biological roles of oligosaccharides: all of the theories are...

34
Glycobtology vol. 3 no. 2 pp. 97-130, 1993 SPECIAL INVITED REVIEW Biological roles of oligosaccharides: all of the theories are correct Ajit Varki 1 Glycobiology Program, UCSD Cancer Center, and Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA 'Correspondence to: University of California, San Diego, Cancer Center, 0063, 9500 GOman Drive, La Jolla, CA 92093, USA Many different theories have been advanced concerning the biological roles of the oligosaccharide units of individual classes of glycoconjugates. Analysis of the evidence indicates that while all of these theories are correct, exceptions to each can also be found. The biological roles of oligo- saccharides appear to span the spectrum from those that are trivial, to those that are crucial for the development, growth, function or survival of an organism. Some general principles emerge. First, it is difficult to predict a priori the functions a given oligosaccharide on a given glycoconjugate might be mediating, or their relative importance to the organism. Second, the same oligosaccharide sequence may mediate different functions at different locations within the same organism, or at different times In its ontogeny or life cycle. Third, the more specific and crucial biological roles of oligosaccharides are often mediated by unusual oligo- saccharide sequences, unusual presentations of common-ter- minal sequences, or by further modifications of the sugars themselves. However, such oligosaccharide sequences are also more likely to be targets for recognition by pathogenic toxins and microorganisms. As such, they are subject to more intra- and inter-species variation because of ongoing host-pathogen interactions during evolution. In the final analysis, the only common features of the varied functions of oligosaccharides are that they either mediate 'specific recognition' events or that they provide 'modulation' of biological processes. In so doing, they generate much of the functional diversity required for the development and differentiation of complex organisms, and for their inter- actions with other organisms in the environment. Key words: biological roles/glycoconjugates/oligosaccharides Introduction The ability to accurately sequence the oligosaccharide units of glycoconjugates has revealed a remarkable complexity and diversity of these molecules (1-18). However, despite some observations suggesting important biological roles for these sugar chains, a single common theory has not emerged to explain this diversity. As recently as 1988, it was stated that while '. . . the functions of DNA and proteins are generally known . . . it is much less clear what carbohydrates do' (12). A variety of theories have been advanced regarding the bio- logical roles of the oligosaccharides, and have been presented © Oxford University Press in a number of monographs (1-18) and review articles (19-148). These include a purely structural role, an aid in the conformation and stability of proteins, the provision of target structures for microorganisms, toxins and antibodies, the mask- ing of such target structures, control of the half-life of proteins and cells, the modulation of protein functions, and the provision of ligands for specific binding events mediating protein targeting, cell—matrix interactions or cell—cell interactions. Most of these discussions have focused either on one specific type of glycoconjugate (e.g. glycoprotein, proteoglycan or glycolipid) or on one specific theory of function. In this overview, an attempt is made to consider together all of these theories regarding all of the major types of glycoconjugates. Although the emphasis of diis review is somewhat biased towards the glycoprotein oligosaccharides of higher animal cells, the principles that emerge appear to be generally applicable to glycoconjugates in all types of organisms. Because of the broad and diverse nature of the subjects discussed here, a comprehensive bibliography has not been presented. In general, the original references are from the last 15 years, with a very limited representation of earlier citations. For detailed discussions of the classic and original literature on some of these matters, the interested reader is referred to the list of monographs (1-18) and reviews (19-148) provided. The difficulty in predicting specific rules for oligosaccharide functions: N- and 0-linked sugar chains as examples Of all of the different types of glycosylation, the //-asparagine- linked sugar chains are the easiest to manipulate in experimental systems. Feasible approaches include the enzymatic or chem- ical removal of completed sugar chains, prevention of initial glycosylation, alteration of oligosaccharide processing, elimin- ation of specific glycosylation sites, and the study of natural variants and genetic mutants in glycosylation. Such approaches have been used extensively to explore the biological roles of these sugar chains on a variety of glycoproteins (reviewed in 5, 8, 9, 12, 15-17, 20-36, 107-115, 126-131). A summary of many such studies is reported in Table I and a shorter list of similar experiments for O-linked oligosaccharides is presented in Table II. It can be seen that the consequences of altering these types of glycosylation range from being essentially undetect- able, to the complete loss of particular functions, or even loss of the entire protein itself. Even within a given group of proteins (e.g. cell surface receptors or enzymes), the effects of altering glycosylation are highly variable and quite unpredict- able. Furthermore, the same modification in glycosylation can have a dramatically opposite effect on in vivo function versus that observed for in vitro function (for example, see the studies on erythropoietin and the gonadotrophic hormones referred to in Table I). These facts underscore a basic principle about the biological roles of oligosaccharides: they appear to range from 97

