blunt-body boundary-layer transition and heat transfer

67
NASA Technical Paper 1139 Effects of Mass Addition on Blunt-Body Boundary-Layer Transition and Heat Transfer George E. Kaattari Ames Research Center Moffett Field, California NASA National Aeronautics and Space Administration Scientific and Technical Information Office 1978

Upload: others

Post on 28-May-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Blunt-Body Boundary-Layer Transition and Heat Transfer

NASA Technical Paper 1139

Effects of Mass Addition on Blunt-Body Boundary-Layer Transition and Heat Transfer

George E. Kaattari

Ames Research Center Moffett Field, California

NASA National Aeronautics and Space Administration

Scientific and Technical Information Office

1978

Page 2: Blunt-Body Boundary-Layer Transition and Heat Transfer

SYMBOLS

A

bS

R

B'

B -

CS

cf

C P

k

in

;II, m

m*

-

-

P

40

40s

4,,

4s,4 Re

r

area-averaged mass-flow coefficient on porous model surface

cross section area of porosity probe tube

area-averaged function of local mass-flow coefficient and surface pressure on porous model surface

;AH stagnation point mass-flow heating rate parameter, - Go

mass-flow heating rate parameter, reference 9

&AH area-averaged mass-flow heating rate parameter, -7

local mass-flow coefficient on porous model surface

skin friction coefficient

specific heat of air or calorimeter slug

roughness height

local mass-flow addition rate

free-stream mass-flow rate

area-averaged mass-flow addition rate to a given location, s m

mass-flow rate ratio, F ma3

pressure

reference heat transfer coefficient (stagnation point value on hemisphere model at I% = 0)

local heat transfer coefficient at s with - = 0

area-averaged heat transfer coefficient up to location s on model surface with - = 0

local heat transfer coefficient at s with - h # 0

Reynolds number

normal distance to point on model surface from axis of symmetry

i

Page 3: Blunt-Body Boundary-Layer Transition and Heat Transfer

r a d i a l d i s t a n c e from model apex ( s t a g n a t i o n p o i n t ) measured a l o n g model s u r f a c e

t i m e , sec

t empera tu re , K

t u r b u l e n c e i n t e n s i t y , r e f e r e n c e 8

h e a t - t r a n s f e r d r i v i n g p o t e n t i a l , cp(Ttt - Tw)

momentum t h i c k n e s s

v i s c o s i t y of a i r

a i r d e n s i t y o r c a l o r i m e t e r d e n s i t y

c a l o r i m e t e r s l u g l e n g t h

az imutha l a n g l e on model s u r f a c e

s t a g n a t i o n p o i n t h e a t i n g r a t e r a t i o ,

f u n c t i o n of B ' , r e f e r e n c e 9

h e a t i n g ra te r a t i o , T--

40

4s

% Subs cr i p ts :

D

e x

i n

l a m

st

t r n s

t t

t u r b

W

u)

model d i ame te r

e x t e r n a l s u r f a c e of model

i n t e r n a l s u r f a c e of model

1 a m i n a r

s t a g n a t i o n p o i n t

t r a n s i t i o n p o i n t on model s u r f a c e

t u n n e l t o t a l c o n d i t i o n

t u r b u l e n t

model w a l l o r s u r f a c e

f r ee - s t r eam c o n d i t i o n

i i

Page 4: Blunt-Body Boundary-Layer Transition and Heat Transfer

EFFECTS OF MASS ADDITION ON BLUNT-BODY BOUNDARY-LAYER

TRANSITION AND HEAT TRANSFER

George E. K a a t t a r i

Ames Research Center

SUMMARY

H e a t - t r a n s f e r d a t a w e r e o b t a i n e d on b l u n t models a t Mach number 7.32 and f ree-s t ream Reynolds numbers i n t h e range of 0 . 6 ~ 1 0 ~ t o 5 . 2 ~ 1 0 ~ t o i n v e s t i - g a t e t h e e f f e c t of a b l a t i o n on boundary-layer t r a n s i t i o n . A b l a t i o n w a s simu- l a t e d by m a s s a d d i t i o n of a i r through t h e porous s u r f a c e of t h e models. The r a t i o of t h e mass a d d i t i o n ra te t o t h e free-s t ream m a s s f low w a s v a r i e d from 0 t o 0 .5 . The models were 17 .8 c m i n diameter and c o n s i s t e d of hemispheres , s p h e r i c a l segments, and b l u n t e d 60" cones.

The d a t a w e r e compared w i t h v a r i o u s a p p l i c a b l e boundary-layer codes i n t h e laminar and t r a n s i t i o n a l f low regimes. Empir ical h e a t i n g ra te d a t a cor - r e l a t i o n s were developed f o r t h e laminar and t u r b u l e n t f low regimes.

INTRODUCTION

V e h i c l e s e n t e r i n g p l a n e t a r y atmospheres a t h i g h speeds are enveloped by high-temperature shock l a y e r s . A t s u f f i c i e n t l y h i g h s p e e d s , c e r t a i n s u r f a c e materials may a b l a t e from t h e v e h i c l e i n gaseous form and p r o t e c t t h e v e h i c l e a t t h e expense of s u r f a c e material mass l o s s . The t r a n s f e r r e d h e a t from t h e high-temperature shock envelope is expended by c o n v e r t i n g a t h i n l a y e r of t h e v e h i c l e s u r f a c e i n t o h o t a b l a t i v e p r o d u c t s t h a t are s u b s e q u e n t l y c a r r i e d away by t h e e x t e r n a l f low f i e l d . Problems t h e n arise i n p r e d i c t i n g t h e e f f e c t of a b l a t i o n o f h e a t t r a n s f e r ( p a r t i c u l a r l y i n t h e t u r b u l e n t f low regime) and i n p r e d i c t i n g t h e e f f e c t of a b l a t i o n on t h e t r a n s i t i o n from l a m i n a r t o t u r b u l e n t f low.

Much e x p e r i m e n t a l and t h e o r e t i c a l s t u d y h a s been devoted t o p r e d i c t i n g laminar h e a t t r a n s f e r i n t h e presence of a b l a t i o n f o r b o t h b l u n t and s l e n d e r c o n f i g u r a t i o n s . These s t u d i e s ( r e f s . 1-5) i n d i c a t e a r e d u c t i o n i n h e a t t r a n s - f e r and have produced c o r r e l a t i o n s and theory r e l a t i n g t h e h e a t t r a n s f e r d e c r e a s e as a f u n c t i o n of t h e a b l a t i o n r a t e . Along w i t h a b l a t i o n , t h e e f f e c t s of s u r f a c e roughness and f ree-s t ream turbulence on t r a n s i t i o n a l and t u r b u l e n t f low have been s t u d i e d ( r e f s . 6-9). Some r e s u l t s of t h e s e i n v e s t i g a t i o n s are compared w i t h t h e r e s u l t s of t h e p r e s e n t i n v e s t i g a t i o n .

S t u d i e s of h e a t t r a n s f e r i n t h e l i t e r a t u r e are l a r g e l y r e s t r i c t e d t o low a b l a t i o n rates. The p r e s e n t i n v e s t i g a t i o n involves massive rates , approaching t h o s e a n t i c i p a t e d f o r J o v i a n atmosphere e n t r y . The pr imary purpose , a long

Page 5: Blunt-Body Boundary-Layer Transition and Heat Transfer

w i t h provid ing boundary-layer t r a n s i t i o n d a t a , is t o de te rmine t o what e x t e n t massive a b l a t i o n a f f e c t s t u r b u l e n t h e a t t r a n s f e r rates. This a s p e c t o f a b l a - t i o n i s impor tan t b o t h i n p l a n e t a r y e x p l o r a t i o n and i n m i l i t a r y a p p l i c a t i o n s i n c e , i f t h e h e a t i n g rate i s s i g n i f i c a n t l y i n c r e a s e d , nonuniform h e a t s h i e l d e r o s i o n and a t t e n d a n t thermal stress and aerodynamic s t a b i l i t y problems may ar ise .

EXPERIMENTAL CONSIDERATIONS

Models

The models used c o n s i s t e d of t h r e e 6.35-mm-thick porous, s t a i n l e s s s teel h e a d e r s i n t h e forms of a hemisphere, a 60" b l u n t cone, and a s p h e r i c a l seg- ment, as shown i n f i g u r e 1. The h e a d e r s were made i n t e r c h a n g e a b l e t o a s teel p r e s s u r e chamber t o which a i r w a s l e d through p i p i n g . The assembled h e a d e r , chamber, and s u p p o r t system a r e shown i n f i g u r e 2 . Each header w a s provided w i t h 15 t o 16 c a l o r i m e t e r s . A c a l o r i m e t e r ( f i g . 1) c o n s i s t e d of a 1.6-mm- d iameter , 1.27-mm-long copper s l u g t i g h t l y f i t t e d i n t o a c a v i t y a t t h e end of a 2.4-mm-diameter, 13.7-mm-long i n s u l a t i n g dowel. A chromel-constantan junc- t i o n w a s peened t o t h e b a s e of t h e s l u g and t h e w i r e l e a d s passed through t h e dowel t o a male plug. t h a t t h e dowel and s l u g s u r f a c e were f l u s h t o t h e header e x t e r n a l s u r f a c e . Each header w a s a l s o provided w i t h f i v e 1.6-mm s t a i n l e s s s tee l t u b e p r e s s u r e t a p s . Figure 1 g i v e s t h e l o c a t i o n of t h e c a l o r i m e t e r s and p r e s s u r e t a p s f o r each header . Although t h e f i g u r e i n d i c a t e s s p a c i n g of t h e c a l o r i m e t e r s i n a s i n g l e r a d i a l p l a n e , they were a c t u a l l y a r r a n g e d i n a sp i r a l 360' p a t t e r n t o reduce "downwind" i n t e r f e r e n c e e f f e c t s . Not shown i n f i g u r e 1 are thermo- c o u p l e s t h a t were i n t e r d i g i t a t e d w i t h t h e c a l o r i m e t e r l o c a t i o n s and s p o t t e d t o t h e i n t e r n a l s u r f a c e of t h e header . These thermocouples monitored t h e e n t e r - i n g a i r tempera ture d u r i n g t h e tests. The p r e s s u r e t a p s were l o c a t e d i n a s i n g l e r a d i a l p l a n e as i n d i c a t e d .

Each c a l o r i m e t e r w a s p r e s s - f i t t e d t o t h e header h o l e SO

The models were i n t e n d e d t o have uniform p o r o s i t y . No a t t e m p t w a s made t o " t a i l o r 1 ' header p o r o s i t y t o s i m u l a t e a b l a t e d mass a d d i t i o n ra te d i s t r i b u - t i o n of a c t u a l a tmospher ic e n t r y . P r e t e s t p o r o s i t y s u r v e y s of t h e h e a d e r s i n d i c a t e d t h e presence of manufac tur ing i m p e r f e c t i o n s r e s u l t i n g i n d e v i a t i o n from uniform p o r o s i t y . F i g u r e 3 shows a p l o t of r e p r e s e n t a t i v e mass-flow ra te v a r i a t i o n s w i t h r a d i a l d i s t a n c e s determined from t h e p o r o s i t y s u r v e y s . Except f o r d e f i c i e n c i e s n e a r t h e s t a g n a t i o n r e g i o n e x i s t i n g f o r t h e hemispheri- c a l models and t h e c o n i c a l models ( n o t shown), t h e p o r o s i t y d e v i a t i o n w a s g e n e r a l l y w i t h i n *lo% of t h e mean v a l u e .

I n i t i a l tests were made t o check o u t t h e systems and t o de te rmine t h e f e a s i b i l i t y of t h e thermocouple i n s t a l l a t i o n . Some model d e g r a d a t i o n o c c u r r e d d u r i n g t h e s e i n i t i a l t e s t s . The h e m i s p h e r i c a l and s p h e r i c a l segment models were r e f u r b i s h e d , and t h e c o n i c a l model w a s r e p l a c e d s i n c e t h e o r i g i n a l model proved to have a n e a r l y impervious nose s e c t i o n . replacement r e s u l t e d i n models w i t h somewhat d i f f e r e n t p o r o s i t y d i s t r i b u t i o n s . The a l t e r e d models were t e s t e d t o a h i g h e r mass-flow ra te range i n t h e second

The r e f u r b i s h i n g and

2

Page 6: Blunt-Body Boundary-Layer Transition and Heat Transfer

phase of t h e i n v e s t i g a t i o n . models are r e f e r r e d t o by phase number, t h a t i s , by model 1 o r model 2.

To d i s t i n g u i s h the r e s u l t s p r e s e n t e d h e r e i n , t h e

T e s t Condi t ions and Procedures

The tests were performed i n t h e A m e s 3.5-Foot Hypersonic Wind Tunnel a t Mach number 7.32. A d e s c r i p t i o n of t h e f a c i l i t y and i t s o p e r a t i o n s appea r s i n r e f e r e n c e 11. The Reynolds number, based on model d i ame te r , ranged from 0 . 6 ~ 1 0 ~ t o 5 . 2 ~ 1 0 ~ and t h e tempera ture from 660 t o 880 K .

