boa bellows guide

86
BOA METALLBÄLGE RATGEBER METAL BELLOWS CONSULTANT

Upload: akshay-khamar

Post on 01-Dec-2014

128 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Boa Bellows Guide

BOA METALLBÄLGE RATGEBER

METAL BELLOWS CONSULTANT

Page 2: Boa Bellows Guide

BOA METAL BELLOWS CONSULTANT Issue 11-05-UK

BOA AG Expansion Joints Metal Bellows and Metal Hoses Station-Ost 1 CH-6023 Rothenburg Switzerland Phone: +41 41 289 41 11 Fax: +41 41 289 42 02 E-Mail: [email protected] Homepage: www.boa.ch

Page 3: Boa Bellows Guide

BOA METAL BELLOWS CONSULTANT Contents

1. General Information Presenting BOA Group and BOA AG Our product range

4

2. Metal Bellows Applications Applications for Metal Bellows Construction of the BOA Metal Bellows Application examples General information on the Bellows Tables

6

3. Information on using the Bellows tables Calculating the admissible Bellows data

Information on the table sections with reference to calculating the overall length

Necks Connections and joining methods Bellows calculation

11

4. Bellows Tables Bellows table 1 Bellows made of stainless steel Bellows table 2 non-ferrous Metal Bellows

33

5. Quality Management Certification Non-destructive test methods Destructive test methods

61

6. Material Tables Table on guide analyses and characteristic strength values

Foreign standards / comparison table

63

7. Annex Pressure conversion tables Conversions Enquiry check list Corrosion table Personal notes BOA Group, holding companies and agencies

71

2

3

Page 4: Boa Bellows Guide

Presenting BOA Group and BOA AG BOA Group, Stutensee, Germany BOA Group is one of the world's leading manufacturers for flexible mechanical elements for the automotive industry and for a wide range of industrial applica-tions. The headquarter is based in Stutensee near Karlsruhe /Germany. Until August 2006 BOA operated under IWKA Balg- und KompensatorenTech-nologie GmbH. About 20 subsidiaries and holding companies in eleven coun-tries are now belonging to the new BOA Group. Additionally, the organization keeps sales and service offices in the most important industrial countries. BOA Group develops, produces and distributes worldwide stainless steel components for motor management, exhaust systems and side components for vehicles. In the industrial division, BOA delivers pressure-tight and flexible elements for applications in energy technics and technical construction: rail-way, shipyards, aerospace industry, vacuum technique, measurement and control as well as armatures. BOA solutions include both standardized products and customized, individual elements developed together with the customer. Product range of BOA Group: Expansion Joints For pipe systems in chemical and refinery plants, power plant engi-neering, district heating and diesel engine manufacturing. 4

Metal Bellows As elastic connections and seals in valves and fittings, plant and chemical engineering, electrical engineering, vacuum technique, solar and heating installations, automotive engineering, mea-surement and control equipment.

1 General Information

Page 5: Boa Bellows Guide

BOA AG, Rothenburg, Switzerland BOA AG, based in Rothenburg near Lucerne, was founded in 1906. Over 200 employees are responsible for development, production, marketing and sales of high-quality expansion joints, metal bellows, metal hoses and plastics com-ponents. BOA AG is supported by its subsidiaries and holding companies in France, the Netherlands, Poland, Germany, USA and by agencies in all major industrial countries.

The partly varying technologies within the BOA Group form a meaningful sym-biosis for covering the needs of our customers.

BOA AG is an internationally recognized company which is among the market leaders in its activity fields. BOA AG is EN 9100, ISO 9001 and 14001, as well as DIN EN 15085-2 and ISO 3834-2 certified. Metal Hoses made of stainless steel, used wherever flexibility and highest reliability are required, e.g. gas distribution in private households, solar and heating engineering, but also in the automotive industry, aerospace and other industrial applications.

Plastics Components Hose lines, high pressure hoses, expansion joints and steel piping, whose parts in direct contact with the flow are covered by plastics, offer big advantages, plastics being mostly resistant against corrosion. Depending on the application, these covers are made of PTFE (Teflon), PFA or EPDM (rubber).

5

Page 6: Boa Bellows Guide

Visit our Website www. boa.ch

www.boagroup.com

6

Page 7: Boa Bellows Guide

7

Met

al b

ello

ws

appl

icat

ions

Construction of the BOA metal bellows

Our metal bellows range includessingle and multi-ply types in a varietyof bellows geometries.

Our wide range and know-how in thisspecialist area allows us to find thebest technical and economic solutionto our customers’ problems.

The BOA standard convolution profileis the compensation tube bend. Itcombines all the properties neces-sary for a pressure vessel with highflexibility and long life – even whenexposed to high operating pressures.We also make special convolutionprofiles for special applications

• We advise you objectively andexpertly

• We supply you with constructiveinstallation, manufacturing andapplication proposals

• We make trial samples and offer youvery good series production prices.

• We can also supply you with complete systems

Standard, single ply profile

Single ply Double ply Triple ply

Standard, multi ply profile

02_Applications 20.8.2007 10:17 Uhr Seite 7

Page 8: Boa Bellows Guide

8

Application examples

Plant and chemicalEngineering

Valves

Electrical engineering

• Shaft seals• Axial face seals• Bellows couplings• Tank valves

• Spindle seals for valves

• HT and MT switchgear• Expansion vessels• Strain gauges / pressure switches

Met

al b

ello

ws

appl

icat

ions

02_Applications 20.8.2007 10:17 Uhr Seite 8

Page 9: Boa Bellows Guide

Measuring and control engineering

Solar / heating engineering

Vacuum engineering

• Spindle seals• Pressure gauges / pressure

measuring equipment• Weighing equipment

• Underfloor heating distributors• Solar panel connections

• ISO-KF, ISO-K, CF connections andcomponents

• Valve spindle seals

9

Met

al b

ello

ws

appl

icat

ions

02_Applications 20.8.2007 10:17 Uhr Seite 9

Page 10: Boa Bellows Guide

10

Our bellows tables offer a wide rangeof bellows sizes and types. For eco-nomic reasons, we recommend thestandard series marked for smallervolumes. If different dimensions areabsolutely essential, we can makeother special sizes.

This catalogue contains two separatetables, one for special steels with thebasic material 1.4571 and one fornon ferrous metals with the basicmaterial 2.1020. However, thesetables can also be used for othermaterials, with the aid of the correc-tion factors described in the followingsection.

Special steel bellows table:For all special steels listed in our factor tables.

Non ferrous metal bellows table:For bronze 2.1020.

If materials are needed in individualcases that are not included in ourfactor tables, an agreement has to bemade with our factory.

General information on the bellows tables

Met

al b

ello

ws

appl

icat

ions

Met

allb

alg-

Anw

endu

ngen

Please note:We not only make the metal bel-lows, but also can make theconnections using highly economicprocesses.

Our supply capability is no waylimited to the metal bellows rangeup to DN 114 as described in thiscatalogue.We also make metal bellows up to10’000 mm and bigger. Let usknow what you need.

02_Applications 20.8.2007 10:17 Uhr Seite 10

Page 11: Boa Bellows Guide

3 Information on using the bellows tablesCalculating the admissible bellows data

Section Section N° Explanation of the table sections Page

3.1 1 Nominal dimension 122 Position 12

3.2 3 Inside diameter 124 Tolerance 125 Outside diameter 126 Tolerance 12

3.3 7 Number of plies 128 Ply thickness 12

3.4 9 Convolution pitch 12–13(calculation of the corrugated bellows length)

3.5 10 Maximum number of convolutions 14

3.6 11–17 Dimensions of the necks 14–19Connections and joining methods

3.7 18 Calculated overpressure * 20–25

3.8 19–21 Stroke 26–29per convolution *

3.9 22–24 Spring rate 30–31per convolution *

3.10 25 Effective bellows cross-section area 32

3.11 26 Weight per convolution 32

* These items also include calculating the permitted or real values under theoperating conditions concerned.

11

03_Information 20.8.2007 10:17 Uhr Seite 11

Page 12: Boa Bellows Guide

12

3.1 Nominal dimension and positionSections 1 + 2The nominal dimension indicatedlargely corresponds to the insidediameter of the bellows and alsomeans that the right bellows canbe found quickly and without anyproblem. The bellows, togetherwith the size and item numbergives a precise indication of thebellows type selected.

3.2 Bellows inside diameter,Bellows outside diameterSections 3–6Apart from the diameters andtolerances listed, different specialtypes are also available subject toconsultation.

3.3 Number of plies and plythicknessSections 7 + 8The choice of the number of pliesand thickness depends on theoperating conditions and also theinstallation space available. If theoperating data allows the use of asingle ply bellows, this is themost cost-effective solution. Mul-ti-ply bellows are mainly used athigh operating pressures toachieve much better mobilitycompared with the more rigidsingle ply bellows with the samepressure resistance.

High pressure bellows with ahigher number of layers areavailable on request.

3.4 Convolution pitch, calculatingthe corrugated bellows lengthSection 9The convolution pitch correspondsto the flank to flank distance(dimension Lw in the diagram).

In most cases, the corrugatedlength (AL) and the total length (TL)of a bellows can be calcu-latedsufficiently accurately using thefollowing approximation formulasand diagrams.

TL = Total length of the bellowsAL = Active length of the bellowsLw = Convolution split according to

table, section 9L1-3 = neck lengths according to

table, sections 12, 14, 17AL = Numbers of convolutions x LwTL = AL + 2·L1-3

Information on the table sections with reference to calculating the overall length

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 12

Page 13: Boa Bellows Guide

Neck AB–AB

AL = 4.5 . LwTL = AL+ (2·L2)Active convolutions = 4

Neck SAG–SAG

AL = 5.5 . LwTL = ALActive convolutions = 5

Neck SAG–HB

AL = 5 . LwTL = AL + L1Active convolutions = 5

Neck IB–IB

AL = 4.5 · LwTL = AL + (2·L3)Active convolutions = 4

Neck HB–HB

AL = 4.5 . LwTL = AL+ (2·L1)Active convolutions = 5

Neck IG–AG

AL = 5 . LwTL = ALActive convolutions = 4.5

13

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 13

Page 14: Boa Bellows Guide

Neck AB – AB

Neck IB – IB

Mainly for small quantities and indi-vidual components. Which of thesetwo shapes is more economicaldepends on the shaping process andhas to be decided in each individualcase.

14

3.5 Max. number of convolutionsSection 10The number of convolutions listed in this section represents the maximum convolution of existing tools. If you want a type with more corrugations, we will be pleased to discuss what we can offer.

3.6 Edge shapes, connections and joining methodSections 11–17The technical bellows tables give the standard necks with detailed dimen-sions. As has been found in practice, these basic shapes can be used for most applications. Which neck is the most economical alsodepends on the shaping process chosen. The choice of shaping process is very much influenced by the number of bellows to be manufactured.

Standard-Bordformen(Die Bordformen können kombiniert angewendet werden)

Bordform HB – HB

Standard necks(The necks can be used in combination)

Neck HB – HB

Neck SAG – SAG

Particularly economical for mediumand larger numbers using a hydraulicshaping process

Preferably used for a lip welded join.In principle, it can be made for anysize and type of bellows.

Necks

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 14

Page 15: Boa Bellows Guide

Special necks(The necks can be used in combination)

Neck with base

Neck AG–AG

Neck IG–IG

Bellows with preformed base

are only possible with larger numbersand single ply bellows. A base can bewelded or soldered on for smallquantities.

The bellows are separate, convolution crest – neck AG or incorrugation trough – neck IG.

Type mainly for single ply bellows

15

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 15

Page 16: Boa Bellows Guide

16

Soldered connections

A) Soft soldered connectionsJoining metal bellows to connectionsby soft soldering is only suitable forbronze bellows. The operating tem-perature should be limited to 100°C ifnormal soft solder is used. Suitablesolders are standardised accordingto DIN 1707.

Instructions1. Avoid strong heat effects on the

metal bellows. This reduces thestrength of the bellows in theimmediate vicinity of the solderedjoint. This applies to flame solde-ring in particular.

2. In any case, and for heavy valveparts in particular, it is recommen-ded that these are heated ade-quately first and that the metal bel-lows are only joined to theconnection when the solder flows.The bellows end should preferablybe tinned first.

3. After soldering, all flux residuemust be carefully removed fromthe bellows and the connections,because this can cause corrosion.

Connections and joining methods

Info

rmat

ion

Bellows with necks IG, AG, SAG are butt welded to the connections.

Necks IG

Necks HB, IB, AB

Necks SAG

Necks AG Recommended with outside pressure

Necks IGRecommended with inside pressure

Bellows with cylindrical ends areconnected to the connections bychamber soldering.

03_Information 20.8.2007 10:17 Uhr Seite 16

Page 17: Boa Bellows Guide

B) Brazed connectionsBrazed connections are not recom-mended for bronze bellows. The highbrazing temperatures cause annea-ling of the bellows in the vicinity ofthe connections. The properties ofthe bellows change as a result. Bra-zing is done in cases where weldingcannot be done, e.g. when con-necting special steel bellows tomalleable cast iron or brassconnections. The brazing is done as gap brazing.

The most suitable brazing solder isLAg44 according to DIN 8513. Apartfrom having a good temperature resi-stance up to 200°C, the solder alsohas good corrosion resistance.

Brazing instructions1. Brazing with a silver content of less

than 40% is not recommendedbecause its high application tempe-rature causes annealing of the bel-lows immediately next to the joinwith the connection. However,homogenous bellows properties arethen no longer guaranteed.

2. The residual flux must be removedfrom the metal bellows and theconnection after brazing, becausethis can cause corrosion of bothcomponents. We recommend theuse of chloride-free flux.

3. High temperature or furnace bra-zing solders can be used. Remem-ber, a brazing temperature above900°C can have a negative effecton the properties of austenitic bel-lows, such as pressure strength,elasticity and life.

17

Info

rmat

ion

The leak-tightness of brazed connections is the same as that of weldedconnections.

Neck AB Neck HB, IB

Neck SAG

03_Information 20.8.2007 10:17 Uhr Seite 17

Page 18: Boa Bellows Guide

18

Welded connections

Lip welded connectionsThis form of welding is preferred forspecial steel or bronze bellows.When welding bronze bellows toconnections, the connection must be made from an easily weldable Cu material, such as SF-Cu, forexample. Lip welds are made withoutwelding filler.

Round weld, Neck SAG

Edge weld with Neck HB, IB, AB

Edge weld with inserted rim

Provision of connectionsIf the customer wants to provide theconnections for use in our work-shops, the welding connection sizesmust be carefully specified before-hand.

Also, sufficient room must be provi-ded for controlling the welding torch.Please ask us for our suggestions ifyou are not sure.

Connection of 2 bellows withround seam

Connection of 2 bellows with aguide part, for example

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 18

Page 19: Boa Bellows Guide

Type of welding geometrywith flanges

Because of the welding process,the distance A is chosen as follows:

A ≥ 6 mm for austenitic materials

A ≥ 15 mm for highly nickelalloyed material

Welding a two ply metal bellowsto a connection (enlargement)

19

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 19

Page 20: Boa Bellows Guide

20

Bellows calculation

3.7 Calculated overpressureSection 18

The pressure indicated here is admis-sible as the maximum operatingpressure up to 20°C, taking the follo-wing into account:

• Material: The table is based onmaterial 1.4571 or 2.1020. Othermaterials have to be taken intoaccount through correction factors.

• Operating temperature: with tem-peratures above 20°C, the factor Tpaccording to table 1 (page 24/25)must be taken into account.

• Type of pressure load: static pressure load; internal or externalpressure. Dynamic pressure loadrequires a reduction. Please consultus in this respect.

• Number of convolutions: with aninternal pressure, the bellows mustbe checked for kinking stability or asuitable guide used.

• Heat treatment: the following cal-culations assume that the metalbellows do not undergo any heattreatment. If subsequent heat treat-ment is required, its effect on thestrength of the bellows material hasto be taken into account. In thesecases, we need to check the designdata.

Test pressureA pressure test at 1.3 times the pres-sure is permitted briefly above thecalculated overpressure indicated.Nevertheless, the life and pressure-resistance of the bellows is fullymaintained. If a higher test pressurefactor is demanded, the admissibleoperating pressure must be reducedaccordingly or, if necessary, bellowswith a higher calculated pressuremust be chosen.

ProofThe calculation method for determi-ning the metal bellows properties is validated by test series. We re-commend that you let us check the bellows calculation. If particular proofof pressure resistance or life is re-quired by the inspection authorities,this needs to be agreed with us. Weprovide calculation proof accordingto known regulations like AD informa-tion sheet B13 (Vd TÜV), EJMA,ASME, CODAP, etc. on request. Plea-se remember that the special designspecifications according to theseregulations only allow reduced opera-ting pressures compared with ourcatalogue data.

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 20

Page 21: Boa Bellows Guide

Outside pressure loadThe calculated overpressure according to section 18 has to be corrected foroperating temperatures above 20°C with the temperature factor TP accordingto table 1 on pages 24 and 25.

Admissible operating pressure

Admissible test overpressure

PB acc.= admissible working overpressure [bar ü]PP acc.= admissible test overpressure 20°CPR = calculated overpressureTP = Temperature factor for calculation of the admissible pressure in

higher temperatures (table 1, pages 24 and 25)

PB acc. = PR. TP [bar ü]

PP acc. = PR. 1.3 [bar ü]

21

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 21

Page 22: Boa Bellows Guide

22

Internal pressure loadIn the case of an internal pressure load, the kinking stability of the bellows that decreases with an increasing number of corrugations must be taken intoaccount.

If the bellows have an inside guide (e.g. valve-spindle or inside tube) or an out-side guide (e.g. supporting casing or housing) of a technically perfect design,the maximum possible operating temperature can be permitted.

If there is no guide, the bellows must not be loaded with more than the pres-sure calculated according to the following formula:

a) Calculation with existing valve guide as described in «Outside pressure load».

b) Calculating the critical inside pressure with reference to stability if usedwithout bellows guide.

Cx = axial spring rate per convolution (bellows table, section 22)W = total number of convolutions of the bellowsLw = corrugated length of a convolution (bellows table, section 9)TF = temperature factor (table 5, page 31)PR = calculated overpressure (bellows table, section 18)

Admissible operating pressure: (assuming that the bellows are firmly clampedboth ends).

Admissible test overpressure with inside pressure load

PP acc. = acceptable test overpressure at 20° C

Pcritical =30 . Cx

. TF

W2 . Lw

PB acc. =Pcritical

2.25[bar ü]

PP acc. =PB acc.

. 1.3TF

[bar ü]

≤ PR [bar ü]

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 22

Page 23: Boa Bellows Guide

Pressure force of the metal bellowsWhen the metal bellows are pressurised, an axial pressure reaction forcebecomes effective. This force has to be taken into account when designing orplanning pipes and equipment. Therefore, the pipes must be provided withfixed points which, on the one hand, absorb the reaction forces and, on theother, prevent stretching of the bellows. The fixed points of pipes must have asuitable stable structure.

(according to table, section 25)

FR = reactionary force [N]

P = pressure in

Ab = Areas of cross section of the bellows (bellows table, section 25)Di = Internal diameter of the bellows (bellows table, section 3)Da = Outside diameter of the bellows (bellows table, section 5)

A fixed point must be provided before and after the bellows.Guides must be provided for longer pipes.

Advantageous installation:

FR = P . Ab [N]

Ab = . (Di2 + (Di

. Da) + Da2)

π12

1bar � 0.1 � 10N

cm2

Nmm2

Ncm2

Bellows

GuideFixed point Fixed point

23

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 23

Page 24: Boa Bellows Guide

24 25

Page 25: Boa Bellows Guide

26

3.8 Stroke per convolutionSections 19–21

Calculating the number of convolutions requiredThe movement values indicated in sections 19–21 apply to a convolution at atemperature of 20°C and based on 10,000 load changes.The following formulas are used to calculate the necessary convolution num-ber for a predetermined stroke. If the temperature exceeds 20°C, the move-ment must be reduced with the temperature factor TB according to table 2 onpages 28 and 29. If a load change number N which differs from the basic value of 10,000 is alsorequired, the correction must be made with the load change factor NF accor-ding to table 3 on page 29. If the pressure is not used 100%, the movementcan be adapted with the factor FP according to table 4 on page 29.

Required number of convolutions for axial movement

Required number of convolutions for lateral movement

Required number of convolutions for angular movement

± �ax = axial stroke according to section 19 [ mm ]± � = angular stroke according to section 20 [ ° ]± �Lat = lateral stroke according to section 21 [ mm ] W = required number of convolutions [ – ]TB = temperature factor (table 2, pages 28 and 29) [ – ]NF = Load alternation factor (table 3, page 29) [ – ]FP = pressure load factor (table 4, page 29) [ – ]

W =± Stroke

± �ax. NF

. TB. FP

W =± Angular movement

± � . NF. TB

. FP

W =± Lateral stroke

± �Lat . NF

. TB. FP

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 26

Page 26: Boa Bellows Guide

If the bellows are designed for a smaller number of load changes than thebasic value of 10,000, any admissible bigger stroke on account of the convo-lution geometry must be checked by us.