Upload: others

Post on 26-Dec-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Glycobtology vol. 3 no. 2 pp. 97-130, 1993

SPECIAL INVITED REVIEW

Biological roles of oligosaccharides: all of the theories are correct

Ajit Varki1

Glycobiology Program, UCSD Cancer Center, and Division of Cellularand Molecular Medicine, University of California, San Diego, La Jolla,CA 92093, USA

'Correspondence to: University of California, San Diego, Cancer Center,0063, 9500 GOman Drive, La Jolla, CA 92093, USA

Many different theories have been advanced concerning thebiological roles of the oligosaccharide units of individualclasses of glycoconjugates. Analysis of the evidence indicatesthat while all of these theories are correct, exceptions toeach can also be found. The biological roles of oligo-saccharides appear to span the spectrum from those that aretrivial, to those that are crucial for the development,growth, function or survival of an organism. Some generalprinciples emerge. First, it is difficult to predict a priori thefunctions a given oligosaccharide on a given glycoconjugatemight be mediating, or their relative importance to theorganism. Second, the same oligosaccharide sequence maymediate different functions at different locations within thesame organism, or at different times In its ontogeny or lifecycle. Third, the more specific and crucial biological rolesof oligosaccharides are often mediated by unusual oligo-saccharide sequences, unusual presentations of common-ter-minal sequences, or by further modifications of the sugarsthemselves. However, such oligosaccharide sequences arealso more likely to be targets for recognition by pathogenictoxins and microorganisms. As such, they are subject tomore intra- and inter-species variation because of ongoinghost-pathogen interactions during evolution. In the finalanalysis, the only common features of the varied functionsof oligosaccharides are that they either mediate 'specificrecognition' events or that they provide 'modulation' ofbiological processes. In so doing, they generate much of thefunctional diversity required for the development anddifferentiation of complex organisms, and for their inter-actions with other organisms in the environment.

Key words: biological roles/glycoconjugates/oligosaccharides

Introduction

The ability to accurately sequence the oligosaccharide units ofglycoconjugates has revealed a remarkable complexity anddiversity of these molecules (1-18). However, despite someobservations suggesting important biological roles for thesesugar chains, a single common theory has not emerged toexplain this diversity. As recently as 1988, it was stated thatwhile '. . . the functions of DNA and proteins are generallyknown . . . it is much less clear what carbohydrates do' (12).A variety of theories have been advanced regarding the bio-logical roles of the oligosaccharides, and have been presented

© Oxford University Press

in a number of monographs (1-18) and review articles(19-148). These include a purely structural role, an aid in theconformation and stability of proteins, the provision of targetstructures for microorganisms, toxins and antibodies, the mask-ing of such target structures, control of the half-life of proteinsand cells, the modulation of protein functions, and the provisionof ligands for specific binding events mediating proteintargeting, cell—matrix interactions or cell—cell interactions.Most of these discussions have focused either on one specifictype of glycoconjugate (e.g. glycoprotein, proteoglycan orglycolipid) or on one specific theory of function. In thisoverview, an attempt is made to consider together all of thesetheories regarding all of the major types of glycoconjugates.Although the emphasis of diis review is somewhat biasedtowards the glycoprotein oligosaccharides of higher animalcells, the principles that emerge appear to be generallyapplicable to glycoconjugates in all types of organisms.

