biomass conversion to acrylonitrile monomer-precursor for ... conversion... · wbs 2.3.1.200 -...

35
WBS 2.3.1.200 - Biomass conversion to Acrylonitrile monomer-precursor for the production of carbon fibers March 8, 2017 Biochemical conversion This presentation does not contain any proprietary, confidential, or otherwise restricted information U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review PI: Amit Goyal Southern Research

Upload: others

Post on 07-Sep-2019

17 views

Category:

Documents


0 download

TRANSCRIPT

WBS 231200 - Biomass conversion to Acrylonitrile monomer-precursor for the production of carbon fibers

March 8 2017Biochemical conversion

This presentation does not contain any proprietary confidential or otherwise restricted information

US Department of Energy (DOE)Bioenergy Technologies Office (BETO)

2017 Project Peer Review

PI Amit GoyalSouthern Research

Goal Statement Goal Develop a novel commercially viable cost effective thermochemical

process that enables utilization of an alternative feedstock - non-food sugars for the production of acrylonitrile (ACN) ndash an essential precursor for high performance carbon fiber

Laboratory (phase I ongoing) and bench (phase II future) scale demonstration

2

Supports DOE BETOrsquos strategic goals aimed for conversion RampD and BETOrsquos modeled $1lb cost goals for Bio-ACN production to reduce carbon fiber manufacturing cost to $5lb by 2020

ACN production from different routes1Guerrero-Peacuterez et al Catalysis Today 239 (2015) 25-30

Carbon fiber

Quad Chart Overview Timelinebull Project start date Feb 1st 2015bull Project end date March 30th 2017bull Percent complete 95 Partnersbull Southern Research (70) Cytec-Solvay (25)

NJIT (5)bull Arbiom Renmatix and NCSU ndash Sugar suppliers

3

bull Ct-A Feedstock Variabilitybull Ct-H Efficient Catalytic

Upgrading of sugarsaromatics Gaseous and Bio-Oil Intermediates to Fuels and Chemicals

bull Ct-I Product Finishing Acceptability and Performance

Budget

Barriers

Total Costs FY 12-14

FY 15 Costs

FY 16 Costs

Total Planned Funding (FY17 ndash Project End Date)

DOE Funded $333333 $862130 $593108 Project total cost share $94593 $173806 $233731

Southern Research $93238 $149849 $186523 Cytec-Solvay $0 $23512 $34806 NJIT $1355 $445 $12402

Context Carbon fiber ndash strength of steel weight of plastic

Widespread use of carbon fiber restricted due to high cost of production

Production of carbon fiber precursor chemicals eg ACN is a potentially viable area to reduce the cost of making carbon fibers

1 - Project Overview

4

DOE estimates carbon fiber production cost needs to be at $5lb equivalent to $1lb cost of the precursor

ACN production from non-petroleum feedstock is limited to purified glycerol available at high cost1

Petroleum based processes are affected by volatile propylene price and shortage most recently due to preference for low cost ethane

1Guerrero-Peacuterez et al Catalysis Today 239 (2015) 25-30

1 - Project Overview (contd)

5

C5 C6sugars

H2

R1

Co-Product

S-1

Glycerol+PG

R2

Co-Product

S-2

Acrolein

R3

S-3

Bio-ACN

Vendor Cytec-Solvay Southern Research

Project goalsobjective Multistep catalytic (R1-R3) ACN production at lt$1lb Development of 2 novel (R1 amp R2) and 1 known (R3) catalysts to meet target Process intensification via novel one step sugar to Glycerol and PG conversion Use of known technologies to separate undesirables main and co-products

NH3

Air

R1 = Hydrocracking R2 = Dehydration R3=AmmoxidationS-1 to S-3 = Separation trains PG = Propylene glycol

Schematic of the proposed sugar to ACN process

Activity(Phase I-Ends March 302017)

Taskowner Milestone

Task 1 Micro Reactor set up SR Setup completed

Task 2 Catalyst development and testing

Task 21 Develop R1 catalystTask 22 Parametric study for R1Task 23 Develop R2 catalyst Task 24 Parametric study for R2Task 25 Optimize ACN productionTask 26 Measure catalyst stability and regeneration

SR At least 2 novel candidates for each of R1 and R2 R3 lit catalystR1 S(glycerol+PG) gt65 gt50glhrR2 S(acrolein) gt 70 gt375glhr R3 S(ACN) gt 70 gt75 glhrCatalyst life gt40h for each catalyst

Task 3 Catalyst characterization NJITSR Completed (fresh and used catalyst)

Task 4 Bio-ACN validation Cytec-Solvay

Model impure ACN validated 3 product samples tested

Task 5 TEALCA SR Preliminary TEA completed with lab scale data Cost lt$1lb

Task 6 Project Management andReporting

SR Deliverables to DOE-EERE

6

2 ndash Approach (Management)

Data transfer Material transfer

(Months)

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Goal Statement Goal Develop a novel commercially viable cost effective thermochemical

process that enables utilization of an alternative feedstock - non-food sugars for the production of acrylonitrile (ACN) ndash an essential precursor for high performance carbon fiber

Laboratory (phase I ongoing) and bench (phase II future) scale demonstration

2

Supports DOE BETOrsquos strategic goals aimed for conversion RampD and BETOrsquos modeled $1lb cost goals for Bio-ACN production to reduce carbon fiber manufacturing cost to $5lb by 2020

ACN production from different routes1Guerrero-Peacuterez et al Catalysis Today 239 (2015) 25-30