The movement values indicated in the bellows tables are only permitted forone type of movement with full use, i.e. either an axial, lateral or angularmovement.

Combined loads are permitted provided the total of the percentage part loaddoes not exceed 100%.

The load change is defined as the movement of the bellows from the neutralposition over the entire stroke range and back to the neutral position. The neu-tral position, as the start of the movement, can be both the extended position(maximum bellows length and the compressed position (= minimum bellowslength) or the middle position.

Axial movement angular movement lateral movement

Installation position:

Load change process (full stroke)

Str

oke

� a

x.

Time t

MiddlePosition

ExtendedPosition

CompressedPosition

27

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 27

Page 27: Boa Bellows Guide

24 25

Page 28: Boa Bellows Guide

30

3.9 Spring rate per convolutionSections 22–24

Calculating the bellows adjustment forcesThe spring characteristic is specified for all 3 types of movement as the speci-fic value per convolution and decreases with increasing number of corrugati-ons, i.e. linearly in the case of axial and angular movements and to the powerof 3 in the case of lateral movements. At higher temperatures, the spring cha-racteristic must be reduced according to the decreasing modulus of elasticity.The factor TF that applies to this is given in table 5 on page 31.

a) Spring characteristic of a bellows with an axial movement

b) Spring characteristic of a bellows with an angular movement

c) Spring characteristic of a bellows with lateral plane parallel movement

Cax Ca Clat = Spring rate of the whole bellowcax ca clat = Spring rate per convolution at sections 22, 23, 24TF = Temperature factor to calculate spring rate at higher

temperatures (table 5, page 31)W = chosen number of convolutions (of a bellow)

The values for the spring characteristics apply to the standard version with a tolerance of ± 30%. A smaller tolerance requires special measures concer-ning raw material and production and therefore is only possible subject toagreement.

Cax = . TFN

mmcax

W

Ca = . TFNm< ˚

ca

W

Clat = . TFN

mmclat

W3

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 30

Page 29: Boa Bellows Guide

1) According to spring rate value of metal bellows of 1.4571 in bellows table 12) According to spring rate value of metal bellows of 2.1020 in bellows table 2

Correction factor TF for calculating the spring rate for higher temperatures1) Table 5

Working temperature °C

20 100 200 300 400 500 600 700 800 900 1000

1.4306 (304 L) 1.00 0.97 0.93 0.90 0.86 0.83 0.79

1.4404 (316 L) 1.00 0.97 0.93 0.90 0.86 0.83 0.79

1.4435 (316 L) 1.00 0.97 0.93 0.90 0.86 0.83 0.79

1.4539 (Alloy 904L) 0.99 0.96 0.93 0.90 0.87 0.82 0.78

1.4541 (321) 1.00 0.97 0.93 0.90 0.86 0.83 0.79

1.4571 (316 Ti) 1.00 0.97 0.93 0.90 0.86 0.83 0.79

1.4828 (309) 1.00 0.97 0.93 0.90 0.86 0.83 0.75 0.70 0.65 0.60 0.55

1.4876 (Alloy 8oo) 0.99 0.97 0.94 0.90 0.87 0.83 0.79 0.76

2.4068 (Nickel 200) 0.98 0.96 0.94 0.90 0.86 0.81 0.75

2.4360 (Alloy 400) 0.91 0.90 0.89 0.86 0.83 0.79

2.4602 (Alloy C-22) 1.03 1.01 0.99 0.95 0.93 0.89

2.4605 (Alloy 59) 1.05 1.04 1.00 0.98 0.95 0.93

2.4610 (Alloy C-4) 1.06 1.04 1.01 0.98 0.94

2.4816 (Alloy 600) 1.07 1.04 1.02 1.00 0.97 0.94

2.4819 (Alloy C-276) 1.04 1.02 1.00 0.97 0.94

2.4856 (Alloy 625) 1.04 0.97 0.93 0.91 0.89 0.85 0.81

2.4858 (Alloy 825) 0.98 0.95 0.93 0.90 0.87 0.84

2.10202)(Bronze) 1.00 0.99 0.97 0.86

2.10302) 0.97 0.96 0.94 0.83

Material

31

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 31

Page 30: Boa Bellows Guide

32

3.10 Effective cross-section areaSection 25The effective cross-section area is an important variable for calculatingthe reaction forces that occur as a function of pressure. In the case ofbellows in control elements, e.g. strain gauges or thermostats, these areaand pressure-related forces play an important part.

The effective cross-section area can be calculated as follows:

Ab = effective cross-section areaDa = bellows outside diameter [mm]Di = bellows inside diameter [mm2]

3.11 Weight per convolutionSection 26The values listed here give the approximate weight per convolution. Aguide to the total weight of the bellows can be calculated by multiplyingthe weight of each individual convolution by the number of convolutionschosen.

Ab = (Di2 + (Di

. Da) + Da2)

π12

Info

rmat

ion

03_Information 20.8.2007 10:17 Uhr Seite 32

Page 31: Boa Bellows Guide

Stainless steel bellowsThe basic material here is chromiumnickel steel 1.4571 (AISI 316 Ti).This table applies to all the materialslisted, taking into account the con-version factors according to tables 1, 2, 3, 4 and 5.

Example of the name of a bellowsselected:Bellows table N° 1, DN 18, Item 4Material 1.4571Number of convolutions 15Neck SAG one end

AB the other end

Please provide other operating dataaccording to the checklist on pages76 and 77.

Preferred series:The grey shaded items in the follo-wing table ( ) are our pre-ferred series. These bellows shouldbe used whenever possible becausethey are available more quickly.

4 Bellows tables

Bellows table 1

33

Bello

ws

tabl

es

04_Bellows_Tables 20.8.2007 10:23 Uhr Seite 33

Page 32: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° Nmm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

6 1 6,2 0,2 10,0 0,3 1 0,10 1,4 15 6,5 8,7 48 0,09 1,30 0,005 194 0,029 10590 0,52 0,07

9 1 9,4 0,3 14,5 0,4 1 0,10 1,5 187 9,6 13,2 2,1 13,2 10,3 2,0 25 0,20 1,50 0,009 116 0,036 9337 1,12 0,142 9,7 0,3 14,5 0,4 1 0,12 1,6 187 9,9 13,2 2,6 13,2 11,5 2,0 41 0,15 1,39 0,006 252 0,080 22174 1,16 0,16

10 1 10,1 0,3 14,5 0,4 1 0,10 1,4 218 10,4 13,0 2,0 13,2 11,5 1,5 34 0,14 1,30 0,005 198 0,065 24259 1,20 0,132 10,2 0,3 14,5 0,4 2 0,10 2,1 144 10,6 13,0 2,0 13,2 11,5 1,5 100 0,15 1,40 0,009 504 0,168 27152 1,21 0,263 10,5 0,3 15,2 0,4 3 0,10 2,6 114 11,2 13,0 2,0 13,2 11,7 1,5 125 0,18 1,60 0,012 756 0,272 27689 1,30 0,45

13 1 12,7 0,3 18,4 0,4 1 0,12 2,74 108 13 16,9 2,0 15,2 14,2 2,0 38 0,24 1,80 0,014 206 0,109 9963 1,92 0,272 12,8 0,3 18,6 0,4 2 0,10 3,74 79 13,1 17,1 2,0 15,2 14,3 2,0 69 0,28 2,00 0,021 361 0,194 9540 1,95 0,493 13,6 0,3 20,0 0,4 1 0,12 1,7 108 13,7 18,5 2,0 17,0 15,0 2,0 22 0.25 1.68 0,008 148 0,091 20717 2,24 0,304 13,3 0,3 20,0 0,4 2 0,12 2,1 138 13,8 18,5 2,0 17,0 14,3 2,0 49 0,27 1,89 0,012 279 0,169 25293 2,20 0,615 13,0 0,3 19,0 0,4 3 0,10 2,4 121 13,8 18,5 2,0 17,0 14,3 2,0 81 0,29 2,04 0,015 377 0,211 24328 2,20 0,686 13,6 0,3 20,0 0,4 1 0,10 1,7 174 13,9 18,5 2,0 18,2 15,0 2,0 15 0,30 2,05 0,010 85 0,052 12446 2,24 0,257 13,8 0,3 20,0 0,4 2 0,10 2,1 144 14,3 18,5 2,0 18,2 15,3 2,0 41 0,28 1,93 0,012 209 0,131 21120 2,27 0,498 14,0 0,3 21,4 0,4 3 0,10 2,6 114 14,7 18,5 2,0 18,2 15,2 2,0 51 0,44 2,86 0,022 207 0,142 14392 2,49 0,89

15 1 15,1 0,3 23,4 0,4 1 0,10 2,20 134 15,2 21,9 2,0 18,5 16,5 2,0 9 0,54 3,23 0,021 43 0,035 4922 2,95 0,362 15,1 0,3 22,0 0,4 1 0,12 2,1 228 15,5 20,5 2,0 18,5 16,5 2,0 20 0,30 1,84 0,011 130 0,098 15516 2,73 0,363 15,4 0,3 23,4 0,4 2 0,10 2,4 110 15,9 20,5 2,0 18,5 16,9 2,0 23 0,50 2,90 0,021 107 0,088 10436 2,99 0,704 15,3 0,3 22,0 0,4 2 0,12 2,5 109 15,9 20,5 2,0 18,5 16,8 2,0 53 0,28 1,75 0,013 323 0,245 27408 2,73 0,715 15,5 0,3 23,5 0,4 3 0,12 2,7 114 16,3 20,5 2,0 18,5 16,8 2,0 61 0,40 2,37 0,019 313 0,259 24090 3,02 1,266 15,5 0,3 23,0 0,4 3 0,15 2,9 115 16,5 20,5 2,0 18,5 16,8 2,0 110 0,27 1,62 0,014 792 0,641 52336 2,94 1,49

16 1 16,1 0,3 24,0 0,4 1 0,10 1,9 204 16,4 22,5 2,0 21,5 17,5 2,0 9 0,47 2,66 0,014 53 0,047 9289 3,19 0,362 16,3 0,3 24,0 0,4 2 0,10 2,2 97 16,8 22,5 2,0 21,5 17,8 2,0 25 0,44 1,85 0,016 126 0,112 15307 3,22 0,713 16,3 0,3 24,0 0,4 2 0,15 2,6 97 17,0 22,5 2,0 21,5 17,8 2,0 59 0,29 1,64 0,012 445 0,395 40106 3,22 1,074 16,5 0,3 24,0 0,4 3 0,15 2,7 102 17,5 22,5 2,0 21,5 18,0 2,0 107 0,26 1,46 0,012 837 0,749 68514 3,25 1,565 16,2 0,3 24,0 0,4 4 0,15 3,0 100 17,5 22,5 2,0 21,5 17,5 2,0 150 0,28 1,58 0,014 1107 0,977 72893 3,20 2,11

18 1 17,6 0,3 27,5 0,4 1 0,10 1,9 166 17,9 25,0 2,5 24,2 20,0 2,5 5 0,74 3,76 0,020 30 0,033 6504 4,05 0,482 17,6 0,3 27,5 0,4 1 0,15 2,1 415 18,0 25,0 2,5 24,2 20,0 2,5 13 0,47 2,39 0,015 100 0,111 16716 4,05 0,723 18,0 0,3 27,0 0,4 1 0,12 2,1 181 18,4 24,7 2,5 24,2 20,5 2,5 11 0,47 2,40 0,015 73 0,081 12799 4,04 0,544 18,1 0,3 27,5 0,4 1 0,20 2,2 173 18,6 25,4 2,5 24,2 20,5 2,5 26 0,31 1,58 0,010 293 0,333 45578 4,14 0,945 18,3 0,3 27,0 0,4 2 0,12 2,6 86 18,9 24,9 2,5 24,2 20,8 2,5 27 0,46 2,34 0,017 170 0,191 21296 4,07 1,076 17,8 0,3 27,5 0,4 2 0,15 2,6 78 18,4 25,4 2,5 24,2 20,3 2,5 32 0,45 2,29 0,017 235 0,263 26749 4,08 1,447 18,1 0,3 27,5 0,4 2 0,20 3,1 80 18,7 25,4 2,5 24,2 20,5 2,5 70 0,32 1,62 0,015 652 0,740 51569 4,13 1,938 18,6 0,3 27,0 0,4 3 0,12 3,6 85 19,4 25,0 2,5 24,2 21,0 2,5 60 0,47 2,37 0,025 344 0,391 21190 4,12 1,669 18,1 0,3 27,0 0,4 3 0,20 4,0 75 19,4 25,5 2,5 24,2 20,5 2,5 156 0,31 1,56 0,018 1400 1,555 65456 4,03 2,81

20 1 19,6 0,3 29,0 0,4 1 0,10 2,4 169 19,9 26,7 3,0 26,7 21,5 3,0 7 0,68 3,23 0,022 38 0,050 6113 4,69 0,522 20,5 0,3 32,0 0,4 1 0,10 2,5 126 20,7 29,7 3,0 26,7 23,0 3,0 4 0,89 3,89 0,029 22 0,033 3502 5,49 0,663 19,6 0,3 29,0 0,4 1 0,12 2,4 168 19,9 26,7 3,0 26,7 21,5 3,0 10 0,55 2,60 0,018 66 0,086 10215 4,69 0,624 19,5 0,3 29,0 0,4 1 0,15 2,4 169 19,9 26,7 3,0 26,7 21,5 3,0 15 0,44 2,10 0,015 126 0,161 18326 4,67 0,785 20,8 0,3 30,5 0,4 1 0,20 2,6 407 21,3 28,4 3,0 26,7 23,0 3,0 26 0,27 1,20 0,009 304 0,438 45903 5,22 1,136 19,8 0,3 29,0 0,4 2 0,12 2,6 81 20,4 27,0 3,0 26,7 21,7 3,0 25 0,51 2,42 0,019 155 0,201 19882 4,73 1,237 20,0 0,3 28,5 0,4 3 0,12 3,1 83 20,8 27,2 3,0 26,7 22,0 3,0 56 0,45 2,12 0,019 334 0,429 31458 4,66 1,75

(Metal Bellows Consultant page 34) = preferred series (Metal Bellows Consultant page 35)

necks

axia

l

late

ral

axia

l

AB exterior IB interior

wei

ght p

er

conv

olut

ion

effe

ctiv

e cr

oss-

sect

iona

l are

a

angu

lar

calc

ulat

ed

over

pres

sure

Stroke per convolution at 104 cycles spring rate per convolution

late

ral

angu

lar

max

. num

ber

of

conv

olut

ions

thic

knes

s of

ply

Nom

inal

di

men

sion

tole

ranc

e

outs

ide

conv

olut

ion

pitc

h

tole

ranc

e

posi

tion

Basic material1.4571

bellows-

num

ber

of p

lies

insi

de

HB cylindrical

Leng

th a

ccor

ding

to c

onsu

ltatio

nd

11-0

5

Sub

ject

to

chan

ge

Page 33: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° Nmm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

necks

axia

l

late

ral

axia

l

AB exterior IB interior

wei

ght p

er

conv

olut

ion

effe

ctiv

e cr

oss-

sect

iona

l are

a

angu

lar

calc

ulat

ed

over

pres

sure

Stroke per convolution at 104 cycles spring rate per convolution

late

ral

angu

lar

max

. num

ber

of

conv

olut

ions

thic

knes

s of

ply

Nom

inal

di

men

sion

tole

ranc

e

outs

ide

conv

olut

ion

pitc

h

tole

ranc

e

posi

tion

Basic material1.4571

bellows-

num

ber

of p

lies

insi

de

HB cylindrical

22 1 21,6 0,3 31,5 0,4 1 0,10 2,2 400 21,9 29,3 3,0 29,2 24,0 3,0 6 0,57 2,47 0,016 36 0,056 7950 5,60 0,602 21,6 0,3 31,5 0,4 1 0,12 2,2 400 21,9 29,3 3,0 29,2 24,0 3,0 8 0,49 2,11 0,014 63 0,097 13297 5,60 0,713 21,6 0,3 31,5 0,4 1 0,15 2,3 399 21,9 29,3 3,0 29,2 24,0 3,0 13 0,38 1,63 0,011 124 0,191 24853 5,60 0,894 21,8 0,3 31,5 0,4 2 0,12 2,5 200 22,4 29,5 3,0 29,2 24,2 3,0 22 0,45 1,94 0,015 145 0,225 22195 5,63 1,425 21,8 0,3 31,5 0,4 2 0,15 4,8 190 22,4 29,5 3,0 29,2 24,2 3,0 46 0,42 1,82 0,025 337 0,523 15844 5,63 1,966 22,0 0,3 31,5 0,4 3 0,12 3,2 200 22,8 29,6 3,0 29,2 24,5 3,0 44 0,45 1,94 0,018 258 0,403 26713 5,67 2,147 22,0 0,3 31,5 0,4 3 0,15 3,7 190 23,0 29,6 3,0 29,2 24,5 3,0 72 0,37 1,60 0,017 531 0,830 40736 5,67 2,728 22,2 0,3 31,5 0,4 4 0,12 3,6 204 23,3 29,8 3,0 29,2 24,5 3,0 68 0,42 1,79 0,019 418 0,658 34468 5,71 2,84

24 1 24,1 0,3 35,5 0,4 1 0,10 3 300 24,0 33,3 3,0 31,8 26,5 3,0 5 0,87 3,34 0,030 27 0,052 3871 7,06 0,782 23,6 0,3 36,5 0,4 1 0,15 3,5 300 24,0 34,3 3,0 31,8 26,0 3,0 9 0,72 2,75 0,028 60 0,119 6826 7,20 1,303 24,3 0,3 36,5 0,4 2 0,15 3,1 160 32,2 34,5 3,0 31,8 26,5 3,0 20 0,58 2,17 0,020 158 0,319 22827 7,35 2,474 24 0,3 36,5 0,4 3 0,20 4 160 25,2 34,5 3,0 31,8 26,0 3,0 64 0,45 1,72 0,020 588 1,176 49486 7,27 5,03

26 1 25,1 0,3 36,7 0,4 1 0,10 3,5 367 25,3 34,2 3,0 34,2 28,0 3,0 6 0,90 3,35 0,034 27 0,057 3130 7,58 0,852 25,1 0,3 36,5 0,4 1 0,12 2,7 344 25,4 34,3 3,0 34,2 28,0 3,0 7 0,63 2,36 0,019 48 0,100 9056 7,53 0,973 25,2 0,3 38,0 0,4 1 0,15 2,80 340 25,5 35,5 3,0 34,2 28,0 3,0 8 0,64 2,32 0,019 66 0,144 12639 7,94 1,344 25,2 0,3 36,5 0,4 1 0,20 2,7 351 25,7 34,4 3,0 34,2 28,0 3,0 18 0,37 1,36 0,011 233 0,485 44347 7,55 1,595 25,1 0,3 34,0 0,4 1 0,20 5,1 220 25,7 32,0 3,0 32,2 28,0 3,0 46 0,30 1,15 0,017 507 0,966 25924 6,91 1,446 25,1 0,3 37,0 0,4 1 0,25 2,8 336 25,7 35,0 3,0 34,2 28,0 3,0 26 0,32 1,17 0,010 394 0,829 70627 7,66 2,077 25,3 0,3 36,5 0,4 2 0,12 3,2 171 25,9 34,4 3,0 34,2 28,0 3,0 16 0,62 2,30 0,020 109 0,226 17504 7,57 1,918 25,3 0,3 36,5 0,4 3 0,12 3,6 170 26,1 34,7 3,0 34,2 28,0 3,0 31 0,64 2,39 0,025 178 0,371 20081 7,57 2,90

28 1 27,6 0,3 39,5 0,4 1 0,10 2,9 300 27,9 37,2 3,0 37,2 30,0 3,0 4 0,92 3,13 0,026 27 0,066 5544 8,93 0,932 27,6 0,3 39,5 0,4 1 0,12 2,9 300 27,9 37,2 3,0 37,2 30,0 3,0 6 0,72 2,45 0,021 47 0,114 9289 8,93 1,113 27,5 0,3 39,5 0,4 1 0,15 3,0 300 27,9 37,2 3,0 37,2 30,0 3,0 9 0,58 1,97 0,017 88 0,216 16900 8,90 1,394 27,9 0,3 39,5 0,4 2 0,12 3,1 165 28,5 37,5 3,0 37,2 30,0 3,0 15 0,66 2,26 0,021 108 0,267 18610 9,00 2,195 27,8 0,3 39,5 0,4 2 0,15 3,3 165 28,5 37,5 3,0 37,2 30,0 3,0 23 0,52 1,76 0,017 207 0,512 33067 8,97 2,746 27,9 0,3 39,5 0,4 3 0,12 3,8 164 28,8 37,7 3,0 37,2 30,0 3,0 29 0,69 2,34 0,025 176 0,436 21644 9,00 3,327 27,7 0,3 39,0 0,4 4 0,12 4,3 167 28,8 37,5 3,0 37,2 30,0 3,0 46 0,46 2,21 0,028 285 0,692 25729 8,81 4,348 28,0 0,3 39,5 0,4 1 0,15 2,8 164 28,5 37,3 3,0 37,2 30,5 3,0 11 0,53 1,79 0,017 102 0,253 16738 9,03 1,38