A test run e s t a b l i s h e d a predetermined flow rate of a i r through t h e model a t about 27" C , t h e flow be ing gaged w i t h a s w i r l m e t e r . The model w a s then i n s e r t e d i n t o t h e t u n n e l windstream f o r about 1-1/2 s e c , du r ing which i n t e r v a l a shadowgraph p i c t u r e of t h e model was taken and t h e t ime-temperature h i s t o r y of t h e model c a l o r i m e t e r s w a s recorded. The p r e s s u r e t r a n s d u c e r s reached e q u i l i b r i u m w e l l w i t h i n t h e i n s e r t i o n t i m e . The mass-flow ra te r a t i o s w i t h r e s p e c t t o f ree-s t ream flow v a r i e d from 0.0 t o a maximum v a l u e of about 0.5 f o r cone model 2 a t t h e lower Reynolds number range .

Data Reduction

Mass-addition rate distribution- P r e t e s t p o r o s i t y su rveys of t h e model heade r s w e r e r e q u i r e d t o de te rmine mass-addi t ion f low rates as a f u n c t i o n of r a d i a l l o c a t i o n , s. Th i s w a s accomplished by p r e s s u r i z i n g t h e chamber and h o l d i n g t o t h e e x t e r n a l header s u r f a c e a 6.4-mm-diameter " s n i f f e r " t u b e a t t a c h e d t o a low-capaci ty f l o a t m e t e r . F loa tmeter r ead ings w e r e t aken a t 6.4-mm i n t e r v a l s i n t h e r a d i a l d i r e c t i o n and a t 5' i n t e r v a l s i n t h e az imutha l d i r e c t i o n . The l o c a l conductance cs a t each l o c a t i o n on t h e header s u r f a c e w a s t h e n e v a l u a t e d w i t h t h e equa t ion

2 h = csA(Pin - P2x) s

where

fi = f low rate measured by t h e f l o a t m e t e r S

A = area of t h e " s n i f f e r " t ube

P = chamber p r e s s u r e

P

i n

e x = e x t e r n a l (atmosphere) p r e s s u r e

The l o c a l conductances were a r e a - i n t e g r a t e d t o de te rmine t h e mean conduc- T h i s conductance c o e f f i c i e n t w a s then checked w i t h a h igh-capac i ty t a n c e .

v e n t u r i meter by p a s s i n g a i r through t h e header . The r e s u l t i n g flow rate w a s compared w i t h t h a t c a l c u l a t e d by equa t ion (1) u s i n g t h e mean conductance and t o t a l heade r area. The comparison gave s a t i s f a c t o r y agreement f o r a wide

3

Page 7: Blunt-Body Boundary-Layer Transition and Heat Transfer

range of chamber p r e s s u r e s .

cs ventur i -meter measurements.

P r o p o r t i o n a l a d j u s t m e n t s t o t h e l o c a l v a l u e s of were made t o b r i n g t h e c a l c u l a t e d f low ra te i n t o e x a c t agreement w i t h t h e

The mass-addi t ion f low rate d i s t r i b u t i o n used i n t h i s i n v e s t i g a t i o n w a s def ined as t h e a r e a - i n t e g r a t e d u n i t mass f low t o t h e r a d i a l p o s i t i o n s of i n t e r e s t . The m a s s f low rate d e t e r m i n a t i o n s f o r t h e tes t r u n s involved a v a r i a b l e e x t e r n a l p r e s s u r e Pex c i e n t c . These were t a k e n i n t o account by e q u a t i o n ( 2 ) .

as w e l l as t h e v a r i a b l e conductance c o e f f i -

S

i n = a P T - b P 2 s i n s t t -

where P t t i s t h e t u n n e l t o t a l p r e s s u r e . The c o e f f i c i e n t s as and bs were t a b u l a t e d a s f u n c t i o n s of r a d i a l l o c a t i o n s , dependent on t h e l o c a l conductance of each model and t h e e x t e r n a l p r e s s u r e s u i t a b l y r e l a t e d t o t h e t u n n e l t o t a l p r e s s u r e . D e t a i l e d d e r i v a t i o n o f e q u a t i o n ( 2 ) i s g iven i n t h e appendix.

The mass-flow rate d i s t r i b u t i o n s f o r a l l test r u n s of t h e i n v e s t i g a t i o n , c a l c u l a t e d w i t h e q u a t i o n (2 ) , are p r e s e n t e d i n t a b l e s 1 t o 4.

Heating ra te distribution- The h e a t t r a n s f e r rates were c a l c u l a t e d from c a l o r i m e t e r tempera ture v e r s u s t i m e t r a n s i e n t s recorded w h i l e t h e model was i n t h e tunnel stream. The u s u a l formula was a p p l i e d , namely

Because of s l i g h t misal ignments i n p o s i t i o n i n g t h e c a l o r i m e t e r s u r f a c e s f l u s h t o t h e e x t e r n a l header s u r f a c e , r e p e a t a b l e sca t te r i n t h e h e a t t r a n s - f e r rates w a s no ted . The magnitude of t h e scat ter w a s determined by comparing t h e no-flow r e s u l t s of t h e p r e s e n t tests w i t h unpubl i shed test r e s u l t s of i d e n t i c a l l y p r o p o r t i o n e d , s o l i d t h i n - s k i n models t e s t e d i n t h e same t u n n e l and f low c o n d i t i o n s . C o r r e c t i o n f a c t o r s w e r e determined f o r each c a l o r i m e t e r such t h a t the a b l a t i o n model r e s u l t s a t t h e c o n d i t i o n c f no-flow were made t o a g r e e w i t h those o f t h e s o l i d t h i n - s k i n models.

Transition locatio* The t e s t e d models had a d e c r e a s i n g h e a t i n g ra te d i s - t r i b u t i o n w i t h d i s t a n c e s from t h e s t a g n a t i o n p o i n t a t t h e lower Reynolds numbers and a t near-zero m a s s a d d i t i o n ra tes . T h i s d i s t r i b u t i o n i s c h a r a c t e r - i s t i c of l aminar h e a t i n g f o r t h e model shapes c o n s i d e r e d . The t r a n s i t i o n from laminar t o t u r b u l e n t f low a t c e r t a i n i n c r e a s e d m a s s a d d i t i o n rates w a s made e v i d e n t by sudden i n c r e a s e s i n h e a t i n g rates o c c u r r i n g beyond a d e f i n i t e l o c a - t i o n s. This l o c a t i o n o r t r a n s i t i o n p o i n t strns i n t h e p r e s e n t i n v e s t i g a - t i o n was d e f i n e d as t h e l a s t l o c a t i o n beyond which p o i n t a r e v e r s a l t o an i n c r e a s e d h e a t i n g r a t e occurred . The t r a n s i t i o n p o i n t i s e v i d e n t i n f i g - u r e s 4 ( a ) - ( e ) . h e a t i n g r a t e d i s t r i b u t i o n s a r e l a b e l e d i n f i g u r e 4 ( c ) where they are p a r t i c u l a r l y w e l l d e f i n e d .

The t r a n s i t i o n p o i n t and o t h e r s i g n i f i c a n t f e a t u r e s of t h e

4

Page 8: Blunt-Body Boundary-Layer Transition and Heat Transfer

RESULTS AND DISCUSSION

Experiment

The h e a t - t r a n s f e r d i s t r i b u t i o n r e s u l t s f o r t h e range of v a r i a b l e s t es t are p r e s e n t e d i n f i g u r e s 4 t o 9 i n t h e form of normalized h e a t - t r a n s f e r c o e f f i c i e n t s p l o t t e d as a f u n c t i o n o f d i s t a n c e l o c a t i o n of t h e models. A nominal mass a d d i t i o n ra te r a t i o parameter m* i s a s s o c i a t e d w i t h each c u r v e of t h e f i g u r e s . f low v a r i a b l e s are a l s o i n d i c a t e d . The r e f e r e n c e h e a t - t r a n s f e r c o e f f i c i e n t 4, s p h e r e w i t h no m a s s a d d i t i o n a t t h e t e s t c o n d i t i o n s of each r u n .

s from t h e s t a g n a t i o n p o i n t

The t e s t numbers and p e r t i n e n t

i s t h e t h e o r e t i c a l s t a g n a t i o n p o i n t v a l u e f o r a 17.8-cm-diameter hemi-

Table 1 c o n t a i n s t a b u l a t i o n s of t h e mass a d d i t i o n f low ra te d i s t r i b u t i o n s - fi as a f u n c t i o n of s f o r each run presented i n f i g u r e s 4 t o 9. The v a l u e of t h e f ree-s t ream mass-flow rate venience i n d e t e r m i n i n g t h e l o c a l mass a d d i t i o n flow ra te r a t i o (E* = &/&) i f d e s i r e d .

& of each r u n i s a l s o l i s t e d f o r con-

Hemispherical models- The r e s u l t s f o r hemispher ica l model 1 are p r e s e n t e d i n f i g u r e 4 . The mass a d d i t i o n i n i t i a l l y decreased t h e l eve l of h e a t i n g o v e r t h e e n t i r e model s u r f a c e w i t h i n c r e a s i n g m and i n d i c a t e d t h e presence of a laminar boundary l a y e r . - m*, a t r a n s i t i o n t o a t u r b u l e n t boundary l a y e r o c c u r r e d , a s i n d i c a t e d by a r a p i d i n c r e a s e i n h e a t - i n g rates beginning a t d e f i n i t e l o c a t i o n s s as p r e v i o u s l y d e s c r i b e d ( a t s = 2.5 cm i n f i g . 4 ( a ) and a t s = 5.8 cm i n f i g . 4 ( c ) ) . The t r a n s i - t i o n l o c a t i o n s h i f t e d p r o g r e s s i v e l y t o lower v a l u e s of v a l u e s of m*, as is p a r t i c u l a r l y e v i d e n t from f i g u r e s 4 ( c ) and 4 ( e ) . Con- t i n u e d i n c r e a s e s i n E* i n f i g u r e 4 ( d ) . Note t h a t t h e h e a t i n g rates a t , and n e a r , t h e s t a g n a t i o n p o i n t s = 0 a r e r e l a t i v e l y i n s e n s i t i v e to E*. T h i s phenomenon w a s a l s o noted i n a s imi l a r i n v e s t i g a t i o n of a hemisphere r e p o r t e d i n r e f e r e n c e 1.

* Then, w i t h f u r t h e r i n c r e a s e s i n

s w i t h i n c r e a s i n g

u l t i m a t e l y decreased t h e h e a t i n g ra tes , as i s shown

The h e a t i n g r a t e d i s t r i b u t i o n s f Q r hemispher ica l model 2 are p r e s e n t e d i n f i g u r e 5. Most of t h e d a t a were taken a t h i g h e r m a s s a d d i t i o n flow r a t e r a t i o s m* t h a n w i t h model 1. Tests w i t h model 2 w e r e a l s o r u n a t a lower Reynoldsnumber ( 0 . 5 ~ 1 0 ~ ) . models ( t a b l e s 1 and 2 ) d i f f e r s somewhat, model 2 b e i n g less permeable t o f low n e a r t h e s t a g n a t i o n p o i n t . i t y a t r a t e i n t h a t v i c i n i t y . The t r a n s i t i o n p o i n t movement w i t h i n c r e a s i n g E* is a p p a r e n t i n f i g u r e 5 ( e ) .

The mass a d d i t i o n ra te d i s t r i b u t i o n of t h e two

Model 2 a l s o had a l o c a l f low ra te i r r e g u l a r - s % 1 . 3 c m , which caused a conspicuous p e r t u r b a t i o n i n t h e h e a t i n g

Spherical segment models- The r e s u l t s f o r t h e s p h e r i c a l segment models are p r e s e n t e d i n f i g u r e 6 . The e f f e c t of small n e g a t i v e mass a d d i t i o n rates, shown i n t h e d a t a of f i g u r e s 6 ( a ) and 6 ( c ) , causes l a r g e i n c r e a s e s i n h e a t i n g rates, undoubtedly due t o p a r t i a l i n s p i r a t i o n of t h e oncoming h o t airstream. P o s i t i v e v a l u e s of mass a d d i t i o n a f f e c t e d t h e h e a t t r a n s f e r i n a s i m i l a r manner as t h a t n o t e d f o r t h e hemispher ica l models. c a l model, however, no p r o g r e s s i v e movement toward t h e s t a g n a t i o n r e g i o n

I n t h e case of t h e s p h e r i -

5

Page 9: Blunt-Body Boundary-Layer Transition and Heat Transfer

occurred a t t h e lowes t Reynolds numbers ( f i g . 6 ( a ) ) and the t r a n s i t i o n loca - t i o n became e s t a b l i s h e d a t and remained f i x e d f o r v a l u e s of - m* from 0.018 t o 0.079. A p e r c e p t i b l e s h i f t of t h e t r a n s i t i o n p o i n t from s = 3.6 c m t o s = 2.5 cm occur s i n t h e range of m* p r e s e n t e d i n t h e i n t e r m e d i a t e Reynolds number range ( f i g . 6 ( b ) ) . data (fig. 6 ( c ) ) e x h i b i t t h e sane behav io r as t h o s e rjf f i g u r e 6b; however, c a l o r i m e t e r ma l func t ion p rec luded d e f i n i t e f i x e s f o r t h e t r a n s i t i o n l o c a t i o n . The l a r g e i n c r e a s e i n h e a t i n g rate i n t h e s t a g n a t i o n r e g i o n s a t Reynolds number 4 . 9 3 ~ 1 0 ~ w i t h E* = 0.004 (round symbols, f i g . 6 ( c ) ) w a s p robab ly due t o combined e f f e c t s of mass a d d i t i o n and t u n n e l f r ee - s t r eam t u r b u l e n c e s i n c e , a t t h i s Reynolds number, enhanced h e a t i n g rates were a l s o found a t - m* = 0 segment model (dashed- l ine c u r v e ) . The s p h e r i c a l segment model d i d n o t e x h i b i t t h e s t a g n a t i o n p o i n t h e a t i n g ra te i n s e n s i t i v i t y t o mass a d d i t i o n t o t h e degree noted f o r t h e h e m i s p h e r i c a l models.

s = 3 . 3 cm

T h e l a r g e s t Reynolds number

i n p r e l i m i n a r y t e s t s of a t h i n - s k i n nonporous v e r s i o n of t h e s p h e r i c a l

The h e a t i n g ra te d i s t r i b u t i o n s f o r t h e s p h e r i c a l segment model 2 are pre- s en ted i n f i g u r e 7 . Model 2 g e n e r a l l y e x h i b i t e d h i g h e r h e a t i n g rates near t h e s t a g n a t i o n p o i n t t h a n d i d model 1 under s i m i l a r f low c o n d i t i o n s . The d i f f e r e n c e i n h e a t i n g rates w a s p robably due t o d i f f e r e n c e s i n t h e mass add i - t i o n r a t e d i s t r i b u t i o n s between t h e models ( t a b l e s 2 and 4 ) . Model 2 had a somewhat i r r e g u l a r mass f low d i s t r i b u t i o n , w i t h minimum v a l u e s n e a r s = 0. Model 1 had a n e a r l y c o n s t a n t mass f low d i s t r i b u t i o n ove r t h e e n t i r e model s u r f a c e . The nonuniform mass a d d i t i o n ra te d i s t r i b u t i o n o f model 2 may have caused i t s somewhat ear l ie r t r a n s i t i o n t o t u r b u l e n t f low.