Carbon fiber

Quad Chart Overview Timelinebull Project start date Feb 1st 2015bull Project end date March 30th 2017bull Percent complete 95 Partnersbull Southern Research (70) Cytec-Solvay (25)

NJIT (5)bull Arbiom Renmatix and NCSU ndash Sugar suppliers

3

bull Ct-A Feedstock Variabilitybull Ct-H Efficient Catalytic

Upgrading of sugarsaromatics Gaseous and Bio-Oil Intermediates to Fuels and Chemicals

bull Ct-I Product Finishing Acceptability and Performance

Budget

Barriers

Total Costs FY 12-14

FY 15 Costs

FY 16 Costs

Total Planned Funding (FY17 ndash Project End Date)

DOE Funded $333333 $862130 $593108 Project total cost share $94593 $173806 $233731

Southern Research $93238 $149849 $186523 Cytec-Solvay $0 $23512 $34806 NJIT $1355 $445 $12402

Context Carbon fiber ndash strength of steel weight of plastic

Widespread use of carbon fiber restricted due to high cost of production

Production of carbon fiber precursor chemicals eg ACN is a potentially viable area to reduce the cost of making carbon fibers

1 - Project Overview

4

DOE estimates carbon fiber production cost needs to be at $5lb equivalent to $1lb cost of the precursor

ACN production from non-petroleum feedstock is limited to purified glycerol available at high cost1

Petroleum based processes are affected by volatile propylene price and shortage most recently due to preference for low cost ethane

1Guerrero-Peacuterez et al Catalysis Today 239 (2015) 25-30

1 - Project Overview (contd)

5

C5 C6sugars

H2

R1

Co-Product

S-1

Glycerol+PG

R2

Co-Product

S-2

Acrolein

R3

S-3

Bio-ACN

Vendor Cytec-Solvay Southern Research

Project goalsobjective Multistep catalytic (R1-R3) ACN production at lt$1lb Development of 2 novel (R1 amp R2) and 1 known (R3) catalysts to meet target Process intensification via novel one step sugar to Glycerol and PG conversion Use of known technologies to separate undesirables main and co-products

NH3

Air

R1 = Hydrocracking R2 = Dehydration R3=AmmoxidationS-1 to S-3 = Separation trains PG = Propylene glycol

Schematic of the proposed sugar to ACN process

Activity(Phase I-Ends March 302017)

Taskowner Milestone

Task 1 Micro Reactor set up SR Setup completed

Task 2 Catalyst development and testing

Task 21 Develop R1 catalystTask 22 Parametric study for R1Task 23 Develop R2 catalyst Task 24 Parametric study for R2Task 25 Optimize ACN productionTask 26 Measure catalyst stability and regeneration

SR At least 2 novel candidates for each of R1 and R2 R3 lit catalystR1 S(glycerol+PG) gt65 gt50glhrR2 S(acrolein) gt 70 gt375glhr R3 S(ACN) gt 70 gt75 glhrCatalyst life gt40h for each catalyst

Task 3 Catalyst characterization NJITSR Completed (fresh and used catalyst)

Task 4 Bio-ACN validation Cytec-Solvay

Model impure ACN validated 3 product samples tested

Task 5 TEALCA SR Preliminary TEA completed with lab scale data Cost lt$1lb

Task 6 Project Management andReporting

SR Deliverables to DOE-EERE

6

2 ndash Approach (Management)

Data transfer Material transfer

(Months)

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Quad Chart Overview Timelinebull Project start date Feb 1st 2015bull Project end date March 30th 2017bull Percent complete 95 Partnersbull Southern Research (70) Cytec-Solvay (25)

NJIT (5)bull Arbiom Renmatix and NCSU ndash Sugar suppliers

3

bull Ct-A Feedstock Variabilitybull Ct-H Efficient Catalytic

Upgrading of sugarsaromatics Gaseous and Bio-Oil Intermediates to Fuels and Chemicals

bull Ct-I Product Finishing Acceptability and Performance

Budget

Barriers

Total Costs FY 12-14

FY 15 Costs

FY 16 Costs

Total Planned Funding (FY17 ndash Project End Date)

DOE Funded $333333 $862130 $593108 Project total cost share $94593 $173806 $233731

Southern Research $93238 $149849 $186523 Cytec-Solvay $0 $23512 $34806 NJIT $1355 $445 $12402

Context Carbon fiber ndash strength of steel weight of plastic

Widespread use of carbon fiber restricted due to high cost of production

Production of carbon fiber precursor chemicals eg ACN is a potentially viable area to reduce the cost of making carbon fibers

1 - Project Overview

4

DOE estimates carbon fiber production cost needs to be at $5lb equivalent to $1lb cost of the precursor

ACN production from non-petroleum feedstock is limited to purified glycerol available at high cost1

Petroleum based processes are affected by volatile propylene price and shortage most recently due to preference for low cost ethane

1Guerrero-Peacuterez et al Catalysis Today 239 (2015) 25-30

1 - Project Overview (contd)

5

C5 C6sugars

H2

R1

Co-Product

S-1

Glycerol+PG

R2

Co-Product

S-2

Acrolein

R3

S-3

Bio-ACN

Vendor Cytec-Solvay Southern Research

Project goalsobjective Multistep catalytic (R1-R3) ACN production at lt$1lb Development of 2 novel (R1 amp R2) and 1 known (R3) catalysts to meet target Process intensification via novel one step sugar to Glycerol and PG conversion Use of known technologies to separate undesirables main and co-products

NH3

Air

R1 = Hydrocracking R2 = Dehydration R3=AmmoxidationS-1 to S-3 = Separation trains PG = Propylene glycol

Schematic of the proposed sugar to ACN process

Activity(Phase I-Ends March 302017)