Because of the broad and diverse nature of the subjectsdiscussed here, a comprehensive bibliography has not beenpresented. In general, the original references are from the last15 years, with a very limited representation of earlier citations.For detailed discussions of the classic and original literature onsome of these matters, the interested reader is referred to thelist of monographs (1-18) and reviews (19-148) provided.

The difficulty in predicting specific rules foroligosaccharide functions: N- and 0-linked sugar chainsas examples

Of all of the different types of glycosylation, the //-asparagine-linked sugar chains are the easiest to manipulate in experimentalsystems. Feasible approaches include the enzymatic or chem-ical removal of completed sugar chains, prevention of initialglycosylation, alteration of oligosaccharide processing, elimin-ation of specific glycosylation sites, and the study of naturalvariants and genetic mutants in glycosylation. Such approacheshave been used extensively to explore the biological roles ofthese sugar chains on a variety of glycoproteins (reviewed in 5,8, 9, 12, 15-17, 20-36, 107-115, 126-131). A summary ofmany such studies is reported in Table I and a shorter list ofsimilar experiments for O-linked oligosaccharides is presentedin Table II. It can be seen that the consequences of altering thesetypes of glycosylation range from being essentially undetect-able, to the complete loss of particular functions, or even lossof the entire protein itself. Even within a given group ofproteins (e.g. cell surface receptors or enzymes), the effects ofaltering glycosylation are highly variable and quite unpredict-able. Furthermore, the same modification in glycosylation canhave a dramatically opposite effect on in vivo function versusthat observed for in vitro function (for example, see the studieson erythropoietin and the gonadotrophic hormones referred toin Table I). These facts underscore a basic principle about thebiological roles of oligosaccharides: they appear to range from

97

Page 2: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.VarW

TaHe L Effects of altered W-linked oligosaccharides on the biosynthesis, transport and functions of glycoproteins

Protein Effect of lack/alteration of oligosaccharides Examples

Enzymes

Most lysosomal enzymes*-1'-'-'1

Lysosomal 0-glucosidase1

Lipoprotein lipasecj

Yeast acid phosphatase*^

HMG-CoA reductase

Lecithin:cholesterol acyltransferase'

Hepatic lipase11

Arylsulphatase A"

Yeast carboxypeptidase Y1

Propapain11

a,-Antitrypsind

Mucor renin expressed in yeasf1

Purified lysosomal alpha-L-fucosidase*

Ecto 5'-nudeotidaseb-c

Pancreatic ribonuclease B "

UDP-glucuronosyltransferases*

Testicular hyaluronidase*

Hormones/cytokincs/gruwth factors

Glycoprotein hormones (HCG, LH,

TSH, prolactin)*J'-'-<u

Granulocyte/maCTophagecolony-stimulating factor

Erythropoietirr"-11-*

IgE binding factors*1

Interieuldn-4"

Vascular eadothelial growth factor11

Yeast MFal precursor11

Nerve growth factor*

Scatter factor*

Interferon-gamma*

Viral glycoproteins

HTV virus glycoprotein (GP120)*-b-cji

Some viral coat proteins*-^

Some (not all) viral coat proteinsb'cj)

Plasma proteins/coagulation factors

Immunoglobulin D*

ImmimoglobuUns*ub-c-d-t

Loss of targeting signal for delivery of enzymes to lysosomes

Complete deglycosylation causes complete loss of activity

Core glycosylation required for secretion and activity. Processing of oligosaccharides not

important for either

Loss of activity and conformation. Increased susceptibility to denaturation and proteolysis

>90% decrease in ictivity (direct or indirect effect?)