Conical models- The test r e s u l t s f o r c o n i c a l model 1 are p r e s e n t e d i n f i g u r e 8. The e f f e c t s of mass a d d i t i o n on t h e h e a t i n g ra te d i s t r i b u t i o n f o l - lowed t h e p a t t e r n o f t h e h e m i s p h e r i c a l models. The t r a n s i t i o n p o i n t moved forward ( towards s = 0) w i t h i n c r e a s i n g v a l u e s of m* ( f i g s . 8 ( a ) , 8 ( c ) , and 8 ( e ) ) . Large h e a t i n g ra te i n c r e a s e s r e s u l t e d when t r a n s i t i o n - t o - t u r b u l e n t f low was a t t a i n e d a t t h e l a r g e r Reynolds numbers ( f i g . 8(c) , r u n 63C1 and f i g . 8 ( e ) , r u n 70C1). The r ange of s which w a s r e l a t i v e l y imperv ious t o f low is noted (0 < s < 3.4) i n f i g u r e 8 . However, t h e r e i s a s m a l l e f f e c t of m a s s "leakage" i n t h i s r e g i o n which, a t t h e h i g h e s t Reynolds number ( f i g 8 ( e ) ) , w a s s u f f i c i e n t t o cause e a r l y t r a n s i t i o n t o t u r b u l e n t f low ( r u n s 7 1 C 1 and 73C1).

The h e a t i n g rate d i s t r i b u t i o n s f o r cone model 2 are p r e s e n t e d i n f i g u r e 9 . Comparison of t h e d a t a between models 1 and 2 a t approximate ly t h e same flow c o n d i t i o n s ( run 45C1 and 42C2) i n d i c a t e s t u r b u l e n t f low f o r model 2 and t r a n s i t i o n a l f low f o r model 1. The d i f f e r e n c e s i n h e a t t r a n s f e r rates between t h e models m u s t t hen be due t o g r o s s d i f f e r e n c e s i n mass a d d i t i o n ra te d i s t r i b u t i o n s ( t a b l e s 5 and 6 ) . Model 1 had an n e a r l y impervious nose sec- t i o n ; model 2 w a s porous ove r t h e e n t i r e s u r f a c e . Table I i n d i c a t e s , however, t h a t t h e mass flow rate d i s t r i b u t i o n f o r model 2 v a r i e d i n an i r r e g u l a r manner. A p a r t i c u l a r l y "high spot ' ' occu r red a t T h i s i s r e f l e c t e d i n t h e h e a t i n g rate d a t a o f f i g u r e 9 by a s u b s t a n t i a l l y reduced h e a t i n g rate a t t h i s l o c a t i o n . It should be c l a r i f i e d t h a t t h e i r r e g u l a r mass f low d i s t r i b u t i o n of model 2 w a s i n respect t o az imutha l l o c a t i o n . The r a d i a l o r s - w i s e d i s t r i - b u t i o n w a s f a i r l y uniform ups t ream o f each c a l o r i m e t e r l o c a t i o n ; t h u s , "h igh

s = 1 . 2 7 cm.

6

Page 10: Blunt-Body Boundary-Layer Transition and Heat Transfer

spo t s ' ' of mass a d d i t i o n w e r e on ly apparent l o c a l l y and w e r e n o t i n s t r u m e n t a l i n promoting e a r l y f low t r a n s i t i o n .

C o r r e l a t i o n s

The r e s u l t s of t h e i n v e s t i g a t i o n w e r e examined and a t t e m p t s were made t o c o r r e l a t e t h e r e s u l t s . Limited comparisons were made w i t h t h e r e s u l t s of o t h e r i n v e s t i g a t i o n s .

Laminar heating rates- A semiempir ica l method f o r c o r r e l a t i n g t h e e f f e c t of mass a d d i t i o n on laminar h e a t t r a n s f e r d i s t r i b u t i o n is desc r ibed and com- pared w i t h a more s o p h i s t i c a t e d method and with expe r imen ta l r e s u l t s of t h e p r e s e n t i n v e s t i g a t i o n .

The e f f e c t of mass a d d i t i o n on s t a g n a t i o n p o i n t h e a t i n g ( r e f . 2 ) i s g e n e r a l l y w e l l p r e d i c t e d f o r laminar flow by

( 4 ) = 1 - 0 .72B + 0.13B2

The t e r m $ i s t h e r a t i o of t h e h e a t t r a n s f e r c o e f f i c i e n t G s a t t h e s t a g n a t i o n p o i n t i n t h e presence of mass a d d i t i o n w i t h respect t o t h e h e a t t r a n s f e r c o e f f i c i e n t Go w i t h no m a s s a d d i t i o n . The independent v a r i a b l e B = I ~ I A H / ~ ~ i s t h e mass a d d i t i o n parameter . Equat ion ( 4 ) w a s found t o app ly t o l o c a t i o n s o t h e r t h a n t h e s t a g n a t i o n p o i n t when t h e t e r m $ w a s r e d e f i n e d as $ = G s / G O s , o r t h e r a t i o of t h e h e a t t r a n s f e r c o e f f i c i e n t a t l o c a t i o n s i n t?;e p re sence of m a s s a d d i t i o n w i t h r e spec t t o t h e c o e f f i c i e n t a t t h e same l o c a t i o n w i t h no mass a d d i t i o n . The m a s s a d d i t i o n parameter B i s modi f ied t o B = @IH/GOs. The term & i s t h e area-averaged mass-addi t ion ra te t o t h e l o c a t i o n s and 1/zlOs i s t h e area-averaged, i n v e r s e h e a t t r a n s f e r c o e f f i -

c i e n t (no mass a d d i t i o n ) t o t h e same l o c a t i o n

- -

d s tSr ;los ssr ds 0

Equat ion ( 4 ) i n t h e modif ied form w a s t e s t e d f o r t h e hemisphe r i ca l model by c o r r e l a t i n g s u r f a c e h e a t i n g rates generated w i t h t h e boundary-layer code r e p o r t e d i n r e f e r e n c e 5. The r e s u l t s are shown i n f i g u r e 1 0 ( a ) f o r v a r i o u s m a s s a d d i t i o n r a t e d i s t r i b u t i o n s . The agreement is cons ide red good. Some small second-order d e v i a t i o n s from p e r f e c t agreement are a p p a r e n t .

Exper imenta l ly determined s u r f a c e hea t ing d a t a f o r t h e hemisphe r i ca l models were s i m i l a r l y c o r r e l a t e d w i t h equat ion ( 4 ) . The r e s u l t s are shown i n f i g u r e 1 0 ( b ) . Note t h a t t h e conspicuous p e r t u r b a t i o n s i n t h e h e a t t r a n s - f e r c o e f f i c i e n t s of model 2 a t s % 1 . 7 cm (shown p r e v i o u s l y i n f i g . 5) do n o t impai r t h e c o r r e l a t i o n of f i g u r e 10 (b ) ( s o l i d symbols) .

7

Page 11: Blunt-Body Boundary-Layer Transition and Heat Transfer

The c o r r e l a t i o n of t h e h e a t i n g d a t a o v e r t h e s p h e r i c a l segment model s u r f a c e s w i t h modi f ied e q u a t i o n ( 4 ) i s shown i n f i g u r e l O ( c ) . G e n e r a l l y f a i r agreement i s i n d i c a t e d e x c e p t f o r t h e d a t a o f r u n 97SS2.

The d a t a of c o n i c a l model 1 ( f i g . 1 0 ( d ) ) c o r r e l a t e s w e l l , w i t h t h e except inn of some d a t a p o i n t s o f r u n 45C1 and an i s o l a t e d d a t a p c i n t =f r u n 63C1. Only t h e d a t a o f model 1 were c o n s i d e r e d s i n c e most of t h e model 2 d a t a w e r e taken a t h i g h mass-addi t ion rates where t r a n s i t i o n o c c u r r e d c l o s e t o t h e s t a g n a t i o n p o i n t .

No e f f e c t of Reynolds number w a s a p p a r e n t i n t h e c o r r e l a t i o n s of t h e d a t a of f i g u r e s 10.

AnomaZous stagnation point heating- I n t h e e x p e r i m e n t a l r e s u l t s , t h e h e a t i n g rates a t t h e s t a g n a t i o n p o i n t w e r e r e l a t i v e l y i n s e n s i t i v e t o mass a d d i t i o n rates. This f a c t w a s most e v i d e n t f o r t h e h e m i s p h e r i c a l model d a t a . I n r e f e r e n c e 1, s imi l a r r e s u l t s w e r e no ted f o r a h e m i s p h e r i c a l model t e s t e d a t Mach number 5 w i t h n i t r o g e n gas f o r m a s s a d d i t i o n . The r e s u l t s of r e f e r - ence 1 and t h e p r e s e n t d a t a are compared i n f i g u r e l l ( a ) . The f ree-s t ream Reynolds number based on model d iameter i s c l o s e l y matched. S t a t i s t i c a l l y , t h e p r e s e n t r e s u l t s i n d i c a t e less e f f e c t of mass a d d i t i o n t h a n t h o s e of r e f e r - ence 1, a l though t h e r e s u l t s o v e r l a p a t Reynolds number 5 . 2 ~ 1 0 ~ . s i s t e n t e f f e c t of f ree-s t ream Reynolds number is e v i d e n t i n f i g u r e l l ( a ) i n t h e d a t a of r e f e r e n c e 1 o r of t h e p r e s e n t i n v e s t i g a t i o n .

No con-

The e f f e c t of mass a d d i t i o n on s t a g n a t i o n p o i n t h e a t i n g f o r t h e s p h e r i c a l segment model i s shown i n f i g u r e l l ( b ) . The d a t a i n d i c a t e t h a t t h e h e a t t r a n s f e r rates a r e reduced s i g n i f i c a n t l y compared t o t h o s e f o r t h e hemispheri- c a l model. The d a t a tend t o approach t h e laminar d i s t r i b u t i o n , b u t never the- less a r e s t i l l f a r above t h e o r e t i c a l e x p e c t a t i o n s a t l a r g e i n j e c t i o n ra tes .

The e f f e c t o f mass a d d i t i o n on t h e s t a g n a t i o n p o i n t h e a t i n g of t h e coni- cal models is n o t w e l l documented. Model 1 w a s impervious t o m a s s a d d i t i o n a t t h e s t a g n a t i o n p o i n t and o n l y t h r e e t es t r u n s performed i n t h e m a s s addi - t i o n range, 0 < B < 3, w i t h c o n i c a l model 2 . These r u n s gave v a l u e s of i / G o on t h e s t a g n a t i o n p o i n t h e a t i n g among t h e t h r e e c o n f i g u r a t i o n s t e s t e d .

ranging from 1 . 0 1 t o 0 .95, i n d i c a t i n g t h e least e f f e c t o f mass a d d i t i o n

The a p p a r e n t c o n f i g u r a t i o n e f f e c t on t h e s t a g n a t i o n p o i n t h e a t i n g i n d i - c a t e d by t h e p r e s e n t d a t a i s probably a scale e f f e c t due t o nose r a d i u s , which p r i m a r i l y a f f e c t s t h e s t a g n a t i o n p o i n t v e l o c i t y g r a d i e n t .