Taskowner Milestone

Task 1 Micro Reactor set up SR Setup completed

Task 2 Catalyst development and testing

Task 21 Develop R1 catalystTask 22 Parametric study for R1Task 23 Develop R2 catalyst Task 24 Parametric study for R2Task 25 Optimize ACN productionTask 26 Measure catalyst stability and regeneration

SR At least 2 novel candidates for each of R1 and R2 R3 lit catalystR1 S(glycerol+PG) gt65 gt50glhrR2 S(acrolein) gt 70 gt375glhr R3 S(ACN) gt 70 gt75 glhrCatalyst life gt40h for each catalyst

Task 3 Catalyst characterization NJITSR Completed (fresh and used catalyst)

Task 4 Bio-ACN validation Cytec-Solvay

Model impure ACN validated 3 product samples tested

Task 5 TEALCA SR Preliminary TEA completed with lab scale data Cost lt$1lb

Task 6 Project Management andReporting

SR Deliverables to DOE-EERE

6

2 ndash Approach (Management)

Data transfer Material transfer

(Months)

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Context Carbon fiber ndash strength of steel weight of plastic

Widespread use of carbon fiber restricted due to high cost of production

Production of carbon fiber precursor chemicals eg ACN is a potentially viable area to reduce the cost of making carbon fibers

1 - Project Overview

4

DOE estimates carbon fiber production cost needs to be at $5lb equivalent to $1lb cost of the precursor

ACN production from non-petroleum feedstock is limited to purified glycerol available at high cost1

Petroleum based processes are affected by volatile propylene price and shortage most recently due to preference for low cost ethane

1Guerrero-Peacuterez et al Catalysis Today 239 (2015) 25-30

1 - Project Overview (contd)

5

C5 C6sugars

H2

R1

Co-Product

S-1

Glycerol+PG

R2

Co-Product

S-2

Acrolein

R3

S-3

Bio-ACN

Vendor Cytec-Solvay Southern Research

Project goalsobjective Multistep catalytic (R1-R3) ACN production at lt$1lb Development of 2 novel (R1 amp R2) and 1 known (R3) catalysts to meet target Process intensification via novel one step sugar to Glycerol and PG conversion Use of known technologies to separate undesirables main and co-products

NH3

Air

R1 = Hydrocracking R2 = Dehydration R3=AmmoxidationS-1 to S-3 = Separation trains PG = Propylene glycol

Schematic of the proposed sugar to ACN process

Activity(Phase I-Ends March 302017)

Taskowner Milestone

Task 1 Micro Reactor set up SR Setup completed

Task 2 Catalyst development and testing

Task 21 Develop R1 catalystTask 22 Parametric study for R1Task 23 Develop R2 catalyst Task 24 Parametric study for R2Task 25 Optimize ACN productionTask 26 Measure catalyst stability and regeneration

SR At least 2 novel candidates for each of R1 and R2 R3 lit catalystR1 S(glycerol+PG) gt65 gt50glhrR2 S(acrolein) gt 70 gt375glhr R3 S(ACN) gt 70 gt75 glhrCatalyst life gt40h for each catalyst

Task 3 Catalyst characterization NJITSR Completed (fresh and used catalyst)

Task 4 Bio-ACN validation Cytec-Solvay

Model impure ACN validated 3 product samples tested

Task 5 TEALCA SR Preliminary TEA completed with lab scale data Cost lt$1lb

Task 6 Project Management andReporting

SR Deliverables to DOE-EERE

6

2 ndash Approach (Management)

Data transfer Material transfer

(Months)

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

1 - Project Overview (contd)

5

C5 C6sugars

H2

R1

Co-Product

S-1

Glycerol+PG

R2

Co-Product

S-2

Acrolein

R3

S-3

Bio-ACN

Vendor Cytec-Solvay Southern Research

Project goalsobjective Multistep catalytic (R1-R3) ACN production at lt$1lb Development of 2 novel (R1 amp R2) and 1 known (R3) catalysts to meet target Process intensification via novel one step sugar to Glycerol and PG conversion Use of known technologies to separate undesirables main and co-products

NH3

Air

R1 = Hydrocracking R2 = Dehydration R3=AmmoxidationS-1 to S-3 = Separation trains PG = Propylene glycol

Schematic of the proposed sugar to ACN process

Activity(Phase I-Ends March 302017)

Taskowner Milestone

Task 1 Micro Reactor set up SR Setup completed

Task 2 Catalyst development and testing

Task 21 Develop R1 catalystTask 22 Parametric study for R1Task 23 Develop R2 catalyst Task 24 Parametric study for R2Task 25 Optimize ACN productionTask 26 Measure catalyst stability and regeneration

SR At least 2 novel candidates for each of R1 and R2 R3 lit catalystR1 S(glycerol+PG) gt65 gt50glhrR2 S(acrolein) gt 70 gt375glhr R3 S(ACN) gt 70 gt75 glhrCatalyst life gt40h for each catalyst

Task 3 Catalyst characterization NJITSR Completed (fresh and used catalyst)

Task 4 Bio-ACN validation Cytec-Solvay

Model impure ACN validated 3 product samples tested

Task 5 TEALCA SR Preliminary TEA completed with lab scale data Cost lt$1lb

Task 6 Project Management andReporting

SR Deliverables to DOE-EERE

6

2 ndash Approach (Management)

Data transfer Material transfer

(Months)

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Activity(Phase I-Ends March 302017)