29 1 29,3 0,3 42,0 0,4 1 0,10 3,7 300 29,5 39,7 3,0 39,2 31,5 3,0 5 1,05 3,37 0,036 24 0,067 3372 10,08 1,082 29,1 0,3 41,5 0,4 1 0,12 3,2 312 29,4 39,2 3,0 38,1 31,5 3,0 6 0,80 2,61 0,025 43 0,118 7692 9,88 1,233 29,2 0,3 41.5 0,4 1 0,15 3,8 257 29,6 39,2 3,0 38,1 31,5 3,0 11 0,63 2,05 0,023 87 0,237 11281 9.91 1,564 29,3 0,3 41,5 0,4 2 0,12 3,6 154 29,8 39,5 3,0 38,1 31,5 3,0 15 0,76 2,47 0,026 98 0,268 13914 9,93 2,455 29,5 0,3 41,5 0,4 3 0,12 4,1 156 30,3 39,6 3,0 38,1 32,0 3,0 28 0,72 2,31 0,027 170 0,468 19500 9,98 3,666 29,1 0,3 41,4 0,4 4 0,20 4,6 174 30,8 39,3 3,0 38,1 31,5 3,0 103 0,42 1,36 0,018 1126 3,055 99183 9,84 7,997 29,2 0,3 40,3 0,4 3 0,25 4,3 174 30,8 39,3 3,0 38,1 31,5 3,0 141 0,26 0,85 0,010 2191 5,778 218730 9,55 6,78

30 1 29,9 0,3 44,5 0,4 1 0,12 3,6 134 30,2 42,5 3,0 40,2 32,5 3,0 4 1,19 3,67 0,038 27 0,082 4415 11,00 1,482 30,2 0,3 44,0 0,4 1 0,15 3,8 147 30,6 42,0 3,0 40,2 33,5 3,0 8 0,80 2,48 0,027 64 0,191 9069 10,93 1,793 30,7 0,3 45,1 0,4 2 0,15 3,7 134 31,4 43,1 3,0 40,2 33,5 3,0 15 0,83 2,51 0,027 121 0,379 18399 11,41 3,724 30,9 0,3 44,0 0,4 3 0,15 4,0 147 31,9 42,3 3,0 40,2 33,5 3,0 28 0,72 2,22 0,026 213 0,653 28040 11,12 4,80

32 1 31,6 0,3 45,0 0,4 1 0,12 3,4 289 31,9 42,3 3,0 42,2 34,5 3,0 5,5 0,90 2,69 0,027 37 0,119 7085 11,63 1,442 31,5 0,3 45,0 0,4 1 0,15 3,5 289 32,0 42,3 3,0 42,2 34,5 3,0 8 0,71 2,13 0,021 71 0,226 12942 11,61 1,813 31,8 0,3 46,0 0,4 2 0,12 3,0 138 32,4 43,4 3,0 42,2 34,5 3,0 9 0,92 2,72 0,024 66 0,219 16922 12,01 2,974 31,7 0,3 45,0 0,4 2 0,15 3,9 147 32,4 42,6 3,0 42,2 34,5 3,0 19 0,71 2,11 0,024 160 0,513 23146 11,66 3,595 31,9 0,3 45,0 0,4 3 0,15 4,5 149 32,9 42,8 3,0 42,2 34,5 3,0 36 0,71 2,11 0,028 277 0,894 30604 11,71 5,396 32,1 0,3 45,0 0,4 4 0,15 5,2 80 33,5 42,5 3,0 42,2 34,1 3,0 56 0,67 2,00 0,030 445 1,443 36664 11,76 7,21

(Metal Bellows Consultant page 36) = preferred series (Metal Bellows Consultant page 37)

Leng

th a

ccor

ding

to c

onsu

ltatio

n

11-0

5

Sub

ject

to

chan

ge

Page 34: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° Nmm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

necks

axia

l

late

ral

axia

l

AB exterior IB interior

wei

ght p

er

conv

olut

ion

effe

ctiv

e cr

oss-

sect

iona

l are

a

angu

lar

calc

ulat

ed

over

pres

sure

Stroke per convolution at 104 cycles spring rate per convolution

late

ral

angu

lar

max

. num

ber

of

conv

olut

ions

thic

knes

s of

ply

Nom

inal

di

men

sion

tole

ranc

e

outs

ide

conv

olut

ion

pitc

h

tole

ranc

e

posi

tion

Basic material1.4571

bellows-

num

ber

of p

lies

insi

de

HB cylindrical

34 1 34,1 0,3 44,3 0,4 1 0,20 2,7 386 34,7 41,7 3,0 40,2 37,0 3,0 25 0,27 0,78 0,006 438 1,471 134620 12,13 1,952 34,2 0,3 50,0 0,4 2 0,25 4,7 122 35,4 48,0 3,0 47,2 37,0 3,0 35 0,58 1,57 0,021 487 1,886 59651 14,07 7,59

35 1 35,1 0,3 53,0 0,4 1 0,12 3,4 223 35,5 50,2 3,0 47,2 38,0 3,0 3 1,30 3,30 0,033 18 0,074 4409 15,44 2,082 34,8 0,3 50,0 0,4 1 0,15 4,0 263 35,5 47,3 3,0 47,2 38,0 3,0 6 0,99 2,66 0,031 55 0,215 9411 14,27 2,263 35,1 0,3 51,0 0,4 1 0,20 4,1 246 35,8 49,4 3,0 47,2 38,0 3,0 11 0,74 1,98 0,023 114 0,462 19234 14,71 3,154 35,0 0,3 50,0 0,4 1 0,30 4,3 261 35,7 47,6 3,0 47,2 38,0 3,0 25 0,44 1,17 0,014 466 1,837 69548 14,32 4,475 35,2 0,3 50,0 0,4 2 0,15 3,8 130 36,8 47,6 3,0 47,2 38,0 3,0 14 0,84 2,27 0,025 127 0.505 24550 14,39 4,366 35,4 0,3 50,0 0,4 3 0,15 4,6 131 36,4 47,8 3,0 47,2 38,0 3,0 28 0,86 2,31 0,031 217 0,865 28570 14,44 6,597 35,4 0,3 47,2 0,4 3 0,20 4,9 160 36,8 45,4 3,0 42,2 38,0 3,0 81 0,40 1,11 0,016 1051 3,916 113891 13,47 7,24

38 1 38,4 0,5 54,2 0,6 1 0,10 4,2 366 38,7 45,6 3,0 47,2 41,5 3,0 3,5 1,58 3,92 0,048 17 0,077 3012 17,00 1,742 38,1 0,5 53,0 0,6 1 0,15 3,6 366 38,5 45,6 3,0 47,2 41,5 3,0 6 0,88 2,20 0,023 64 0,289 14973 16,43 2,403 38,0 0,5 56,0 0,6 1 0,20 3,7 222 38,6 53,4 3,0 51,7 41,5 3,0 7 0,93 2,26 0,025 86 0,412 20271 17,55 3,784 37,9 0,5 56,0 0,6 2 0,15 2,9 110 38,7 53,4 3,0 51,7 41,5 3,0 7 1,09 2,67 0,023 75 0,362 28745 17,51 5,515 38,2 0,5 56,0 0,6 2 0,20 4,3 110 39,2 53,8 3,0 51,7 41,5 3,0 16 0,91 2,21 0,028 189 0,917 34058 17,61 7,536 38,2 0,5 56,0 0,6 2 0,25 4,7 110 39,4 54,0 3,0 51,7 41,5 3,0 26 0,72 1,75 0,024 377 1,824 57701 17,61 9,44

40 1 39,9 0,5 55,0 0,6 1 0,15 3,6 261 40,5 51,8 4,0 51,7 43,5 4,0 6 0,87 2,11 0,022 64 0,316 16373 17,83 2,542 40,3 0,5 59,0 0,6 1 0,15 4,5 200 40,6 55,8 4,0 51,7 43,5 4,0 4 1,48 3,42 0,044 34 0,184 6344 19,58 3,193 40,7 0,5 53,0 0,6 1 0,20 4,2 300 41,4 50,5 4,0 47,2 44,3 4,0 19 0,44 1,07 0,013 287 1,373 52480 17,33 2,944 40,6 0,5 53,0 0,6 1 0,25 4,3 305 41,3 50,5 4,0 47,2 44,0 4,0 29 0,35 0,86 0,011 550 2,632 95983 17,30 3,685 40,1 0,5 55,5 0,6 1 0,30 3,9 257 40,9 53,1 4,0 51,7 43,5 4.0 23 0,44 1,04 0,012 501 2,500 110665 18,09 5,186 40,2 0,5 55,0 0,6 2 0,15 4,1 129 41,0 52,0 4,0 51,7 43,5 4.0 15 0,83 2,00 0,024 146 0,722 29515 17,93 5,047 40,5 0,5 55,0 0,6 3 0,15 4,4 132 41,5 52,3 4,0 51,7 44,0 4.0 26 0,79 1,89 0,024 245 1,219 43252 17,99 7,478 40,7 0,5 55,0 0,6 4 0,15 5,5 131 42,1 53,1 4,0 51,7 44,0 4.0 45 0,80 1,90 0,031 396 1,982 44360 18,10 10,10

42 1 42,1 0,5 60,0 0,6 1 0,15 4,6 200 42,5 56,4 4,0 56,2 45,5 4,0 5 1,30 2,92 0,039 41 0,232 7412 20,67 3,222 42,0 0,5 60,0 0,6 1 0,20 4,2 219 42,6 56,4 4,0 56,2 45,5 4,0 7 0,97 2,17 0,027 95 0,536 20485 20,63 4,243 42,2 0,5 60,0 0,6 2 0,20 4,3 110 43,2 56,8 4,0 51,7 45,5 4,0 16 0,88 1,98 0,025 210 1,197 44477 20,70 8,31

44 1 44,0 0,5 60,0 0,6 1 0,15 4,3 241 44,4 56,3 4,0 56,2 47,4 4,0 6 1,01 2,23 0,028 60 0,352 13059 21,40 3,012 44,0 0,5 61,0 0,6 1 0,25 4,7 228 44,7 57,5 4,0 56,2 47,5 4,0 14 0,66 1,43 0,019 230 1,385 43829 21,83 5,313 44,2 0,5 60,0 0,6 2 0,15 4,6 119 45,3 56,5 4,0 56,2 47,5 4,0 14 0,96 2,11 0,028 132 0,782 25402 21,47 5,974 44,3 0,5 60,0 0,6 2 0,25 5,0 110 45,3 56,5 4,0 56,2 47,5 4,0 38 0,54 1,19 0,017 646 3,836 105422 21,50 9,865 44,4 0,5 60,0 0,6 3 0,15 4,9 122 45,5 56,8 4,0 56,2 47,5 4,0 23 0,94 2,07 0,029 221 1,315 37623 21,54 8,85

46 1 46,4 0,5 66,0 0,6 1 0,15 5,1 177 47,1 59,3 4,0 62,2 50,5 4,0 4 1,64 3,35 0,050 35 0,238 6193 25,05 3,892 46,5 0,5 69,0 0,6 1 0,20 4,6 177 47,1 65,0 4,0 62,2 50,5 4,0 5 1,56 3,10 0,041 54 0,389 12834 26,51 5,783 46,4 0,5 69,0 0,6 1 0,25 4,7 177 47,1 65,0 4,0 62,2 50,5 4,0 7 1,17 2,32 0,031 103 0,748 23675 26,47 7,244 46,4 0,5 65,3 0,6 3 0,20 5,5 102 47,9 62,0 4,0 62,2 50,5 4,0 27 1,02 2,09 0,034 309 2,103 47073 24,71 14,75

47 1 47,0 0,5 60,0 0,6 1 0,15 4,4 286 47,5 56,3 4,0 56,2 51,0 4,0 9 0,72 1,54 0,020 97 0,602 20977 22,59 2,522 47,0 0,5 66,0 0,6 1 0,20 4,4 207 47,6 62,4 4,0 62,2 51,0 4,0 6 1,08 2,20 0,028 90 0,623 22271 25,30 5,003 47,2 0,5 66,0 0,6 2 0,20 5,0 102 48,2 62,8 4,0 62,2 51,0 4,0 16 1,00 2,03 0,029 199 1,388 38759 25,37 9,944 47,2 0,5 66,0 0,6 2 0,30 5,7 102 48,6 63,2 4,0 62,2 51,0 4,0 37 0,65 1,32 0,022 693 5,106 102454 25,37 15,005 47,4 0,5 66,0 0,6 3 0,25 6,4 102 49,1 63,2 4,0 62,2 51,0 4,0 46 0,80 1,62 0,030 671 4,708 80460 25,45 18,76

(Metal Bellows Consultant page 38) = preferred series (Metal Bellows Consultant page 39)

Leng

th a

ccor

ding

to c

onsu

ltatio

n

11-0

5

Sub

ject

to

chan

ge

Page 35: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° Nmm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

necks

axia

l

late

ral

axia

l

AB exterior IB interior

wei

ght p

er

conv

olut

ion

effe

ctiv

e cr

oss-

sect

iona

l are

a

angu

lar

calc

ulat

ed

over

pres

sure

Stroke per convolution at 104 cycles spring rate per convolution

late

ral

angu

lar

max

. num

ber

of

conv

olut

ions

thic

knes

s of

ply

Nom

inal

di

men

sion

tole

ranc

e

outs

ide

conv

olut

ion

pitc

h

tole

ranc

e

posi

tion

Basic material1.4571

bellows-

num

ber

of p

lies

insi

de

HB cylindrical

49 1 48,9 0,5 66,0 0,6 1 0,20 4,1 230 49,5 61,4 4,0 62,2 53,0 4,0 8 0,77 1,50 0,018 130 0,924 38914 26,11 4,682 49,0 0,5 66,0 0,6 1 0,30 3,9 234 49,8 62,0 4,0 62,2 53,0 4,0 19 0,47 0,94 0,011 457 3,301 134940 26,14 6,953 49,1 0,5 66,0 0,6 1 0,40 4,1 237 50,1 62,0 4,0 62,2 53,0 4,0 35 0,34 0,68 0,008 1140 8,247 330573 26,18 9,164 49,1 0,5 66,0 0,6 1 0,50 5,8 226 50,2 62,0 4,0 62,2 53,0 4,0 60 0,30 0,60 0,010 2144 15,478 311768 26,18 12,005 49,1 0,5 66,0 0,6 2 0,20 4,5 120 50,2 62,0 4,0 62,2 53,0 4,0 19 0,72 1,43 0,019 288 2,079 71815 26,18 9,266 49,4 0,5 66,0 0,6 3 0,20 5,4 100 50,6 62,0 4,0 62,2 53,0 4,0 36 0,71 1,41 0,022 492 3,580 85597 26,30 13,88

50 1 49,9 0,5 66,0 0,6 1 0,20 3,7 245 50,5 61,4 4,0 62,2 54,0 4,0 9 0,66 1,30 0,014 160 1,172 57560 26,54 4,482 50,5 0,5 66,0 0,6 1 0,30 4,9 263 51,4 62,0 4,0 62,2 54,0 4,0 25 0,42 0,83 0,012 610 4,516 127117 26,80 6,773 50,7 0,5 66,0 0,6 2 0,30 6,0 99 52,1 62,0 4,0 62,2 54,0 4,0 64 0,41 0,81 0,014 1411 10,491 197569 26,87 13,54

51 1 51,2 0,5 64,8 0,6 1 0,12 3,2 99 51,7 60,8 4,0 60,0 55,0 4,0 5 0,74 1,47 0,014 58 0,429 28052 26,54 2,352 51,0 0,5 75,0 0,6 1 0,20 6,2 99 51,7 71,0 4,0 62,2 55,0 4,0 5 1,70 3,09 0,056 49 0,422 7452 31,54 6,973 51,2 0,5 72,0 0,6 2 0,25 4,8 99 52,4 67,0 4,0 62,2 55,0 4,0 18 0,88 1,64 0,023 315 2,612 76592 30,06 14,624 51,4 0,5 72,0 0,6 3 0,20 6,0 88 52,9 67,0 4,0 62,2 55,0 4,0 23 1,15 2,13 0,037 263 2,183 41111 30,15 17,87

53 1 53,4 0,5 77,6 0,6 1 0,20 4,7 163 54,1 73,5 4,0 68,1 57,5 4,0 4 1,54 2,70 0,037 50 0,463 14168 34,07 7,12

57 1 57,4 0,5 77,0 0,6 1 0,20 4,9 120 58,0 73,0 5,0 73,2 61,5 5,0 6 1,06 1,81 0,026 100 0,989 28310 35,71 6,352 57,7 0,5 77,0 0,6 2 0,15 5,3 54 58,7 73,0 5,0 73,2 61,5 5,0 9 1,34 2,28 0,035 94 0,931 23119 35,86 9,473 57,7 0,5 77,0 0,6 2 0,20 5,5 54 58,7 73,0 5,0 73,2 61,5 5,0 16 0,97 1,64 0,026 224 2,221 51182 35,85 12,594 57,9 0,5 77,0 0,6 2 0,25 6,0 100 58,9 73,0 5,0 73,2 61,5 5,0 25 0,77 1,31 0,023 460 4,569 87186 35,95 15,765 57,9 0,5 77,0 0,6 3 0,20 6,2 100 59,2 73,0 5,0 73,2 61,5 5,0 27 0,98 1,67 0,030 374 3,715 66401 35,94 18,87

60 1 60,0 0,5 82,0 0,6 1 0,20 4,6 65 60,7 77,9 5,0 75,2 65,0 5,0 5 1,21 1,95 0,026 75 0,822 27168 39,90 7,312 59,9 0,5 82,0 0,6 1 0,25 4,7 63 60,7 77,9 5,0 75,2 65,0 5,0 7 1,02 1,65 0,022 145 1,589 50271 39,84 9,153 59,8 0,5 82,0 0,6 1 0,30 4,8 62 60,7 78,0 5,0 75,2 65,0 5,0 11 0,81 1,31 0,018 248 2,722 82520 39,79 11,004 60,3 0,5 82,0 0,6 2 0,25 5,3 55 61,6 78,5 5,0 75,2 65,0 5,0 17 0,95 1,53 0,024 326 3,603 86807 40,04 18,105 60,1 0,5 82,0 0,6 2 0,30 5,5 53 61,4 78,7 5,0 75,2 65,0 5,0 25 0,78 1,27 0,020 556 6,125 137107 39,93 21,796 60,4 0,5 82,0 0,6 3 0,25 6,2 48 62,2 79,5 5,0 75,2 65,0 5,0 30 0,93 1,50 0,027 530 5,869 106258 40,08 27,15

62 1 61,9 0,5 80,0 0,6 1 0,20 5,1 58 62,6 75,9 5,0 75,2 67,0 5,0 8 0,86 1,38 0,020 137 1,508 40466 39,74 6,412 61,9 0,5 76,7 0,6 1 0,25 5,3 252 62,7 73,2 5,0 73,2 67,0 5,0 21 0,45 0,75 0,012 489 5,124 123436 37,85 6,763 62,1 0,5 82,0 0,6 2 0,20 5,6 52 63,2 78,0 5,0 75,2 67,0 5,0 15 1,02 1,63 0,027 220 2,492 53823 41,01 14,004 62,3 0,5 82,0 0,6 2 0,25 7,0 52 63,4 78,5 5,0 75,2 67,0 5,0 26 0,87 1,38 0,028 452 5,133 71967 41,12 17,87

