biotic interactions in recent and fossil benthic communities978-1-4757-0740-3/1.pdf · volume 3...

18
Biotic Interactions in Recent and Fossil Benthic Communities

Upload: truongque

Post on 22-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Biotic Interactions in Recent and Fossil Benthic Communities

TOPICS IN GEOBIOLOGY Series Editor: F. G. Stehli, University of Oklahoma

Volume 1 SKELETAL GROWTH OF AQUATIC ORGANISMS Biological Records of Environmental Change Edited by Donald C. Rhoads and Richard A. Lutz

Volume 2 ANIMAL-SEDIMENT RELATIONS The Biogenic Alteration of Sediments Edited by Peter L. McCall and Michael J. S. Tevesz

Volume 3 BIOTIC INTERACTIONS IN RECENT AND FOSSIL BENTHIC COMMUNITIES Edited by Michael J. S. Tevesz and Peter L. McCall

Biotic Interactions in Recent and Fossil Benthic Communities Edited by

Michael J. S. Tevesz Cleveland State University Cleveland, Ohio

and

Peter L. Me Call Case Western Reserve University Cleveland, Ohio

Springer Science+Business Media, LLC

Library of Congress Cataloging in Publication Data

Main entry under title:

Biotic interactions in recent and fossil benthic communities.

(Topics in geobiology; v. 3) 1. Paleoecology. 2. Biotic communities. 1. Tevesz, Michael J. S. II. McCall , P. L.

(Peter L.), 1948- . III. Series. QE720.B56 1983 560' .45 83-13953 ISBN 978-1-4757-0742-7 ISBN 978-1-4757-0740-3 (eBook) DOI 10.1007/978-1-4757-0740-3

© 1983 Springer Science+Business Media New York Originally published by Plenum Press, New York in 1983

AII rights reserved

No part of this book may be reproduced. stored in a retrieval system. Of transmitted in any form or by any means. electronic, mechanical. photocopying. microfilming. recording, or otherwise , without written permission rrom the Publisher

Contributors

William I. Ausich Department of Geological Sciences, Wright State Uni­versity, Dayton, Ohio 45435

Richard K. Bambach Department of Geological Sciences, Virginia Po­lytechnic Institute and State University, Blacksburg, Virginia 24061

David J. Bottjer Department of Geological Sciences, University of South-ern California, Los Angeles, California 90089 ·

Richard Cowen Department of Geology, University of California, Davis, California 95616

David Jablonski Department of Ecology and Evolutionary Biology, Uni­versity of Arizona, Tucson, Arizona 85721

J. B. C. Jackson Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218

Susan M. Kidwell Department of Geosciences, University of Arizona, Tucson, Arizona 85721

Jennifer A. Kitchell Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706

Andrew H. Knoll Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

David W. Larson Department of Geology, Franklin and Marshall College, Lancaster, Pennsylvania 17604. Present address: Department of Ge­ology, Hamilton College, Clinton, New York 13323

Jere H. Lipps Department of Geology, University of California, Davis, California 95616

Peter L. McCall Department of Geological Sciences, Case Western Re­serve University, Cleveland, Ohio 44106

David L. Meyer Department of Geology, University of Cincinnati, Cin­cinnati, Ohio 45221

v

vi Contributors

Donald C. Rhoads Department of Geology and Geophysics, Yale Uni­versity, New Haven, Connecticut 06520

J. John Sepkoski, Jr. Department of the Geophysical Sciences, Univer­sity of Chicago, Chicago, Illinois 60637

Peter M. Sheehan Department of Geology, Milwaukee Public Museum, Milwaukee, Wisconsin 53233

Michael J. S. Tevesz Department of Geological Sciences, Cleveland State University, Cleveland, Ohio 44115

Charles W. Thayer Department of Geology, University of Pennsylvania and Academy of Natural Sciences, Philadelphia, Pennsylvania 19104

James W. Valentine Department of Geological Sciences, University of California, Santa Barbara, California 93106

Geerat J. Vermeij Department of Zoology, University of Maryland, Col­lege Park, Maryland 20742

Sarah Ann Woodin Department of Biology, University of South Caro­lina, Columbia, South Carolina 29208

Preface

When Frank Stehli approached us in 1978 to participate in the Topics in Geobiology series, the idea for this book came easily to mind, because the role of biotic interactions in controlling the distribution of fossil organ­isms is at once intriguing and problematical. After organizing our own thoughts on this diffuse subject, we contacted a number of people whom we knew or suspected were interested in the subject and would be willing to commit their thoughts to writing and scrutiny. Given the current pauc­ity of knowledge in this area, we encouraged responsible speculation that might promote further investigation. To maintain some semblance of co­herency, we have limited the contents of this volume to topics largely (but not exclusively) pertaining to benthic marine invertebrates, the organisms with the best fossil record. We have not tried to be encyclopedic, because this would expose an embarrassingly large number of lacunae in the field. In fact, to a large extent the book has been molded around the response of our colleagues to our requests for contributions.