High h e a t i n g ra tes (above l a m i n a r ) a t t h e s t a g n a t i o n p o i n t can be caused by f ree-s t ream t u r b u l e n c e ( r e f . 6 ) . The d i f f e r e n c e i n t h e two sets of d a t a i n f i g u r e l l ( a ) may t h e n be a s c r i b e d t o t h e t u r b u l e n c e l e v e l s i n t h e f a c i l i - t i e s used. A p e c u l i a r i t y of t h e h e a t i n g ra te d i s t r i b u t i o n immediately down- stream o f t h e s t a g n a t i o n p o i n t o c c u r s i n t h e p r e s e n t d a t a and i s p a r t i c u l a r l y e v i d e n t f o r t h e hemispher ica l models i n t h e $ - c o o r d i n a t e p l o t s of f i g u r e 12 . d i c t e d laminar (dash l i n e ) c u r v e , b u t p l o t on a ser ies of p a r a l l e l curves . Apparent ly , t h e enhancement due t o t u r b u l e n c e a t t h e s t a g n a t i o n p o i n t does

The d a t a of t h e i n d i c a t e d r u n s do-not c o r r e l a t e w i t h t h e pre-

8

Page 12: Blunt-Body Boundary-Layer Transition and Heat Transfer

n o t p e r s i s t downstream, and t h e f low tends t o b e l a m i n a r - l i k e up t o t h e p o i n t where t r a n s i t i o n u l t i m a t e l y o c c u r s .

Boundary-layer transition- Gaseous mass a d d i t i o n from a body s u r f a c e forms a l a y e r t h a t i n t e r f a c e s w i t h t h e e x t e r n a l f low. A t s m a l l mass a d d i t i o n ra tes , t h e l a y e r is t h i n and t h e i n t e r f a c e i s s t a b l e . When m a s s a d d i t i o n i s i n c r e a s e d , t h e l a y e r t h i c k e n s and, u l t i m a t e l y , t h e i n t e r f a c e becomes u n s t a b l e . Turbulen t mixing w i t h t h e e x t e r n a l f low ensues w i t h concomitant i n c r e a s e i n h e a t t r a n s f e r t o t h e body s u r f a c e . The beginning of i n s t a b i l i t y , o r t r a n s i - t i o n , w a s e v i d e n t i n t h e d a t a p r e v i o u s l y descr ibed where a sudden i n c r e a s e i n h e a t i n g rates o c c u r r e d w i t h i n c r e a s e d m a s s a d d i t i o n . The problem o f p r e d i c t - i n g t h e o c c u r r e n c e of t r a n s i t i o n as a f f e c t e d by mass a d d i t i o n i s complicated by o t h e r c o n t r i b u t i n g f a c t o r s . Two s i g n i f i c a n t parameters have r e c e i v e d e x p e r i m e n t a l and t h e o r e t i c a l s t u d y ( r e f s . 6-9) and are d i s c u s s e d i n t h e l i g h t of t h e p r e s e n t i n v e s t i g a t i o n .

E f f e c t o f f r e e - s t r e a m t u r b u l e n c e : While f ree-s t ream t u r b u l e n c e w a s n o t an e x p e r i m e n t a l v a r i a b l e i n t h i s i n v e s t i g a t i o n , i t i s a n impor tan t f a c t o r i n comparing d a t a from d i f f e r e n t f a c i l i t i e s . A c o r r e l a t i o n between computed t r a n s i t i o n Reynolds numbers u t i l i z i n g the test c o n d i t i o n s and t u n n e l turbu- l e n c e level T of t h e p r e s e n t i n v e s t i g a t i o n was found by M r . Wilcox of DCW I n d u s t r i e s and is p r e s e n t e d i n r e f e r e n c e 8. This t h e o r e t i c a l l y based c o r r e - l a t i o n relates t h e boundary-layer edge Reynolds number t o t h e l o c a l f low rate momentum t h i c k n e s s Reynolds number a t t h e t r a n s i t i o n l o c a t i o n of t h e hemi- s p h e r i c a l models by

R e t r n s

43000 = 1 + 4 1 exp

Experimental t r a n s i t i o n p o i n t Reynolds numbers f o r t h e h e m i s p h e r i c a l models are shown i n f i g u r e 13. The d a t a a r e r e p r e s e n t e d by sets of two p o i n t s . The lower p o i n t of each s e t i n d i c a t e s i n c i p i e n t t r a n s i t i o n . The upper p o i n t (wi th arrowhead) r e p r e s e n t s completed t r a n s i t i o n . The d a t a sets b r a c k e t t h e t h e o r e t i c a l c o r r e l a t i o n c u r v e a t a l l Reynolds numbers. However, i n g e n e r a l , t h e e x p e r i m e n t a l v a l u e s i n d i c a t e ear l ie r t r a n s i t i o n t h a n is p r e d i c t e d , p a r t i c u l a r l y a t t h e lower Reynolds numbers. The r e l a t i v e l y poor c o r r e l a t i o n a t t h e lower Reynolds numbers (lower s u r f a c e p r e s s u r e s ) may p o s s i b l y b e a t t r i b u t e d t o "mass-flow roughness' ' o r minute j e t t i n g a c t i o n , which t e n d s t o b e suppressed a t t h e h i g h e r Reynolds numbers.

E f f e c t of s u r f a c e roughness: A degree of s u r f a c e roughness e x i s t e d i n t h e models of t h e p r e s e n t i n v e s t i g a t i o n because of t h e permeable , porous s t r u c t u r e n e c e s s a r y t o p e r m i t mass f low through t h e s u r f a c e . A photomicro- graph of t h e h e m i s p h e r i c a l model s u r f a c e s e c t i o n ( f i g . 1 4 ) shows a f a i r l y c o n s i s t e n t s u r f a c e t e x t u r e i n terms of "valley-to-peak" h e i g h t . T h i s dimen- s i o n w a s t a k e n as t h e roughness parameter k of t h e model. The e x p e r i m e n t a l t r a n s i t i o n Reynolds number based on momentum t h i c k n e s s w a s compared w i t h t h o s e g iven by t h e c o r r e l a t i o n r e l a t i o n s h i p of r e f e r e n c e 9 , where combined roughness and m a s s a d d i t i o n rates are t a k e n i n t o account

9

Page 13: Blunt-Body Boundary-Layer Transition and Heat Transfer

t r n s e Re

where

$ 1 =[$+(1+5)

= 215

"1 p W

( 7 )

Q u a l i f i c a t i o n s f o r a p p l i c a t i o n o f t h e above c o r r e l a t i o n r e l a t i o n s h i p e r e s t a t e d i n r e f e r e n c e 9: "A computed v a l u e of 255 must be reached o r exceeded a t t h e s o n i c p o i n t l o c a t i o n ; i f t h i s c o n d i t i o n i s s a t i s f i e d , t h e t r a n s i t i o n zone i s p r e d i c t e d t o p h y s i c a l l y b e g i n a t t h e s u r f a c e p o i n t where t h i s param- e t e r a t t a i n s a v a l u e of 215. I f p r e d i c t e d t o o c c u r , t h e t r a n s i t i o n zone w i l l always be l o c a t e d i n t h e s u b s o n i c f low reg ion ." The c o r r e l a t i o n r e l a t i o n s h i p (eq . ( 7 ) ) w a s t e s t e d w i t h t h e h e m i s p h e r i c a l model d a t a . The r e s u l t s are shown i n f i g u r e 15. The d a t a group l a b e l e d R e g < 255 and two d a t a p o i n t s w i t h t r a n s i t i o n o c c u r r i n g beyond t h e s o n i c p o i n t do n o t m e e t t h e q u a l i f i c a - t i o n s quoted above and a l s o do n o t c o r r e l a t e . The remaining d a t a m e e t t h e q u a l i f i c a t i o n s and are i n f a i r accord w i t h t h e i n d i c a t e d PANT c o r r e l a t i o n c u r v e .

Turbulent heating rates- The p - B curves of f i g u r e s 1 0 ( a ) through 1 0 ( d ) , d i s c u s s e d p r e v i o u s l y , re la te the-heating ra te i n t h e presence of mass a d d i t i o n w i t h r e f e r e n c e t o a no-mass-addition laminar h e a t i n g ra te as a f u n c t i o n of t h e mass flow r a t e parameter . S a t i s f a c t o r y c o r r e l a t i o n of t h e exper imenta l r e s u l t s o v e r t h e model s u r f a c e s w a s o b t a i n e d a t low mass-addi t ion ra tes . L o g i c a l l y , t h e e f f e c t o f mass-addi t ion i n t h e c a s e s where t u r b u l e n t h e a t i n g i s predominant should b e measured w i t h r e s p e c t t o a no-mass-addition t u r b u l e n t h e a t i n g rate r e f e r e n c e . A c o r r e l a t i o n of t h e data on t h i s premise w a s made and i s d e s c r i b e d i n t h e fo l lowing paragraph .

Turbulent f low f a c t o r : The procedure f o r c o r r e l a t i n g t h e t u r b u l e n t h e a t i n g ra te d a t a of t h i s i n v e s t i g a t i o n w a s s imply t o m u l t i p l y t h e laminar based coord ina tes and - B by t h e f a c t o r 4 0 / i o t u r b , t h u s s h i f t i n g them t o a t u r b u l e n t h e a t i n g ra te r e f e r e n c e . Numerical v a l u e s f o r t h e f a c t o r were obta ined by a p p l y i n g Reynolds analogy ( p r o p o r t i o n a l i t y ) between h e a t and s k i n f r i c t i on coe f f i c i en t s

The numerical v a l u e s f o r t h e s k i n f r i c t i o n c o e f f i c i e n t s cf were taken from r e f e r e n c e 10.

Turbulent h e a t t r a n s f e r c o r r e l a t i o n s : The t u r b u l e n t f low f a c t o r d e f i n e d i n equat ion (8) w a s a p p l i e d t o t h e l a m i n a r parameters $ and - B t o c o n v e r t them t o t u r b u l e n t f low parameters

-

10

Page 14: Blunt-Body Boundary-Layer Transition and Heat Transfer

and

Turbulent d a t a were t a k e n as t h e v a l u e s downstream o f t h e peak h e a t i n g ra te a f t e r t r a n s i t i o n ( s e e f i g . 4 ( c ) ) . The t u r b u l e n t d a t a of t h e h e m i s p h e r i c a l models were p l o t t e d i n t h e above d e f i n e d f i g u r e 1 6 ( a ) as case I . All d a t a of b o t h models and Reynolds numbers cor re- l a te e x c e p t f o r t h e d a t a of model 1 a t t h e h i g h e s t Reynolds number ( s o l i d symbols) . The d a t a from t h e h e m i s p h e r i c a l model a t t h i s Reynolds number ( f i g . 4 ( e ) ) show a more pronounced s h i f t o f the t r a n s i t i o n p o i n t w i t h m a s s a d d i t i o n t h a n i s g e n e r a l l y t h e case w i t h t h e d a t a a t lower Reynolds numbers. An a t t e m p t t o account f o r t h e f a c t t h a t t h e flow w a s n o t f u l l y t u r b u l e n t o v e r t h e e n t i r e model s u r f a c e i n a l l cases was made i n t h e f o l l o w i n g approxi- mate manner: The l o c a l r e f e r e n c e G o , (eq. (5 ) ) w a s assumed t o r e t a i n laminar v a l u e s up t o t h e midpoint l o c a t i o n between t h e t r a n s i t i o n p o i n t and peak t u r b u l e n t h e a t i n g p o i n t and t h e n t o assume t h e f u l l y t u r b u l e n t v a l u e t o t h e p o i n t i n q u e s t i o n . The "weighted" r e f e r e n c e ios w a s used t o modify t h e v a l u e s of $turb and The d a t a , p l o t t e d i n t h e modif ied coordi- n a t e s , are show5 as case I1 i n f i g u r e 1 6 ( a ) . The h i g h Reynolds number d a t a i n t h i s case c o r r e l a t e s w i t h t h e d a t a a t t h e lower v a l u e s . The s ca t t e r o f t h e d a t a i s random and t h e c o r r e l a t i o n i s cons idered s a t i s f a c t o r y .

j!turb - B -turb c o o r d i n a t e s o f

The d a t a o f c o n i c a l model 1 w a s p l o t t e d only i n t h e f u l l y t u r b u l e n t c o o r d i n a t e s d e f i n e d by e q u a t i o n ( 9 ) . The r e s u l t s are shown i n f i g u r e 1 6 ( b ) . An e x c e l l e n t c o r r e l a t i o n of t h e d a t a i n t h e Reynolds number range t e s t e d i s e v i d e n t . The h i g h degree o f c o r r e l a t i o n i s due, i n p a r t , t o t h e f a c t t h a t t h e p l o t t e d d a t a w e r e conf ined t o runs having approximately t h e same t r a n s i - t i o n p o i n t l o c a t i o n . I n a d d i t i o n , t h e r e f e r e n c e c o e f f i c i e n t s { o s and { o s are r e l a t i v e l y independent of s g t u r b h e m i s p h e r i c a l model. I n t h i s r e g a r d , p r e l i m i n a r y p l o t s of t h e d a t a i n " t r a n s i t i o n modif ied" c o o r d i n a t e s i n d i c a t e d no s i g n i f i c a n t changes t o t h e degree of c o r r e l a t i o n shown by t h e f u l l y t u r b u l e n t c o r r e l a t i o n shown i n f i g u r e 1 6 (b) .

i n t h e t r a n s i t i o n r e g i o n ; t h u s , l t u r b = d are less s e n s i t i v e t o t r a n s i t i o n p o i n t s h i f t s t h a n i n t h e case of t h e

C o r r e l a t i o n of c o n i c a l model 2 and the s p h e r i c a l model d a t a w a s n o t a t tempted . Thermocouple f a i l u r e s i n t h e reg ion o f a n t i c i p a t e d t u r b u l e n t f low f o r c o n i c a l model 2 prec luded wel l -def ined i n d i c a t i o n s of t u r b u l e n t h e a t i n g . Data f o r t h e s p h e r i c a l models d i d n o t i n d i c a t e t h e development of f u l l y t u r b u l e n t f low as w a s wel l -noted by t h e "peak h e a t i n g " l o c a t i o n s e v i d e n t f o r t h e h e m i s p h e r i c a l models and c o n i c a l model 1.