Reduction in catalytic activity without change in K^

Reduced secretion, normal catalytic activity

Variable loss of marmose-6-phosphate-dependem trafficking

Reduced transport rate, especially at higher temperatures. No change in sorting, stability oractivity

Af-Glycosylation of Pro-region required for transport and secretion

Altered CD spectrum and folding. Aggregation

Decreased secretion and decreased activity

No effect on activity or conformation. Shift of pH optimum, decreased stability in acid and heat

No change in subcellular distribution, or GPI-anchor formation

Folding kinetics unchanged, increased susceptibility to proteases

No change in catalytic activity or substrate preference

No change in enzymatic activity. Improved recognition by antibodies

Complex effects. Altered combining of a- and /3-subunits. In some cases, agonist convertedinto antagonist by loss of glycosylatioa. Altered glycosylation causes changes in specificity,affinity, and intracellolar signalling in vitro. Effects on in vivo action are different, because ofaltered clearance

Graded increase in receptor binding and activity with decreased glycosylation. However, increasedanrigemciry and rapid clearance of unglycosylated form

Complex effects. Failure of secretion, decreased stability, and decreased biological activity ifmultiple glycosylation sites are eliminated. Desialylation and/or less branched oligosaccharides giveincreased activity in vitro, but decreased activity in vivo

IgE potentiating factor converted into IgE suppressive factor?

Increase in activity with decrease in glycosylation

Markedly decreased rate and efficiency of secretion. No loss of binding or of activity in increasing

vascular permeability

Delayed transit through the secretory pathway

Natural glycosylated variant still has biological activity

No change in secretion or activity

No change in antiviral activity or target cell specificity

Prevention of glycosylation or prevention of glucose removal results in markedly lowered fusionactivity and decreased infectivity

Variable alterations in antigenicity; increased reactivity with polydonal antisera upon removalOf rhflin*

Complex and variable effects. Complete loss of glycosylation can result in misfolding, retention inthe ER, proteolytic degradation and loss of virion production. Alteration of individual sites showsvarying effects on cell surface expression. Alteration in late processing has little effect onexpression or virion production.

(107-111)

(149)

(150-152)

(153,154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(21,165-167)

(168)

(169)

(126, 170-194)

(195-198)

(129,199-208)

(209-211)

(212)

(213, 214)

(215)

(216)

(217)

(218)

(219-227)

(228-233)

(234-242)

043)Removal causes loss of binding by IgD receptors . .

Complex effects. Altered secretion (variable). Alteration of several secondary effector functions of (34, 244-254)the Fc region. Agalactosyl IgG is associated with granutomatous diseases. Variable region glyco-sylation can enhance antigen binding

98

Page 3: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oltgosaccharides

Table I. continued

Protein Effect of lack/alteration of oligosaccharides Examples

Tissue-type plasminogen activator*-<fc

Haptoglobin"

Antithrombin HI,—natural variant withdecreased carbohydrate

Protein C1

(different sites gave different effects)

Plasminogende

/K-Glycoprotein*

Pro-uroJanasec

Cl inhibitor Tae

Von WUlebrand factor1

FibrinogenMe

Galactoglycoprotein"

Corticosteroid-binding globulinbc

C5a (des-Arg form)1'Complement subcomponent CslAmyloid peptide precursor11

Thyroxine-binding globulin1

Androgen-binding protein''Folate-binding protein11

Protein S (Heerlen polymorphism)'

Increased enzymatic activity and/or lysine binding of certain glycoforms. Glycosylation alters con- (24, 255-261)version to two-chain form

Lost of ability to form a complex with haemoglobin (262)

Increased antithrombin activity. Enhanced heparin binding(?) (263, 264)

No effect on gamma-carboxylation. Improved anticoagulant (increase in K^, decrease in K,). (265)Increase in rate of activation by thrombin/thrombomodulin complex (decrease in K^)

Variations in glycosylation or sialylation associated with differences in cell-surface binding, (266—268)circulatory half-time and fibrinolytic activity

Altered re-folding (269)

Recombinant or mutated enzyme without glycosylation at Asn-302 is two-fold more efficient in (270)activating plasmin

Additional glycosylation site causes dysfunction and disease (271)Variable effects on muftimeric structure and altered function. Increased susceptibility to proteases (272—275)Altered polymerization/aggregation. Sialic acids are low-affinity calcium-binding sites that can (276-280)influence fibrin assemblyEnzymatic removal of - 9 6 % of the carbohydrate caused large changes in CD spectra with (281)increase in the magnitude of the molar ellipticity and amount of /3-tums, and a reduction inrandom coilsAcquisition of binding activity requires glycosylation (282)Removal of oligosaccharide greatly enhances activity (283)No loss of ability to form the functional Cl complex (284)Glycosylation improves tiypsin inhibition by Kunitz-type domain (285)Decreased stability. Small change in affinity for thyroxine and immunoreactivity (286, 287)Decreased secretion. No change in androgen binding (288)Initial glycosylation required for acquisition of binding function (289)Loss of glycosylation site causes no change in protein C binding (290)