This book is divided into four parts. Part I documents the importance of biotic interactions in Recent benthic marine environments and the pres­ervation of evidence of interactions. A major theme running through benthic ecological literature from the late 1800s to the present is the rel­ative importance of physical environmental factors such as temperature, salinity, and subtratum type versus biological factors such as competition, predation, amensalism, disease, and parasitism. We think it is safe to say that until fairly recently, most workers, with few exceptions, subscribed to the notion that biologic interactions had little effect on distribution and abundance. The dominance of this view may be ascribed in large measures to the way bottom communities were studied: from the deck of a boat, with a grab sampler and large-mesh sieve that did not collect early life stages, and over an area of many square miles. In situ observations and small-scale observations were difficult to make. These older ideas still strongly influence many paleoecologists. The first several chapters show, however, that while physical factors related to phenomena such as sea­sonality affect benthic communities, biotic interactions profoundly affect species composition and abundance of both hard- and soft-bottom com~ munities.

vii

viii Preface

Part II documents that biotic interactions are widespread and influ­ential not only in different environments (as demonstrated in Part I) but also among a number of highly distinct taxonomic groups: prokaryotes, siliceous phytoplankton (we have included them, contrary to our title, because of their excellent fossil record and preservation among the ben­thos), benthic foraminifera, and crinoids.

While we think it is apparent that biotic interactions are an important influence on the structure and dynamics of modern benthic communities, and are common among particular groups of organisms with excellent fossil records, the importance of these factors in helping shape ancient communities and their history is less clear. One goal of paleontology is to explain the causes behind faunal changes through time. For example, why did brachiopods decline? Why did trilobites disappear? What are the reasons for the explosive evolution in the Cambro-Ordovician? Some ex­planations invoke habitat removal or alteration by changing shelf area and plate motions. Other explanations, like those proposed for modern en­vironments, center around changes in specific aspects of the physical environment such as temperature, salinity, or oxygen. These may all be important reasons, and there is often good evidence to support them. Other potentially important reasons for these changes, such as biotic in­teractions, are too little explored. Nevertheless, a few bold writers have claimed that local-level interactions have caused large-scale changes in the biosphere. For instance, the origin and initial adaptive radiations of metazoans and the rise of angiosperms are believed by some to have been caused by biotic interactions such as cropping and mutualism, respec­tively.

But hypotheses that give great importance to the role of biotic inter­actions in shaping ancient communities and their history may be attacked because the fossil record is too incomplete and imprecise to reconstruct many local-level interactions, and because large-scale changes in the bio­sphere occur over such a long time span that they may be more influenced by stochastic rather than deterministic factors. The authors of the final sections of the book attempt to show that biotic interactions of various sorts are pervasive throughout much of the history of life (Part III) and have been responsible for influencing a wide variety of phenomena. In Part IV, evidence is presented to show that biotic interactions have helped shape the structure, distribution, and evolution of marine benthic com­munities for much of the past 550 million years.

We hope that the several chapters provide an organized presentation and commentary on the present level of knowledge concerning biotic interactions and serve to stimulate more thought and research on these subjects, especially among paleontologists and paleoecologists.

M. J. S. Te\·esz P. L. McCall

Contents

I. Recent Interactions and Their Preservation

Chapter 1 • Biotic Interactions in Recent Marine Sedimentary Environments

Sarah Ann Woodin

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Common Units of Measure . . . . . . . . . . . . . . . . . . . 5 1.2. Organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Categories of Infauna. . . . . . . . . . . . . . . . . . . . . . . . 7

2. Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. Competition in the Recent. . . . . . . . . . . . . . . . . . . . 10 2.2. Competition in the Paleozoic . . . . . . . . . . . . . . . . . 15

3. Predation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1. Types of Predators in the Recent............... 19 3.2. Predation in the Paleozoic. . . . . . . . . . . . . . . . . . . . 25