Taskowner Milestone

Task 1 Micro Reactor set up SR Setup completed

Task 2 Catalyst development and testing

Task 21 Develop R1 catalystTask 22 Parametric study for R1Task 23 Develop R2 catalyst Task 24 Parametric study for R2Task 25 Optimize ACN productionTask 26 Measure catalyst stability and regeneration

SR At least 2 novel candidates for each of R1 and R2 R3 lit catalystR1 S(glycerol+PG) gt65 gt50glhrR2 S(acrolein) gt 70 gt375glhr R3 S(ACN) gt 70 gt75 glhrCatalyst life gt40h for each catalyst

Task 3 Catalyst characterization NJITSR Completed (fresh and used catalyst)

Task 4 Bio-ACN validation Cytec-Solvay

Model impure ACN validated 3 product samples tested

Task 5 TEALCA SR Preliminary TEA completed with lab scale data Cost lt$1lb

Task 6 Project Management andReporting

SR Deliverables to DOE-EERE

6

2 ndash Approach (Management)

Data transfer Material transfer

(Months)

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

7

Activity(Phase II- Future)

Taskowner Milestone

Task 7 Bench scale unit

Task 71 Optimal safety and storageconditionsTask 72 Separation methods designTask 73 Commissioning

SR Complete design specs and transfer to EPC Commission units and complete preliminary readiness test

Task 8 Continuous operation SR 500hrs of operation 500kgs of ACN

Task 9 Periodic ACN validation NJITSR ACN validation every 40hr

Task 10 Characterization Cytec-Solvay

To determine regeneration if required

Task 11 TEALCA SR lt$1lb cost lt35 GHG emission

Task 12 Project Management andReporting

SR Deliverables to DOE-EERE

(Months)

Dr Amit Goyal (PI)Dr Santosh Gangwal (Co-PI)Dr Jadid Samad (Engineer)

Lindsey Chatterton (Chemist)Zora Govedarica (Chemist)

Dr Zafar IqbalDr El Mostafa Benchafia

Dr Longgui TangMr Billy Harmon

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Model C5C6 sugar- Sugar with impurities

- Catalyst screening- Performance metrics

- Parametric study- T P impurity

- TEA

2 ndash Approach (Technical)

8

- Catalyst designsynthesis- Characterization (NJIT)- Reaction evaluation

- Glycerol PG- Catalyst screening

- Performance metrics- Parametric study

- O2- TEA

- Literature catalyst- Characterization (NJIT)- Reaction evaluation

- Acrolein (AC)- Catalyst screening

- Performance metrics- Parametric study

- O2 NH3 AC conc - 50g ACN- TEA

- 500 kg ACN- Continuous operation- Final TEALCA

R2 Dehydration (Task 23)R3 Ammoxidation (Task 23)

Phase II Bench scale(Future)

R1 Hydrocracking (Task 23)

Reactor setup(Task 1)- gm scale - Meaningful scale-up- Analytical procedure

ACN validation(Task 4)- ACN baseline with impurity (Cytec)- Product ACN (Cytec)

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

2 ndash Approach (Technical)

9

Critical success factors (GoNo Go decision points) Cost of production lt$1lb 1kg of recoverable product per 334 kg non-food sugar (~30 mass recovery) Validity of purified Bio-ACN as a carbon fiber ready monomer

Challenges Final product specification at different sugar impurity levels Catalyst deactivation Extent of separation required prior to each reaction step

Reaction Productivity (glhr)

Desired product

Yield () Catalyst life (hr)

R1 gt50 Glycerol + PG gt65 gt40R2 gt375 Acrolein gt70 gt40R3 gt75 ACN gt70 gt40

Progresstarget metrics

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

3- Technical accomplishmentsprogressresults Task 2 Catalyst development amp testing Catalyst development At least two novel catalysts for each of R1 and R2

developed that fully meet performance target for sugar to polyols and Glycerol to acrolein

Catalyst testingndash Single step with mild operating conditions (TP) used (R1)ndash Model and commercial (with impurities) sugar feeds from two different

vendors tested (R1)ndash Product specification tested with varying degrees of feed impurities (R1)ndash Glycerol and PG to acrolein conversion tested on same catalysts (R2)ndash Alternative pathway proposed using PG as co-product (R2)ndash Catalyst lifetime verified and regeneration method established with long term

testing (R1-R3) Task 4 ACN validation

- Optimized performance and product validation completed Task 5 TEA LCA

- Preliminary cost analysis and separation simulation conducted- Cost distribution and sensitivity analysis with respect to raw material price

reveals extent of risk 10

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

11

3 ndash Technical Accomplishments ProgressResults

H2 -xH2O

P = 600-750 PSIG 170-240degC

(novel transition mixed metal catalyst)

sugar Glycerol PropyleneGlycol (PG)

EthyleneGlycol (EG)

R1Hydrocracking

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

12

Products Glycerol+PG (~11) and EG(lt5)

High selectivity at different feed types and C5C6 ratios

Sugar type Conv ()

Yield ()

Model feedGlucose (G) 100 81Xylose (X) 100 95G 25-X 75 100 96G 50-X 50 100 83G 75-X 25 100 81

Impure feedHydrolyzate 100 76Bagasse 100 76Pure Hydrolyzate 100 79

Catalyst stable at high temperature in aqueous phase

Littleno phase change

Catalyst life gt 100hr

Low H2 requirement (~004-005kg H2kg sugar) Productivity ndash 50 glhr

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

13

Effect of sugar impurities Catalytic runs using sugars from commercial vendors Different levels of metallic as well as organic impurities High levels of impurity negatively affected catalyst activity and more

importantly final product specification (Purification necessary)