Matrix proteins

Fibronectin*-b

Collagen IV 7S tetramerization domainBone and platelet osteonectin°

Membrane proteins/receptors

EGF receptor1'-0

Insulin and insulin-like growth factor-Ireceptorsc-d

Bask fibroblast growth factor receptor"Somatostatin receptor in rat brain andAfT-20 cells'Intercellular adhesion molecule I(ICAM-I)d

Fibronectin receptor (otj/3, integrin)c

Lymphocyte CD2"1

C3h/C4b receptor1*CR2/Epstein—Barr vims receptorb

MHC Class II molecules'1

LuU up in receptor1^Organic cation transporter ofopossum lbdneyb"c

Glucose transporters*-'1

GM-CSF receptor"Erythrocyte band 3 protein1

Erythrocyte CD59 complementinhibitor1^0-2 Adrenergk receptors*-11

Thrombm receptor^gp80 glycoprotein of MDCK cells1"Transferrin receptor expressed invarious cell types'1

Increased susceptibility to proteases (21, 291)Modelling predicts that oligosaccharides are critical in assembly (292)Differences in glycosylation alter collagen-binding properties (293)

Glycosylation-dependent acquisition of ligand-binding capacity. Thereafter, oligosaccharides not (115, 294)required for bindingLoss of binding with complete deglycosylation only. Partial changes in binding affinity/specificity (295—299)with altered glycosylation. Some studies show loss of tyrosine kinase activityLoss of binding of bFGF (300)Sialic acids on the /V-linked oligosaccharides are required for maintenance of the high-affinity (301)binding stateGlycosylation at a single site affects binding to Mac-1, but not to LFA-1 (302)

Normal biosynthesis and expression. Loss of ligand binding (?) (303, 304)Single glycosylation site required for binding of CD2 to CD58 on another cell. Postulated that (305)glycosylation is required for anhiiiTing domain 1, which is involved in adhesionDecreased surface expression, increased turnover. No change C3 binding (306)Decreased surface expression. Increased turnover (307)Variable loss of antigen-presenting function. No loss of peptide-binding function of purified protein (308, 309)Loss of surface expression. No change in ligand-binding capacity (310)Increase in X , without affecting Vwmx of transport (311)

Increase in Km for glucose. Partial or complete loss of activity (312—314)Expression of cr-chain abolished. /3-chain expression normal (315)Increased aggregation. No change in CD spectra, proteolytic susceptibility or anion transport (316)activityNo change in ability to bind CD8/CD9. Loss ( - 9 0 % ) of inhibitory function (317)

No change in expression of ligand affinity. Uncoupling of adenylate cyclase (318—320)Partial loss of high-affinity binding (321)Loss of apical polarized targeting (322)Decreased dimer expression. Decreased binding affinity in intact cells. Elimination of glycosylation (323—326)sites causes partial ER retention and degradation

99

Page 4: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varki

Table I. continued

Protein Effect of lack/alteration of oligosaccharides Examples

Nicotinic acetylcholine receptor0

VIP receptor*Membrane Class I MHC proteinVasopressin receptor of LLC-PK1cells*0

Muscarinic acetylcholine receptord

Low-density lipoprotcin receptor1''0

Interferoo-gimma receptorbc

Asialoglycoprotein receptor*-b

46 kDa mannose-6-pbosphate receptor"1

Nucleoside transporter(s) of L1210cells'"CD4 proteinboji

Thyrotrophin receptord

POGF receptor0

Miscellaneous

Jack bean concanavalin Ad-C

Cobra venom factor*Gastric mucinb

Lactotransfemn*Rat intrinsic factor0

ThyroglobuUn*-1'Spinach chloroplast coupling factor*Many secreted animal proteins0