4. Pattern Differentiation: Competition or Predation? . . . . . . 27 5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter z • Biological Determinants of Present and Past Sessile Animal Distributions

J. B. C. Jackson

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2. Organisms and Their Environments . . . . . . . . . . . . . . . . . 41 3. Causes of Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 .1. The Larval Pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 3.2. Larval Habitat Selection and Interactions with

Previously Settled Organisms . . . . . . . . . . . . . . . . . 48 3.3. Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4. Predation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5. Mutualism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix

X Contents

3.6. Life Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4. Fossil Evidence for Causes of Distributions. . . . . . . . . . . . 81

4.1. Some Criteria for Recognition of Past Habitat Selection and Mortality Processes in Fossils. . . . . . 81

4.2. Examples of Ancient Interactions . . . . . . . . . . . . . . 89 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 3 • Seasonality: Effects in Marine Benthic Communities

James W. Valentine

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 1.1. Solar Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 1.2. Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2. Seasonal Parameters with Primary Density-Independent Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 2.1. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 2.2. Salinity and Other Physical Variables . . . . . . . . . . 131 2.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3. Seasonal Parameters with Primarily Density-Dependent Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 3.1. Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.2. Nutrient Elements . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.3. Primary Production . . . . . . . . . . . . . . . . . . . . . . . . 136 3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4. Processes That Mediate Density-Dependent Effects. . . . . . 142 4.1. General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.2. Reproduction and Development: Seasonal

Strategies in z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.3. Niche Expansion: Seasonal Strategies in X . . . . . . . 145 4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5. Consequences for Biotic Patterns. . . . . . . . . . . . . . . . . . . . 147 5.1. Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2. Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.3. Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Chapter 4 • Soft-Bottom Succession and the Fossil Record

1. 2.

Peter L. McCall and Michael J. S. Tevesz

Introduction What Is Succession? ............................ .

157 158

Contents xi

3. What Use Is It? 160 4. Nearshore Benthic Succession . . . . . . . . . . . . . . . . . . . . . 161

4.1. Biotic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.2. Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5. Succession in Other Environments . . . . . . . . . . . . . . . . . . 169 6. Preservation of Soft-Bottom Succession. . . . . . . . . . . . . . . 171

6.1. Taphonomic Losses and Mixing . . . . . . . . . . . . . . . 171 6.2. Diagenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.3. Comparison Of Life and Death Assemblages. . . . . . 176

7. Relation to Geologic Examples . . . . . . . . . . . . . . . . . . . . . 183 8. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 5 • Taphonomic Feedback: Ecological Consequences of Shell Accumulation

Susan M. Kidwell and David Jablonski

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2. Recent and Fossil Examples of Taphonomic Feedback. . . 196

2.1. Taphonomic Facilitation . . . . . . . . . . . . . . . . . . . . 197 2.2. Taphonomic Inhibition . . . . . . . . . . . . . . . . . . . . . 206

3. Expected Patterns in the Stratigraphic Record. . . . . . . . . . 208 3.1. Sediment Aggradation . . . . . . . . . . . . . . . . . . . . . . 212 3.2. Sediment Starvation . . . . . . . . . . . . . . . . . . . . . . . . 213 3.3. Sediment Bypassing . . . . . . . . . . . . . . . . . . . . . . . . 215 3.4. Erosional Truncation . . . . . . . . . . . . . . . . . . . . . . . 217 3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4. Case Study: Neogene Chesapeake Group, Atlantic Coastal Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 4.1. Evidence of Taphonomic Feedback. . . . . . . . . . . . . 223 4.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 References 235

II. Interactions among Selected Taxa

Chapter 6 • Biological Interactions and Precambrian Eukaryotes

Andrew H. Knoll

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 2. Hypotheses of Eukaryotic Origins . . . . . . . . . . . . . . . . . . . 253

xii Contents

3. A Scenario for Early Eukaryotic Evolution . . . . . . . . . . . . 258 4. The Fossil Record of Early Eukaryotes . . . . . . . . . . . . . . . 264

4.1. "Spot" Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 4.2. Tetrahedral Tetrads . . . . . . . . . . . . . . . . . . . . . . . . 268 4.3. Filamentous Microfossils . . . . . . . . . . . . . . . . . . . . 268 4.4. Size Distribution Data . . . . . . . . . . . . . . . . . . . . . . 269 4.5. Acritarchs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 70 4.6. Vase-Shaped Microfossils . . . . . . . . . . . . . . . . . . . . 273 4.7. Precambrian Macrofossils . . . . . . . . . . . . . . . . . . . . 273

