∈ C[x1, x2, · · · ].

We can write the formula for this vector in F, which we denote by |λ〉:

|λ〉 = |0〉, λ = 0,

|λ〉 = ψ+

−λ+ 12

· · ·ψ+

− 12

|0〉, λ > 0,

|λ〉 = ψ−

λ+ 12

· · ·ψ−

− 12

|0〉, λ < 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.14/20

Page 97: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Another interesting operator is the following.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.15/20

Page 98: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Another interesting operator is the following.

Define L(z) :=∑

m∈ZLmz−m−2, where L(z) := 1

2: α(z)α(z) :.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.15/20

Page 99: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Another interesting operator is the following.

Define L(z) :=∑

m∈ZLmz−m−2, where L(z) := 1

2: α(z)α(z) :.

Take out the coefficient of z−2, which is

L0 =1

2

m∈Z

: αmα−m : .

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.15/20

Page 100: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Another interesting operator is the following.

Define L(z) :=∑

m∈ZLmz−m−2, where L(z) := 1

2: α(z)α(z) :.

Take out the coefficient of z−2, which is

L0 =1

2

m∈Z

: αmα−m : .

• The following formulas are needed later on:

[L0, αn] = −nαn,

[L0, ψ±r ] = −rψ±

r ,

[α0, ψ±r ] = ±ψ±

r .

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.15/20

Page 101: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.16/20

Page 102: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all itseigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.16/20

Page 103: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all itseigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of theseeigenvalues.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.16/20

Page 104: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all itseigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of theseeigenvalues.

How can we write down all this information in a short way?

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.16/20

Page 105: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all itseigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of theseeigenvalues.

How can we write down all this information in a short way?

Here is one: Let x be a formal symbol and write the expression

Tr(xT ) :=∑

µ

dimWµxµ.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.16/20

Page 106: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

6. Computation of the Character and Jacobi Triple Product

Identity

• Suppose T : W → W is a diagonalizable linear map.

Here W is not necessarily finite-dimensional, but let us assume that all itseigenspaces Wµ := {w ∈ W |Tw = µw} are all finite-dimensional.

All the information of T is stored in its eigenvalues and the multiplicities of theseeigenvalues.

How can we write down all this information in a short way?

Here is one: Let x be a formal symbol and write the expression

Tr(xT ) :=∑

µ

dimWµxµ.

The reason to call the above expression Trace of xT is because if we think of xT

acting on Wµ as xµ, then the expression is precisely the trace of xT on W !

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.16/20

Page 107: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Suppose T : W → W and S : W → W are two diagonalizable linear maps and[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S canbe simultaneously diagonalized.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.17/20

Page 108: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Suppose T : W → W and S : W → W are two diagonalizable linear maps and[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S canbe simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute theexpression

Tr(xT qS) =∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.17/20

Page 109: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Suppose T : W → W and S : W → W are two diagonalizable linear maps and[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S canbe simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute theexpression

Tr(xT qS) =∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.17/20

Page 110: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Suppose T : W → W and S : W → W are two diagonalizable linear maps and[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S canbe simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute theexpression

Tr(xT qS) =∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

We have two commuting diagonalizable maps L0 : F → F and α0 : F → F.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.17/20

Page 111: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Suppose T : W → W and S : W → W are two diagonalizable linear maps and[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S canbe simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute theexpression

Tr(xT qS) =∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

We have two commuting diagonalizable maps L0 : F → F and α0 : F → F.

So we can compute Tr(xL0qα0 ) on F.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.17/20

Page 112: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Suppose T : W → W and S : W → W are two diagonalizable linear maps and[T, S] = TS − ST = 0. Then it is well-known from linear algebra that T and S canbe simultaneously diagonalized.

So if we introduce two indeterminates x and q, then we can compute theexpression

Tr(xT qS) =∑

dimWµ,νxµqν ,

where Wµ,ν := {w ∈ W |Tw = µw, Sw = νw}.

• Now we apply this knowledge to F.

We have two commuting diagonalizable maps L0 : F → F and α0 : F → F.

So we can compute Tr(xL0qα0 ) on F.

There are two methods to compute this.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.17/20

Page 113: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

First Method

• We use the formulas:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.18/20

Page 114: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

First Method• We use the formulas:

[α0, ψ±r ] = ±ψ±

r ,

[L0, ψ±r ] = −rψ±

r .

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.18/20

Page 115: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

First Method• We use the formulas:

[α0, ψ±r ] = ±ψ±

r ,

[L0, ψ±r ] = −rψ±

r .

• The Fock space F has a basis of the form

ψ±rk

· · ·ψ±r1|0〉,

where there are no repetitions of the ψ±ri

and ri < 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.18/20

Page 116: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

First Method• We use the formulas:

[α0, ψ±r ] = ±ψ±

r ,

[L0, ψ±r ] = −rψ±

r .