Plant glycoproteins secreted bysycamore cells in culture*1

Decreased expression (increased degradation?), no change in binding affinity (327)No change in expression. Decreased binding affinity (328)Increased lateral mobility in the membrane (329)

Inhibition of biosynthesis and internalization (330)Decreased expression with some mutants. Small change in binding affinity. No change in turnover (331)

or functional responseNo change in expression or in recycling; - 5 0 % decrease in ligand binding capacity. (332)Redistribution between intrtcdlular and surface locationsNormal expression. Loss of ligand binding in the intact cell. However, the purified form is active (333, 334)No change in expression, binding or turnover (335)Glycosylation required for stability of die high-affinity binding state, but not for binding itself, nor (336)for intracellular stabilityNo effect on synthesis or expression. Transport partially affected (337)

Loss of one glycosylation site tolerated. Loss of both sites results in ER retention and degradation (338, 339)Expression unchanged. Elimination of certain sites causes loss of binding (340)Glycosylation not required for acquisition of ligand-binding capacity (341)

^-Linked oligosaccharide keeps the precursor in an inactive form, until it is deglycosylated during (342, 343)

later processingComplete deglycosylation abolishes complement activation (344)Loss of covalent oUgomerization (345)Loss of iron-binding activity (346)Normal secretion and cobalamin binding. Increased sensitivity to proteases (important for normal (347)function in die gut)Altered rootoyrosine-iodotyrosine interactions and immunoreactivity (348, 349)ATPase activity intact. Photophosphorylation activity tost (350)Prevention of glucose removal slows secretion, while blocking of late processing accelerates (351-355)secretion in many grycoproteinsPrevention of glycoiylalion causes marked decrease in secretion, whereaj altered processing has (356)little effect

Note: unless otherwise stated, the proteins are of mammalian origin."Enzymatic or chemical removal of AMinked oligosaccharides.•"Prevention of //-linked glycosylation by tunicamycin (can have pleiotropic effects on other proteins in die same cell).'//-Linked gfycosylation processing inhibitor(s) (can have pleiotropic effects on other proteins in the same cell).''Genetically engineered change in glycosylation.'Natural genetic variant or defect

trivial to crucial, depending on the glycoconjugate, the oligo-saccharide structure, the biological context and the questionbeing asked.

Can one make any sense out of these diverse and confusingfindings? Most prior attempts to approach this issue havefocused on either a single type of glycosylation or on a singletheory of their function. In the following pages, an attempt ismade to undertake a global overview of most of the known factsconcerning the biological roles of oligosaccharides of majorclasses of glycoconjugates in eukaryotic cells, and to synthesizesome general principles for understanding them. Much of theactual data is presented in table form and is necessarilysimplified and/or incomplete. For more details, the interestedreader is referred to the original literature cited in these tables,and to the monographs and reviews mentioned earlier.

'Structural', 'protective' and 'stabilizing' roles ofoligosaccharides

There is little doubt that some oligosaccharides, such as thoseof the proteoglycans and the collagens, are important in the

100

physical maintenance of tissue structure, integrity and porosity(see Table HI). It is also clear that the 'coating' of oligo-saccharides on many glycoproteins can serve to protect thepolypeptide chain from recognition by proteases or antibodies(see Tables I, n and HI) and that the coating of glycoconjugatescovering a whole cell can present a 'glycocalyx' of substantialproportions. Another well-accepted function of the oligo-saccharide units of glycoproteins is that they are involved in theinitiation of correct polypeptide folding in the rough endo-plasmic reticulum (ER), and in the subsequent maintenance ofprotein solubility and conformation (see examples in Tables Iand II). Thus, many proteins that are incorrectly glycosylatedfail to fold properly and/or fail to exit the ER, and are conse-quently degraded. On the other hand, there are many examplesof proteins for which the prevention or alteration of glycosyl-ation has little apparent consequence to their synthesis, folding,or delivery to a final location (see Tables I and IT). Likewise,there are examples wherein removal of the oligosaccharidesfrom a mature protein does not drastically alter sensitivity toproteolysis or immune recognition, nor their functions. Theseapparently contradictory observations exemplify a recurringtheme: that while supporting evidence can be found for many