65 1 65,7 0,5 84,0 0,6 1 0,20 5,1 58 66,4 79,8 5,0 75,2 71,0 5,0 8 0,85 1,30 0,019 141 1,726 46317 44,21 6,872 65,7 0,5 90,0 0,6 1 0,20 5,1 58 66,4 85,4 5,0 78,0 71,0 5,0 4 1,52 2,24 0,033 61 0,801 21497 47,97 8,853 65,9 0,5 80,0 0,6 1 0,30 5,3 235 66,8 75,8 5,0 75,2 71,0 5,0 34 0,33 0,52 0,008 1055 12,259 304407 41,33 8,224 65,9 0,5 90,0 0,6 1 0,30 5,3 56 66,8 85,6 5,0 78,0 71,0 5,0 9 0,99 1,45 0,022 212 2,817 69951 48,08 13,205 65,7 0,5 80,0 0,6 1 0,40 6,0 50 66,8 75,8 5,0 75,2 71,0 5,0 47 0,30 0,48 0,008 2426 28,112 543700 41,80 11,206 65,5 0,5 80,0 0,6 1 0,50 5,7 52 66,8 76,0 5,0 75,2 71,0 5,0 61 0,25 0,40 0,007 4740 54,777 1174672 42,88 13,847 65,3 0,5 80,0 0,6 2 0,30 5,9 50 66,8 76,2 5,0 75,2 70,0 5,0 71 0,25 0,55 0,009 2062 23,761 475354 41,58 16,708 65,3 0,5 90,0 0,6 2 0,30 6,4 47 66,8 86,2 5,0 78,0 70,0 5,0 20 1,02 1,51 0,028 414 5,447 92511 47,72 26,89

68 1 68,4 0,5 100,0 0,6 1 0,20 4,9 25 69,1 95,4 5,0 88,5 72,0 5,0 2 2,68 3,65 0,052 29 0,444 12709 56,32 11,692 68,7 0,5 90,0 0,6 2 0,20 6,1 35 69,8 85,8 5,0 84,2 72,0 5,0 12 1,20 1,73 0,031 198 2,720 49570 49,73 16,633 68,7 0,5 90,0 0,6 2 0,25 7,4 35 70,2 86,2 5,0 84,2 72,0 5,0 23 0,97 1,41 0,030 405 5,575 71088 49,84 21,134 68,7 0,5 90,0 0,6 2 0,30 7,5 35 70,2 86,2 5,0 84,2 72,0 5,0 32 0,81 1,18 0,026 684 9,399 113575 49,72 25,44

73 1 73,3 0,5 89,0 0,6 1 0,20 5,4 46 74,1 83,5 5,0 84,2 78,5 5,0 11 0.53 0.75 0,012 247 3,548 83598 51,87 6,772 73,0 0,5 89,0 0,6 2 0,20 6,0 40 74,0 83,5 5,0 84,2 76,0 5,0 28 0,48 0,67 0,012 565 8,147 157560 51,68 13,36

(Metal Bellows Consultant page 40) = preferred series (Metal Bellows Consultant page 41)

Leng

th a

ccor

ding

to c

onsu

ltatio

n

11-0

5

Sub

ject

to

chan

ge

Page 36: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° Nmm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

necks

axia

l

late

ral

axia

l

AB exterior IB interior

wei

ght p

er

conv

olut

ion

effe

ctiv

e cr

oss-

sect

iona

l are

a

angu

lar

calc

ulat

ed

over

pres

sure

Stroke per convolution at 104 cycles spring rate per convolution

late

ral

angu

lar

max

. num

ber

of

conv

olut

ions

thic

knes

s of

ply

Nom

inal

di

men

sion

tole

ranc

e

outs

ide

conv

olut

ion

pitc

h

tole

ranc

e

posi

tion

Basic material1.4571

bellows-

num

ber

of p

lies

insi

de

HB cylindrical

75 1 75,0 0,5 100,0 0,6 1 0,30 5,6 30 76,0 96,1 5,0 93,7 79,0 5,0 8 0,87 1,14 0,019 217 3,621 79332 60,52 15,632 74,8 0,5 100,0 0,6 1 0,40 5,8 30 76,0 96,1 5,0 93,7 79,0 5,0 15 0,62 0,81 0,014 507 8,462 172820 60,39 20,903 75,1 0,5 100,0 0,6 2 0,30 6,5 31 76,7 95,5 5,0 93,7 79,0 5,0 19 0,84 1,09 0,021 466 7,793 125169 60,57 31,244 75,4 0,5 97,0 0,6 3 0,25 7,2 35 77,3 94,0 5,0 93,7 79,0 5,0 34 0,74 0,98 0,020 662 10,726 143740 58,63 34,63

76 1 76,0 0,5 109,0 0,6 1 0,20 7.4 22 76,8 104,4 5,0 97,0 80,0 5,0 2,5 2,47 3,06 0,066 28 0,524 6580 67,90 14,072 75,8 0,5 106,0 0,6 1 0,25 8,5 25 76,7 101,5 5,0 97,0 80,0 5,0 5 1,73 2,18 0,054 72 1,290 12267 65,47 16,473 75,8 0,5 107,0 0,6 1 0,30 7,6 23 76,8 104,6 5,0 97,0 80,0 5,0 6 1,39 1,75 0,039 110 2,012 23938 66,22 20,004 75,8 0,5 101,0 0,6 2 0,25 6,2 31 77,5 97,0 5,0 93,7 80,0 5,0 13 1,00 1,30 0,023 259 4,421 80044 61,96 26,51

78 1 77,8 0,5 100,0 0,6 1 0,20 5,7 33 78,6 96,0 5,0 93,7 82,0 5,0 5 1,05 1,35 0,023 94 1,617 33725 62,38 9,812 78,3 0,5 101,0 0,6 1 0,30 6,1 34 79,3 96,0 5,0 93,7 82,0 5,0 11 0,70 0,89 0,016 300 5,260 97111 63,44 15,123 78,1 0,5 100,0 0,6 1 0,40 6,3 34 79,3 96,0 5,0 93,7 82,0 5,0 22 0,47 0,61 0,011 801 13,873 240137 62,57 19,444 78,5 0,5 100,0 0,6 2 0,20 6,3 34 79,3 94,8 5,0 93,7 82,0 5,0 12 1,00 1,29 0,024 207 3,576 61905 62,84 19,44

80 1 79,8 0,5 102,0 0,6 1 0,20 6,7 33 80,6 97,4 5,0 93,7 84,0 5,0 6 1,07 1,34 0,026 96 1,731 26182 65,21 10,302 80,1 0,5 102,0 0,6 2 0,30 7,0 34 81,7 97,2 5,0 93,7 84,0 5,0 29 0,66 0,82 0,018 730 13,217 159713 65,39 30,353 81,3 0,5 104,0 0,6 1 0,15 6,3 32 82,0 99,3 5,0 93,7 85,0 5,0 3 1,57 1,94 0,036 39 0,732 12669 67,75 7,964 81,8 0,5 109,0 0,6 2 0,25 7,0 28 83,2 104,0 5,0 97,0 85,0 5,0 11 1,24 1,50 0,030 221 4,388 61522 71,93 31,15

85 1 84,8 0,5 113,0 0,6 1 0,20 6,9 26 85,6 108,4 5,0 102,0 90,0 5,0 3,5 1,68 1,94 0,039 50 1,068 15411 77,33 13,532 84,8 0,5 118,0 0,6 1 0,30 6,6 22 85,6 110,0 5,0 104,0 90,0 5,0 4,5 1,55 1,76 0,034 103 2,327 36693 81,45 23,283 85,2 0,5 111,2 0,6 1 0,30 8,8 27 86,0 106,0 5,0 104,0 90,0 5,0 10 1,03 1,20 0,031 215 4,521 40478 76,16 19,55

90 1 90,1 0,5 115,0 0,6 1 0,20 6,4 29 91,0 110,4 5,0 105,0 94,0 5,0 4 1,32 1,48 0,027 77 1,768 29657 82,99 12,752 90,1 0,5 115,0 0,6 1 0,50 6,3 30 91,6 111,0 5,0 105,0 94,0 5,0 25 0,47 0,53 0,010 1262 28,980 495316 82,97 31,25

92 1 92,0 0,5 116,0 0,6 1 0,25 5,7 31 93,0 111,5 6,0 104,0 96,0 6,0 6,5 0,91 1,00 0,016 174 4,102 87966 85,31 15,462 91,9 0,5 115,0 0,6 1 0,30 5,8 32 93,0 110,6 6,0 104,0 96,0 6,0 10 0,71 0,79 0,013 338 7,905 163676 84,38 17,883 91,7 0,5 120,0 0,6 1 0,40 6,0 27 93,0 115,8 6,0 105,0 96,0 6,0 12 0,74 0,80 0,014 442 10,821 209287 88,49 28,544 92,3 0,5 120,0 0,6 3 0,40 7,2 28 95,2 117,0 6,0 105,0 96,0 6,0 40 0,75 0,80 0,017 1663 40,908 536157 88,93 82,795 93,0 0,5 109,0 0,6 2 0,30 7,4 40 94,7 105,0 6,0 104,0 97,0 6,0 54 0,39 0,44 0,009 2206 49,133 623118 80,26 26,75

95 1 94,7 0,5 120,0 0,6 1 0,20 6,4 29 95,6 115,4 6,0 108,0 99,0 6,0 3,5 1,43 1,53 0,028 77 1,943 32596 90,92 13,592 94,6 0,5 120,0 0,6 1 0,25 6,4 29 95,6 115,5 6,0 108,0 99,0 6,0 5,5 1,12 1,20 0,023 150 3,750 60940 90,83 17,013 94,7 0,5 121,0 0,6 1 0,30 5,4 28 95,8 116,5 6,0 108,0 99,0 6,0 7,0 0,91 0,96 0,015 239 6,062 140723 91,79 20,584 95,0 0,5 121,0 0,6 2 0,20 6,8 28 96,3 116,4 6,0 108,0 99,0 6,0 7,5 1,44 1,53 0,030 150 3,808 56572 92,03 27,825 95,0 0,5 123,0 0,6 2 0,25 7,3 26 96,5 118,5 6,0 108,0 99,0 6,0 10 1,33 1,40 0,030 235 6,096 77736 93,79 37,34

100 1 100,0 0,5 120,0 0,6 1 0,15 6,5 33 100,3 116,0 6,0 114,2 104,0 6,0 4 1,18 1,23 0,023 69 1,831 30138 95,28 8,811 99,8 0,5 121,0 0,6 1 0,25 6,7 33 100,8 116,5 6,0 114,2 104,0 6,0 8 0,82 0,85 0,016 268 7,133 110479 96,01 15,362 99,7 0,5 120,0 0,6 1 0,50 9,3 32 101,2 116,0 6,0 114,2 104,0 6,0 36 0,43 0,45 0,012 2445 64,412 507259 95,02 30,94

105 1 104,7 0,5 132,0 0,6 1 0,20 6,2 27 105,6 126,4 6,0 125,2 109,0 6,0 3 1,58 1,53 0,028 69 2,091 36898 110,48 16,022 104,7 0,5 132,0 0,6 1 0,30 6,8 26 105,8 126,6 6,0 125,2 109,0 6,0 6,5 1,07 1,04 0,020 231 7,076 106381 110,48 24,133 105,0 0,5 132,0 0,6 2 0,20 7,5 26 106,3 126,8 6,0 125,2 109,0 6,0 7,5 1,56 1,51 0,033 147 4,518 55778 110,74 32,194 105,0 0,5 132,0 0,6 2 0,30 7,0 27 106,7 127,2 6,0 125,2 109,0 6,0 15 0,99 0,95 0,020 511 15,662 217097 110,73 47,36

(Metal Bellows Consultant page 42) = preferred series (Metal Bellows Consultant page 43)

11-0

5

Sub

ject

to

chan

ge

Leng

th a

ccor

ding

to c

onsu

ltatio

n

Page 37: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° Nmm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

necks

axia

l

late

ral

axia

l

AB exterior IB interior

wei

ght p

er

conv

olut

ion

effe

ctiv

e cr

oss-

sect

iona

l are

a

angu

lar

calc

ulat

ed

over

pres

sure

Stroke per convolution at 104 cycles spring rate per convolution

late

ral

angu

lar

max

. num

ber

of

conv

olut

ions

thic

knes

s of

ply

Nom

inal

di

men

sion

tole

ranc

e

outs

ide

conv

olut

ion

pitc

h

tole

ranc

e

posi

tion

Basic material1.4571

bellows-

num

ber

of p

lies

insi

de

HB cylindrical

110 1 109,7 0,5 139,0 0,6 1 0,20 10,2 23 110,7 133,4 6,0 130,0 114,0 6,0 3,5 2,24 2,06 0,061 60 2,040 13364 121,99 19,152 109,6 0,5 139,0 0,6 1 0,25 10,3 23 110,7 133,5 6,0 130,0 114,0 6,0 5,5 1,79 1,65 0,050 113 3,812 24498 121,90 23,963 109,6 0,5 130,0 0,6 1 0,30 5,6 35 110,8 124,6 6,0 125,9 114,0 6,0 12 0,57 0,54 0,009 589 18,470 404622 112,98 19,014 109,6 0,5 137,0 0,6 1 0,50 9,3 25 111,2 133,0 6,0 130,0 114,0 6,0 21 0,66 0,62 0,017 1102 36,572 288014 119,86 43,795 109,9 0,5 137,0 0,6 2 0,30 10,2 25 111,7 132,2 6,0 130,0 114,0 6,0 18 1,18 1,09 0,032 523 17,401 114904 120,14 52,73

114 1 114,2 0,5 144,0 0,6 2 0,30 11,9 23 116,0 139,2 6,0 130,0 118,0 6,0 17 1,50 1,33 0,046 417 15,172 74103 131,44 61,08

(Metal Bellows Consultant page 44) = preferred series (Metal Bellows Consultant page 45/54)

Leng

th a

ccor

ding

to

cons

ulta

tion

11-0

5

Sub

ject

to

chan

ge

Page 38: Boa Bellows Guide

55

Bello

ws

tabl

es

Bellows table 2

Non-ferrous metal bellowsThe basic material used is bronze2.1020 (CuSn6). This table alsoapplies to material 2.1030 (CuSn8),taking into account the conversionfactors according to tables 1, 2, 3, 4and 5

Example of the name of a bellowsselected:Bellows table N° 2, DN 18, Item 4Material 2.1020Number of convolutions 15Neck AB one end

IB the other end

Please provide other operating dataaccording to the checklist on pages76 and 77.

Preferred series:The grey shaded items in the follo-wing table ( ) are our pre-ferred series. These bellows shouldbe used whenever possible becausethey are available more quickly.

04_Bellows_Tables 20.8.2007 10:23 Uhr Seite 55

Page 39: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3 axi

al

an

gu

lar

late

ral

axi

al

an

gu

lar

late

ral

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° N/mm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 269.5 1 9,3 0,3 14,4 0,3 1 0,10 1,5 22 9,2 13,0 2,0 13,2 11,2 2,0 12 0,14 1,30 0,006 69 0,021 6532 1,12 0,15

10 1 10,1 0,3 14,5 0,3 1 0,12 1,4 211 10,0 13,0 2,0 13,2 11,5 2,0 26 0,08 0,75 0,003 212 0,070 24594 1,20 0,172 10.2 0,3 14,5 0,3 3 0,12 2,7 110 10,5 13,0 2,0 13,2 11,5 2,0 109 0,09 0,85 0,007 982 0,322 30333 1,19 0,55

13 1 12,9 0,3 19,5 0,3 1 0,10 1,7 21 12,9 18,0 2,0 18,2 15,0 2,0 7 0,22 1,55 0,008 44 0,025 6016 2,09 0,262 12,9 0,3 19,5 0,3 1 0,12 1,7 21 12,9 18,0 2,0 18,2 15,0 2,0 10 0,18 1,25 0,006 77 0,044 10550 2,09 0,323 13,0 0,3 20,0 0,3 2 0,12 2,1 138 13,2 18,0 2,0 18,2 15,0 2,0 23 0,18 1,30 0,008 147 0,088 13639 2,17 0,68

13,5 1 13,6 0,3 20,0 0,3 1 0,12 1,7 170 13,5 18,0 2,0 18,2 15,8 2,0 11 0,17 1,15 0,006 89 0,055 12544 2,24 0,33

14 1 13,8 0,3 20,0 0,3 1 0,12 1,9 32 13,8 18,0 2,0 18,2 15,8 2,0 13 0,16 1,10 0,006 99 0,062 11826 2,27 0,33

15 1 15,0 0,3 22,0 0,3 1 0,10 2,2 220 15,0 20,0 2,0 20,2 17,0 2,0 7 0,27 1,68 0,011 44 0,033 4734 2,72 0,332 15,0 0,3 22,0 0,3 1 0,12 2,1 220 15,0 20,0 2,0 20,2 17,0 2,0 10 0,21 1,28 0,008 77 0,058 9154 2,72 0,40

.17,5 1 17,6 0,3 27,0 0,3 1 0,14 2,1 415 17,5 25,0 2,5 24,2 20,0 2,5 6 0,31 1,62 0,010 56 0,061 9332 3,94 0,71

18 1 18,1 0,3 27,0 0,3 1 0,12 2,1 396 18,2 25,0 2,5 24,2 20,5 2,5 5 0,34 1,70 0,010 43 0,048 7551 4,04 0,602 18,0 0,3 27,0 0,3 1 0,14 2,4 19 18,0 25,0 2,5 24,2 20,5 2,5 7 0,30 1,55 0,011 66 0,074 8798 4,03 0,713 18,1 0,3 27,5 0,3 1 0,20 2,2 170 18,2 25,0 2,5 24,2 20,5 2,5 13 0,21 1,05 0,007 173 0,196 26891 4,12 1,044 18,1 0,3 27,5 0,3 2 0,20 3,1 90 18,2 25,0 2,5 24,2 20,5 2,5 35 0,22 1,10 0,010 385 0,437 30426 4,13 2,13

19,5 1 19,5 0,3 29,0 0,3 1 0,14 2,4 300 19,5 26,5 2,5 24,2 22,0 2,5 7 0,32 1,50 0,010 60 0,077 8913 4,67 0,80

21 1 21,1 0,3 31,5 0,3 1 0,14 2,6 370 21,0 29,0 2,5 29,2 24,0 2,5 5 0,41 1,79 0,014 50 0,075 7479 5,50 0,95

21,5 1 21,5 0,3 31,5 0,3 1 0,14 2,3 396 21,7 29,5 2,5 29,2 24,0 2,5 6 0,34 1,46 0,010 59 0,092 12092 5,60 0,922 21,5 0,3 29,5 0,3 1 0,17 2,8 11 21,5 29,0 2,5 26,7 24,0 2,5 16 0,20 0,90 0,007 206 0,292 26378 5,15 0,943 21,5 0,3 32,0 0,3 1 0,20 2,4 385 21,7 30,0 2,5 29,2 24,0 2,5 11 0,26 1,10 0,008 151 0,237 28210 5,69 1,38

24,5 1 24,6 0,3 36,5 0,3 1 0,17 2,9 330 24,5 34,0 3,0 34,2 27,5 3,0 6 0,42 1,55 0,013 70 0,144 11771 7,42 1,54

25 1 25,2 0,3 36,0 0,3 1 0,17 3,1 14 25,2 34,0 3,0 34,2 28,4 3,0 8 0,36 1,35 0,012 96 0,198 14162 7,43 1,462 25,1 0,3 37,0 0,3 1 0,25 2,8 332 25,1 35,0 3,0 34,2 27,5 3,0 13 0,27 1,00 0,008 239 0,504 42915 7,66 2,30

(Metal Bellows Consultant page 56) = preferred series (Metal Bellows Consultant page 57)

ma

x. n

um

be

r o

f co

nvo

lutio

ns

Basic material2.1020

No

min

al

dim

en

sio

n

con

volu

tion

pitc

h

po

sitio

n

ou

tsid

e

tole

ran

ce

nu

mb

er

of p

lies

tole

ran

ce

thic

kne

ss o

f ply

bellows-

insi

de

we

igh

t pe

r co

nvo

lutio

n

effe

ctiv

e c

ross

-se

ctio

na

l are

a

HB cylindrical stroke per conv. at 104 cycles spring rate per convolution

calc

ula

ted

o

verp

ress

ure

necksexterior neck AB IB interior neck

necks

Le

ng

th a

cco

rdin

g to

co

nsu

ltatio

n

11-0

5

Sub

ject

to

chan

ge

Page 40: Boa Bellows Guide

HB AB SAG IB

SAG

da L1 da L2 da da L3 axi

al

an

gu

lar

late

ral

axi

al

an

gu

lar

late

ral

Di Da n s LW W PR ax lat Cax Ca Clat Ab

mm mm mm mm mm mm mm mm mm mm mm mm mm bar mm mm Nmm Nm/ ° N/mm cm2 g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ma

x. n

um

be

r o

f co

nvo

lutio

ns

Basic material2.1020

No

min

al

dim

en

sio

n

con

volu

tion

pitc

h

po

sitio

n

ou

tsid

e

tole

ran

ce

nu

mb

er

of p

lies

tole

ran

ce

thic

kne

ss o

f ply

bellows-in

sid

e

we

igh

t pe

r co

nvo

lutio

n

effe

ctiv

e c

ross

-se

ctio

na

l are

a

HB cylindrical stroke per conv. at 104 cycles spring rate per convolution

calc

ula

ted

o

verp

ress

ure

necksexterior neck AB IB interior neck

necks

27 1 27,0 0,3 39,5 0,3 1 0,17 3,2 315 27,0 37,0 3,0 37,2 30,0 3,0 6 0,46 1.60 0.015 66 0.161 10800 8,78 1,792 27,0 0,3 39,5 0,3 2 0,17 3,5 155 27,2 37,0 3,0 37,2 30,0 3,0 14 0,42 1.45 0.015 147 0.355 19924 8,78 3,55