• The Fock space F has a basis of the form

ψ±rk

· · ·ψ±r1|0〉,

where there are no repetitions of the ψ±ri

and ri < 0.

Now L0|0〉 = 0 and α0|0〉 = 0 and hence

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.18/20

Page 117: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

First Method• We use the formulas:

[α0, ψ±r ] = ±ψ±

r ,

[L0, ψ±r ] = −rψ±

r .

• The Fock space F has a basis of the form

ψ±rk

· · ·ψ±r1|0〉,

where there are no repetitions of the ψ±ri

and ri < 0.

Now L0|0〉 = 0 and α0|0〉 = 0 and hence

Tr(xαqL0 ) =∏

r 12+Z+

(1 + xqr)(1 + x−1qr).

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.18/20

Page 118: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Second Method

• We use the formulas:

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20

Page 119: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Second Method• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20

Page 120: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Second Method• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk· · ·αm1

|λ〉,

where there are repetitions of the αmiare allowed and mi < 0.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20

Page 121: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Second Method• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk· · ·αm1

|λ〉,

where there are repetitions of the αmiare allowed and mi < 0.

Now L0|λ〉 =(

∑λi=1

(i − 1

2))

|λ〉 = λ2

2|λ〉 and α0|λ〉 = λ|λ〉 and hence

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20

Page 122: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Second Method• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk· · ·αm1

|λ〉,

where there are repetitions of the αmiare allowed and mi < 0.

Now L0|λ〉 =(

∑λi=1

(i − 1

2))

|λ〉 = λ2

2|λ〉 and α0|λ〉 = λ|λ〉 and hence

Tr(xαqL0 )|Vλ= xλq

λ2

2∏

j∈N

1

1−qj .

Thus

Tr(xαqL0 ) =∑

λ∈Z

xλqλ2

2

j∈N

1

1 − qj.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20

Page 123: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

Second Method• We use the formulas:

[α0, αn] = 0,

[L0, αn] = −nαn.

• The bosonic Fock space Vλ has a basis of the form

αmk· · ·αm1

|λ〉,

where there are repetitions of the αmiare allowed and mi < 0.

Now L0|λ〉 =(

∑λi=1

(i − 1

2))

|λ〉 = λ2

2|λ〉 and α0|λ〉 = λ|λ〉 and hence

Tr(xαqL0 )|Vλ= xλq

λ2

2∏

j∈N

1

1−qj .

Thus

Tr(xαqL0 ) =∑

λ∈Z

xλqλ2

2

j∈N

1

1 − qj.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.19/20

Page 124: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Now we combine both formulas together and we get

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.20/20

Page 125: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Now we combine both formulas together and we get

λ∈Z

xλqλ2

2

j∈N

1

1 − qj=

r∈ 12+Z+

(1 + xqr)(1 + x−1qr).

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.20/20

Page 126: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Now we combine both formulas together and we get

λ∈Z

xλqλ2

2

j∈N

1

1 − qj=

r∈ 12+Z+

(1 + xqr)(1 + x−1qr).

Hence

λ∈Z

xλqλ2

2 =∏

r∈ 12+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 12 ).

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.20/20

Page 127: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Now we combine both formulas together and we get

λ∈Z

xλqλ2

2

j∈N

1

1 − qj=

r∈ 12+Z+

(1 + xqr)(1 + x−1qr).

Hence

λ∈Z

xλqλ2

2 =∏

r∈ 12+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 12 ).

This is the celebrated Jacobi Triple Product Identity.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.20/20

Page 128: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Now we combine both formulas together and we get

λ∈Z

xλqλ2

2

j∈N

1

1 − qj=

r∈ 12+Z+

(1 + xqr)(1 + x−1qr).

Hence

λ∈Z

xλqλ2

2 =∏

r∈ 12+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 12 ).

This is the celebrated Jacobi Triple Product Identity.

Remark: Many other combinatorial identities can be obtained from similar methodusing representation theory. So main idea here is to compute the character of thesame object in two different ways. From this we have an identity of characters andhence a combinatorial identity.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.20/20

Page 129: Boson-Fermion Correspondence and Jacobi Triple Product ...jupiter.math.nctu.edu.tw/~weng/courses/topic_2005/boson-fermion.p… · 1. Representation Theory • What is representation

• Now we combine both formulas together and we get

λ∈Z

xλqλ2

2

j∈N

1

1 − qj=

r∈ 12+Z+

(1 + xqr)(1 + x−1qr).

Hence

λ∈Z

xλqλ2

2 =∏

r∈ 12+Z+

(1 + xqr)(1 + x−1qr)(1 − qr+ 12 ).

This is the celebrated Jacobi Triple Product Identity.

Remark: Many other combinatorial identities can be obtained from similar methodusing representation theory. So main idea here is to compute the character of thesame object in two different ways. From this we have an identity of characters andhence a combinatorial identity.

Boson-Fermion Correspondence and Jacobi Triple Product Identity – p.20/20