Page 5: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccharides

Tabte II. Effects of altered 0-linked oligosaccharides on the biosynthesis, structure, transport and functions of glycoproteins

Protein Effect of lack/alteration of oligosaccharides Examples

GM-CSF1

Tracheal mucin glycoproteins*

Submaxillary gland mucin (molecularmodelling studies)

Intestinal brush border lactose-phtorizin hydrolase (LPHf

Arctic fish antifreeze glycoprotein*

Aspergillus niger glucoamylase*

Erythropoietinc

Glycophorin A1-"1

CD13 (aminopeptidase N)c

LDL receptor1

ApoCIP

/S-HCG1

Single O-linked chain protects against polymerization, denaturation, and loss of certain activities (357)

Removal of sugar chains causes loss of water solubility, requires chaotropic agents or detergents for (358)effective solubilization

Native and asialo-mucin are found to be highly extended random coils. Removal of the carbohydrate (359)side chains causes collapse to chain with dimension] typical of denatured globular proteins

Natural variant glycoform without O-glycosylation has identical K^ value but a 4-fold higher Vtmx (360)

O-Linked oligosaccharides required for freezing-point depression (361)

Partial deglycosylation decreases thermal stability (362)

No effect of elimination on biosynthesis or biological activity. Small effect on secretion rate (?) (199, 205)

Polymorphic changes in amino acids surrounding three O-linked sites give rise to the MN blood (363, 364)group antigens. The intact, unmodified oligosaccharides are required for full antigenicity

Natural variation in the extent of O-glycosylation. Arui CD-13 antibodies do not recognize all (365)

the forms

Multiple O-linked oligosaccharides: some are required for stable expression on the cell surface, but (366—369)not required for LDL binding

No effect on biosynthesis, secretion or lipoprotein particle formation (370)

No change in assembly or secretion, hormonal activity or immunoreactivity (371, 372)

Note: unless otherwise stated, the proteins are of mammalian origin.•Enzymatic or chemical removal of O-linked oligosaccharides.•"Prevention of O-linked gfycosylation by competitive inhibitors (can have pleiotropic effects on other proteins in the same cell).'Genetically engineered change in O-glycosylation.dNatural genetic variant or defect.

Table HI. Cell surface and matrix structure: examples of the 'structural', 'organizational' and 'barrier' functions

Oligosaccharide sequences Interaction with Examples of biological effects Examples

Heparan sulphate chains ofproteoglycans

Chondroitin/dermatan sulphatechains of proteoglycans

Chondroitin sulphate and keratansulphate chains

Dermatan sulphate chain of humanblood protein pre-alpha inhibitor

Siabc acid and sulphate esters onglycoproteins

Qycolipids on epithelial cells

Polylactosamine chains and/or 0-GaIof laminin oligosaccharides

Polylactosamine chains of lamininoligosaccharides

Gtycopbospholipid anchors of somemembrane proteins, //-linked oligo-saccharides of MHC class I proteins

Gastric mucus (major component isgastric mucin, a glycoprotein withmany O-linked sialylated andsulphated chains)

Fibronectin, laminin, collagen, etc.

Extracellular fibronectin

Multiple components of cartilage

Covalent cross-linking to heavychain via esterification

Other negatively charged residues

Other components of apicalmembranes, e.g. GPI anchoredproteins

Bound by 0-galactoside-sperific14 or 35 kDa lectins

Bound by 65 kDa elastin receptorin a /?-galactoside-specific manner?

Other membrane proteins?

Water, ions and ?sdf-ajsociatkm

Organization of basement membrane and extracellular (53, 54, 58, 61,matrix. Filtering function of renal glomerulus. Cell 66, 69, 373-3T7)adhesion to matrix

Deposition of fibronectin in the matrix: ?contact (57, 378-381)inhibition of cell growth

Organization and tensile strength of cartilage (53, 61, 70)

A novel mechanism for cross-linking of two peptide (382)subunits of a protein

Determinant of net negative charge of cell surfaces (7, 40, 383, 384)and proteins: modulates cell-cell interactions andviscosity of secretions

High local concentration on outer leaflet facing the (48, 79, 385-388)lumen of organs: protective or barrier function?