5. Ecological Consequences of Early Eukaryote Evolution. . . 274 6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Chapter 7 • Biotic Interactions and Siliceous Marine Phytoplankton: An Ecological and Evolutionary Perspective

Jennifer A. Kitchell

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 2. Competition and Coexistence . . . . . . . . . . . . . . . . . . . . . . 287

2.1. Nutrient Uptake Kinetics . . . . . . . . . . . . . . . . . . . . 287 2.2. Coexistence of Competing Species . . . . . . . . . . . . . 291 2.3. The Paradox of Enrichment . . . . . . . . . . . . . . . . . . 294 2.4. Nonequilibrium Theories of Competitive

Coexistence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 3. Predator-Prey Interactions . . . . . . . . . . . . . . . . . . . . . . . . 297

3.1. Predation as a Selective Force. . . . . . . . . . . . . . . . . 297 3.2. Predation and the Maintenance of Diversity . . . . . . 302 3.3. Predation and the Sediment Record . . . . . . . . . . . . 303

4. Life History Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 5. Evolutionary Mode of Phytoplankton . . . . . . . . . . . . . . . . 309 6. Paleontological Applications . . . . . . . . . . . . . . . . . . . . . . 312

6.1. Competitive Displacement in Evolutionary Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.2. Character Divergence and Convergence. . . . . . . . . . 313 6.3. A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Chapters • Biotic Interactions in Benthic Foraminifera

Jere H. Lipps

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Contents xiii

2. Trophic Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 2.1. Food of Foraminifera . . . . . . . . . . . . . . . . . . . . . . . 332 2.2. Trophic Mechanisms in Foraminifera . . . . . . . . . . . 334 2.3. Consumption of Foraminifera by Other

Organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 52 3. Substrate Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

3.1. Foraminifera as Epibionts . . . . . . . . . . . . . . . . . . . . 359 3.2. Foraminfera as Substrata . . . . . . . . . . . . . . . . . . . . 363

4. Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 5. Bioturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 6. Taphonomic Aspects of Foraminiferal Biotic

Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 7. Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 70

Chapter g • Biotic Interactions among Recent and among Fossil Crinoids

David L. Meyer and William I. Ausich

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 2. Predation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

2.1. Sources of Predation on Living Crinoids. . . . . . . . . 378 2.2. Possible Antipredator Adaptations of Living

Crinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 2.3. Predation on Ancient Crinoids . . . . . . . . . . . . . . . . 381 2.4. Possible Antipredator Morphology in Ancient

Crinoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 2.5. Regeneration and Nonlethal Predation . . . . . . . . . . 385

3. Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 3.1. Possible Mechanisms of Competition . . . . . . . . . . . 387 3.2. Niche Differentiation among Living and among

Ancient Crinoids. . . . . . . . . . . . . . . . . . . . . . . . . . . 388 4. Associations of Living Crinoids with Other

Organisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 4.1. Polychaetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4.2. Molluscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 4.3. Crustaceans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 4.4. Fishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

5. Associations of Ancient Crinoids with Other Organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 5.1. Nature of Associations . . . . . . . . . . . . . . . . . . . . . . 398 5.2. Commensalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 5.3. Stereomic Malformations . . . . . . . . . . . . . . . . . . . . 406

xiv Contents

5.4. Crinoids as Epizoans . . . . . . . . . . . . . . . . . . . . . . . 411 5.5. Parasitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

6. Other Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 7. Habitat Modification by Crinoids . . . . . . . . . . . . . . . . . . . 415

7.1. Contribution to Sediment . . . . . . . . . . . . . . . . . . . . 415 7.2. Effects on Substrata . . . . . . . . . . . . . . . . . . . . . . . . 416 7.3. Consequences for Community Succession........ 418

8. Role of Biotic Interactions in Crinoid Evolution . . . . . . . . 418 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

III. Biotic Interactions through Time

Chapter 10 • Algal Symbiosis and Its Recognition in the Fossil Record

Richard Cowen

1. Symbiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 2. Algal Symbiosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

2.1. The Algal Symbionts . . . . . . . . . . . . . . . . . . . . . . . 433 2.2. Phyletic Distribution of Hosts of Algal

Symbionts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 2.3. Geographical and Ecological Distribution . . . . . . . . 435