Characteristics

Hydrolysis method Method 1 Method 1 Method 2 Method 2

Sugar type Oligomer Oligomer Monomer Monomer

Metalion impurities[mgkg] 4532 84 2270 129

Organic impurities [gkg] 23 28 10 82

pH 33 29 higher 33

Hydrocracking Results Hydrolyzate conversion to polyols

Hydrolyzate Conv[] 47 75 100 100

Overall selectivity [] 79 85 70 81

Performance stability 44 hrs gt 48 hrs gt 32 hrs gt120 hrs

Meets product specs No Yes No Yes

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

14

3 ndash Technical Accomplishments ProgressResultsR2Dehydration

Glycerol (BP 290degC)

Propylene glycol (PG)(BP 1882degC)

Acrolein(BP 526degC)

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

15

0

01

02

03

0

25

50

75

100

Acid-base Acid only Tota

l aci

dity

[mm

ole

g]

S [ac

role

in

]

Bronsted Lewis Sacrolein ()

Target

0

25

50

75

100

Acid-base Acid only

S [ac

role

in

]

Target

Feed Glycerol Feed Propylene Glycol (PG)

Conversion = 100 Catalyst life up to 51 hrs Selectivity improves with BL ratio Productivity gt 350 glhr Performance meets target Acetol (hydroxyacetone) main by-

product

Conversion = 100 decreases with time (short catalyst life)

Performance does not meet target Propanal main by-product

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Moving forward with PG Alternative Approachbull Poor acrolein yield from PG (42 max)bull Higher selectivity (gt50) to propionaldehyde ndash complex separation from

acrolein due to similar boiling points (49degC vs 526degC for acrolein)bull An alternative approach could be to separate PG from Glycerol prior to

dehydration reaction and use it (PG) as a high value co-product

16

H2

R1

Co-Product

S-1

Glycerol+PG

Originally proposed

H2

R1

PG

S-1

Glycerol

Alternative approach

C5 C6sugars

C5 C6sugars

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

17

3 ndash Technical Accomplishments ProgressResultsR3Ammoxidation

Acrolein

400-450degC NH3 05 O2

Bi-MoSilica Acrylonitrile

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

18

BiMosilica catalyst Acrolein (AC) evaporated from 90 pure feed High selectivity (gt90) to Acrylonitrile (ACN) Other by-products are acetonitrile (AN) and propionitrile (PN)

Catalyst optimization(Parametric study)

Long term run at optimized conditions NH3AC = 10 O2AC=10 for GHSV=9675h-1 and GHSV = 7661h-1

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

ACN validation

19

Bio-mass ACN sample Sample-1 Sample-2 Sample-3

Appearance Clear Slightly pink ClearProduct composition (wt)

Basis Wet Dry Wet Dry Wet DryActual ACN wt 169 159 431 8528 511 983

Waterwt ~89 - ~95 - ~95Impurities

Acetone wt 001 001 0 0 0Acrolein wt 784 7375 0 0 0

Acetonitrile wt 013 125 074 147 010 002Propionitrile wt 096 902 0 0 0

Very low impurity level Excess water due to use of acetic acid solution to neutralize excess NH3

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

20

3 ndash Technical Accomplishments ProgressResults

TEALCA

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

21

Category Proposed AlternativeSeparation of GlycerolPG No YesACN yield wt 27 20Recoverable product yield wt ~34 ~40Co-product Acetol PG AcetolCo-product lblb ACN 025 (Acetol) 16 (PG) 025 (Acetol)Overall carbon efficiency 60 80

ACN production cost ($lb ACN) 078 073

Preliminary TEAComparison between originally proposed and alternative process

Higher ACN yield from proposed route as both Glycerol and PG used for ACN production

Separating PG (alternative process) improves carbon efficiency ACN production cost calculated based on 5000 MTyear production

capacity More efficient co-product recovery makes the alternative process more

economic

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Distribution of cost in ACN production

Catalyst price contributes small fraction of the cost due to use of non-precious metal catalysts

Maximum cost contribution from raw materials in particularly sugar Overall low H2 and NH3 requirement as raw materials Sensitivity analysis of ACN production cost with respect to raw materials price

essential

Cost distribution pie charts

22

Proposed

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

Chart1

Original
00168
0056
0204
0525
0124
0075

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Case b

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Sheet1

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823

ideal

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823

ideal

Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Original
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Alternative

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030

Chart1

Alternative
00148771218
01159396612
01907419626
05221033678
00823431597
00739947269

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079
Catalyst
Utility
Capital cost
Sugar
Hydrogen
Ammonia