11

Page 15: Blunt-Body Boundary-Layer Transition and Heat Transfer

CONCLUSIONS

An exper imenta l i n v e s t i g a t i o n was made o f t h e e f f e c t s o f mass a d d i t i o n on t h e h e a t t r a n s f e r t o hemispheres , s p h e r i c a l segments, and b l u n t e d 60" cone models a t Mach number of 7 . 4 i n f ree-s t ream Reynolds number range 0.6 t o 5 . 2 ~ 1 0 ~ b a s e d on model d iameter . The r a t i o of mass-addi t ion r a t e t o f r e e - s t r e a m mass f low w a s v a r i e d from 0 t o about 0.5. The r e s u l t s of t h i s i n v e s t i - g a t i o n were compared w i t h e m p i r i c a l l y d e r i v e d c o r r e l a t i o n s and w i t h t h e a p p l i - c a b l e r e s u l t s of v a r i o u s computer codes . S i g n i f i c a n t f e a t u r e s of t h e d a t a and conclus ions drawn from comparisons of t h e d a t a w i t h a p p l i c a b l e boundary-layer t h e o r i e s f o l l o w .

The t h e o r e t i c a l l y p r e d i c t e d e f f e c t o f m a s s a d d i t i o n on s t a g n a t i o n p o i n t h e a t i n g i n laminar f low ( r e f . 2 ) w a s extended by a n e m p i r i c a l , area-averaged h e a t i n g r e f e r e n c e technique t o c o r r e l a t e l a m i n a r h e a t t r a n s f e r d i s t r i b u t i o n s over t h e models ' s u r f a c e s . The method w a s i n good agreement w i t h t h e r e s u l t s of b o t h experiment and t h e laminar boundary-layer code of r e f e r e n c e 5.

Anomalously h igh s t a g n a t i o n p o i n t h e a t i n g based on l a m i n a r t h e o r y w a s no ted i n t h e d a t a of t h e p r e s e n t i n v e s t i g a t i o n . The same r e s u l t s w e r e found i n a similar i n v e s t i g a t i o n r e p o r t e d i n r e f e r e n c e 1. h e a t i n g is g e n e r a l l y b e l i e v e d t o b e due t o f ree-s t ream t u r b u l e n c e . The d a t a of t h e p r e s e n t i n v e s t i g a t i o n a t low mass a d d i t i o n ra tes seem t o i n d i c a t e t h a t t h e anomalous s t a g n a t i o n p o i n t h e a t i n g i s due t o l o c a l i z e d t u r b u l e n c e w i t h subsequent downstream f low t e n d i n g t o become l a m i n a r .

Enhanced s t a g n a t i o n p o i n t

The e f f e c t of f ree-s t ream t u r b u l e n c e on boundary-layer t r a n s i t i o n h a s been i n v e s t i g a t e d t h e o r e t i c a l l y ( r e f . 7 ) . Using t h i s work as a b a s i s , and u t i l i z i n g t h e t u n n e l tes t c o n d i t i o n s and t u r b u l e n c e leve l of t h e p r e s e n t i n v e s t i g a t i o n , r e f e r e n c e 8 p r e s e n t s a formula (eq. ( 6 ) ) r e l a t i n g t h e boundary- l a y e r edge t r a n s i t i o n Reynolds number t o t h e l o c a l momentum t h i c k n e s s and a b l a t i o n r a t e f o r t h e h e m i s p h e r i c a l model. T h i s r e l a t i o n s h i p c o r r e l a t e d t h e exper imenta l d a t a s a t i s f a c t o r i l y , p a r t i c u l a r l y a t t h e h i g h e r Reynolds number where t r a n s i t i o n w a s markedly a b r u p t .

The e f f e c t of s u r f a c e roughness on t r a n s i t i o n h a s been i n v e s t i g a t e d t h e o r e t i c a l l y ( r e f . 9 ) . This work p r e s e n t s a c o r r e l a t i o n of momentum t h i c k - n e s s Reynolds number a t t r a n s i t i o n as a f u n c t i o n of l o c a l mass f low, momentum t h i c k n e s s , and roughness parameter (eq. ( 7 ) ) . Although n o t a c o n s i d e r e d v a r i a b l e i n t h e p r e s e n t i n v e s t i g a t i o n , roughness measurements were a v a i l a b l e f o r t h e hemispher ica l model and some e x p e r i m e n t a l c o n f i r m a t i o n o f t h e c o r r e - l a t i o n was found. The c o r r e l a t i o n w a s l i m i t e d i n e x t e n t due t o q u a l i f y i n g r e s t r i c t i o n s .

1 2

Page 16: Blunt-Body Boundary-Layer Transition and Heat Transfer

The e m p i r i c a l c o r r e l a t i o n parameters $ and B f o r laminar flow hea t - t r a n s f e r d i s t r i b u t i o n s were modif ied by a p p l i c a t i o n of Reynolds ana logy , and c o r r e l a t i o n of h e a t - t r a n s f e r d i s t r i b u t i o n da ta w a s extended t o areas of t u r b u l e n t f low on t h e c o n i c a l and hemispher ica l models.

Ames Research Center N a t i o n a l Aeronaut ics and Space Admin i s t r a t ion

Mof fe t t F i e l d , C a l i f o r n i a 94035, Sept . 8, 1977

1 3

Page 17: Blunt-Body Boundary-Layer Transition and Heat Transfer

APPENDIX

DERIVATION OF MASS-FLOW RATES

The computation r e q u i r e d f o r t h e area-averaged mass-flow rate d i s t r i b u - t i o n f o r each tes t r u n w a s cast i n t o a convenient form r e q u i r i n g o n l y t h e measured model i n t e r n a l p r e s s u r e , t h e t u n n e l t o t a l p r e s s u r e , and t a b u l a t e d f a c t o r s predetermined f o r each model. computation f o l l o w s .

The d e r i v a t i o n o f t h e form used i n t h e

The l o c a l mass-flow rate a s s o c i a t e d w i t h t h e d i f f e r e n t i a l area e lement , rdQds, a t t h e r a d i a l d i s t a n c e , r , from t h e s t a g n a t i o n p o i n t i s

C ~ ( P : ~ - P2 ) r d$ d s e x r dQ d s m =

P i n and Pex are t h e l o c a l i n t e r n a l and e x t e r n a l p r e s s u r e s on t h e porous header , and cs is t h e f low c o e f f i c i e n t a t l o c a t i o n r .

Equation ( A l ) i s i n t e g r a t e d i n t h e a z i m u t h a l d i r e c t i o n Q .

c s (P ln - Pzx)r d s m = . d Q I S -

dQ is r d s l o

The v a l u e of Pin i s c o n s t a n t f o r a g iven r u n . The v a r i a b l e Pex i s a f u n c t i o n of s and of t h e t u n n e l t o t a l p r e s s u r e P t t .

p ex = f(s.Ma)Ptt

from

s i n c e

and

14

P P s t P t t ex P s t P t t

p = - -

- - - f ( s ) , t h e o r y o r experiment P

Pst

- - P s t - f (Ma) , a c o n s t a n t Pt t

S u b s t i t u t i n g t h e above i n t o e q u a t i o n (A2)

cs[P&, - f2(s,Ma)P:tlr d s = a ~ : - b p 2

s i n s t t 4” r d s - (A3 1

Page 18: Blunt-Body Boundary-Layer Transition and Heat Transfer

REFERENCES

1. Feldhuhn, R. H.: Heat T r a n s f e r from a Turbulent Boundary Layer on a Porous Hemisphere. AIAA Paper 76-119, 1976.

2 . Marvin, Joseph G . ; and Pope, Ronald B . : Laminar Convect ive Heat ing and A b l a t i o n i n t h e Mars Atmosphere. A I M J o u r n a l , v o l . 5 , no. 2 , 1967, pp. 240-248.

3. Yoshikawa, Kenneth K.: L i n e a r i z e d Theory of S t a g n a t i o n P o i n t Heat and Mass T r a n s f e r a t Hypersonic Speeds. NASA TN D-5246, 1969.

4 . Howe, John T. ; and Viegas, John R. : S o l u t i o n s of t h e Ionized R a d i a t i n g Shock Layer , I n c l u d i n g Reabsorp t ion and Fore ign Spec ies E f f e c t s , and S t a g n a t i o n Region Heat T r a n s f e r . NASA TR R-159, 1963.

5 . Marvin, Joseph G . ; and S h e a f f e r , Yvonne S . : A Method f o r S o l v i n g t h e Nonsimilar Laminar Boundary-Layer Equat ions I n c l u d i n g Fore ign Gas I n j e c t i o n . NASA TN D-5516, 1969.

6. Trac i , R. M . ; and Wilcox, D. C . : A n a l y t i c a l Study of Frees t ream Turbu- l e n c e E f f e c t s on S t a g n a t i o n P o i n t Flow and Heat T r a n s f e r . AIAA 7 t h F l u i d and Plasma Dynamics Conference, Pa lo A l t o , C a l i f . , June 17-19, 1974.

7 . Wilcox, D. C . : Turbulence-Model T r a n s i t i o n P r e d i c t i o n s f o r Blunt-Body Flows. I n t e r i m S c i e n t i f i c Report , DCW-R-03-01, AFOSR-TR-74-1714, 1974.

8. Wilcox, David C . : Combined E f f e c t s o f Freestream Turbulence and Mass I n t e r i m S c i e n t i f i c A d d i t i o n on Blunt-Body Heat ing and T r a n s i t i o n .

Repor t , DCW-R-11-02, 1977.

9. Reda, D. C . ; and Leverance, R. A.: Boundary-Layer T r a n s i t i o n Experiments on Pre-Ablated G r a p h i t e Nose t ips i n a H y p e r b a l l i s t i c s Range. NSWC/WOL/TR 76-71, 1976.

10. P r a n d t l , Ludwig; and T i e t j e n s , 0. G. : Applied Hydro and Aeromechanics, McGraw-Hill Book Company, I n c . , 1934.

11. S t a i n b a c k , C a l v i n P . ; Wagner, Richard D . ; Owen, Kevin F.; and Horstman, C l i f f o r d C . : Experimental S t u d i e s of Hypersonic Boundary Layer T r a n s i t i o n and E f f e c t s of Wind-Tunnel Dis turbances . NASA TN D-7453, 1974.

15

Page 19: Blunt-Body Boundary-Layer Transition and Heat Transfer

n 3

3

u

d a O m a m w m W e w N m a m 0 N N m m e e m a a b b w w c o w m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . 0

1 6

Page 20: Blunt-Body Boundary-Layer Transition and Heat Transfer

N W Xu\ m m w . a - "

mr. w .

m

x u

r l d r l m r - m m ~ m w m m m u m u m Q m u r - m o N m m m m N u m m o - ~ r l ~ ~ ~ m m m m m m m m m m 0 . . . . . . . . . . . . . . . .

3

3

N r .

a m a . m

m u . . . . . . . . . . . . . . . . 0

Nu o u w .

W

x m

0

a m u a m u m o o ~ r . o ~ - r . ~ ~ O Q u m m O u d a w m w r . u N m ~ m m m a r . r . w w w w w w m m m ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0

m ~ ~ a a ~ m m ~ - m a u w m r . m r l N N m u m m a r . w w w w m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0. O.?? 0.9 0.9 . . . . . . .

u m r l m ~ o a m r . r . r . r l n w a a 0 w P - r . r l m m m a a a a u a m m

0

r l 4 r l N m m m m m m m m m m m m . . . . . . . . . . . . . . . . r.4ouamomawurlaur.a m u m r . u w ~ r . r l m m u u o ~ m r l N N m U u m m a a a a a P - a a

0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

N r l x m P - m W *

rl

m m r l a r l N m o a w u m u m m N W m m u o m a r l u a W P - w m N m O d r l N m m m u U u u u u m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

uao a m m m m o m m o 0 0 r . o 0 u u m m m u a w w m o o o m m o m m 0 0 0 rl d rl 3 rl N. N. "f rl rl N. d* rl. . . . . . . . . . .

N O 20 S?

rl . . . . . . . . . . . . . . . .

0 0

r.aur.uorlmr.wumwumm a d r l w m a m m a w o m o m u m O d r l r l N N N m m m u m u u u u

0 ??????9?????????

u m m m m u u w m w m o o o w m o m m m a a o r l N N m u u u m m u m m O O O ~ r l r l r l r l r l n r l n - ~ r l r l

0 . . . . . . . . . . . . . . . .

m Q a N m a N m w m m P - m m m m o o o r l o o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ur.aomwamrlorl~uar.rn m a N m P - .

m

X Q -~ ~ ~ . . . . . . . . . . . . . . . . 01 I 1 I I I I I

a r . ~ r l m u r l w a w w c n m ~ o m m m r . a m m d r l m u u u u m m m m 0 d 4 N. y m m m m m m m m q m m . . . . . . . . . . . . . 0

N N X N h m a .

rl . . . . . . . . . . . . . . . .