3. The Origin of Algal Symbiosis . . . . . . . . . . . . . . . . . . . . . 436 4. Characters Associated with Symbiosis. . . . . . . . . . . . . . . . 439

4.1. Characters That Promote Symbiosis . . . . . . . . . . . . 440 4.2. Characters That Result from Symbiosis . . . . . . . . . . 446

5. Recognition of Algal Symbiosis in the Fossil Record. . . . . 449 5.1. Usable Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 5.2. Fossil Corals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 5.3. Fossil Foraminifera . . . . . . . . . . . . . . . . . . . . . . . . 454 5.4. Fossil Cardiacean Bivalves . . . . . . . . . . . . . . . . . . . 456 5.5. Rudist Bivalves . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 5.6. Other Large Bivalves . . . . . . . . . . . . . . . . . . . . . . . 460 5.7. Recalcitrant Groups: The Planktonic Syndrome . . . 462

6. Case Study of Symbiosis in Permian Brachiopods. . . . . . . 462 6.1. The Feeding Mechanism of the

Richthofeniacea. . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 6.2. Symbiosis in the Richthofeniacea . . . . . . . . . . . . . . 465 6.3. Symbiosis in the Teguliferinidae . . . . . . . . . . . . . . 471 6.4. Symbiosis in the Lyttoniacea . . . . . . . . . . . . . . . . . 472 6.5. The Origins of Symbiosis in Brachiopods . . . . . . . . 473 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 4

Contents XV

Chapter 11 • Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos

Charles W. Thayer

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 2. Disturbance of Recent Sediments: Villains, Victims and

Modi Operandi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 2.2. Modes of Sediment-Mediated Interaction . . . . . . . . 487 2.3. Ranking of Modes of Disturbance . . . . . . . . . . . . . . 490 2.4. Effects of Bulldozing on IMOUS . . . . . . . . . . . . . . . 500 2.5. Determinants of Bioturbation Rates . . . . . . . . . . . . 501 2.6. Significance of Trophic Group Amensalism . . . . . . 505

3. Rise of the Bulldozers: Paleontological Perspective and Neontological Insight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 3.1. Diversification and Deductions from Recent

Reworking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 3.2. Evidence from Morphology, Traces, and Behavior

517 4. More Evidence from Trace Fossils: Tracking Villains

through Geologic Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 5. Physical Disturbance and Biotic Stabilization: How

Shifting Were the Sands of Time?. . . . . . . . . . . . . . . . . . . 522 6. Phanerozoic Patterns: Restructuring the Benthos. . . . . . . . 524

6.1. Brachiopods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 6.2. Bivalves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 6.3. Other Taxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 6.4. Statistical Summary of Diversity Data. . . . . . . . . . . 537 6.5. Abundant Taxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 6.6. Abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 6.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

7. Extinctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 8. Archaic IMOUS in Recent Refugia: Avoiding the

Bulldozers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 8.1. Hard Substrata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 8.2. Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 8.3. Deep Sea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 8.4. Littoral Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 8.5. Refuge in Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 8.6. Corais: Refugia in Excelcis . . . . . . . . . . . . . . . . . . . 553

9. Geological and Paleontological Consequences . . . . . . . . . 553 9.1. Sedimentology and Stratigraphy . . . . . . . . . . . . . . . 553 9.2. Biogeochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

xvi Contents

9.3. Preservation of Fossils . . . . . . . . . . . . . . . . . . . . . . 555 10. Speculation on Causes and Consequences. . . . . . . . . . . . . 557

10.1. Land Plants and Their Ramifications. . . . . . . . . . . . 557 10.2. Other Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 10.3. Infaunal vs. Epifaunal Suspension-Feeders. . . . . . . 559 10.4. Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 10.5. Brachiopods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 10.6. Substrate Specificity . . . . . . . . . . . . . . . . . . . . . . . 561 10.7. Hardgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

11. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 11.1. Potential Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 11.2. Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 11.3. Implications for Paleoecologic Methods: Generic

Duration, Diversity, and Abundance. . . . . . . . . . . . 564 11.4. Random Patterns? . . . . . . . . . . . . . . . . . . . . . . . . . . 565 11.5. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Chapter 12 • The Evolution of Infaunal Communities and Sedimentary Fabrics

David W. Larson and Donald C. Rhoads

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 2. Infaunal Life and Sediment Reworking. . . . . . . . . . . . . . . 628 3. Comparison of Sedimentary Fabrics . . . . . . . . . . . . . . . . . 629

