biosensors christopher byrd enpm808b university of maryland, college park december 4, 2007

38
Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Post on 21-Dec-2015

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Biosensors

Christopher Byrd

ENPM808B University of Maryland, College Park

December 4, 2007

Page 2: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Outline

Introduction

4 Specific Types of Biosensors Electrochemical (DNA)

Carbon nanotube

BioFET

Whole Cell Basic functionality

Benefits/Challenges

Summary

References

Page 3: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Introduction

Biosensor:

Incorporation of a biomolecule in order to detect something

Species to be detected (analyte)

FilterRecognition Layer

Transducer Electronics SignalRecognition Layer

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 4: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Introduction

Biosensors ~ $3B 90% → Glucose testing 8% - 10% increase in industry per year

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 5: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Electrochemical DNA Sensors

Harnesses specificity of DNA Simple assembly Customizable Vast uses for small cost

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 6: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

DNA Structure

DNA structures---double helix

4 complementary bases:

Adenine (A), Guanine (G),

Thymine (T), and Cytosine (C)

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 7: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

DNA Specificity

Hydrogen bonding between base pairs

Stacking interaction between bases along axis of double-helix

Animation

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 8: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Principles of DNA biosensors Nucleic acid hybridization

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: http://cswww.essex.ac.uk

ssDNA (Probe)

(Target Sequence)

(Hybridization)

(Stable dsDNA)

Page 9: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

E-DNA Sensor Structure

“Stem-loop”

s

Gold electrode

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 10: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

E-DNA Sensor Structure

“Stem-loop”

Target

s

Gold electrode

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Page 11: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

E-DNA Sensor Structure

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Ricci et al., Langmuir, 2007, 23, 6827-6834

(Stem-loop)

(Open, extended)

Page 12: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon Nanotube Biosensor

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Image: www.cnano-rhone-alpes.org

Page 13: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon Nanotube Biosensor

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

One atom thick One nanometer diameter Ability to be functionalized

Electrical conductivity as high as copper, thermal conductivity as high as diamond

Page 14: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

CNT Biosensor Structure

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Succinimidyl ester

Source: Chen et al., 2001

Page 15: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

CNT Uncoated vs. Coated

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Chen et al., 2001

Page 16: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

CNT Biosensor Signal Detection

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Besteman et al., 2003

O2

H2O2

Glucose

Gluconic Acid

e-

Page 17: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Besteman et al., 2003

e-

e- e-e-

e-

Effectively increases electrical current

CNT Biosensor Signal Detection

Page 18: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

CNT Biosensor Results

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Besteman et al., 2003

0 mM

20 mM

60 mM

160 mM

Page 19: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

BioFET Draws upon versatility of common electronic

component (Field-Effect Transistor) Well understood expectations/results

Page 20: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

FET

Drain Gate

Source

-

-

-

-

-

-

Insulator

+

+ + + +

(Electron Channel)(Not conductive enough)

Page 21: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

FET

Drain Gate

Source

-

Insulator

+

+ + + +

Threshold Voltage

Page 22: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

FET

Drain Gate

Source

-

-

-

-

-

-

- -

Insulator

+ + + +

+

+ + + +

- -- -- -

Page 23: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET

Page 24: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET

Page 25: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET Results

Gate (before)

Page 26: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET ResultsGate

(after etch, w/biotin)

Gate (w/ complete Biomolecule)

d

Page 27: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: http://www.whatsnextnetwork.com/technology/media/cell_adhesion.jpg

Whole Cell Sensors

Page 28: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Whole Cell Sensors Harness normal genetic processes May detect dozens of pathogens Modifiable/customizable Reports bioavailability

Temperature/pH sensitive Short shelf-life

Page 29: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Daunert et al., 2000

Whole Cell Sensors

Page 30: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Page 31: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

(Side view)

Page 32: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Suction

Page 33: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Suction

Page 34: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Page 35: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Carbon N-T E-DNA BioFETIntroduction

Summary Use of biomolecules in sensors offers:

Extreme sensitivity Flexibility of use Wide array of detection Universal application

Whole Cell Summary

Page 36: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Summary But still maintains challenges of:

pH/Temperature sensitivity Degradation Repeatable use

Regardless of challenges: Biosensors will permeate future

society

Carbon N-T E-DNA BioFETIntroduction Whole Cell Summary

Page 37: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

References K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1:18-23. N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54. K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610. S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively charged surface”, Nucleic

Acids Res., 2001, 29, 3051–3058. F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor”, Langmuir, 2007, 23,

6827-6834. M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, 129-153. E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat. Biotechnol. 2000, 18, 1096-

1100. S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes”,

Electrochemistry Communications, 2007, 9, 1810-1815. K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: 727-730. R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization”, J. Am. Chem.

Soc., 2001, 123, 16: 3838 -3839. K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, 452-468. Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, 1989. I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature Nanotechnology, 2007, 2, 430 –

434. D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, 393 - 394. S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological

Recognition with Reporter Genes”, Chem. Rev. 2000, 100, 2705-2738. T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere, 2003, 50, 409-413. F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta. 2002, 58, 1:181-188. W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for Sensing Signals from Single

Cells”, IEEE Sensors, 2006, 140-143. R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: 218-266. [1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2, 935-944.

Page 38: Biosensors Christopher Byrd ENPM808B University of Maryland, College Park December 4, 2007

Questions?

Carbon N-T E-DNA BioFETIntroduction Whole Cell Summary