0

rl N i n m r . r . N r . m m m u m O m m a w u m r l u a a w m m m w w m w w 0 d rl N N. N. N N N "f N N N y N. "1 . . . . . . . . . . 0

m P - m N m N N a m m a a r . W m u N N r l U w r l N u a a a a a a m m r l N N m m u u ~ u u u u u u u u ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0

wr.mrlmmr.mrlmurlwr.Nm m a a O 7 + " m u u u u m u u u ooorlrlr lr lr lr lr lr lr lr lr lr lr l

0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

woP-awmr.umorlmr.urlrl Nmur.wmm00~rl00rlrlrl 0000000r ld r l r l r l r l r l r l 4

0 0.09 O * O ? ? 0 9 0 0.0 0.9 0. . .

NP- XP-

rl E ?

0

m m w m m m ~ r l o m w w a m u m o o o r l r l r l r l r l r l o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . .

N O U 0 r l a r . N m N O m a a U O r . m m u r . a O N N m u u u u u u u u u rl rl

0

0 0 0 rl 44.4 rl rl rl rl rl 4. . . . . . . . . . . . . . o I_ I_ I_ ; I_ L L I_ I_ I- L L i I- I-

0 m w r l m m m r . o u W N a o m P m N 0 0, r. v o r l ~ m u m m a r . w m o o r l n II rlrlrl-

0 w a m m rl 0 w. "; . . . . . . . . . . . . . ln

17

Page 21: Blunt-Body Boundary-Layer Transition and Heat Transfer

d

4 w 0 c w

n

! w m

s H d W X P4 m n z

0 H w H s e m H

W n

3 z 0 H w H n 2 m

3

4 I

m W

E-l

18

d m m b m o m . m m

dhl m - ,"? m m

C n a m o o m r l m * m e b m o N ~ m m e m r l d o o o d d ~ * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 I I l l I I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ . . . . . . . . . . . . . . I

. . . . . . . . . . . . . . . 0

0

N N N N N N N N N N N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 . . . . . . . . . . . . . . .

. z r e m m * * m m m m e * m m m m m m m * u e e e e m m m m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 . . . . . . . . . . . . . . .

c 5 a ? l a 3 b < b k a G ~ * G k ; G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* m w * N b O m a O m O e m * I - I d O d r l d N N N N h l N N N N m m m m m m m m m m m m m m m c . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 3

~ a 3 r l N c n d d N m m O b a 3 m m - l d d d o d d r l r l o d o o o o N N N N N N N N N N N N N N N

3 . . . . . . . . . . . . . . .

X 3 m m b a b a 3 m m b m b a l m b 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + d d d d d d d r l d r l r l d d d

3 . . . . . . . . . . . . . . .

Page 22: Blunt-Body Boundary-Layer Transition and Heat Transfer

u w n b n o u . -lm

u w

c 1 . > a

n m n r l I N . . . . . . . . . . . . . . .

0

. . . . . . . . . . . . . . . 2

3 m U b m N O u b m N w b a O Q m m d 4 a u m h b m I - a " ~ N m u u u u u u u m u u u u

3

3 o o o o q q q o q q q q ~ q . . . . . 1 Fc

h u u u m m m a m u m N l - m u w u a o o N 4 m m m m m N o o d d 4 N N N N " N N N N N N

0 . . . . . . . . . . . . . . . N U

t n m

m % ?

N O t n m t n m 4 . A N

. . . . . . . . . . . . . . . 0

N O m b m o 0 . d m

n u m m u m d m m d h m u w N c l m a b h a h b h b b a a m r l 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 6 0 0 0 0 0 0 0 0 0 0 0

. . . . . . . . . . . . . . . 0

a m d m b O d m a m a N 4 w O m a m u u d w ~ ~ ~ w u m o r l - " ri hi c.J m c.4 m .Pi r? ;? ;1 ;? .m .-,

0

o o o o o o o o o o o o o q q . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

Nu m m m u 0 . 0 4 d

N O m u L n 4 9 . m a - N m m a m o u - o m rl

N N m u m u 0 . N d

N O m m m a a - 4

N O m N m u 4 - N 4

N N t n m m m m .

rl

U ~ m U u r i N a m m O N N O N b o u m m b m m w m u m b m ~ m m m u u u u u u u m u u u u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . 0

~ c o m m m o m ~ m m o m o m ~ d a O h b 4 m m N N b d 4 b U m N m m m u m u u u u u u m ~ 0 . . . . . . . . . . . . . . .

Na m r l m a u .

rl

w m ~ ~ ~ m o ~ o o d m m a ~ 4 4 d N N d N N N N N d d d 7 o o o o o o o o o o o o o o c

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

q 0 0 0 0 0 0 0 0 0 0 0. c . . . . . . . . . .

2.L m

19

Page 23: Blunt-Body Boundary-Layer Transition and Heat Transfer

. . . . . . . . . . . . . . . 0

U a m w w m a N r - m m c 2 G 0 G rl e4 r? * m a r- r- - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b w m G G o o P. x ri ri :: G a m r. o o o o d * b o N m a r - r - r - l - 0 0 0 0 0 0 0 d d d d d d ~ d

0 . . . . . . . . . . . . . . . ~~ ~~~ . . . . . . . . . . . . . . .

0 -

N r - w w N a a d r l d r l 0 0 0 0 N m r - 0 m m a b r - l - r - 0 0 0 0 0 0 0 d d d d d d d d

0 I I I I I I I I I I I

oooooooooooqooo . . . . . . . . . . . . . . m a w d ~ m o m m o r -

0 0 0 0 r - N m w m d w m a w r - o o o o o N m * m r - r - w w w w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . 0

* o * w r - d a o u m w o o o o N m a r - w o m m b r - a 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1

o o o o o o o o o o q ~ ~ o o . . . . . . . . . . . . CON o o o o m r n a d m a ~ a o m m

o o 0 o N r - d a m m m a b r - r - 0 0 0 0 0 0 d d d N N N N N N

C . . . . . . . . . . . . . . .

d U v * Z ?

m

.t rn rla u a a d a - a

a O o O o m a m m d a r - a N c n m o o o o m o m d a d m m a a a 0 0 0 0 0 d r l N N m m m m m m 0 . . . . . . . . . . . . . . .

o o o o ~ ~ o m m * w o * w a o o o o N a o m a o d m m m m 0 0 0 0 0 0 d d d N N N N N N . . . . . . . . . . . . . . . 0

m N a o o o o d w * w m m * * w d o 0 0 0 0 0 0 0 r l d d d d d N N

0

o o o o ~ m ~ r l ~ r - ~ m m o o . . . . . . . . . . . . . . . r - m o o o o * N m w m a m N r - m o

0 0 0 0 m m m w N r - m d d N N

0

o o o o o o d d ~ ~ ~ m m m m . . . . . . . . . . . . . . . m a

0 0 0 0 r - * c n N * m w d a 0 w 0 0 0 0 N r - O m w N m m m ~ m 0 0 0 0 0 0 d d d N N N N N N

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0

d w U N r - r l u - m

r l c o u m d L - 4 a . a

m m m o o o o * a r - a m m m m ~ m d 0 0 0 0 N a m m a m d N N m m 0 0 0 0 0 0 0 d d d N N N N N

0 . . . . . . . . . . . . . . .

m d d N u a m * m w w

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

o o o o o w d b m m m u a r - a o o o o ~ ~ v m a ~ w m m m m . . . . . . . . . . . . . . . dr- u m a d u * m

O d w a d * d m d a * 0 0 0 0 0 0 d d N N N N N N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

o o o o m w ~ a o ~ a r - ~ w w

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

c v h l m m m 0 0 0 0 m a m * 0 m r - u a w r - 0 0 0 0 d m m r - m 0 d N N N N 0 0 0 0 0 0 0 0 0 r l d d r l d d

0 . . . . . . . . . . . . . . .

m N N a m r - a m w d o 0 0 0 0 d * a w 0 N m * * m m 0 0 0 0 0 0 0 0 d d d d d r l d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . 0

m a ~ e o c n b e r - r n m o o o o ~ m m r - c n o ~ ~ ~ m ~ 0 0 0 0 0 0 0 0 0 d d d r l d d

0

oooqoooooooooqq . . . . . . . . . . . . m u a r J * a u w w

o o o o o w d w o m d a w o o o o o o r l N u m r - w m m m o o 0 0 0 0 0 0 0 0 0 0 0 0 0 d d

0 . . . . . . . . . . . . . . .

a m N m m N * m m a m 0 0 0 0 0 d m N m * ~ ~ * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1

o q ~ o o o o q q q q o o o o . . . . . . . . w m ~ ~ m m m m w w m

0 0 0 0 r - d d m m ~ w N ~ m m o o o o o ~ m * m a a b r - r - r - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 . . . . . . . . . . . . . . .

20

Page 24: Blunt-Body Boundary-Layer Transition and Heat Transfer

N m u m N O e .

m

O r n d c o c o b b b c o r n b c o c o c o b c o d 0 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ o o o o o o o o o o o q q q q 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . . . . . . . . . . . I

N N U b

m :?

P J a N e c o 4 a a m c o m b d m r - i o e b V O a m e b o e m m m m N a b c o a m C n c o N N m N m N N N N W N N N N N N m . . . . . . . . . . . . . . . . .

N O

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 * 4 10

0 II - a lo

2 1

Page 25: Blunt-Body Boundary-Layer Transition and Heat Transfer

CALORIMETER DETAIL

16 CALORIMETERS SPACED

15"A\ 5 PRESSURE TAPS

' HEMISPHERE / CONE SPHERICAL NOTE: CONE2 SEGMENT CALORIMETERS SPACED AT EQUAL 0.64 cm INTERVALS

Figure 1.- Porous model headers.

23

Page 26: Blunt-Body Boundary-Layer Transition and Heat Transfer

HEADER

P R ESSU R E TAP / THERMOCOUPLE

MODEL INSERTIN? STRUT

ALORIMETER + TO DATA REDUCTION

- -_

CHAMBER DETAILS w F i g u r e 2.- Model s u p p o r t and d e t a i l s .

24

Page 27: Blunt-Body Boundary-Layer Transition and Heat Transfer

10

8

6 rn

I I I I I I

HEMISPHERE MODEL 1 (NEAR AX I SY MM ETR IC)

I ' \ \ \ SPHERICAL SEGMENT MODEL 1

( N EAR AX1 SY MM ET R I C )

HEMISPHERE MODEL 2 (4 = 330")

m IN ARBITRARY UNITS

2 4 6 8 10 12 14 s, cm

Figure 3 . - Typica l v a r i a t i o n of mass f low r a t e w i t h r a d i a l d i s t a n c e s w i t h c o n s t a n t p r e s s u r e drop ac ross heade r s .

25

Page 28: Blunt-Body Boundary-Layer Transition and Heat Transfer

1 t

i

.8

.6

&io

.4

.2

0

m* RUN Re, Ttt 40 - 0 77H1 1 . 1 1 ~ 1 0 ~ 782 9.80 0.003

0 78H1 1 . 0 5 ~ 1 0 ~ 793 9.83 0.007

a 79H1 1 . 0 7 ~ 1 0 ~ 788 9.77 0.022

d 80H1 1 . 1 0 ~ 1 0 ~ 775 9.51 0.027

2 4 6 8 10 12 14 s, crn

(a) Ptt = 276 N/cm2 (400 psi), 0.003 < - m* < 0.027.

Figure 4.- Heat transfer distribution over hemispherical model 1.

Page 29: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

I I

.8

.6

$io

.4

.2

0

RUN ReD Ttt 4, - m*

D 81H1 1 . 1 1 ~ 1 0 ~ 769 9.36 0.034 0 82H1 1 . 1 1 ~ 1 0 ~ 768 9.47 0.041 0 83H1 1 . 1 2 ~ 1 0 ~ 767 9.36 0.051 0 84H1 1 . 1 0 ~ 1 0 ~ 773 9.60 0.057

2 4 6 8 10 12 s, cm

(b) Ptt = 276 N/cm2 (400 p s i ) , 0.034 < m* - < 0.057.

F i g u r e 4.- Continued.

27

Page 30: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.a

d

.6

$io

.4

.2

0

m* RUN Re, Ttt 90 - 0 88H1 2 . 2 9 ~ 1 0 ~ 761 13.13 0.004 a 89H1 2 . 3 7 ~ 1 0 ~ 748 12.94 0.010 d 95H1 2 . 1 2 ~ 1 0 ~ 797

m * = Q

7 \

---e---

14.16 0.013

2 4 6 8 10 12 14 s, cm

(c) Ptt = 552 N/cm2 (800 p s i ) , 0.004 < - m* < 0.013.

Figure 4 . - Continued.