case a

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428
Production Rate 5000 MTA
Case a
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 25000 MTyear 3157 kghr Sugar lb $ 016 500000 $ 079 $ 05221 Water in = 9
Total product yield 04 Ammonia lb $ 021 060000 $ 013 $ 00823 H2 in = 005
ACN yield 02 Hydrogen lb $ 045 025000 $ 011 $ 00740 Glycerol out 049
Propanal yield 02 Catalyst PG out 040
Propanal production 5000 Mtyr Reactor 1 lb $ 1814 000095 $ 002 $ 00113 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000041 $ 000 $ 00031 Water 909
Catalyst mass 15783 kg Reactor 3 lb $ 1134 000007 $ 000 $ 00005 $ 00149
Time on stream 90 Total utilities
Methane mm BTU $ 300 005876 $ 018 $ 01159
Reactor 2 Capital cost lb $ 029 $ 01907
Catalyst mass 9154 kg By product credit lb $ (064) 105 $ (067) Reactor 2 Glycerol in= 047
Time on stream 67 Total cost lb $ 073 PG in = 011
-037 0344 -012728 Water in = 909
Reactor 3 EG in = 002
Catalyst mass 1169 kg Case a Acrolein out = 025
Time on stream 90 Raw materials 678 Sugar 770
Catalyst 15 Hydrogen 121
Utitlities Utility 116 NH3 109
002590731 mmBTUhrkg Biomass Capital cost 191
1000
Reactor 3 Acrolein in = 024
$lb Hydrogen price($ton) Cost of ACN ($lb) Air in 227
03404448479 750 07 O2 in = 053
04539264639 1000 073 NH3 in = 012
05674080799 1250 076 Water in = 023
06808896959 1500 079
07943713118 1750 081 ACN out = 020
09078529278 2000 084
$lb Sugar price($ton) Cost of ACN ($lb)
00907852928 200 $ 039
0113481616 250 $ 050
01361779392 300 $ 061
01588742624 350 $ 073
01815705856 400 $ 084
02042669088 450 $ 095
0226963232 500 $ 107
$lb Sugar price($ton) Cost of ACN ($lb)
01861098502 410 $ 071
02088061734 460 $ 073
02315024966 510 $ 074
02541988198 560 $ 075
0276895143 610 $ 077
02995914662 660 $ 078
03222877894 710 $ 079

case a

Cost of ACN ($lb)
Cost of H2 $ton
Cost of ACN $lb

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Sensiplot

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Sheet2

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Case b

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823
Separation post reactor I to enable low EG concentration and high Glycerol recovery
RowCase Status
VARY 1 R2GLY R2PG R2EG R2EGX REBD
D1
COL-SPEC
DF
KGHR KGHR KGHR KJHR
1 OK 06 135819593 201829952 646725956 00398057425 12378009
2 OK 0605263158 135803455 186465903 622539378 00387450042 125597106
3 OK 0610526316 135786987 171286418 596867104 00375660206 127444747
4 OK 0615789474 135770302 156309439 569555563 00362549599 129324149
5 OK 0621052632 135753389 141561004 54039327 00347936301 131239905
6 OK 0626315789 135736235 127070152 509144641 00331614537 133197487
7 OK 0631578947 135718818 112868893 475550138 00313353508 135203484
8 OK 0636842105 135701113 989920142 439327982 293E-02 137265914
9 OK 0642105263 135683088 854766133 400177844 270E-02 139394636
10 OK 0647368421 135664681 72361111 357790643 244E-02 141601997
11 OK 0652631579 135645818 596839192 311858345 215E-02 14390357
12 OK 0657894737 135626537 474789447 262101943 183E-02 146317937
13 OK 0663157895 135606163 357803739 208288311 147E-02 148872479
14 OK 0668421053 135583994 246058686 150321063 108E-02 151601114
15 OK 0673684211 135556343 139587372 884224587 642E-03 15455263
16 OK 0678947368 135475006 395915596 24863348 183E-03 157845385 Glycerol recovery 984
17 OK 0684210526 134011194 037908944 0211356012 158E-04 161963095
18 OK 0689473684 131816681 0184566569 00986158093 748E-05 165097067
19 OK 0694736842 129594358 0123457037 00643876061 497E-05 167713592
20 OK 07 127365852 0092324343 00473484947 372E-05 170096096
21 OK 061 135788758 172794851 599503848 00376895156 127259428

Sheet1

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823

ideal

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 370370 0539 0524510407 Water in = 9
Total product yield Ammonia lb $ 021 066667 0128 01240841763 H2 in = 005
ACN yield 027 Hydrogen lb $ 045 018519 0077 $ 07441 00749300581 07235246414 Glycerol out 049
Acetol yield 014 Catalyst 0 PG out 040
Reactor 1 lb $ 1814 000070 0012 0 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000046 0005 0 Water 909
Catalyst mass 11691 kg Reactor 3 lb $ 1134 000008 0001 $ 00173 00167798801
Time on stream 90 Total utilities 0
Methane mm BTU $ 300 002074 0057 $ 00571 00555097306
Reactor 2 Capital cost 0210 $ 02100 02041857479
Catalyst mass 10255 kg By product credit lb $ (100) 025 $ (025000) Reactor 2 Glycerol in= 049
Time on stream 67 Total cost $ 077848 PG in = 039
Propanal $ (064) 031 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1299 kg 078 $ 000152 Acrolein out = 036
Time on stream 90 HA out 014
Raw materials 724 Sugar 725 Propanal 009
Utitlities Catalyst 17 Hydrogen 171
001234701 mmBTUhrkg Biomass Utility 56 NH3 104
Capital cost 204
1000 Reactor 3 Acrolein in = 035
Air in
O2 in = 064
600 kghr CAN NH3 in = 018
3157 kghr sugar Water in = 154
ACN out = 030
Acrolein
25955283199
132405424697 22003536765
05101289926 00847747898 05949037823

ideal

Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Case b Case a
Catalyst 168 Catalyst 149
Utility 560 Utility 1159
Capital cost 2040 Capital cost 1907
Sugar 5250 Sugar 5221
Hydrogen 1240 07235246414 Hydrogen 823
Ammonia 750 0 Ammonia 740
0
0
00167798801
0
00555097306 0524510407
02041857479 01240841763
00749300581
Original
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030
Alternative