29 1 28,9 0,3 43,3 0,3 1 0,14 2,9 21 28,9 41,0 3,0 39,2 30,5 3,0 2 0,80 2.50 0.021 26 0,074 6034 10,37 1,772 29,0 0,3 41,5 0,3 1 0,14 3,3 310 29,0 39,0 3,0 39,2 32,5 3,0 4 0,60 1.95 0.019 39 0.108 6815 9,86 1,59

29,5 1 29,5 0,3 41,5 0,3 1 0,25 3,7 21 29,5 39,0 3,0 39,2 33,0 3,0 15 0,29 0.95 0.010 267 0.737 37003 9,99 2,80

30 1 30,0 0,3 42,5 0,3 1 0,17 3,7 20 30,0 40,5 3,0 40,2 33,5 3,0 6 0,51 1.60 0.017 74 0.212 10648 10,42 2,02

30,5 1 30,5 0,3 45,0 0,3 1 0,17 3,4 300 30,5 42,0 3,0 40,2 34,0 3,0 4 0,63 1.90 0.019 48 0.150 8896 11,32 2,322 30,5 0,3 45,0 0,3 2 0,17 3,7 135 30,7 42,0 3,0 40,2 34,0 3,0 9 0,58 1.75 0.019 104 0.326 16359 11,32 4,62

32 1 31,7 0,3 45,5 0,3 1 0,30 3,8 17 31,7 42,0 3,0 42.2 35,4 3,0 15 0,31 0.90 0.010 332 1.080 51399 11.82 4,08

33,5 1 33,5 0,3 50,0 0,3 1 0,20 3,7 240 33,5 47,0 3,0 47.2 36,5 3,0 4 0,70 1.90 0.021 58 0.223 11179 13.86 3,392 33,5 0,3 50,0 0,3 2 0,20 4,1 115 33,7 47,0 3,0 47.2 37,0 3,0 10 0.62 1.70 0.020 127 0.486 19857 13,85 6,76

38 1 38,0 0,3 55,0 0,3 1 0,20 4,0 220 38,0 51,5 3,0 47.2 42,0 4,0 4 0,74 1.80 0.021 60 0.287 12305 17,16 3,992 38,0 0,3 55,0 0,3 2 0,20 4,3 110 38,2 51,5 3,0 47.2 42,0 4,0 9 0.68 1.65 0.021 132 0.623 23156 17,16 7,92

40 1 40,7 0,3 55,5 0,3 1 0,30 4,8 20 40,7 51,5 4,0 51,7 45,0 4,0 14 0,39 0.90 0.013 338 1.711 51024 18,30 5,762 40,9 0,3 55,0 0,3 1 0,20 4,8 20 40,9 51,5 4,0 51,7 45,0 4,0 7 0,58 1.35 0.019 114 0.574 17115 18,18 3,74

42 1 42,0 0,3 60,0 0,3 1 0,20 4,2 215 42,0 56,0 4,0 56,2 46,5 4,0 4 0.80 1.80 0.021 56 0.321 12498 20,63 4,672 42,0 0,3 60,0 0,3 2 0,20 4,6 110 42,2 56,0 4,0 56,2 46,5 4,0 8 0.77 1.70 0.023 122 0.694 22527 20,62 9,30

59 1 59,0 0,3 78,0 0,3 1 0,20 5,0 19 59,0 74,0 5,0 68,1 63,4 5,0 3 1,01 1.65 0.024 67 0.691 18982 37,08 7,02

60 1 60,0 0,3 82,0 0,3 1 0,30 5,0 65 60,0 76,5 5,0 76,7 65,5 5,0 5 0.82 1.30 0.019 152 1.676 46069 39,89 12,132 60,0 0,3 82,0 0,3 2 0,30 5,6 50 60,2 76,5 5,0 76,7 65,5 5,0 13 0.71 1.15 0,019 332 3.654 80059 39,88 24,12

66 1 66,0 0,3 90,0 0,3 1 0,30 5,4 280 66,0 84,0 5,0 84,2 70,5 5,0 4 1.00 1.45 0.023 128 1.706 40198 48,14 14,562 66,0 0,3 90,0 0,3 2 0,30 6,2 50 66,2 84,0 5,0 84,2 70,5 5,0 11 0.86 1.25 0.023 277 3.685 65859 48,13 29,10

75 1 75,0 0,3 100,0 0,3 1 0,30 5,8 30 75,0 94,0 5,0 93,7 79,0 5,0 4 1.07 1.40 0.023 128 2.154 43995 60,52 17,312 75,0 0,3 100,0 0,3 2 0,30 6,6 30 75,2 94,0 5,0 93,7 79,0 5,0 10 0.96 1.25 0.024 277 4.635 73096 60,51 34,57

92 1 92,0 0,3 120,0 0,3 1 0,40 6,4 25 92,0 114,0 6,0 114,2 96,0 6,0 6 0.94 1.00 0.019 271 6.662 111733 88,73 31,532 92,0 0,3 120,0 0,3 3 0,40 7,6 25 92,6 114,0 6,0 114,2 96,0 6,0 24 0.76 0.80 0.018 976 23.953 284894 88,69 92,57

(Metal Bellows Consultant page 58/60) = preferred series (Metal Bellows Consultant page 59/61)

Le

ng

th a

cco

rdin

g to

co

nsu

ltatio

n

11-0

5

Sub

ject

to

chan

ge

Page 41: Boa Bellows Guide

61

5 Quality management

Certification

All the factories belonging to ourGroup have a ISO 9001 and 14001accredited quality system.

Our factories also have other qualifi-cations and permits which cover therequirements of the market segmentconcerned.

Tests and inspectionsThe BOA metal bellows can undergovarious quality tests and inspections.The scope of the test programmedepends on the requirements andwishes of the customer or inspectionorganization.

Our quality assurance programmeand cooperation with the inspectionorganizations allow us to supply pro-ducts to meet the most stringentdemands.

Product quality is a matter of pro-duction standard and not the teststhat follow. Therefore, our productionmethods are generally based on ahigh quality level. Consequently, forreasons of costs, additional tests areonly carried out if the applicationconcerned absolutely demands this.

If design evidence is required for themetal bellows in individual cases, weneed to check the admissible opera-ting data here at the factory on thebasis of an exact specification of therequirements.

Non-destructive test methods

• Water pressure test• Leak-tightness test with air or

nitrogen under water• Leak-tightness test with air and

foaming agents at the welds (Nekal test)

• Pressure difference test with air• X-ray test• Magnetic particle crack test• Dye penetration test• Helium leakage test

(<1x10-9 mbar · l/s)• Hardness test – including

on the components.

Destructive test methods

• Mechanical strength test• Cupping test• Metallographic investigations• Spectroscopic test• Stroke test (endurance test) under

pressure and temperature• Vibration test• Bursting pressure test

Qual

ity m

anag

emen

t

05_Quality 20.8.2007 10:23 Uhr Seite 61

Page 42: Boa Bellows Guide

62

Stroke test to determine the numberof load cycles that can be achieved

Helium leak test

Compared with other leak testingmethods, the helium test can detectthe smallest measurable leakage rateup to now. Depending on the size ofthe test-piece, even a leak of <1x10-9

mbar · l/s can be detected. The com-ponent is sealed at both ends with aspecial fixture and evacuated to avacuum of 10-2 bar. Helium is appliedto the welds from outside. A leak isrecorded immediately by the massspectrometer and the leakage ratecan be read off at the measuringinstrument. An acoustic signal alsoindicates a leak.

Qual

ity m

anag

emen

t

05_Quality 20.8.2007 10:23 Uhr Seite 62

Page 43: Boa Bellows Guide

63

6 Material tables

Section Tables Explanation of table content Page

6.1 6–7 Table on guide analyses and characteristic strength values 64–67

6.2 8 Foreign standards/comparison table 68–69

Mat

eria

l tab

les

06_Material_Tables 20.8.2007 10:23 Uhr Seite 63

Page 44: Boa Bellows Guide
Page 45: Boa Bellows Guide
Page 46: Boa Bellows Guide

71

7 Annex

Section Tables Content Page

7.1 Conversion table 72–739–11 • Pressure12 • Throughput

7.2 Conversion table 74–7513 • Temperature14 • Length15 • Area16 • Volume17 • Weight18 • Force19 • Density20 • Moments21 • Spring characteristics22 • Acceleration

7.3 Enquiry – checklist 76–77

7.4 Corrosion table 78–107

7.5 Personal notes 109

7.6 BOA Group, holding companies, agencies 118 118

07-1_Annex 20.8.2007 10:24 Uhr Seite 71

Page 47: Boa Bellows Guide

72

Table 10

1 kp 9,81 N

1 at 0,981 bar

1 kpm 9,81 Nm

1 kp / mm2 9,81 N / mm2

1 Mpa 1 . 106 Pa = 10 bar

1 bar 1 . 105 Pa = 100 kPa

7.1 Pressure conversion tables

Table 11

1 100 1000 0.75 750

1 . 10-2 1 10 7.5 . 10-3 7.5

1 . 10-3 0.1 1 7.5 . 10-4 0.75

1.33 1.33 . 102 1.33 . 103 1 1000

1.33 . 10-3 1.33 . 10-1 1.33 1 . 10-3 1

1 . 103 1 . 105 1 . 106 750 7.5 . 105

1013 1.01 . 105 1.06 . 106 760 7.6 . 105

981 9.81 . 104 9.81 . 105 735.6 7.36 . 105

9.81 . 10-2 9.81 98.1 7.36 . 10-2 73.6

68.9 6.89 . 103 6.89 . 104 51.71 5.17 . 104

Pressure units used in vacuum engineering

mbar

Pa (Nm-2)

dyn cm-2 (µb)

Torr (mm Hg)

micron (µ)

bar

atm

at (kp cm-2)

mm WS (kp m-2)

psi

mbar Pa (Nm -2) dyn cm -2 (µb) Torr (mm Hg) micron (µ)

0.1 N / mm2 14.5038 lb / inch2

1 kp / cm2 14.2233 lb / inch2

1 Pascal 14.5038 . 10-5 lb / inch2

1 kPascal 14.5038 . 10-2 lb / inch2

1 Millipascal 14.5038 . 10-8 lb / inch2

1 bar 14.5038 lb / inch2

Anne

x

07-1_Annex 20.8.2007 10:24 Uhr Seite 72

Page 48: Boa Bellows Guide

1 . 10-3 9.87 . 10-4 1.02 . 10-3 10.2 1.45 . 10-2

1 . 10-5 9.87 . 10-6 1.02 . 10-5 0.102 1.45 . 10-4

1 . 10-6 9.87 . 10-7 1.02 . 10-6 1.02 . 10-2 1.45 . 10-5

1.33 . 10-3 1.32 . 10-3 1.36 . 10-3 13.6 1.93 . 10-2

1.33 . 10-6 1.32 . 10-6 1.36 . 10-6 1.36 . 10-2 1.93 . 10-5

1 0.987 1.02 1.02 . 104 14.5

1.013 1 1.03 1.03 . 104 14.7

0.981 0.968 1 1 . 104 14.22

9.81 . 10-5 9.68 . 10-5 1 . 10-4 1 1.42 . 10-3

6.89 . 10-2 6.8 . 10-2 7.02 . 10-2 702 1

73

Table 9

Table 12

General pressure units

mbar

Pa (Nm-2)

dyn cm-2 (µb)

Torr (mm Hg)

micron (µ)

bar

atm

at (kp cm-2)

mm WS (kpm-2)

psi

bar atm at (kp cm-2) mm WS (kpm-2) psi

Anne

x

1 1 . 10-1 7.5 . 10-1 9.87 . 10-1 7.5 . 102

10 1 7.5 9.87 7.5 . 103

1.33 1.33 . 10-1 1 1.32 103

1.01 1.01 . 10-1 7.6 . 10-1 1 7.6 . 102

1.33 . 10-3 1.33 . 10-4 1 . 10-3 1.32 . 10-3 1

Conversion of throughput units

mbar l s-1

Pa m3 s-1

Torr l s-1

atm cm3 s-1

lusec

mbar l s-1 Pa m3 s-1 Torr l s-1 atm cm3 s-1 lusec

07-1_Annex 20.8.2007 10:24 Uhr Seite 73

Page 49: Boa Bellows Guide

74

Table 15

Table 16

Table 17

1 2.20462

0.453592 1

Weight kg pound

kg

pound

1 0.001 1 . 10-9 6.1 . 10-5 3.531 . 10-8

1000 1 1 . 10-6 0.061 3.531 . 10-5

1 . 109 1 . 106 1 61023.7 35.3147

16387 16.387 1.6387 . 10-5 1 5.787 . 10-4

2.832 . 107 2.832 . 104 0.0283169 1728 1

Volume mm3 cm3 m3 inch3 feet3

mm3

cm3

m3

inch3

feet3

1 1 . 10-6 0.00155 1.0764 . 10-5

1 . 106 1 1550 10.7639

645.16 6.452 . 10-4 1 6.944 . 10-3

92903 0.092903 144 1

Area mm2 m2 inch2 feet2

mm2

m2

inch2

feet2

Anne

x

Table 13

7.2 Conversions

Table 14

1 5/9(°F-32) K-273.159/5°C+32 1 9/5K-459.67

°C+273.15 5/9(°F+459.67) 1

Temperature ºC ºF ºK

° C

° F

° K

1 0.001 0.03937 0.00328

1000 1 39.3701 3.2808

25.4 0.0254 1 0.0833

304.8 0.3048 12 1

Length mm m inch feet

mm

m

inch

feet

07-1_Annex 20.8.2007 10:24 Uhr Seite 74

Page 50: Boa Bellows Guide

75

Table 18

Table 19

Table 20

Table 21

Table 22

1 3.28084 39.3701

0.3048 1 12

0.0254 0.083333 1

Acceleration m/s2 ft/s2 inch/s2

m/s2

ft/s2

inch/s2

1 9.80665 980665 2.20462

0.101972 1 1 . 105 0.224809

1.01972 . 10-6 1 . 10-5 1 2.24809 . 10-6

0.453592 4.44822 444822 1

Force kp N Dyn Ibf

kp

N

Dyn

Ibf

1 0.001 3.61273 . 10-8 6.2428 .10-5

1000 1 3.61273 . 10-5 0.062428

2.76799 .107 27679.9 1 1728

16018.5 16.0185 578.704 . 10-6 1

Density g/m3 kg/m3 Ib/inch3 Ib/ft3

g/m3

kg/m3

Ib/inch3

Ib/ft3

1 0.101972 0.737561 8.85073

9.80665 1 7.233 86.796

1.35582 0.138255 1 12

0.112985 0.0115213 0.08333 1

Moments Nm kp.m Ibf . ft Ibf . inch

Nm

kp.m

Ibf . ft

Ibf . inch

Anne

x

1 0.101972 5.7101

10.1972 1 55.991

0.1751 0.01786 1

Spring characteristics N/mm kg/mm Ib/inch

N/mm

kg/mm

Ib/inch

07-1_Annex 20.8.2007 10:24 Uhr Seite 75

Page 51: Boa Bellows Guide

76

7.3 Enquiry checklist

Ask for our technical proposals if you want to use metal bellows. You can provide the information needed to design the bellows with the aid of this checklist.

Please include an installation diagram if possible.

Copy this list if necessary.

1. Dimensions

Bellows inside diameter (min.) mm

Bellows outside diameter (max.) mm

Available corrugated length mm

Available total length mm

Cross-section area required cm2

Neck no.

2. Operating data

Operating pressure (bar ü) inside outside

Operating temperature (°C) inside outside

Pressure change bar

Throughput medium inside outside

Test pressure after installation bar121

3. Movement load

Axial mm

Angle degrees

Plane parallel lateral mm

Torsion degrees or Nm

Vibrations ± mm axial / lateral

Vibration frequency Hz

Number load changes with 100% stroke

Number load changes with 100% stroke

Mounting compensation mm

Spring characteristic required N/mm or Nm/º

Anne

x

07-1_Annex 20.8.2007 10:24 Uhr Seite 76

Page 52: Boa Bellows Guide

77

4. Materials

Bellows

Connections

5. Joining to connections (please tick where appropriate)

� Welding � Brazing � Soft soldering

� Made by BOA � Made by customer

� Connections from BOA � Connections provided by customer

6. Testing of finished bellows at BOA

Leak-tightness test with precision mbarl/sec

Test pressure barü

Other test specifications

7. Quantities required

Annual units

Monthly units

One-off units

Samples units

8. Other information about application, special requirements

9. Address of company, department, name

Anne

x

07-1_Annex 20.8.2007 10:24 Uhr Seite 77

Page 53: Boa Bellows Guide

78

Anne

x

7.4 Corrosion table

Technical informationAll information, data and tables arebased on information and documenta-tion provided by the raw materialsmanufacturer or our many years'experience in the field. This informati-on does not claim to be complete andis strictly for guidance only. We cannotaccept any liability in this respect. Ifthe user of our products is uncertain inany way about the intended use of ourproducts, we recommend that he car-ries out his own tests.

It must also be remembered that allthe details concerning chemicals arebased on analytically pure substancesand never on media mixtures. All therelevant conditions must be observed.

The chemical behaviour of a hose orspring material often also depends onthe pipe material upstream. All sur-faces exposed to the medium must be taken into account, i.e. if there is atendency towards corrosion, but thesurface likely to corrode is very small,the corrosive attack can penetratevery quickly.

Surface films, deposits, ferritic chips,etc. can both prevent corrosion (e.g.thick films) and encourage corrosion(e.g. chloride-enriched deposits). Ferri-tic chips can even be referred to astrue corrosion triggers.

Information on the following corrosion tableThe corrosion rate is expressed as aweight loss per unit of area and time,e.g. g/mm2h or as a reduction inthickness per unit of time, e.g.mm/year. The corrosion rate is usedfor laboratory tests, whereas thethickness reduction is more useful forpractical assessments.

In the tables on the following pages,the corrosion rate or corrosion beha-viour of the various materials is divi-ded into resistance classes 0–3,based on the same corrosive attack.The meaning of the stages is given inthe following table:

07-1_Annex 20.8.2007 10:24 Uhr Seite 78

Page 54: Boa Bellows Guide

79

Anne

x

Resistance stage

0

1

2

3

Thicknessreduction mm/year

≤0.11

>0.11 ... ≤1.1

>1.1 ... ≤11.0

>11

Resistance

Resistant under normal operating conditions.

In many cases, resistant undernormal operating conditions, but should only be used if otherspecific material properties do not allow the use of a stage 0material.

Medium resistance. Can only be used in cases of exception.

Not resistant. Cannot be used at all.

Meaning of the abbreviations used in the tables

L = risk of pitting corrosionS = risk of stress crack corrosionSchm = molten, meltsKonz = concentrated substanceSP = boiling (boiling point)tr = dry (anhydrous)fe = moistwh = contains waterwL = aqueous solutionges = saturatedkg = cold saturatedhg = hot saturated > 50 = greater than 50≤ 50 = smaller than or equal to 50≤ 0.1 = smaller than or equal to 0.1( ) = different literature information or uncertain values

07-1_Annex 20.8.2007 10:24 Uhr Seite 79

Page 55: Boa Bellows Guide

80

Anne

x

Pitting corrosionPitting is a special type of corrosion inelectrolytes containing halogen. The risk of pitting depends on severalfactors.

The pitting tendency increases with- increasing concentration of chloride

ions- increasing temperature- increasing electro-chemical potential

of the steel in the electrolytes con-cerned

The pitting tendency is reduced by- adding molybdenum (increasing

contents of molybdenum in the steelreduces the risk of pitting, e.g. Mocontents between 2% and around 5%)

- higher chromium contents. The higher the chromium content (>20%),the more effective even a small quanti-ty of Mo can be.

Preventing pitting- reduction of the electro-chemical

potential in the electrolyte concerned,e.g. by cathodic protection.

Stress crack corrosionStress crack corrosion is one of thetypes of corrosion that needs severalfactors at the same time to be trigge-red:- a specific corrosion agent, e.g.

chlorides or alkaline media- critical system parameters (tempera-

ture, concentration, limit stress)- a material susceptible to stress crack

corrosion- static and/or dynamic mechanical

tensile load

Stress crack corrosion is one of themost unpleasant forms of corrosion,because it usually leads suddenly andvery quickly to crack damage incomponents of any kind. The typicalphenomenon is intercrystalline or trans-crystalline, undistorted and usuallyramified cracks. Often there is a forcedrupture of the component at the end ofthe crack. Stress crack corrosion star-ting from pitting corrosion, but alwaysfrom a local, active weak spot, is alsoknown. Stress crack corrosion canoccur in non-ferrous metals in thesame way as with austenitic materials.