Page 31: Blunt-Body Boundary-Layer Transition and Heat Transfer

rn" Ttt 40 - RUN Re,

L1 91H1 2 . 4 0 ~ 1 0 ~ 740 12.50 0.016

0 93H1 2 . 2 6 ~ 1 0 ~ 767 13.54 0.024 0 94H1 2 . 0 1 ~ 1 0 ~ 815 14.96 0.030

n 9 2 ~ 1 2 . 4 2 ~ 1 0 ~ 737 12.45 0.021

1

.8

.6

4li0

.4

.2

0 2 4 6 8 10 12 14 s, cm

(d) P t t = 552 N/cm2 (800 p s i ) , 0.016 < - m* < 0.030.

Figure 4.- Continued.

29

Page 32: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.2

1'

1

.8 1

qlqo .6

.4

.2

0

m* RUN Re, Ttt 4, -

0 99H1 5 . 6 6 ~ 1 0 ~ 674 14.19 0.006

A 100H1 5 . 2 3 ~ 1 0 ~ 707 16.31 0.008

d 101H1 4 . 9 6 ~ 1 0 ~ 728 17.09 0.010

L] 102H1 5 . 3 8 ~ 1 0 ~ 699 16.12 0.011

0 103H1 5 . 0 6 ~ 1 0 ~ 721 17.01 0.013

0 104H1 4 . 8 0 ~ 1 0 ~ 733 17.30 0.018

2 4 6 8 10 12 14 s, cm

( e ) Ptt = 1103 N/cm2 (1600 p s i ) , 0.006 < - m* < 0.018

F i g u r e 4. - Concluded.

Page 33: Blunt-Body Boundary-Layer Transition and Heat Transfer

RUN ReD Ttt 60 - m*

0 60H2 0 . 6 1 ~ 1 0 ~ 732 6.19-0.000 0 70H2 0 . 5 3 ~ 1 0 ~ 797 7.17 0.008 0 90H2 0 . 5 6 ~ 1 0 ~ 768 6.78 0.009 A 61H2 0 . 6 1 ~ 1 0 ~ 733 6.12 0.029

0 2 4 6 8 10 12 14 s, cm

(a) Pt t = 138 N/cm2 (200 psi), 0 < - m* < 0.029.

Figure 5.- Heat transfer distribution over hemispherical model 2.

31

Page 34: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.2

1[

32

m* RUN Ttt 40 -

0 67H2 0 . 5 2 ~ 1 0 ~ 832 7.81 0.047 0 62H2 0 . 6 0 ~ 1 0 ~ 736 6.17 0.059 0 63H2 0 . 6 1 ~ 1 0 ~ 726 6.03 0.087 A 64H2 0 . 5 4 ~ 1 0 ~ 786 6.96 0.129 0 87H2 0 . 5 7 ~ 1 0 ~ 758 6.57 0.232

2 4 6 8 10 12 14 s, cm

(b) P t t = 138 N/cm2 (200 psi), 0.047 < - m* < 0.232.

F i g u r e 5.- Continued.

Page 35: Blunt-Body Boundary-Layer Transition and Heat Transfer

m* RUN ReD Ttt 40 - 0 71H2 1 . 0 3 ~ 1 0 ~ 813 10.52 0.003 0 91H2 1 . 0 7 ~ 1 0 ~ 794 10.17 0.010 0 75H2 1 . 1 4 ~ 1 0 ~ 763 9.31 0.015 a 68H2 0 . 9 9 ~ 1 0 ~ 832 10.82 0.025

77H2 1 . 2 7 ~ 1 0 ~ 717 8.36 0.030

0 2 4 6 8 10 12 14 s, cm

( c ) Pt t = 276 N/cm2 (400 p s i ) , 0.003 < - m* < 0.030.

Figure 5.- Continued.

33

Page 36: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

I

I 4

.8

.6

&io

.4

.2

0

(d)

m* RUN Re, Ttt B - 0 79H2 1 . 3 0 ~ 1 0 ~ 707 8.14 0.044 0 65H2 1 . 0 6 ~ 1 0 ~ 799 10.19 0.064

0 82H2 1 . 0 4 ~ 1 0 ~ 807 10.51 0.079 A 85H2 1 . 0 7 ~ 1 0 ~ 795 10.20 0.095

4 88H2 1 . 1 6 ~ 1 0 ~ 758 9.32 0.110

2 4 6 8 10 12 s, cm

= 276 N/cm2 (400 psi), 0.044 < m* < 0.110. Ptt -

Figure 5.- Continued.

34

I

Page 37: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.2

1 '

1 #

A

.8'

h k o .6

.4

.2

0

m* RUN Re, Ttt qo -

0 72H2 2 . 1 1 ~ 1 0 ~ 801 14.39-0.001 0 76H2 2 . 3 4 ~ 1 0 ~ 753 12.83 0.007 0 92H2 2 . 0 5 ~ 1 0 ~ 817 14.99 0,009 A 69H2 2 . 0 2 ~ 1 0 ~ 823 14.98 0.012 d 78H2 2 . 5 5 ~ 1 0 ~ 715 11.77 0.015

2 4 6 8 10 12 14 s, cm

( e j ptt = 552 ~ / c m 2 (800 p s i ) , -0.001 < - m* < 0.015.

Figure 5 . - Continued .

35

Page 38: Blunt-Body Boundary-Layer Transition and Heat Transfer

m" RUN Re, Ttt 60 - 0 80H2 2 . 5 8 ~ 1 0 ~ 711 11.67 0.022 0 66H2 2 . 0 8 ~ 1 0 ~ 807 14.64 0.033 0 83H2 1 . 9 0 ~ 1 0 ~ 851 16.16 0.040 A 89H2 2 . 3 9 ~ 1 0 ~ 742 12.66 0.053

0 2 4 6 8 10 12 14 s, cm

(f) Ptt = 552 N/cm2 (800 psi), 0.022 < - m* < 0.053.

Figure 5.- Concluded.

36

Page 39: Blunt-Body Boundary-Layer Transition and Heat Transfer

RUN Ttt 40 - m"

0 15SS1 1 . 3 0 ~ 1 0 ~ 702 8.07-0.002 0 14SS1 1 . 4 4 ~ 1 0 ~ 658 7.15 0.002 0 17SS1 1 . 1 5 ~ 1 0 ~ 753 9.01 0.009 A 31SS1 1 . 2 1 ~ 1 0 ~ 733 8.49 0.018 d 18SS1 1 . 2 8 ~ 1 0 ~ 706 7.91 0.027 LI 32SS1 1 . 1 7 ~ 1 0 ~ 748 8.94 0.056 n 33ssi 1.17~106 745 8.96 0.079

I

0 2 4 6 8 10 s, cm

( a ) P t t = 276 N/cm2 (400 p s i ) , -0.002 < - m* < 0.079.

F i g u r e 6.- Heat t r a n s f e r d i s t r i b u t i o n ove r s p h e r i c a l segment model 1.

37

Page 40: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

, .8

.6

il;lo

.4

.2

0

RUN ReD Ttt

0 20SS1 2 . 3 9 ~ 1 0 ~ 742 [3 27SS1 2 . 3 2 ~ 1 0 ~ 755 a 21SS1 2 . 5 3 ~ 1 0 ~ 717 d 28SS1 2 . 4 3 ~ 1 0 ~ 735

32SS1 2 . 2 1 ~ 1 0 ~ 779 n 30SS1 2 . 2 4 ~ 1 0 ~ 772

;lo - m*

12.44 -0.001 12.95 0.010 11.74 0.017 12.37 0.025 13.81 0.034 13.61 0.045

2 4 6 8 10 s, cm

(b) P t t = 552 N/cm2 (800 psi), -0.001 < m* < 0.045.

Figure 6 . - Continued.

-

Page 41: Blunt-Body Boundary-Layer Transition and Heat Transfer

s, cm

(c) Ptt = 1103 N/cm2 (1600 psi), 0.004 < - m* < 0.026.

Figure 6.- Concluded.

Ttt 40 !!!* RUN

0 35SS1 4 . 9 3 ~ 1 0 ~ 729 17.33 0.004 0 38SS1 4 . 8 7 ~ 1 0 ~ 732 17.51 0.014 0 39SS1 3 . 8 4 ~ 1 0 ~ 814 20.41 0.026 a 40SS1 4 . 6 1 ~ 1 0 ~ 761 18.80 0.026

3

39

Page 42: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

&io

.4

.2

0

0 0

A A D

0

n

RUN

94SS2 97SS2 3SS2

21ss2 6SS2

20ss2 I ooss2

Re,

0.61 XI O6 0 . 6 7 ~ 1 0 ~ 0 . 5 6 ~ 1 0 ~ 0.47~1 O6

0 . 4 5 ~ 1 0 ~ 0.49~1 O6

0.64x106

Ttt 4, !.?I*

758 6.78 -0.001 714 5.97 0.010 784 7.00 0.027 849 7.97 0.060 722 6.09 0.099 877 8.56 0.214 854 8.33 0.487

2 4 6 8 10 s, cm

(a) Ptt = 138 N/cm2 (200 psi), -0.001 < m* < 0.487. -

Figure 7.- Heat transfer distribution over spherical segment model 2.

40

Page 43: Blunt-Body Boundary-Layer Transition and Heat Transfer

rn* RUN Re, Ttt so - 0 10SS2 1.13~10~ 767 9.39-0.002 0 llSS2 1.03~10~ 812 10.46 0.005 0 8SS2 1.12~10~ 775 9.61 0.008 A 98SS2 1.25~10~ 725 8.57 0.013 d 24SS2 0.90SS26 878 11.97 0.022

s, cm

P t t = 276 N/cm2 (400 p s i ) , -0.002 < - m* < 0.022. (b)

Figure 7. - Continued . 41

Page 44: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

idio

.4

.2

0

RUN

0 9SS2

a 13SS2 A 14SS2 a 15SS2

0 101ss2 104SS2

0 12ss2

n 17SS2

ReD T, ;I, 1 . 0 9 ~ 1 0 ~ 786 9.91 1 . 1 4 ~ 1 0 ~ 762 9.43 1 . 2 7 ~ 1 0 ~ 717 8.40 1 . 1 8 ~ 1 0 ~ 747 9.09 1 . 2 8 ~ 1 0 ~ 712 8.34 1 . 0 4 ~ 1 0 ~ .807 10.43 1 . 0 0 ~ 1 0 ~ 831 11.05 1 . 1 3 ~ 1 0 ~ 770 9.73

m*

0.035 0.045 0.059 0.079 0.1 14 0.155 0.205 0.238

-

A-

( c ) P t t = 276 N/cm2 (400 p s i ) , 0.035 < m* < 0.238.

Figure 7 . - Continued.

2 4 6 8 10 s, cm

Page 45: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

&io

.4

.2

0

my RUN Re, Ttt 40 -

0 96SS2 2 . 2 8 ~ 1 0 ~ 764 13.44-0.003 0 27SS2 2 . 1 4 ~ 1 0 ~ 796 14.20 0.005 0 99SS2 2 . 3 9 ~ 1 0 ~ 743 12.70 0.006 A 25SS2 1 . 9 3 ~ 1 0 ~ 844 15.90 0.020

2 4 6 8 10 s, cm

(d) Ptt = 552 N/cm2 (800 p s i ) , -0.003 < - m* < 0.020.

Figure 7.- Continued.

43

Page 46: Blunt-Body Boundary-Layer Transition and Heat Transfer

m* RUN Re, Ttt ;lo - 0 26SS2 1 . 9 9 ~ 1 0 ~ 831 15.46 0.035 0 102SS2 2 . 0 9 ~ 1 0 ~ 805 14.70 0.055 0 103SS2 2 . 2 6 ~ 1 0 ~ 768 13.44 0.072 A 106SS2 2 . 3 7 ~ 1 0 ~ 748 13.00 0.085 d 105SS2 2 . 2 9 ~ 1 0 ~ 762 13.50 0.104

1

.8

.6

ih0

.4

.2

0 2 4 6 8 10 s, cm

(e> Ptt = 552 N/cm2 (800 psi), 0.035 < - m* < 0.104.

Figure 7.- Concluded.

44

Page 47: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.6

1.4

1.2

1

.8

$io .6

.4

.2

0

RUN ReD Ttt q, E*

0 43C1 1 . 4 6 ~ 1 0 ~ 662 7.21 -0.001 0 52C1 1 . 1 8 ~ 1 0 ~ 742 8.81 0.004 0 44C1 1 . 4 5 ~ 1 0 ~ 666 7.26 0.004 A 45C1 1 . 1 1 ~ 1 0 ~ 766 9.36 0.009 d 46C1 1 . 2 3 ~ 1 0 ~ 722 8.48 0.031

\

2 4 6 8 10 s, cm

( a ) P t t = 276 N / c m 2 (400 p s i ) , -0.001 < m* < 0.031. -

F i g u r e 8.- Heat t r a n s f e r d i s t r i b u t i o n ove r c o n i c a l model 1.

45

Page 48: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.4

1.2

1

.8

h/qo .6

.4

.A

RUN Re, T, q, - m*

0 47C1 1 . 1 7 ~ 1 0 ~ 757 9.44 0.041 0 48C1 1 . 0 6 ~ 1 0 ~ 790 10.06 0.055 0 49C1 1 . 2 1 ~ 1 0 ~ 743 9.13 0.063

50C1 1 . 1 4 ~ 1 0 ~ 757 9.32 0.077 d 51C1 1 . 1 2 ~ 1 0 ~ 764 9.53 0.090

--r

I

-4 c- ADD IT I ON

CHANGE SCALE I

10 0 2 4 6 8 s, cm

(b) P t t = 276 N / c m 2 (400 p s i ) , 0.041 < - m* < 0.090.