3.1. Sedimentary Facies . . . . . . . . . . . . . . . . . . . . . . . . 631 3.2. Effect of Bioturbation . . . . . . . . . . . . . . . . . . . . . . . 633

4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 4.1. Additional Evidence . . . . . . . . . . . . . . . . . . . . . . . 642 4.2. Evolution of Infaunal Communities . . . . . . . . . . . . 642

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

Chapter 13 • Shell-Breaking Predation through Time

Geerat J. Vermeij

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649 2. Breakage as Agent of Mortality and Selection . . . . . . . . . . 650 3. Adaptations against Breakage . . . . . . . . . . . . . . . . . . . . . . 652 4. Gastropod Shell Form through Geological Time . . . . . . . . 655

Contents xvii

5. Armor in Other Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . 660 6. The Geological Record of Shell-Breakers. . . . . . . . . . . . . . 661 7. Alternative and Additional Interpretations . . . . . . . . . . . . 663

Refurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

IV. Effects of Interactions on Community Evolution

Chapter 14 • Diversification, Faunal Change, and Community Replacement during the Ordovician Radiations

J. John Sepkoski, Jr., and Peter M. Sheehan

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 2. Patterns of Diversification and Faunal Change during the

Ordovician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 4 2.1. Global Diversity and the Three "Great

Evolutionary Faunas" . . . . . . . . . . . . . . . . . . . . . . . 675 2.2. Modeling Paleozoic Diversity Patterns . . . . . . . . . . 680

3. Distributional Ecology of the Ordovician Radiations. . . . . 684 3.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 3.2. Analytic Methodology . . . . . . . . . . . . . . . . . . . . . . 687 3.3. Cluster Analysis of Cambro-Ordovician

Communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 3.4. Factor Analysis of Cambro-Ordovician

Communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697

4.1. Generality of Results . . . . . . . . . . . . . . . . . . . . . . . 699 4.2. Mechanisms of Onshore-Offshore Change . . . . . . . 701

5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710

Chapter 15 • Ecospace Utilization and Guilds in Marine Communities through the Phanerozoic

R. K. Bambach

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 1.1. Diversity Change through the Phanerozoic . . . . . . . 720 1.2. The Question of an Ecologic Role in Controlling

Diversity Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 721 2. General Pattern of Ecospace Utilization. . . . . . . . . . . . . . . 722

xviii Contents

2.1. Turnover of Class-Level Taxa through Time . . . . . . 722 2.2. Change in General Ecospace Utilization . . . . . . . . . 725

3. The Guild Concept and Its Application to Paleocommunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728 3.1. Extension of the Guild Concept. . . . . . . . . . . . . . . . 728 3.2. Defining Guilds in Paleocommunities. . . . . . . . . . . 730

4. Guilds in Paleocommunities . . . . . . . . . . . . . . . . . . . . . . . 733 4.1. The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733 4.2. Differences in Guild Structures of Paleozoic and

Neogene Communities. . . . . . . . . . . . . . . . . . . . . . . 733 4.3. Similarities in Species Distribution within

Guilds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 4.4. "Superguilds" . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 44

Chapter 16 • Soft-Bottom Epifaunal Suspension-Feeding Assemblages in the Late Cretaceous: Implications for the Evolution of Benthic Paleocommunities

David Jablonski and David J. Bottjer

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 2. Late Cretaceous Offshore Benthic Assemblages. . . . . . . . . 749

2.1. Gulf and Atlantic Coastal Plain. . . . . . . . . . . . . . . . 749 2.2. Other Chalk Faunas . . . . . . . . . . . . . . . . . . . . . . . . 762

3. Late Cretaceous Nearshore Benthic Assemblages. . . . . . . . 771 3.1. Gulf and Atlantic Coastal Plain................ 771 3.2. Other Nearshore Faunas . . . . . . . . . . . . . . . . . . . . . 775

4. Structure of Late Cretaceous Assemblages. . . . . . . . . . . . . 776 4.1. The Ecologic Pattern . . . . . . . . . . . . . . . . . . . . . . . . 776 4.2. The Taphonomic Overprint. . . . . . . . . . . . . . . . . . . 778

5. Evolutionary History and Mechanisms . . . . . . . . . . . . . . . 781 5.1. Evolutionary History . . . . . . . . . . . . . . . . . . . . . . . 781 5.2. Evolutionary Mechanisms . . . . . . . . . . . . . . . . . . . 787

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797