Information on types of corrosion

07-1_Annex 20.8.2007 10:24 Uhr Seite 80

Page 56: Boa Bellows Guide

81

Acetanilide (Antifebrin) <114 0

Acetate 20 0 0 0 0

Acetate dehydrate 100 20 1 1 0 0 0 0 0 0 1 1 1 0100 SP 0 0 0 0 2 3 2 0

98 <54 0 0 0 099 <40 0 0 0 0

Acetic anhydride alle 20 1 0 0 0 1 1 0 0 0 3 0 0 0100 60 3 0 0 0 1 1 0 1100 100 3 0 0 0 2 2 0100 SP 3 0 0 1 3 1 0 0

Acetone 100 20 1 0 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0L 0L 0 1 0 0 0 1 1 1 0 0

all <SP 1 0L 0L 0 1 0 0 0

Acetylene tr 20 0 0 0 0 0 3 3 3 0 0tr 200 2 2 0fe 20 1tr 100 <150 0 0 0

Acetylene dichloride wL 5 20 3tr 100 20 1L 0L 0 0 0 0 0 0tr 100 SP 2L 1L 0 0 0 0 0 0schm 100 700 0 0 3fe 100 20 0 0 0 0 3

Acetylenetetrachloride tr 100 20 0 0 0 0 0 0 0 0tr 100 SP 0 0 0 0 0 1 1 3fe SP 1 1 3 3

Acytelene cellulose <100 20 1 1 1 0 0

Acytelene chlorid 20 1L 0L 1 2 2 3 3 3 0SP 1L 0L 2 2 2 3 3 3 0

Adhesive, neutral 20 (0) 0 0 0 0 0 1 0 0 0sour 20 (1) 0 0 0 (2)

SP 0 0

Adipic acid all 100 0 0200 0 0

Aethan 20 0 0 0

Aktivine 0.5 20 3 1L 0L 0 10.5 SP 3 1L 0L 0 3

Alanine 20 0 0 0

Allylalkohol 100 25 0 0 0 0 1100 SP 1

Allylchloride 100 25 0 0 0 0

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

Anne

x

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 81

Page 57: Boa Bellows Guide

82

Alum 100 20 2 0 0 2 0 0 2 3 3 1wL 10 20 2 0 0 1 1wL 10 <80 3 0 0 1wL 10 SP 3 1 0 1

hg SP 3 2 1

Aluminuim Schm 100 750 3 3 3 3 3 3 3 3

Aluminuim acetate wL 3 20 3 0 0 0 0wL 100 100 3 0 0 1wL all 20 1wL kg 20 0 0 0 2 2 2 1 2wL kg SP 0 0 1

hg SP 0 0 1 2

Aluminuim chloride wL 5 20 3 2L 1L 1 1 1 1 0 2 3 2 05 50 3 2L 1L 1 1 1 1 0 3 3 3 05 100 3 0

10 20 3 3L 2L 1 1 1 1 0 3 3 3 0 310 100 3 010 150 3 020 20 3 1 1 1 1 1 3 3 320 150 3 3

wL 25 20 3 3L 2L 1 1 1 1 0 3 3 3 025 60 3 025 100 3 230 150 3 340 122 3 380 100 3 3

Aluminium fluorid wL 5 25 3 2 2 1 0 0 0wL 10 25 3 3 3 1 1 1 1 0 0

Aluminiumformiate 20 2 3 3 0 0

Aluminium hydroxide ges 20 1 0 0 1 0 0 0 0 0 0ges SP 2 0 0 0

wL 2 20 3 0 0 1 0 0 0 0 1wL 10 20 3 0 0 1 0 0 0 1

Aluminium na-sulphate wL 10 <SP 1

Aluminium nitrate 20 0 0wL 10 20 0 0 2wL 10 50 3

Aluminium oxyde 20 1 0 0 0 0 0 0 0 0 0 0 0 2

Aluminium sulphate wL 10 20 3 0 0 0 0 0 0 0 2 2 1 0 310 SP 3 1 0 1 2 1 1 1 3 3 3 3 350 SP 3 2 1 1 0 3 3 3 3 3

Amber acid 20 0Anne

x

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 82

Page 58: Boa Bellows Guide

83

Ammonia tr 10 20 0 0 0 2 1 0 0 0 0 0 0 0 0fe 20 0 0 0 3 0 0 0 3 3 3 0wL 10 20 0 0 0 0 0 0 3 3 3 0wL 10 SP 0 0 3 1 1 0wL 30 20 0 0 0 0wL 30 SP 0 0 1 1wL 50 20 0 0 0 0wL 50 SP 0 0 1 1wL 100 20 0 0 0 0 0wL 100 SP 0 0 1 1

Ammonium alume wL 100 20 3 0 0wL 100 SP 3 3 2

Ammonia bicarbonate all 20 0 0 2 2 1 3 3 3 0 0wL all hot 0 0 2 2 0 3 3 3 0 0

Ammonia bifluoride wL 100 20 3 0 0 020 80 3 0 0 0

Ammonia bromide wL 5 25 3 0 0 2 0 3 3 3 2wL 10 SP 3 1LS 1LS 1wL 10 25 3 1LS 1LS 1 3

Ammonia carbonate wL 20 20 0 0 0 0 0 0 0 0 2 2 2wL 20 SP 0 0 1 0 0 0 1 3 3 3wL 50 20 0 0 0 0 0 0 0wL 50 SP 0 0 1 0 0 0 1

Ammonia chloride wL 25 20 3 1LS 0LS 0 0 0 0 3 3 3 0 2wL 25 SP 3 2LS 1LS 1 1 1 0 3wL 50 20 3 1LS 0LS 1 0 1 0 0 0wL 50 SP 3 2LS 1LS 1 1 1 0

Ammonia fluoride wL 20 80 3 2LS 2LS 0 3 3 3

Ammonia formate wL 10 20 0wL 10 70 0

Ammonia hydroxyde 100 20 0 0 0 3 0 0 0 3 3 3 1

Ammonia nitrate wL 100 20 3 0 0 3 0 3 3 3 0100 SP 3 0 0 3 0 3 3 3 0

10 25 3 0 0 3 0 3 3 3

Ammonia oxalate 10 20 1 0 0 010 SP 3 1 0 0

Ammonia perchlorade wL 10 20 0LS 0LS 1wL 10 SP 0LS 0LS 1wL all <70 0LS 0LS 1

Anne

x

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 83

Page 59: Boa Bellows Guide

Medium

84

Ammonia persulphate wL 5 20 3 0 0 3 3 1 0 0 2 210 25 3 1 1 3 3 0 2 3 310 30 3 1 1 3 3 0 2 3 320 20 320 100 3

Ammonia phosphate 5 25 0 1 0 1 1 0 0 2 2 2 010 20 0 1 0 3 3 3 110 60 1 1 0 3

Ammonia rhodanide 5 20 3 0 0 0 0 0 05 70 3 0 0 0 0 0 0

Ammonia sulphate wL 1 0 0 1 1 1 0 0 2 2 2 0 2LwL 5 0 0 1 1 1 0 0 2 3 2 0 2LwL 10 20 1 0 1 1 2 0 1 3 3 3 0 2LwL 10 SP 2 0 2 1 2 0 2 3 3 3 0 3LwL 100 20 0 0 0 1 1 0wL 100 SP 1 0 0 1 2 0

Ammonia sulphite wL 100 20 2 0 0 3 3 3 2 3 3 3wL 100 SP 3 0 0 3 3 2 2 3 3 3

Ammoniumfluorsilikat wL 20 40 3 1 0 0

Ammoniummolybdat 100 100 0

Amoniacal copper chloride wL 1 20 1wL 10 20 3wL 20 20 3

Amyl acetate 100 20 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0 0 0 0 0 0 1 0

Amyl alcohol 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0 0 0 0 0 0 0 1

Amyl chloride 100 20 1 0LS 0LS 1 1 1 0 0 0 2100 SP 1LS 0LS

Amylmercaptan 100 20 0 0 0 0100 160 0 0 0

Aniline 100 20 0 0 1 0 0 3 3 3 0100 180 1 1 2 3

Aniline cholours 2 2 2

Anilinhydrochloride wL 5 20 3 3 0wL 20 100 0

Aniline sulphite wL 10 20 1L100 20 0

Antimony Schm 100 650 3 3 3 0 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 84

Page 60: Boa Bellows Guide

Medium

85

Antimony chloride tr 20 0 3 3 0 3wL 100 1 0 3

Apple acid wL 20 2 0 0 2 1 1 0 0 3 2 2 0 0wL <50 90 3 0 0 2 1 1 0 0 3 2 2 0 0wL <50 100 3 0 0 2 1 1 0 0 3 2 2 0 0

Arsenic acid wL 65 3 0 0Schm 110 3 2 1

Asphalt 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Atmosphere Land -20 0 0 0 0 0 0 0 0 0 0 0 0 0Indust. bis 1 0 0 0 1 0 0 0 0 1 0 0 1Sea 30 2 0LS 0S 0 0 0 0 0 0 1 0 0 2

Azo benzene 20 0 0 0 0 0 0 0 0 0 0

Barium carbonate 20 3 0 0 1 0 0 0 1

Barium chloride Schm 100 1000 3L 3L 1wL 10 SP 1L 0L 1 1 1 1 0 2 3 3wL 25 SP 1L 0L 1 0 0

Barium hydroxyde fest 100 20 0 0 0 0 1 1 0 0 1 1 1 3wL all 20 0 0 1 1 1 0 0 1 1 1 3wL all SP 0 0 1

100 815 1 1 0wL kg 20 0 0 0 0 1 1 0wL hg SP 0 0 0 0 1 3

50 100 0 1 1 0

Barium nitrate wL all 40 0 0 1 0 2 0 0wL all SP 0 0 1 0 2 0 0Schm 600 0 0 0wL 20 0 0 0 1 1 2 0 0wL >100 3 0 0 1 0 2 0 0

Barium sulphate 25 1 0 0 1 1 0 0 0 0 0 0

Barium sulphite 25 2 0 0 2 3 3 3

Beer 100 20 0 0 0 0 0 0 0 0 1 0 0 0100 SP 0 0 0 0 0 0 0 0

Beer condiment 20 SP 3 1 3 1

Beet sugar syrup 20 (1) 0 0 0 0

Benzene acid wL all 20 0 0 0 0 0wL 10 20 1 0 0 0 0 0 0 0 1 1 1 0 0wL 10 SP 3 0 0 0 0 0 2 0 3wL ges 20 0 0 0 0 0

Benzene chloride tr 100 20 0fe 100 20 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 85

Page 61: Boa Bellows Guide

Medium

86

Benzene, non-sulfureos 100 20 0 0 0 0 0 0 1 0 0100 SP 0 0 1 1 1 1 1 1 1 1

Benzene sulphonal acid 91,3 140 3 3 3 1 392 200 3 3 3 0 3

Blood (pure) 36 0S 0

Bonder solubilzing 98 0 0

Borax wL 1 20 0 0 0 0 0 0wL ges 20 1 0 0 0 0 0 0 0 0 0 0wL ges SP 3 0 0 0 0 0 0 1Schm 3 3 0

Boric acid wL 1 20 3 0 0 1 1 1 0 0 0 0wL 4 20 3 0 0 1 1 1 0 0 0 0wL 5 20 3 0 0 1 1 1 0 0 0 0wL 5 100 3 0 0 2 1 2 0 0 1 2 1 0 0wL ges 20 3 0 0 0 1 1 0 0 0wL all 20 3 0 0 0 0wL all <SP 3 0 0 0 0 0 0

10 20 3 0 0 1 1 1 0 0 0

Boron 20 0 0

Brandy 20 0 0 1SP 0 0 3

Bromide water 0,03 20 0L 0L0,3 20 1L 1L

1 20 3L 3L

Bromine tr 100 20 3L 3L 3L 0 0 0 1 0 0 0 0 2 3tr 100 <65 3L 3L 3L 0 0 1 0 3tr 100 <370 3L 3L 3L 2 3fe 100 20 3L 3L 3L 0 0 3 3 2 3 1 0 3fe 100 50 3L 3L 0 3 3

Butadiene 100 30 0 0 0 0 0 0 020 0 0 0 0 0 0 0 0

Butane 100 20 0 0 0 0 0 0100 120 0 0 1

Butter 20 0 0 0 0 0 0 0 1 2 1 0 0

Butter acid 25 20 3 1 2 1 2 1 0 1 025 60 3 1 2 0 050 20 3 2 0 0

Butter acid 50 60 3 2 0 1ges 20 3 0 0 2 0 0ges SP 3 2 0 2 0 1

Buttermilk 20 0 0 0 0 0 0 0 0

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 86

Page 62: Boa Bellows Guide

Medium

87

Butyl alcohol 100 20 0 0 0 1 1 1 0 0 0 0 0 0 0100 SP 0 0 0 2 2 0 0 0

Butyl acetate 20 0 0 1 0 0 0SP 1

Cadmium Schm 100 350 1 2 2Schm 100 400 2 2

Calcium Schm 100 800 3 3 3

Calciumbisulphite wL ges 20 3 0 0 0 3 1 0ges SP 3 2 0 020 20 0 0 020 SP 1 0 0

Calcium carbonate 20 0 0 0 0 0 0 0

Calium chlorate 100 20 0 0LS 0LS 1 1 1 0 1 1wL 10 20 0LS 0LS 1 1 1 0 1 1wL 10 100 2LS 1LS 1 1 1 0 1 1wL 100 100 2LS 1LS 1 1 1 0 1 1

Calcium Chloride wL 10 20 3 0S 0S 0 0 0 0 0 1 3 1 0 3wL 25 20 3 0L 0L 0 0 0 0 1 3 2 0 3wL 25 SP 3 0LS 0LS 0 0 0 3 0 3

ges 20 3 0L 0L 1 1 0 0 0 3 0 3ges SP 3 1L 0L 2 0 0 0 3 1L 3

Calcium hydroxyde <50 20 0 0 1 1 1 1 0 1 0 0 0 3<50 <SP 0 0 1 1 1 1 0 1 0 3ges 20 0 0 0 0 1 1 0 3ges SP 0 0 0 0 2 2 0 3

Calcium hypochloride wL 10 25 3 3LS 0LS 3 1 1 3 1 0 315 50 3 3LS 0LS 1 0 320 25 3 3LS 0LS 0 1 3 1 0 320 50 3 3LS 0LS 1 0 3

ges <40 3 2LS 1LS 0 0 3

Calcium nitrate 20 100 0 0 0 050 100 0 0 0 0

Schm 100 148 0 0 0 0

Calcium sulphate fe 20 1 0 0 0 0 0 0 0 0(Gypsum) SP 3 0 0 1 1

Calcium sulphite wL ges 20 0 0 0 1ges SP 0 0 0 1

Camphor 20 (0) 0 0 0 0 0 0 0 0 0

Carbon dioxide tr 100 20 0 0 0 0 0 0 0 0 0 0 0 0tr 100 <540 0 0 0 0 0 0 0 0 3 0tr 100 700 3 1tr 100 1000 3 3tr all <760fe 15 25 0 0 1 1 1 0 0 0 0 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 87

Page 63: Boa Bellows Guide

Medium

88

Carbon dioxide fe 20 25 1 0 0 0 1 2 1 3fe 100 25 2 0 0 1 1 1 0 0 0 0 3

Carbon oxide, 100 atü 100 20 0 0 0 0 0 0 0 0100 <540 3 (0) 3 (1) (3) 0 2 1

Carbon tetrachloride tr 100 20 0 0L 0L 0 0 0 0 0 0 0 0 0tr 100 75 0L 0L 0tr 100 SP 1 0L 0L 0 0 0 0 0 2fe 20 0 0L 0L 0 0 1 2 1 0 1fe SP 1 1L 1L 3 3 2 2 3 1 3

Carnallite wL kg 20 3 0L 0L 0 0kg SP 3 2LS 1LS 0 0

Castor oil 100 20 (0) 0 0 0 0 0 0 0 0 0 0 0 0100 100 (2) 0 0 0 0 0 0 0 0 0 0 0 0

Cement fe 20 3

Cheese 20 0 0

Chloramin 20 3 1L 0L 0 00,5 SP 3 1L 0L 0 0

Chlorine tr 100 20 0 0L 0L 0 0 0 0 0 0 0 3 0tr 100 100 0 0L 0L 0 0 0 0 0 0 3 0tr 100 <250 3 0L 0L 0 0 0 1 3 3 3tr 100 <400 3 2L 1L 0 0 0 1 3 3tr 100 500 3L 3L 2L 1 1 0 2 1 3 3fe 99 20 3L 3L 3L 0 2 1 0 3 3 2 0 3fe 99 100 3L 3LS 3LS 1 3 3 3 1 3

Chlorine benzene 100 20 0 0LS 0LS 1 1 1 1 0 1 1100 SP 0LS 0LS 1 1 1 1 0 2

Chlorine calcium fe 20 3 1LS 1LS 1 1 3 1 3wL 1 20 3 2LS 0LS 0 3wL 5 20 3 1LS 0LS 0 3 0 3wL 5 100 3 3LS 3LS 0 1 3

Chlorine dioxide tr 70 2 2 0 0 3 3wL 0,5 20 3 3 3 1 3 3wL 1 65 3 3 3 2 3 3

Chlorine sulphinated acid tr 100 20 1LS 0LS 0 0 0 0 0 0 3 0fe 99 20 3 2LS 0LS 3 1 1 3 3wL 10 20 3 3 3 3 0 0 3 3

Chlorine vinegar acid Mono- 50 20 3 3 3 1 1 2 3 3 3Konz 20 3 3 3 1 1<70 SP 3 2 1

Di- 100 100 3Tri- >10 20 3 0L 0L 0 0

SP 3 3 1

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 88

Page 64: Boa Bellows Guide

89

Medium

Anne

x

Chlorine water ges 20 3 1LS 1LS 0 0 3ges 90 3 2LS 2LS 1 3

Chloroform fe 99 20 3 0LS 0LS 0 0 0 0 0 0 0 3fe 99 SP 3 0LS 0LS 0 0 0 0 0 1 1 3

Chocolate 20 0 0 0 0 0 0 0 0 (0) (0) (0) 0 0120 0 0 0 0 0 0 0 0 (0) (0) (0) 0 0

Chromic alum wL ges 20 3 1 0 1 0 0 3 3wL ges SP 3 3 3 2 3 3wL 10 20 3 0 0 0 3 1

Chromium acid wL 5 20 3 0 0 3 3 3 1 0 3 3 3 0 15 90 3 3 3 3 3 1 3 3 3 0

10 20 3 0 0 2 2 2 1 0 3 3 3 0 110 SP 3 3 3 3 3 3 1 0 3 3 3 0 350 20 3 3 3 2 2 2 1 3 3 3 0 250 SP 3 3 3 3 3 3 1 3 3 3 0 3

Chromium sulphate ges 20 2 0 0 0 0 0 0 090 3 3 2 0 0 1 0 0

Cider 20 0 0 1

Cinammon acid 100 20 3

Cocoa SP 2 0 0 0 0 0 0 0 0 0 0 0 0

Coffee wL 20 0 0 0 0 0 0 0 0 0 0 0 0 0SP 2 0 0 0 0 0 0 0 0 0 0 0 0

Copper acetate wL 20 (3) 0 0 (1) (1) (1) 3 3SP (3) 0 0 3 3

Copper-II-chloride wL 1 20 3 1LS 0LS 0 1 0wL 1 SP 3 3LS 3LS 0wL 5 20 3 2LS 1LS 3 1 2 3 2 0 3wL 40 20 3 3 3 3 1wL 40 SP 3 3 3 3 3 3 0wL ges 20 3 3 3 3

Copper-II-cyanide wL 10 20 2 0 0 0wL 10 SP 3 0 0 1wL hg SP 3 0 0 3 3 3 1 3 3

Copper-II-nitrate wL 50 20 0 0 3 3 3 0 1 (2) (3) (2) 0 3wL 50 SP 0 0 3 3 1 0wL ges 20 0 0 3 3 3 0 1 3 0 3

Copper-II-sulphate all 20 3 0 0 2 2 2 0 (1) (3) (1) 0 3(copper vitriol) all <SP 3 0 0 3 3 3 0 0 3 0 3

Cotton seed oil 25 0 0 0 0 0 1 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 89