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization
Case b
Production Rate 5000 MTA
Case b
Plant Capacity for ACN = 5000 MTyr Type Unit Cost$unit Consumption unitlb Cost $lb Streams
Production rate 631 kghr Raw materials Reactor 1 Xylose in= 1
Sugar needed 18519 MTyear 2338 kghr Sugar lb $ 016 336134 0534 $ 11764706 Water in = 9
Total product yield Ammonia lb $ 021 060504 0126 $ 2783193 H2 in = 005
ACN yield 02975 Hydrogen lb $ 045 016807 0076 $ 1680672 0736 Glycerol out 049
Acetol yield 014 Catalyst $ - 0 PG out 040
Acetaldehyde yield 022 Reactor 1 lb $ 1814 000064 0012 $ 254640 EG out 005
Reactor 1 Reactor 2 lb $ 1134 000040 0004 $ 98766 Water 909
Catalyst mass 10610 kg Reactor 3 lb $ 1134 000007 0001 $ 17701 0017
Time on stream 90 Total utilities $ - 0
Methane mm BTU $ 300 003945 0118 $ 2609144
Reactor 2 Capital cost 0200 $ 4409200
Catalyst mass 65784 kg $ - 0 Reactor 2 Glycerol in= 049
Time on stream 90 Acetaldehyde ln $ (046) 07394957983 $ (034017) PG in = 039
Total cost $ 073114 $ - 0 Water in = 528
Reactor 3 EG in = 005
Catalyst mass 1179 kg Acrolein out = 036
Time on stream 90 078 $ 004886 HA out 014
Propanal 009
Utitlities
003945 mmBTUhrlb CAN
Reactor 3 Acrolein in = 035
Air in
O2 in = 064
NH3 in = 018
Water in = 154
ACN out = 030

ACN production cost shows high sensitivity to sugar price

lt$1lb within $300-$450ton sugar price

ACN production cost nearly insensitive to H2 and NH3 price change

Proposed Alternative

Sensitivity analysis

$460ton $1000ton

$350ton

23

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

Preliminary LCA

24

Petroleumbased ACN

kg GHG kg ACN

Crude to Propylene

016

Propylene to ACN

286

Total 302

Biomass to ACN kg GHG kg ACN

Sugars to polyols (R1S1) 091

Polyols to Acrolein (R2S2) 042

Acrolein to ACN (R3S3) 056

Total 192

~37 reduction in greenhouse gas emissions compared to conventional petroleum based processes

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

25

Technical progress summaryTasks Milestone Achievements Meet

target21-22(R1)

ge 2 novel candidatesSelec(di-triols) gt65 Productivity gt50glhr

3 novel candidatesSelec(di-triols) gt75 Productivity gt50glhr

23-24(R2)

ge 2 novel candidatesSelec(acrolein)gt 70 Productivity gt375glhr

2 novel candidatesSelec(acrolein) 72-80 (Glycerol feed) and lt50 (PG feed) Productivity gt375glhr

Glycerol

PG

25 (R3) Selec (ACN) gt 70 Productivity gt75 glhr

Selec (ACN) 90-98Productivitygt75 glhr

26 Catalyst life gt 40h gt120h (R1) ~51h (R2) gt40h (R3) 4 ACN validation Product ACN validated Ongoing5 lt$1lb $073-078lb Ongoing6 Project reporting Reports delivered regularly to DOE Ongoing

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

Supports BETOrsquos strategic goal of thermochemical conversion RampD ldquoDevelop commercially viable technologies for converting biomass into energy dense fungible finished liquid fuels such as renewable gasoline jet and diesel as well as biochemicals and biopowerrdquo

Contributes to overcoming the technical challenges and barriers in this area byndash Design and discovery of new low-cost catalysts for biomass conversion ndash Process intensification via single step sugar conversion

Relevance to industry and market placendash Alternative low cost feedstock Price and supply of propylene volatile Biomass is

abundant and the price of derived sugar is more stable ndash H2 requirement and C efficiency Less H2 use but high C efficiency (80)ndash Heat management Lower heat capacity of acrolein than glycerol Requires less

energy to heat acrolein than glycerol (advantage over direct ammoxidation of glycerol)ndash Process integration Integrable to commercial ACN production processesndash Low cost production Production of ACN at lt$1lb paves way for reducing cost of

carbon fiber productionndash Co-production of PGacetol Alternative low cost pathway for the production of high

value chemicals and their use as co-productsndash Plant scale Relatively small scale (5000 MTYear) ACN plants needed to feed Carbon

fiber lines (2 lines or 1000 MTyear)

4 ndash Relevance

26

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

4 ndash Relevance

27

AcrylonitrileManufacturers

Catalyst Manufacturers

Investor Groups Sugar Suppliers

Three companies interested ndash USA Japan and India

and partner Cytec-Solvay

Working with a major catalystmanufacturer to scale-up and toll-produce kilogram quantities of catalyst for Phase II

Working with a group of investor with experience in development of early stage chemicals technology ndash for joint development and toaccelerate phase II research with further interest in funding first commercial plant

Working with two commercial vendors ndashArbiom and Renmatix ndash for sugar supplies for Phase I and Phase II

Technology Transfer - Initiatives

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

5 ndash Future Work For ongoing Phase I (ending on March 2017)

ndash Produce 50 grams of ACNndash ACN product validation ndash Update TEALCAndash Phase I final report and deliverables

28

Stage Gate Review ndash Phase I ndash After March 30th 2017

Phase II ndash Validating prototype system- Continuous bench scale unit design for kgshr production- Integrated and slip stream separations to achieve productby-product purities- Continuous 1000 hr operation for the production of up to 500kg ACN- Product stabilization and safe operations for hazardous products- Finalize TEALCA- Continue discussion with potential partners - Complete final project report

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

29

Summary Overview Novel thermocatalytic and economically viable process for the

conversion of biomass derived non-food sugars to acrylonitrile

Approach Novel inexpensive stable catalyst development mild operating conditions separation of co-products and undesirables scalability TEALCA and sensitivity analysis

