biology meets engineering: communicaon between fields€¦ · biology meets engineering:...

20
Biology Meets Engineering: Communica5on Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Upload: doannguyet

Post on 29-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Biology Meets Engineering:Communica5on Between Fields

Mark A. Stremler

Associate ProfessorEngineering Science and Mechanics

Page 2: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

What does it mean for Biology and Engineering to Meet?

The star9ng point…

Page 3: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Engineering tools for biological discovery

Case Study: Microfluidics for cellular‐scale analysis

Page 4: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Typical fabrica9on of a microfluidicdevice using soD lithography

Page 5: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

microarrayprobes

targetssid

e vie

w

molecules of known sequence or typeimmobilized on surface in an array of spots

•probes:

•surface: standard 7.5 cm x 2.5 cm glass

molecules of unknown sequence or type suspended in hybridization solution

•targets:

results depend on achieving the necessary target–probe interactions

•targets hybridize with complementary probes, binding

them in place based on sequence

•targets are identified by binding location

•a single spot contains probe molecules of the same type

•microarrays can contain over 10,000 unique probe spots

Fluid mixing for high‐throughputgenomic and proteomic analysisMcQuain, Seale, Peek, Fisher, Levy, Stremler & Haselton, “Chao9c mixer improves microarray hybridiza9on,” Analy&cal Biochemistry 325(2), 215–226 (2004).

Page 6: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

An engineering approach to mixingreduces variability and increases sensi9vity

Target DNA in hybridization solution0.1 ng 1 ng 10 ng

Aver

age

sign

al le

vel

0

10

20

30

40

diffusion–based analysis24 hour experiments

mixing–based analysis1 hour experiments

mixing diffusion

Closed valvesOpen valvesSyringe pumps

A

C

D

B

MicroarrayFluid mixing chamber

schem

atic

Microchannels

Holes in top platefor sources and sinks

Standard microarray analysis relies on diffusion to deliver targets to complimentary probes

Page 7: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Cell concentra9on and sor9ngwith microscale electric fieldsMcQuain, Seale, Peek, Fisher, Levy, Stremler & Haselton, “Chao9c mixer improves microarray hybridiza9on,” Analy&cal Biochemistry 325(2), 215–226 (2004).

• Need to develop techniques to monitor, detect & remove low levels of microorganisms from water 

• Tradi9onal water analysis methods such as filtra9on involve a lengthy culture step

• Selec9ve enrichment enhances our ability to detect biological par9cles

Toxins •!1-10 nm

•! Protein / molecule

Viruses •! 50-200 nm

•! 1-50 proteins

Bacteria •! 1-3 µm

•! 2000-5000 proteins

Protozoa •! 4-10 µm

•! 2000-5000 proteins

Page 8: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

+

- EK

EP

Non-uniformities in E-field generated by

insulating posts.

•Dielectrophoresis: mo9on of a par9cle due to polariza9on induced by nonuniform electric fields. 

•Integrated arrays of insulators create a nonuniform electric field

Live cells are trappedwith dielectrophoresis

Live (green) and dead (red) E. coli cells are separated due to differences in 

membrane integrity

Page 9: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Suggested Readings• I. Meyvantsson & D.J. Beebe, “Cell Culture Models in Microfluidic 

Systems”, Annual Reviews in Analy&cal Chemistry 2008 1:423.– Microfluidic technology holds great promise for the crea9on of advanced cell culture models. In this 

review, we discuss the characteriza9on of cell culture in microfluidic systems, describe important biochemical and physical features of the cell microenvironment, and review studies of microfluidic cell manipula9on in the context of these features. Finally, we consider the integra9on of analy9cal elements, ways to achieve high throughput, and the design constraints imposed by cell biology 

applica9ons. 

• T.M. Squires & S.R. Quake, “Microfluidics: Fluid physics at the nanoliter scale”, Reviews of Modern Physics 77:977, 2005.

– Microfabricated integrated circuits revolu9onized computa9on by vastly reducing the space, labor, and 9me required for calcula9ons. Microfluidic systems hold similar promise for the large‐scale automa9on of chemistry and biology, sugges9ng the possibility of numerous experiments performed rapidly and in parallel, while consuming ligle reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applica9ons of significant scien9fic and prac9cal interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing 

the rela9ve importance of various physical phenomena. 

Page 10: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Exploi5ng unique biological func5on in engineering design

Case Study: New views on flight

Page 11: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Unsteady aerodynamics offlapping wings for insect flightA. Andersen, U. Pesavento & Z. Jane Wang, “Unsteady aerodynamics of flugering and tumbling plates” Journal of Fluid Mechanics 541:65–90.

Z. Jane Wang, “Dragonfly flight” Physics Today, October 2008, 74–75.

Insect flight at low speeds is quite different from the standard engineering approach to aerodynamic flight.