Page 65: Boa Bellows Guide

Medium

90

Creosote 20 0 0 0 0 1SP 3

Creosote 100 20 0 0 0 1 0100 SP 0 0

Crude oil 100 20 1 0 0 0 0 0 0 0100 100 1 0 0 1 0 0 1100 400 3 3 3 3

Cyanide baths 25 00

Developer (Photo) 20 0L 0L

Dichlorethene 100 <50 3 2L 1L 1 0100 SP 0

Dichlorethylene tr <100 <30 0 0L 0L 0 0 0 0 0 0tr 100 SP 0L 0L 0 1

<100 <700 3wh 105 3wh 1:1 <SP

Dichlorethylene 100 20 0 0L 0L 0 0100 SP 0L 0L 2 0 1

Diesel oil 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Diesel oil, S <1% 100 20 0L 0L 0 0 0 0 0 0 1 0 0 0100 100 0 0L 0L 2 0 0 0 0 1 1 1 0 1

Diphenyl 100 20 0 0S 0S 0 0 0 0 0 0 0 0 0 0100 400 0 0S 0S 0 0

Dripping 20 0 0

Dye liquoralkaline or neutral 20 0 0 0 0

SP 0 0 0 0organic sour 20 0 0 0 1

SP 0 0 0 1heavily sulphuric 20 3 1 0 0 0

SP 3 3 1 0slightly sulphuric 20 0 0 0 0

SP 3 0 0

Ether 100 20 0 0 0 1 0 0 0100 SP 0 0 0 0 0

all SP 0 0 0 0 0

Etherial oilCitrus oil 20 0 0 0 0 0 0 0Eucalyptus oil SP 0 0 0 0 0 0 0Caraway seed oil 20 0 0 0 0 0 0 0

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 90

Page 66: Boa Bellows Guide

Medium

91

Ethyl acetate 20 1 0 0 2 1 1 0 0 0 1all <SP 1 0 0 2 1 1 2 2 235 120 1 0 0 1 0 2 2 2

100 20 1 0 0 2 1 1 0 1 0 1100 SP 1 0 0 2 1 1 2 2 2

Ethyl alcohol 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0denaturalized 96 20 1 0 0 0 0 0 0 0 0 0 0 0 0

96 SP 2 0 0 0 0 0 0 0 0 0

Ethyl benzene 115 0 0 0 0 0 0

Ethyl chloride 20 0 0L 0L 0 0 0 0 1 2 2 2 0 1SP 0L 0L 1 3 3 3 0

tr 20 0 0L 0L 0 0 0 0 1 0 0tr SP 0L 0L 1 0 1fe SP 1 0 3wL 25 20 0 0 0 0 1 0wL 50 25 0 0 0 0 1 0wL 70 25 0 0 0 0 1 0wL 100 25 0L 0L 0 0 0 0 1 0wL 5 25 0L 0L 0 0 0 0 0 0 2

Ethylene 20 0 0 0

Ethylene bromide 20 0L 0L 0SP 0L 0L 3

Ehtylene diamide Hydrochloride 100 SP 3 2

Ethylene chloride tr 100 20 0 0L 0L 0 2 0 2 3 2 0 0wL 100 50 3 1L 1L 1 0 3tr 100 SP 0L 0L 0 0fe 100 20 3wL 100 SP 3

20 1 0 0

Ethylene glycol 100 20 0 0 0 1 1 1 0 1 2 2 0100 120 0

Ethylene oxyde 20 0 0 0

Exhaust gas

Exhaust gas (diesel) tr 600 3 0L 0L 0 0 0 0 0 1(Flue gas) tr 600 3 0L 0L 0 0 0 3

900 3 0 0 01100 3 0 0

Fatty acid, high technology 100 60 3 0 0 0 0 0 0 0 0 2 1 0 1100 150 3 0 0 0 1 0 0 0 0 0 3100 235 3 2 0 0 1 0 0 0 3 3 3 0 3100 300 3 3 0 0 1 0 0 0 3 3 3 0 3

Ferro-gallic-ink 20 0 0L 0L 1

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 91

Page 67: Boa Bellows Guide

Medium

92

Fluorbor ether 100 50 0

Fluorine tr 100 20 0 0 0 0 0 0 0 0 0 0 0 3tr 100 200 0 1LS 1LS 0 0 0 3 3tr 100 500 3 0 0 3 3fe 100 20 3 3 2 0 0 0 3 3 3 3

Formic acid 10 20 3 0 0 0 0 0 0 010 SP 3 1 0 2 0 0 0 350 20 3 0 0 0 050 SP 3 3 1 0 080 20 3 0 0 2 0 0 0 1 080 SP 3 3 2 2 1 0 0 0 2

100 20 3 0 0 3 0 1 1 1 0100 SP 3 1 1 3 0

Formic aldehyde 10 20 3 0 0 2 0 0 110 70 3 1 0 240 20 3 0 0 0 0 0 0 0 140 SP 3 0 0 1 0

Freon 100 -40 0 0 0 0 0 0 0 0 0 0 0100 0 0 0 0 0 0 0 0 0 0 0

Fruit acid 20 (1) 0 0 0 0 0 0 0 (0) 0SP (2) 0 0 (0) (0) 1 3 1

Fruit juce 20 1 0 0 0 1 3 1 0SP 1 0 0 0

Fuel, benzene tr 20 0 0 0 0 0 0 0 0 0 0 0 0 0tr SP 0 0 0 0 0 0 0 0 0 0 0 0 0wh 20 0 0 0 0 0 0 0 0 0 0 0 0 3wh SP 0 0 0 0 0 0 0 0 0 0 0 0 3

Fural 100 25 2 0 0 2 0100 SP 3 2

Furaldehyde 20 2 0 0 1 3 1 0SP 3 0 0 3

Gallic acid wL 1 20 0 0wL <50 100 2 0

100 20 2 0 0 0100 SP 3 0 0 3

Gelatine wL 80 1 0 0 0 0 0 0 0 0 1 0 0 0<40 50 1 1 0 0 0 0

Glass Schm 100 1200 1 1 1

Glucose 20 0 0 0 1 0

Glutamine acid 20 1 0 0 080 3 1 1 1

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 92

Page 68: Boa Bellows Guide

Medium

93

Glycerin 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0 0 0 0 0 0 0 1 0 0 0 0

Glykol acid 20 3 1 1 0 0 1SP 3 3 3 0 0 1

Gum (raw) 20 1 0 0 0 0 0 0 0 0 0 0 0 0

Heavy fuel 100 20 0L 0L 2 0 0 0 0 0 0 0 0 0

Hexamethylenetetramine wL 20 60 1 0 0 0wL 80 60 2 0

Hydrobromic acid 20 3 3 3 3 3 2 3 2 3 2 3

Hydrocarbon, pure 20 0 0 0 0 0 0

Hydrochloric acid 0.2 20 3 1LS 1LS (1) 0 00.2 50 3 2LS 3LS 0 0

1 50 3 3 3 0 01 100 3 3 3 3 (1)

10 20 3 3 3 (2) 1 1

Hydrofluosilic acid 5 40 3 1L 1L 1 (1) 3100 20 3 1L 2L 1 1 3 1 3100 100 3 2L 2L 1 2 3

Hydrocyanic acid 20 20 3 0 0 2 1 1 0 0 3 3 3 0 0

Hydrogen 100 20 0 0 0 0 0 0 0100 300 1 0 0 0 0 0 0100 500 3 0 0 0 3 0

Hydrogen fluoride 5 20 1 3 3 0 0 0 0 0 3 3 3100 500 3 3 3 1 2 2 3 1 3 3 3 3

Hydrogen fluoride acid all 20 3 3L 3L 1 1 1 1 1 3 3 3 3 3HF-Alkylation 10 20 3 3L 3L 1 1 1 1 0 2 3 2 3 3

80 20 1 1 1 1 1 1 1 3 390 30 1 0 1 1 3 3

Hydrogen superoxide all 20 0 0 1 1 1 0 0 2 1 030 20 0 0 0 1 2 130 70 0 0 0 1 2 185 <70 0 0 0all SP 2 2 0 0 3 1

Hydroquinone 20 1 1 0 0 0

Hydroxylamine sulphate wL 10 20 0 0wL SP 0 0

Hypochlorous acid 20 0 3

Illuminating gas 20 (1) 0 0 0 0

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 93

Page 69: Boa Bellows Guide

94

Inert gas tr 20 0 0 0 0 0 0 0 0 0 0 0 0 0fe 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Ink 100 20 1 0L 0L 0 3100 SP 1L 1L 3

Insulin 100 <40 0 0 0 0

Iod tr 100 20 0 0L 0L 0 0 0 3 3 3 3 0100 300 1 0L 0L 3 0 0 2 3

fe 100 20 3 3L 2L 3 3 1 3

Iod, alcohol 7% 20 3 1L 0L 3 3 3 3

Iod hydrogene acid wL 20 3 3 3 3

Iodoform, steam tr 60 0 0 0 0fe 20 3 0L 0L 0

Iod tincture 20 2L 0L 3

Iron-II-chloride tr 100 20 0 3 3 3 2 0 0wL 10 20 3 3 3 3 3 1 1 3 1 0 3

Iron-III-chloride tr 100 20 0 0L 0L 2 2 2 1 0 3 3 3 0 3wL 10 Sp 3 3L 3L 2 0wL 50 20 3 3L 3L 2 1 0wL 50 <SP 3 3L 3L 3 0

Iron-III-nitrate wL 10 20 3 0 0 0wL all 20 3 0 0wL all SP 3 0 0

Iron phosphate 98 0 0( Bonder )

Iron-II-sulphate wL all 20 0 0 0 1 1 1 3 1 1wL SP 0 0 3 1 1 3

Iron-III-sulphate wL <30 20 3 0 0 0 3 3 3 3<30 <65 3 0 0 0<30 80 3 1 0 3 3 3 3<30 SP 3 1 0

Isopropyl nitrate 20 0

Kerosene 100 20 (0) 0 0 0 0 0 0 0 (0) (0) (0)

Lactic acid wL 1 20 1 0 0 0 2 1 0 01 SP 0 0 0 3

10 20 0 0 (1) 0 0 1 2 1 0 010 SP 3 2 3 3 (2) 1 0 350 20 0 0 1 0 0 0 050 SP 2 1 (1) (0) 0 380 20 0 0 0 080 SP 2 1 0 3

100 SP 2 1 0 3

Anne

x

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 94

Page 70: Boa Bellows Guide

95

Laquer (also varnish) 20 (1) 0 0 0 0 0 0 0 0 0100 0 (1)

Lead 100 360 (0) (2) (1) (2) 2 0 0600 (0) (2) (1) (3) 0

Lead acetate wL 10 20 0 0 0wL all SP 0 0

Lead nitrate wL 20 0 0wL 100 0 0 0wL 50 20 0 0 3

Lead suggar all 20 0 0 1 1 2 0 2 0 3all SP 0 0 1 1 2 0 2 0 3

Lead vinegar, basic wL all 20 0 0 1 1 2 0 2 3 2 3wL all SP 0 0 1 1 2 0 2 3 2 3

Lime-milk 20 0 0 0 0 0 0 0 0 0 0SP (0) 0 0 0 0 0 0 0 0 0

Lemon acid wL 5 20 2 1 0 0 0 0 0 0 0 0konz. SP 3 2 2 2 2 1 0 2 0 3

Lemonade 20 (1) 0 0 0 0

Linseed oil 20 0 0 0 0 0 0 0 0 1 1 0 0200 (0) 0 0 0 0 0 0 (0) 0

+ 3% H2SO4 200 (3) 1 0 0 0 0 0

Lithium Schm 400 (0) 0 0 0 0 0

Lithium chloride wL kg 3 3 1LS 0 1 0 0 0 0

Lysoform 20 0 0 0 0 0SP 0 0 0 0 0

Lysol 5 20 (2) 0 0 0 0 0 0 05 SP (3) 0 0 0 0 0 0

Magnesium Schm 650 3 3 3 3 3 3 3 3 3 3 0 3

Magnesium carbonate 10 SP (0) 1 0 0 1ges 20 (0) 0 0 0 1

Magnesium chloride tr 100 20 0 0L 0L 0 0 3wL 5 20 3 0LS 0LS 0 0 0 2 0 2wL 5 SP 3 2LS 2LS 0 0 0 2 0 3wL 50 20 3 2LS 1LS 0 0 0 0 3wL 50 SP 3 2LS 2LS 0 0 0 0 3

Magnesium hydroxyde 20 0 0 0 0 0 0 0 0 0 (0) 0 0 3 Anne

x

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 95

Page 71: Boa Bellows Guide

Medium

96

Magnesium sulphate 0.10 20 (0) 0 0 35 20 2 0 0 1 1 1 0 0 0 3 0 0 0

10 SP 3 0 0 1 0 025 SP 3 0 0 1 150 SP 3 0 0 1 0 0

Malonate acid 20 1 1 1 1 1 1 1 1 150 1 1 1 1 1 1

100 3 3 3 3 3 3

Manganese dichloride 5 100 3 0LS 0LS 1 1 1 0 3 0 010 SP 3 0LS 0LS 1 1 1 0 3 050 20 3 0LS 0LS 0 3 050 SP 3 0LS 0LS 0 3 0

Meat 20 0 0

Methyl acetate 60 SP (0) 0

Methyl alcohol <100 20 (1) 0 0 0 0 0 0 0 0 0 0 0 0100 SP (1) 1 1 0 0 0 0 0 0 0 0 0 1

Methyl chloride tr 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0fe 20 2 0LS 0LS 0 0 0 0 3

Milk fresh 20 (0) 0 0 0 1 0 0 0 (0) (2) 0 070 (1) 0 0 2 2 0 0 0 (0)

sour 20 (1) 0 0sour SP (3) 0 0

Mercury 100 20 0 0 0 0 (3) 0 0 0 3 3 3 (1)100 50 0 0 0 0 3 0 0 3100 370 (0) 3 0 0 3

Mercury chloride 0.1 20 3 0S 0S 0 3 0 0 0 3 3 3 30.1 SP 3 1S 0S 1 3 1 0 0 3 3 3 3

0.74 SP 3 2S 2S 1 0 310 <80 1 3

Mercury cyanide wL 20 (3) 0 0 3 (3) 3 2 0 3 3 3

Mercury nitrate 20 (3) 0 0 (3) 3 3 3 3

Molybdenum acid wL 10 25 1

Monochloracetic acid wL all 20 3 3 3 (1) 2 (1) 3 1 3 330 80 3 3 3 (1) (2) 3 3 3 3 3

Mustard 20 2 0L 0L

Natural gas 100 20 0 0 0 0 0 0 0 0

Naphtene 100 20 0 0 0 0 0 0 0 0 0

Nickel chloride 10 20 3 1LS 1LS 1 1 1 0 0 3 3 110 <60 3 1LS 1LS 0 0 080 <95 0

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 96

Page 72: Boa Bellows Guide

97

Nickel nitrate wL <10 20 3 0 0 3 3 0 0 0 3 0 310 25 3 0 0 3 3 0 0 1 3 0 3

<100 30 3 0 0 3 3 3 0 1 3 0 3

Nickel sulfate wL 20 3 0 0 (3) (1) (1) 0 (1) 0 2 1<60 SP 3 0 0 (3) (1) 0 1

10 25 3 0 0 2 2 2 0 0 0 3

Nitric acid 1 20 3 0 0 0 0 3 3 3 01 SP 3 0 0 2 2 3 3 3 0

10 20 3 0 0 2 1 2 1 0 3 3 3 0 210 65 3 0 0 3 2 0 3 3 3 010 SP 3 0 0 3 3 1 3 3 3 015 20 3 0 0 (1) 015 SP 3 0 0 3 025 20 3 0 0 0 025 65 3 0 0 0 025 SP 3 0 0 3 040 20 3 0 0 0 040 65 3 0 0 1 040 SP 3 0 0 3 050 20 3 0 0 0 050 65 3 1 050 SP 3 1 1 3 065 20 3 0 0 0 065 SP 3 (0) 2 3 090 20 3 0 0 1 090 SP 3 2 2 3 099 20 (1) 1 2 3 099 SP 3 3 3 0

Konz. 20 3 0 0 05 25 3 0 0 1 0 2 0 2

Nitro acid 5 20 0 05 75 1

Nitro benzene 100 100 1 1 1 1 1 0

Nitro gas tr alle 540 0 3 3

Nitrogen 100 20 0 0 0 0 0 0 0 0 0 0 0 0100 200 0 0 0 0 0 0 0100 500 0 1 1 3100 900 1 3

Nitrogen oxide NOx tr 100 20 0 0 3 3 3 0 0 0 0 0fe 100 20 3

Nitrohydrochlorid acid 20 3 3 3L 3L 3 3 3 3 3 3 3 2 3

Novocaine 20 0 0

Oil 20 0 0 0 0 0 0SP (0) 0 0 (0) (0) (1)

Medium

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 97

Page 73: Boa Bellows Guide

Medium

98

Oil acid, tech. 20 (1) 0 0 0 0 0 0 1 (0) 0150 (2) 0 0 0 0 (0) (2) 1 1 0180 3 1 0 1 0 (0) 3 (1) 3235 3 2 0 (0) (0) 3 3

Oxalic acid wL 2 20 3 0 0 2 1 1 1 0 0 2 1 0 02 80 3 0 0 1 1 1 0 3 15 20 3 0 0 2 1 1 1 0 0 15 80 3 1 0 0 3 2

10 20 3 1 0 2 1 1 1 0 (0) 2 1 2 310 SP 3 3 2 2 1 1 0 0 1 3 (3)30 20 3 3 3 2 1 1 1 030 SP 3 3 3 1 1 1 1 350 20 3 3 3 2 1 1 1 050 SP 3 3 3 2 1 1 1 1 3

Oxygen 100 -185 (0) 0 0 0 0 0 0100 20 0 0 0 0 0 0 0100 500 (1) 0 0 0 3 3

Palmitic acid 100 20 0 0 0 0 0 0 0 1 2 1 0 0

Paraffin Schm 120 (0) 0 0 0 0 0 0 0 0 0 0 0 0

Perchloroethylene wL 100 20 0 0L 0L 0 0 0 0 0 0 1 1 0 3100 SP (3) 0L 0L 0 0 0 0 0 (0) (0) (0) 0 3

Petrol tr 20 0 0 0 0 0 0 0 0 0 0 0 0 0tr SP 0 0 0 0 0 0 0 0 0 0 0 0 0

Petroleum (kerosine) 20 0 0 0 0 0 0 0 0 0 1 0 0 0100 0 0 0 (2) 0 0 0 0 (0) (1) (0) 0

Petroleum ether 100 20 0 0100 SP 0 0

Petrolium / fuel 100 20 0 0 0 0 0 0 0100 SP 0 0 0

Phenic acid rein 100 SP 3 1 0 0 0 1 1 0 3(Phenol) wL 90 SP 3 1 0 0 (0) 1 0 3

roh 90 20 (1) 0 0 0 0 0 1 1 1 090 SP 3 1 0 (0) 1 350 20 (1) (1) 0 0 0 050 70 3 1 (1) 0 1 1

Phenolsulphonic acid 30 20 (0) 0 0 0 030 120 0 0

Phosphor tr 20 0 0 0 0

Phosphor penta chloride tr 100 20 (0) (0) 1100 60 (0) (0) 1An

nex

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 98

Page 74: Boa Bellows Guide

Medium

99

Phosphorous acid wL 1 20 3 0 0 0 1 0 0 0 2 3 3 0 3chem. pure 5 20 3 0 0 0 1 1 0 0 2 3 3 0 3

10 20 3 0 0 2 1 1 0 0 2 3 3 0 310 80 3 0 0 0 130 20 3 0 0 0 1 0 1 1 1 030 SP 3 1 1 (2) (1) 1 2 2 (1) 350 20 3 0 0 0 0 0 0 (0) 150 SP 3 2 1 (2) 3 3 2 1 (0) 380 SP 3 3 3 3 (0) 1 2 1 3 1

Phosphorous acid <30 25 3 0 0 0 1technical <30 SP 3 0 0 1 3

50 25 3 0 0 0 150 SP 3 3 2 2 385 25 3 0 0 0 385 SP 3 3 3 1 3

Pineapple juice 25 0 0 0 0 0 0 085 1 1 0 0

Pit water (sour) 20 3 0 0 3 2 1 2

Potassium Schm 100 100 0 0 0 0 0600 (0) 0 0800 (0) 0 0

Potassium acetate Schm 100 292 3 0 0 3wL 20 (1) 0 0 0 0 0 1 1

Potassium bi-chromate wL 25 40 3 0 0 1 1 1 1 1 3 3 3 025 SP 3 0 0 1 3 3 3 (0)

Potassium bi-fluoride wL ges 20 0L 0L

Potassium bi-tartrate wL kg 3 0 0 0 0(Cream of tartar) wL hg 3 3 1 1 1

Potassium bromide wL 5 20 3 0L 0L 0 0 0 0 0 15 30 3 0L 0L 0 0 1 1 0 0 0 0 2

Potassium carbonate Schm 100 1000 3 3LS 3LS 0 3wL 50 20 2 0 0 0 0 0 0 0 1 3 1 0 3wL 50 SP 3 3 3 0 0 0 1 3