Technical progress Process flexible to sugar types High performance catalysts meet target for sugar to oxygenates glycerol to acrolein and acrolein to ACN conversion Requires less H2 and NH3 as raw materials Production of high value PG and acetol as co-products Economics favorable (lt$1lb) at wide range of sugar price

Challenges PG conversion to acrolein meeting product specifications at different sugar impurity levels

Relevance Supports BETOrsquos conversion RampD strategic goal

Future work Scale up to bench scale Detail TEALCA Product validation

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

Acknowledgements

30

U S Department of Energy

BETO Project officer Prasad GupteProject Coordinator Cynthia Tyler

Southern ResearchAmit Goyal (PI)Santosh Gangwal (Co-PI)Jadid SamadLindsey ChattertonGovedarica Zora

Cytec SolvayLonggui Tang (Lead)Billy Harmon

NJITZafar Iqbal (Lead)El Mostafa Benchafia

ARBIOMLisette TenlepBill McDonald

RenmatixDan BeacomJeremy Austin

Partners

Sugar Suppliers

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

Additional Slides

31

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

S-1

32

F-102

R-101

B1

D-101

F-101

F-103

C-101

B5

S-102

S-103

S-105

S-107

S-108

S-101 S-110

S-111

S-112

S-106

S-113

S-114S-115

S-104

H2 recovery

20 sugar

174 PG(recovery 95)25 EG796 H2O

998 glycerol(recovery 999)

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

R-102

F-104

M-102

D-102

M-101S-119

S-121

S-120S-122

S-123

S-124S-116

S-117 S-118

S-2

33

88 Acrolein(recovery 997)018 Acetol007 Propanal

21 Acetol(recovery 992788 Water

80

gly

cero

l +

H2O

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

S-3

34

R-103

D-103

D-104D-105

S-126

S-127

S-125

S-130

S-131

S-129

S-128

S-133

S-134

S-132

S-135

S-138

S-137

S-136

ACN+AN recycle

ACN(recovery 994)

H2O (l)

Steam AN+H2O

Steam

H2O (l)

AN+H2O

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization

Publications Patents Presentations Awards and Commercialization

PublicationsPresentationsbull Amit Goyal and Santosh Gangwal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon

Fibers Poster Presentation at Bio Pacific Rim Summit Dec 6 to 9 2015 San Diego CAbull Project Fact Sheet for BioEnergy Summit June 23rd ndash June 24th 2015 Washington DCbull Amit Goyal and Santosh Gangwal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon

Fibers Oral Presentation at Bio World Congress July19th - 22nd Montreal Canada Invited talk in Breakout Panel Session Clustered Research and Development of Ag-Based BioProducts

bull DOE Site Visit ndash 15th September 2015 Results for overall progress presented to Program manager and coordinator at Durham NC

bull Amit Goyal Process for Biomass Conversion to Acrylonitrile- Precursor for Production of Carbon Fibers October 5th

2015 Invited Talk at Department of Materials Science at University of Alabama Birminghambull Amit Goyal Jiajia Meng Jonathan P Carroll and Santosh K Gangwal Biomass Conversion to Acrylonitrile Monomer-

Precursor for Production of Carbon Fibers Oral Presentation at AICHE Fall 2015 meeting (579b)bull Amit Goyal Zora Govedarica Lindsey Chatterton and Santosh K Gangwal Acrylonitrile production from non-food

biomass derived sugars for synthesis of carbon fibers Oral Presentation as a Panel Speaker for World Congress on Industrial Biotechnology Breakout Session Process Improvement for Biobased Materials

bull Jadid E Samad and Amit Goyal Non-food biomass to acrylonitrile A cheaper and greener route to automotive grade carbon fibers Poster presentation at BioEnergy Summit July 12-14 Washington DC

bull Jadid E Samad Lindsey Chatterton Zora Govedarica Amit Goyal Thermocatalytic Process for Biomass Conversion to Acrylonitrile for Production of Carbon Fibers Oral presentation at TCS 2016 Chapel Hill NC

bull Amit Goyal Longgui Tang and Billy Harmon Renewable Acrylonitrile for Carbon Fiber Production Oral Presentation at Carbon Fiber 2016 Scottsdale AZ

bull Jadid E Samad Lindsey Chatterton Zora Govedarica and Amit Goyal Biomass Conversion to Acrylonitrile Monomer-Precursor for Production of Carbon Fibers AICHE November 13-18 2016 San Francisco CA

Patents bull US Application 20160368861 Compositions and methods related to the production of acrylonitrilebull US Application 15245835 Compositions and methods related to the production of acrylonitrile 35

  • Biomass Conversion to Acrylonitrile Monomer-Precursor for the Production of Carbon Fibers
    • Goal Statement
    • Quad Chart Overview
    • 1 - Project Overview
    • 2 ndash Approach (Management)
    • 2 ndash Approach (Technical)
    • 3- Technical accomplishmentsprogressresults
      • R1Hydrocracking
      • R2Dehydration
      • Moving forward with PG Alternative Approach
      • R3Ammoxidation
      • ACN validation
      • TEALCA
        • Preliminary TEA
        • Cost distribution pie charts
        • Sensitivity analysis
        • Preliminary LCA
          • Technical progress summary
            • 4 ndash Relevance
              • Technology Transfer -Initiatives
                • 5 ndash Future Work
                • Summary
                • Acknowledgements
                • Additional Slides
                  • S-1
                  • S-2
                  • S-3
                  • Publications Patents Presentations Awards and Commercialization