What can we learn from their maneuverability and efficiency?

A flat plate model is a simple place to start

Page 12: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

A freely falling plate exhibits a range of dynamic behaviors

flugering

tumbling

chaos

the complex, 9me‐dependent fluid dynamics plays an important role in the dynamics of the plate 

Page 13: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Complex, coupled fluid‐structure interac9ons lead to flight for a dragonfly

what wing structure and control algorithm(s) lead to controlled flight under these circumstances?

Page 14: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Flying snakesJ.J. Socha, T. O’Dempsey & M. LaBarbera, “A 3‐D kinema9c analysis of gliding in a flying snake, Chrysopelea paradisi” Journal of Experimental Biology, 208:1817.

certain snakes use a flagened rib cage and traveling waves along their bodies to generate liD as they glide through the air

Page 15: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Suggested Readings• Z.J. Wang, “Dissec9ng Insect Flight”, Annual Reviews of Fluid Mechanics 

2005 37:183.– “What force does an insect wing generate?” Finding answers to this enduring ques9on is an essen9al 

step toward our understanding of interac9ons of moving objects with fluids that enable most living species such as insects, birds, and fish to travel efficiently and us to follow similar suit with sails, oars, and airfoils. We give a brief history of research in insect flight and discuss recent findings in unsteady aerodynamics of flapping flight at intermediate range Reynolds numbers (10–104). In par9cular, we examine the unsteady mechanisms in uniform and accelerated mo9ons, forward and hovering flight, as well as passive flight of free‐falling objects. The results obtained by “taking the insects apart” helped us to resolve previous puzzles about the force es9mates in hovering insects, to ellucidate 

basic mechanisms essen9al to flapping flight, and to gain insights about the efficieny of flight. 

• J.J. Socha, “Gliding flight in the paradise tree snake”, Nature 418:603, 2002.

– Most vertebrate gliders, such as flying squirrels, use symmetrically paired ‘wings’ to generate liD during flight, but flying snakes (genus Chrysopelea) have no such appendages or other obvious morphological specializa9ons to assist them in their aerial movements. Here I describe the three‐dimensional kinema9cs of gliding by the paradise tree snake, Chrysopelea paradisi, which indicate that the aerial behaviour of this snake is unlike that of any other glider and that it can exert remarkable control over the direc9on it takes, despite an apparent lack of control surfaces.

Page 16: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Advancing fron5ers of knowledge in biology and engineering

Case Study:  Toward understanding and trea9ng cardiovascular disease

Page 17: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Developing engineering toolsfor understanding cardiovascular behaviorR. Kumar, K.C. Stewart, J.J. Charonko, P.P. Vlachos & W.C. Ligle, “Diastolic Intraventricular Pressure Gradients Assessed by Color M‐Mode Echocardiography” Circula&on 118(18):S602.

Developing velocity and pressure measurement tools for in vivo inves9ga9ons

Page 18: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Advances in measurement techniquesenable early observa9on of heart disease

pressure distribu9ons are determined from experimental 

velocity measurements

new experimental insights are leading to beger characteriza9on 

of cardiac health 

Page 19: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Suggested Readings• C.A. Taylor & M.T. Draney, “Experimental and Computa9onal Methods in 

Cardiovascular Fluid Mechanics”, Annual Reviews of Fluid Mechanics 2004 36:197.– The characteriza9on of blood flow is important for understanding the func9on of the cardiovascular 

system under normal and diseased condi9ons, designing cardiovascular devices, and diagnosing and trea9ng congenital and acquired cardiovascular disease. Experimental methods, especially magne9c resonance imaging techniques can be used to noninvasively quan9fy blood flow for diagnosing cardiovascular disease, researching disease mechanisms, and valida9ng assump9ons and predic9ons of mathema9cal models. Computa9onal methods can be used to simulate blood flow and vessel dynamics, test hypotheses of disease forma9on under controlled condi9ons, and evaluate devices that have not yet been built and treatments that have not yet been implemented. In this ar9cle we review experimental and computa9onal methods for quan9fying blood flow velocity and pressure fields in human arteries. We place par9cular emphasis on providing an introduc9on to the physics and applica9ons of magne9c resonance imaging, and surveying lumped parameter, one‐dimensional, 

and three‐dimensional numerical methods used to model blood flow. 

Page 20: Biology Meets Engineering: Communicaon Between Fields€¦ · Biology Meets Engineering: Communicaon Between Fields Mark A. Stremler Associate Professor Engineering Science and Mechanics

Thank You!Mark A. Stremlerwww.esm.vt.edu/~stremler

Virginia TechEngineering Science & Mechanics333P Norris HallBlacksburg, VA 24061‐0219