Potassium chlorate wL 5 20 (2) 0L 0 1 1 1 0 (1) (1) (1) 0 0ges SP 3 0L 0 3 3 3 0 0 1 0 1

Potassium chloride wL 5 85 (2) 0L 0L 1 1 2 0 1 1 2 1 0 330 20 (1) 0L 0L 0 0 0 0 1 1 2 1 0 330 SP 2 1L 0L 0 0 0 1 (2) (2) (1) 0 3

Potassium chromate wL 10 20 0 0 0 0 1 0 0 0 0 0 010 SP (1) 0 0 0 0

<30 30 0 0 0 1 0 0

Potassium chrom. sulph. wL ges 20 3 1 0 1 0 0 3 3ges SP 3 3 3 2 (1) 3 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 99

Page 75: Boa Bellows Guide

Medium

100

Potassium cyanate Schm 100 750 3 3wL 10 20 (0) 0 0 (1) 3 3 (0) 1

Potassium cyanide wL 10 SP 3 0 0 3 3 3 3

Potassium hydroxide wL 20 20 0 0 0 0 0 0 0 1 2 1 0 320 SP 0S 0S 0S 0 0 1 1 1 3 0 3

Potassium hydroxide 50 20 0S 0S 0S 0 0 1 1 0 350 SP 0S 3 3 0 0 3 1 1 3 3 3hg 0S 0S 0S 1 3

Schm 100 360 3 3 3 0 3 3 3 3

Potassium hypochloride wL all 20 3 2L 0L 3 3 3 3 0 0 3all SP 3L 3L 3 3 3 3 1 0 3

Potassium iodide wL 20 (0) 0L 0L 3 3 1 0 0 3SP (0) 0L 0L 3 3 1 0 0 3

Potassium nitrate wL 25 20 0 0 0 1 1 1 0 1 0 0 0 (0)(Saltpetre) 25 SP 0 0 1 1 0 1 0 (0) 0

ges 20 0 0 0 1 1 1 1ges SP 2 0 0 1

Potassium nitrite all SP 1 0 0 1 0 0 1 0 1 1 1

Potassium oxalate all 20 0 0 0 0 0 0all SP 0 0 0 0 0 0

Potassium perchlorade wL 25 20 175 50 1

Potassium permanganate wL 10 20 0 0 0 0 (1) 0all SP 3 1 1 0 1 1 0 1 0 0 0

Potassium persulphate wL 10 25 (3) 0 0 (3) (3) 0 0 (3) (3) (3)

Potassium sulphate 10 25 0 0 (1) 1 0 1 0 0 (1)all SP 0 0 0

wL 5 20 3 2 0 0wL 5 90 3 3 3 3

Propane 100 20 (0) 0 0 0 0 0 0 0 0 0 0 0 0

Pyrogallol all 20 (0) 0 0 0 (0) 0all 100 3 (0) 0 1 (0) 0

Quinine-bi-sulphate tr 20 3 3 1 1 0 0 0 0

Quinine sulphate tr 20 3 0 0 1 0 0 0 0

Resina (natural) 100 20 0 0 0 0 1 0100 300 3 0L 0L 1 1

Salycilic acid tr 100 20 1 0 0 0 0 0wL 1 80 (3) 0 0 0 0 (1) (1) 0

ges 20 (3) 0 0 0 0 1

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 100

Page 76: Boa Bellows Guide

Medium

101

Sea water 20 (1) 0LS 0LS 0 0 0 0 0 0 (0) 0 0 (0)50 (1) 1LS 0LS 0 0 0 0 0 (0) (1) 0 0 (0)SP (2) 2LS 1 0 0 0 0 0 (1) (1) (0) 0 (1)

Sewages ( w.o. H2SO4) <40 0 0 0 0 0 0 0 2 3 2 0 3( with H2SO4) <40 0 0 3 3 3 0 3

Silver bromide 100 20 3 2LS 2LS 1 0 0 3 3 3 0 3wL 10 25 3 0LS 0LS 0 0

Silver chloride wL 10 20 3 3LS 3LS 0 1 3 3 3 0 3

Silver nitrate wL 10 20 3 0 0 3 3 1 0 1 3 3 3 0 3wL 10 SP 3 0 0 3 0wL 20 20 3 0 0 1 0Schm 100 250 2 0 0

Sodium 100 20 0 0 0 0100 200 0 0 0 (1)100 600 (3) 0 0

Sodium acetate wL 10 20 0 0 0 0 0 0 0 0 0 0ges SP (2) 0 0 (1) 0

Sodium aluminate wL 20 0 0 0

Sodium bi-carbonate wL 10 20 0 0 0 1 1 1 0 0 1 2 1 0 010 SP (1) 0 0 120 SP 1

Sodium bi-sulphite 10 20 3 0 0 0 1 3 1 (0)10 SP 3 2 0 350 20 3 0 0 0 0 1 3 1 (0)50 SP 3 0 0 (0)

Sodium bromide wL all 20 3 3LS 2LS 0 3all SP 3 3LS 2LS 1 3

Sodium carbonate wL 1 20 0 0 01 75 1L 0 0 0 0 0 1 2 1 0

kg 20 0 0 3kg SP 3 0 0 3

Schm 900 3 3 3 (0)

Sodium chlorate 30 20 2 0LS 0LS 030 SP 3 0LS 0LS (0)

Sodium chloride wL 3 20 (1) 0LS 0LS 1 0 1 0 (0) 33 SP (2) 0LS 0LS 1 0 1 1 (0)

10 20 (2) 0LS 0LS 1 0 1 0 1 2 1 0 110 SP (3) 0LS 0LS 1 0 1 1 1kg 20 (2) 0LS 0LS 1 0 1 0 0 2kg SP (2) 2LS 0LS 1 0 1 1 (0) 2 An

nex

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 101

Page 77: Boa Bellows Guide

Medium

102

Soap wL 1 20 0 0 0 0 1 0 0wL 1 75 0 0 0 1 0wL 10 20 0 0wL 100 0 0 0 0 3

Sodium citrate wL 3.5 20 0 0 1 1 0 0 0 0 3

Sodium cyanide Schm 100 600 (1) 3 3 3 3 3wL ges 20 3 0 0 3 3 3 3 0 3

Sodium dichromate wL ges 20 0 0 3 3 3 0

Sodium fluoride 10 20 (0) 0LS 0LS 0 0 0 0 (3)10 SP (0) 0LS 0LS 0 0kg 20 0LS 0LS 0 0

Sodium hydroxide fest 100 320 (3) 3 3 0 1 0 0 3wL 5 20 0 0 0 0 0 0 0 0 0 1 (0) 0 3

5 SP 0 0 0 0 0 1 2 1 0 325 20 0 0S 0S 0 0 0 0 0 0 325 SP 2 1S 1S 0 0 0 1 1 0 350 20 0 1S 1S 0 0 0 0 0 0 350 SP 2 2S 2S 0 0 0 1 1 0 3

Sodium hyposulfite all 20 2 0 0 1 1 1 0 0 2 0all SP 2 0 0 1 1 1 0 1 2 0

Sodium nitrate Schm 100 320 3 0 0 1 3 0wL 5 20 (2) 0 0 1 1 0 0 0 0wL 10 20 1 0 0 1 1 0 0 1 1 2 1 0 0wL 30 20 1 0 0 1 1 0 0 1 0wL 30 SP (1) 0 0 1 1 0 0

Sodium nitrite wL 100 20 0 0 2 2 2 1 0 0 0

Sodium perborate wL ges 20 (1) 0 0 1 1

Sodium perchlorate wL 10 20 (2) 0LS 0LS 010 SP (3) 0LS 0LS 0

Sodium peroxide wL 10 20 3 0 0 0 0 1 1 1 3 3 3wL 10 SP 3 0 0 1 0 1 1 1 3 3 3

Sodium phosphate wL 10 20 0 0 0 0 1 2 1 0 (0)10 50 0 0 (0) (0)10 SP 0 0 3 (1)

Sodium pochloride 10 25 (1) 1LS 0LS (0) (0) (0) 2 3 (1) 0 3(javel water) 10 50 (3) 1LS 0LS (0) 1 1 0 3

Sodium salicylate (Aspirin) wL ges 20 0 0

Sodium silicate ges 20 0 0 0 0 0 0 0 0 1 0 0 (2)Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 102

Page 78: Boa Bellows Guide

Medium

103

Sodium sulfate wL 10 20 3 0 0 0 0 0 0 0 0 0 0 0 010 SP 3 0 0 130 20 3 0 0 1 030 SP 3 0 0 1kg 3 0 0 1 1 0 0 0hg 3 0 0 0 0 0 0 0 1

Sodium sulfide wL 20 20 3 0 0 1 3 0 0 2 1 2 0 320 SP 3 0 0 (0) 1 0 350 SP 3 0 0 3 (0) 1 0

wL kg 20 3 (0) (0) 1 1 3 0hg 3 3 1 0 3

Sodium sulfite wL 10 20 (3) 0 0 0 (1) (3) (1) 050 20 (3) 0 0 050 SP 0 0

Sodium thiosulfate wL 1 20 1 0 0 0 0 025 20 3 0 0 0 0 025 SP 3 0L 0L 0 1

100 20 3 0 0 1 1 1 2

Sodium triphosphate wL 10 20 110 SP 125 50 1

Soft soap 20 0 0

Spinning bath <10 80 3 2 1 0 3<10 80 3 3 3 0 3

Steam fe 100 2 0 0 0 0 0 0 0 0 0 0 0 1fe 200 2 0 0 0 0 0 0 0 0 2 0 0 1tr 150 0 0 0 0 0 0 0 0 0 0 0 0 1tr 600 2 0 0 2 1

Stearic acid 100 20 1 0 0 0 0 0 0 0 1 2 1 0 0100 80 3 0 0 0 0 0 0 3100 130 3 0 0 1 0 0 0

Sugar wL 20 1 0 0 0 0 0 0 0 0 0 0wL SP 1 0 0 0 0 0 1 0 0 0

Sulphite lye 20 0 080 2 0

140 3 0

Sulphur tr 100 20 0 0 0 0 0 1 0 1 0 0Schm 100 130 (1) 0 0 3 3 (0) 0 0 3 3 3 0Schm 100 445 3 2 2 0 (0)fe 20 3 1 0 3 3 3 3 3 0

Sulphur chlorine tr 100 30 0 0LS 0LS 0 0 (0) (0) (0) 0 3tr 100 SP 0LS 0LS 0

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 103

Page 79: Boa Bellows Guide

Medium

104

Sulphur dioxide tr 100 20 0 0 0 1 0 0 0 0 0tr 100 400 1 2 0 3tr 100 800 3 3 2 3fe 20 2 0 0 1 3 1 0 1

400 3 1 1 3 0

Sulphur acid 1 20 3 1 0 0 1 1 0 0 1 0 11 70 3 1 0 2 1 0 (0)1 SP 3 1 1 1 3

10 20 3 2 1 1 1 0 2 1 110 20 3 2 1 1 1 0 2 1 110 70 3 2 2 2 2 0 (3)40 20 3 1 1 1 0 2 3 2 1 180 20 3 3 3 1 0 (1) 3 1 3 296 20 1 0 0 1 2 0 0 1 3 296 SP 3 3 3 3 3 3 3 3 3 3 3 3 3

Sulphur hydrogen tr 100 20 1 0 0 0 1 1 0 0 0 0 0 0 0H2S tr 100 100 3 0 0 0 0

tr 100 >200 3 0 0 0tr 100 500 0tr 20 3 0 0 1 0 0 0 3 2 3 0 0

Sulphur monoxyde 100 20 1 0 0 (0) (0) 1 0 1 1 0100 SP 2 0 0 (0) (0) 0

Sulphur trioxide S03 fe 100 20tr 100 20 3 3 3 2 0 0 0 0 3 0

Sulphurous acid S02 fe 200 3 2 0 3 3 0 0 0 3 3 3 0 2(Gas) fe 300 3 2 0

fe 500 3 2 0fe 900 3 3 2

Sulphurous acid wL 1 20 3 0 0 2 2 1 0 1H2S03 wL 5 20 3 0 0 1 0 1 1 1 0 1

wL 10 20 3 0 0 0 0wL ges 20 2 0 0 2 0 1 3

Tannic acid wL 5 20 2 0 0 0 0 0 0 1 0 0 05 SP 3 0 0

10 20 2 0 0 1 1 1 0 0 0 1 0 0 010 SP 3 0 050 20 3 0 0 0 0 0 1 050 SP 3 0 0

Tar 20 0 0 0 0 0 0 0 1 0 0 1SP 2 0 0 0 1 0 0 1

Tin Schm 100 300 2 0 0 3 3 3 0 3Schm 100 400 3 1 1Schm 100 500 3 3 3Schm 100 600 3 3 1

Tin chloride 20 3 1LS 1LS 3 3 0 3SP 3 3LS 3LS 1 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 104

Page 80: Boa Bellows Guide

Medium

105

Titaniuim sulphate 10 20 110 SP 1

Toluene 100 20 0 0 0 0 0 0 0 0100 SP 0 0 0 0 0 0 0 0

Tri-chloro acetic acid >10 20 3 3 050 20 3 3 0 0 050 100 3 3 1

Trilene tr 100 20 0 0L 0L 0 0 0 0 0 0tr 100 70 0L 0L 0 3tr 100 SP 0L 0L 0 0 1 1 1 3fe 20 2 0L 0L 0 0 1 2 1 3fe SP 3 1L 0L 0 0 1 2 1 3

Trinitrophenol 20 (0) 0 0 0 0 0 0 0 (0) (0) (0) 0 0200 3 0 0 0 0 0

Trinitrophenol Schm 100 150 3 3wL 3 20 3 0 0 1

25 20 3 0 0 3 (1) 3 3 3ges 20 3 0 0 3 3 3 2 0 3 3 3

Turpentine oil 100 20 0 0 0 0 1 0 0 0100 SP 1 0 0 0 1 0 0 0

Tyoglykolacid 20 1SP 1

Urea 100 20 0 0 0 0 0 0 0 0100 150 3 1 0 1 3 1 0 3

Uric acid wL konz 20 0 0 0 1 0 0 0 0 3wL konz 100 0 0 0 1 0 0 0 0 3

Urine 20 0L 0L 0 0 140 0L 0L 0

Vaseline 100 ≤SP 0 0 0 0

Vegetable soup SP 0 0

Vinegar 20 0 0 1 3 1 0SP 0 0 3 3 3 3

Vinegar acid 10 20 3 0 0 2 1 1 0 0 1 3 1 0 010 SP 3 2 0 1 1 0 0 0 220 20 3 0 0 2 1 1 0 0 0 020 SP 3 0 0 1 1 0 0 0 250 20 3 0 0 2 1 1 0 0 0 1 050 SP 3 3 0 2 1 1 0 0 3 0 280 20 3 0L 0L 1 1 0 0 1 080 SP 3 3L 0L 1 2 1 0 0 299 20 3 0L 0L 2 1 2 0 0 0 099 SP 3 1L 1L 2 1 1 0 0 0

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 105

Page 81: Boa Bellows Guide

Medium

106

Vinyl chloride 20 0 0 0 0 0400 1 1 1

WaterH20 dest. 20 0 0 0 0 0 0 0dest. SP 1 0 0 0 0 0 0 0 0 0 1River water 20 0 0 0 0 0 0 0River water SP 0 0 0 1Tap water hard ≤SP 1 0 0 0 1Tap water soft ≤SP 0 0 0 0 1 0 1Tap water alkaline ≤SP 2 0 0 0 3Pit water sour 20 1 0 0 1 1 2 2Pit water sour 20 1 0 0 2 2 3 3Mineral water 20 1 0 0 3Rainwater flowing 20 2 0 0 0 0 1Rainwater still 20 3Sweat 20 1 0 0 3Sea water 20 1 0LS 0LS 0 0 0 0 0 0 0 0 0 1

SP 2 2LS 1LS 0 0 0 0 0 1 1 0 0 3

Water condensate, pure <200 0 0 0 0 0 0 0 0 0 0 0 0plus CO2 <200 2 1 1 0 1 0plus O2 <200 2 1 0 1 0 0plus C1 <200 2 2LS 2LS 2plus NH3 <200 2 0 3 2 0

Wattle wL 20 2 0 0 0 0 0 0SP 3 0 0 0 0 0

Whiskey 20 3

Wine acidity wL 3 20 0 0 0 0 0wL 10 20 1 0 0 1 1 1 0 0 0 2 0 0 2wL 10 SP 3 0 0 2 2 2 0 1 3 3 0 2wL 25 20 0 0 0 0 0 0 2wL 25 SP 1 0 1 0 1 0 3wL 50 20 0 0 0 0 2wL 50 SP 1 0 1 0 3wL 75 20 0 0 0 0 2wL 75 SP 2 2 1 0 3wL all 1 0 3

Wine vinegar wL 5 20 0 0 0 0 0 0 1 1 1 0

Wine, white & red 20 2 0 0 2 0 0 0 3 3 3SP 3 0 0 3 0 0 0 3 3 3

Xylene 20 0 0 0 0SP 0 0 0 0

Yoghurt 0 3

Zinc Schm 100 500 3 3 3 3 3 3

Zinc chloride wL 5 20 3 3LS 2LS 1 1 1 0 0 2 3 2 0 3wL 5 SP 3 3LS 2LS 1 2 2 0 1 2 3 2 0 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 106

Page 82: Boa Bellows Guide

Medium

107

Zinc silicone sulfide wL 30 20 0wL 30 65 2wL 40 20 0wL 50 65 3

Zinc sulphate wL 10 20 2 0 0 1 1 1 0 0 1 3 1 0 1wL 25 SP 3 0 0 1 1 1 0 1 2 0 3wL hg 20 0 0 1 1 1 0 1 1 0 1wL hg SP 0 0 1 3

Anne

x

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

07-2_Korrosionstabelle_UK 20.8.2007 10:24 Uhr Seite 107

Page 83: Boa Bellows Guide

109

7.5 Personal notes

07-3_Notes 20.8.2007 10:24 Uhr Seite 109

Page 84: Boa Bellows Guide

7.6 BOA-Group/ holding companies/ agencies

BOA BKT GmbH Balg- und Kompensatoren-Technologie Lorenzstrasse 2-6 D-76297 Stutensee Phone +49 (0)7244 99-0 Fax +49 (0)7244 99-227 E-Mail [email protected] Web www.boa-bkt.com BOA AG Expansion Joints Metal Hoses and Metal Bellows Station-Ost 1 CH-6023 Rothenburg Phone +41 (0)41 289 41 11 Fax +41 (0)41 289 42 02 E-Mail [email protected] Web www.boa.ch BOA AG: subsidiaries / holding companies: Flexible Solutions Group France SAS Immeuble Odyssée Bâtiment D 2-12 Chemin des Femmes F-91300 MASSY Phone +33 (0)1 69 10 88 29 Fax +33 (0)1 69 34 48 56 E-Mail [email protected] Web www.fsg-france.fr BOA Nederland B.V. Postbus 214 NL-5000 AE Tilburg Phone +31 (0)13 535 06 25 Fax +31 (0)13 536 40 85 E-Mail [email protected] Web www.boanederland.nl American BOA Inc. P.O. Box 1301 US-Cumming, Georgia 30028 Phone +1 800 856 4580 Fax +1 770 889 0661 E-Mail [email protected] Web www.americanboa.com Agencies: in all important industrial countries.

BOA Metallschlauch GmbH Magdeburger Str. 2 D-06484 Ditfurt Phone +49 (0)3946 811 269 Fax +49 (0)3946 811 270 E-Mail [email protected] Web www.boa-metallschlauch.de

Famas S.A. ul. Kopernika 36 PL-90 553 Lódz Phone +48 42 6648 400 Fax +48 42 6648 401 E-Mail [email protected] Web www.famas.com.pl

Page 85: Boa Bellows Guide

BOA Holding GmbH Lorenzstrasse 2-6 D-76297 Stutensee Germany Phone +49 (0)72 44 99 0 Fax +49 (0)72 44 99 227 [email protected] www.boagroup.com

Expansion Joints Metal Hoses, Metal Bellows

Station-Ost 1 CH-6023 Rothenburg, Switzerland

Phone +41 (0)41 289 41 11 Fax +41 (0)41 289 42 02

[email protected]

www.boa.ch

BOA Group: Sites in: Germany: Stutensee, Ditfurt Switzerland: Rothenburg USA: Cumming GA France: Massy, Fère-en-Tardenois, Chassieu Netherlands: Tilburg Great Britain: Surrey Brazil: Embu-Sao Paolo Argentina: Buenos Aires Austria: Wien Czechia: Plzen Poland: Lodz China: Shanghai

11-0

5/gl

i