F i g u r e 8.- Continued.

Page 49: Blunt-Body Boundary-Layer Transition and Heat Transfer

RUN Re, T,, io y* 0 53C1 2 . 2 3 ~ 1 0 ~ 774 13.57-0.003 0 54C1 2 . 1 8 ~ 1 0 ~ 783 13.98 0.001 0 63C1 2 . 3 7 ~ 1 0 ~ 745 12.69 0.006 A 57C1 2 . 6 7 ~ 1 0 ~ 693 10.95 0.012 d 64C1 2 . 3 9 ~ 1 0 ~ 742 12.63 0.016 a 58C1 2 . 4 0 ~ 1 0 ~ 740 12.51 0.020

1.6

1.4

1.2

1

.8

&io .6

.4

.Z

0 2 4 6 8 10 s, cm

(c) Pt t = 552 N/cm2 (800 p s i ) , -0.003 < - m* < 0.020.

Figure 8.- Continued.

47

Page 50: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.4

1 1.2

1

.8

q/q0 .6

.4

.2

0

RUN Re,, T,, q, m' -

0 59C1 2 . 3 5 ~ 1 0 ~ 751 12.98 0.026 0 60C1 2 . 3 0 ~ 1 0 ~ 758 13.31 0.031 0 61C1 2 . 4 2 ~ 1 0 ~ 737 12.53 0.037 0 62C1 2 . 4 8 ~ 1 0 ~ 726 12.38 0.041 d 65C1 2 . 0 9 ~ 1 0 ~ 802 14.74 0.054 a 66C1 2 . 3 1 ~ 1 0 ~ 757 13.25 0.059

SCALE

2 4 6 8 10 s, cm

(d) Pt t = 5 5 2 N/cm2 (800 p s i ) , 0.026 < E* < 0.059.

Figure 8.- Continued.

Page 51: Blunt-Body Boundary-Layer Transition and Heat Transfer

2.2

1.8

1.4

4 l i 0 1

.8

.4

RUN Re,, T,, q, E*

0 69C1 4 . 8 3 ~ 1 0 ~ 738 17.33-0.001 0 70C1 4 . 9 3 ~ 1 0 ~ 730 17.22 0.007 0 71C1 5 . 1 5 ~ 1 0 ~ 711 16.71 0.014 A 73C1 5 . 2 6 ~ 1 0 ~ 705 16.62 0.024

52 ct S

G I

I

-4 - NO MASS ADDITION

0 2 4 6 8 10 s, cm

( e ) Ptt = 1103 N/cm2 (1600 p s i ) , -0.001 < - m* < 0.024.

Figure 8. - Concluded.

49

Page 52: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.6

1.4

1.2

1

.8

ilia .6

.4

.2

0

(a)

RUN Re,, T,, qo E*

0 36C2 0 . 5 0 ~ 1 0 ~ 848 8.10-0.000 0 29C2 0 . 7 4 ~ 1 0 ~ 675 5.44 0.023 0 30C2 0 . 4 6 ~ 1 0 ~ 889 8.89 0.068 A 58C2 0 . 6 4 ~ 1 0 ~ 712 5.82 0.139 d 57C2 0 . 6 0 ~ 1 0 ~ 739 6.27 0.343 l l 51C2 0 . 6 0 ~ 1 0 ~ 739 6.23 0.509

SCALE CHANGE .

1 1

2 4 6 8 10 s. cm

= 138 N/cm2 (200 psi), 0 < m* < 0.509. Ptt -

Figure 9 . - Heat transfer distribution over conical model 2.

Page 53: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.6

1.4 I

<

1.2

1

.8

&io

.6

.4

.2

0

RUN

0 43C2 0 42C2 0 41C2 a 40C2

39C2 a 55C2 n 50C2

ReD T,, so E"

1 . 1 3 ~ 1 0 ~ 770 9.45 -0.001 1 . 1 3 ~ 1 0 ~ 771 9.51 0.007 0 . 9 6 ~ 1 0 ~ 847 11.25 0.045 1 . 0 0 ~ 1 0 ~ 824 10.73 0.072 0 . 8 9 ~ 1 0 ~ 884 12.09 0.106 1 . 2 0 ~ 1 0 ~ 744 8.99 0.157 1 . 2 4 ~ 1 0 ~ 726 8.50 0.248

I SCALE CHANGE ----I-- =

2 4 6 8 10 s, cm

(b) P t t = 276 N/cm2 (400 p s i ) , -0.001 < - m* < 0.248.

Figure 9.- Continued.

51

Page 54: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.6

1.4,

1 1.2

4

1

.8

414, .6

.4

.2

0

RUN Re, T,, q, E*

0 44C2 2 . 1 0 ~ 1 0 ~ 804 14.30-0.002 0 48C2 2 . 2 0 ~ 1 0 ~ 783 13.63 0.004 0 47C2 2 . 1 4 ~ 1 0 ~ 796 14.29 0.029 A 46C2 1 . 8 0 ~ 1 0 ~ 879 17.08 0.056 d 45C2 2 . 0 6 ~ 1 0 ~ 813 14.70 0.071

53C2 2 . 2 5 ~ 1 0 ~ 771 13.63 0.079 0 52C2 2 . 1 1 ~ 1 0 ~ 801 14.60 0.135

1

2 4 6 8 10 s, cm

( c ) P t t = 552 N/cm2 (800 psi), -0.002 < m* < 0.135. -

Figure 9.- Concluded.

52

Page 55: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

!!!

.4

.d

0

Sq, 0'\ A\

SYNTHETIC DATA

0 m DISTRIBUTION OF RUN 77H1 0 m DISTRIBUTION OF RUN 78H1

m = 0.0061 CONSTANT VALUE m = 0.0122 CONSTANT VALUE

' MODIFIED EO. (4) o \ A m /

\ a '\

\

1 I '. 1 2

B -

(a) Data generated by boundary-layer code of reference 5 for hemispherical model.

3

Figure 10.- Correlation of laminar heating rate ratio $ with mass addition parameter E. -

53

Page 56: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

- $

.4

.2

0

\ BE I

0

a e 8

i A

e a

I

MODEL RUN

1 77H1 mil 88H1 99H 1

2 70H2 90H2 71 H2 91 H2 75H2 76H2 92H2

.I

t8

,,

,, ,, ,, ,, ,, I ,

MODIFIED EO. (4)

1 2 B -

( b ) Experimental data, hemispherical model.

Figure 10. - Cont h u e d . 54

Page 57: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

- J/

.4

.1

0

> I I \O \ \ o 'P p 0

B e

A

\ MODIFIED EO. (4) v \ R \

\ E \ \ ' a \ E \ e \ E

'\% \ A 'e H'F A

\ \ \

MODEL

1 ,, 8 8

2 l ,

l ,

,I

8

8 8 9

\ e '\ p

\

RUN

14SS1 17SS1 20ss1 97SS2 11ss2 8SS2

27SS2

e El

1 2 B -

(c) Experimental data, spherical segments.

3

Figure 10.- Continued.

55

Page 58: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

- $

.4

.2

0

' 0 \

\ \

\O

\ a \ \ Q b \ \

RUN

0 52C1

0 44C1

0 45C1

0 57C1

n 63ci

b \ \ \ b \a \ \ MODIFIED EO. (4)

a

1 I '. 1 2

B -

(d) Experimental data, conical model 1.

3

Figure 10.- Concluded.

56

Page 59: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

.8

.6

J/

.4

.2

0

I ‘ 0 I

b o \ e \ .. @

\ cl \

0 \ \ a \ \ \ \ \ \ \ >

THEORY \ EQ. (4) \

\ \ \ \

. &

0

EXPERIMENT

PRESENT R E F . l RemD

0 0 1.1x106

w 0 2 . 3 ~ 1 0 ~ + 0 5 . 2 ~ 1 0 ~

1 2 3

B

( a ) Hemispherical model.

4

Figure 11.- E f f e c t of m a s s a d d i t i o n on s t a g n a t i o n p o i n t h e a t t r a n s f e r .

57

Page 60: Blunt-Body Boundary-Layer Transition and Heat Transfer

0

r \

\

I

\ a

\

I I

EXP. Re,,

a 1.2x 1 06 2 . 4 ~ 1 O6 4 . 8 ~ 1 0 ~

a a

1 2 B

3 4

(b) S p h e r i c a l segment model.

F i g u r e 11.- Concluded.

58

Page 61: Blunt-Body Boundary-Layer Transition and Heat Transfer

1.2

1

.8

- $' .6

.4

.2

RUN

0 89H1 0 91H1

100H1 92H1

0 1 2 3 4 5 B -

Figure 12.- Typ ica l h e a t i n g ra te d i s t r i b u t i o n downstream of anonomously hea ted s t a g n a t i o n p o i n t , hemisphe r i ca l model 1.

59

Page 62: Blunt-Body Boundary-Layer Transition and Heat Transfer

1

x 2 .1 c a- K

.Ol .1

Re-,

a 0 . 6 ~ 1 0 ~ B 1.1x106 a 2 . 3 ~ 1 0 ~

5 . 2 ~ 1 0 ~

10

Figure 13.- Correlation of transition Reynolds numbers, hemispherical model.

60

Page 63: Blunt-Body Boundary-Layer Transition and Heat Transfer

E E d

n X 0 CJ

a, L) rd

W k 5 m I+ a, a

W

d nl L) .rl k a, c a m .rl

s E

.da

W 0 .

rd k bo 0 k u .rl

c1 0 c PI

I

U 4

al k 1 bo .rl Fr

61

Page 64: Blunt-Body Boundary-Layer Transition and Heat Transfer

200

100

0

TRANSITION BEYOND SONIC POINT

PANT

L _ _ _ _ _ _ _ J SONIC Reg < 255

1 2 3

Figure 15.- PANT boundary-layer transition correlation, hemispherical model.

62

Page 65: Blunt-Body Boundary-Layer Transition and Heat Transfer

.4

.3

! h r b *2

.I

0

.4

.3

kturb -2

.I

0

I I I I I MODEL Re, I

8 1 1.07-1.1 2x106 @ " 2.01-2.42~10~

E 0 " 4.80-5.66~10~ N 0 2 0.52-0.61 XI O6

" 0.99-1 .3Ox1O6 a *# 1.90-2.58~10~

H H

"8

1

I I I I I 1 2 3 4 5

%urb

CASE I. FULLY TURBULENT HEATING REFERENCE

N

E N

H e E

e e.

I I I I 1 ~

1 2 3 4 5 Enrh

CASE II. MODIFIED TURBULENT HEATING REFERENCE

(a) Experimental data, hemispherical models.

Figure 16.- Correlation of turbulent heating rate ratio 9turb with mass addition parameter gturb.

63

Page 66: Blunt-Body Boundary-Layer Transition and Heat Transfer

I .8

.7

.6

.5

huh -4

.3

.2

.1

I I I I I

8 Rem

0 1.06-1.21~10~ 8 2.07-2.48~1 O6 @ 4.93-5.26~10~

$8 & -0

e& %

I I I I I 0 1 2 3 4 5 6

B -turb

(b) Experimental data, conical model 1.

Figure 16.- Concluded.

Page 67: Blunt-Body Boundary-Layer Transition and Heat Transfer

I 2. Government Accession No. 3. Recipient's Catalog No. 1. Report No.

EFFECTS OF MASS ADDITION ON BLUNT-BODY BOUNDARY-LAYER TRANSITION AND HEAT TRANSFER

7 AuthorW

George E. Kaattari - 9 Performing Organization Name and Address

NASA TP-1139 I I 4. Title and Subtitle I 5. Report Date

l a w r y 1978 6 Perfornsing Organization Code

8 Performing Organization Report No

A-7169 10 Work Unit No

506-26-01-00-21

Moffett Field, Cal i fornia 94035

2. Sponsoring Agency Name and Address

NASA A m e s Research Center

13. Type of Report and Period Covered

Technical Paper

I 11. Contract or Grant No.

National Aeronautics and Space Administration Washington, D.C . 20546

- 14. Sponsoring Agency Code

19. Security Classif. (of this report) 20. Security Classif. (of this pagel

Unclassified Unclassified

I6 Abstract

21. No. of Pages 22. Price' 66 $4.50

The r e s u l t s are presented f o r an experimental inves t iga t ion on the e f f e c t s of mass addi t ion on boundary-layer t r ans i t i ons f o r blunt bodies tes ted a t Mach number 7.32. The model bodies tes ted w e r e hemispheres, blunt cones, and spher ica l segments. The m a s s addi t ion consisted of a i r e jected iiiroiigh porous f ~ r i ~ i r d surfaces ef the models - The experimental da ta consisted of heat t ransfer measurements from which boundary-layer t r ans i t i ons were deduced. The data ver i f ied various applicable boundary-layer codes i n i n the laminar and t r ans i t i ona l flow regimes. Empirical heat ing rate da ta cor re la t ions w e r e developed f o r t h e laminar and turbulent flow regimes.

17. Key Words (Suggested by Author(rl1 18. Distribution Statement

Blunt-body heat t ransfer Boundary-layer t r ans i t i on Binary boundary layers Trans p i ra t ion cooling

Unlimited

STAR Category - 34

*For sale by the National Technical Information Service. Springfield, Virginia 22161

NASA-Langley, 1977