Organization of matrix assembly? e.g. 14 kDa lectin (94, 96, 98, 105,inriiKrs toss of cell-substratum adhesion in developing 106, 389-392)myoblasts during differentiation and fusion intomyofibres

Organization of matrix elastin deposition? (393, 394)

Translational diffusion rates of proteins in the (329, 395)membrane altered markedly

HC1, secreted by gastric glands, traverses the mucus (396)layer without acidifying it because of 'viscousfingering'. HC1 in the lumen (pH 2) cannot diffuseback to the epithelium because of the high viscosity ofgastric mucus gel. Prevents the stomach from digest-ing itself

101

Page 6: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varki

theories regarding oligosaccharide function, exceptions to eachcan equally well be observed.

In general, the development of these 'structural', 'protective'and 'stabilizing' functions during evolution should not haverequired the enormous complexities of structure that are foundin naturally occurring oligosaccharide units. In keeping withthis, inhibitors that only affect the later processing steps ofoligosaccharide biosynthesis generally do not interfere withthese types of functions. In these situations then, the oligo-saccharides are analogous to the 'axle grease' of an automobile.While its absence would markedly affect the ability of the entirevehicle to function, the fine details of the composition of thegrease should not be critical to the turning of the axle. Thus,while these roles of oligosaccharides are vital to the basicstructure and function of the organism, they cannot explain theextensive structural diversity seen in nature.

The 'organizational' and 'barrier' functions

The extracellular matrix consists of a variety of glyco-conjugates, each of which have been shown to have bindingsites for various types of sugar chains, e.g. the heparin-bindingdomains of fibronectin and collagen. Recently, the role of sucholigosaccharide-binding domains in the organization of thematrix has been clearly demonstrated in vitro (see Table HI).Thus, for example, the chondroitin sulphate chain of theproteoglycan decorin is required for the organization offibronectin in the extracellular matrix of Chinese hamster ovary(CHO) cells, which in turn dictates the phenotype of the cellsin culture. In another case, the /3-galactoside-binding function

' of a soluble lectin appears to be involved in the organization ofelastin in the extracellular matrix. Similar functions have beenproposed for the interaction between the polylactosamine chainsof laminin oligosaccharides and certain j3-galactoside-bindinglectins. As shown in the other examples in Table m, oligo-saccharides may also serve to create charge effects and domainsin membranes.

Oligosaccharides as specific receptors for noxious agents:the 'traitorous' functions

It is abundantly clear that certain oligosaccharides can act ashighly specific receptors for a variety of viruses, bacteria andparasites (see Table IV). They are also receptors for many plantand bacterial toxins, and serve as antigens for autoimmuneand alloimmune reactions. In most of these instances, there isexquisite specificity for the sequence of the oligosaccharideinvolved. Thus, for example, the influenza viral haemagglu-tinins specifically recognize the type of sialic acid, its modifi-cations and its linkage to the underlying sugar chain, whilecholera toxin binds with great specificity to GM] gangliosideand not to related structures. Likewise, incompletely synthe-sized (or partially degraded) oligosaccharides such as the Tnantigen can behave as autoantigens in man. There is little doubtabout the extreme specificity of this group of 'functions' ofoligosaccharides (see Table IV). In fact, this specificity hasbeen used to great advantage by scientists investigating theexpression of these sugar chains. However, to the organism thatsynthesized such oligosaccharides, there is little value inproviding such 'traitorous' signposts to aid the access of

102

pathogenic microorganisms or to permit damaging autoimmunereactions.

Oligosaccharide sequences that protect frommicroorganisms and antibodies: the 'masking' and'decoy' functions

Just as certain oligosaccharides act as 'traitorous' signposts formicrobial and immune attack, others can serve to abrogate thesedetrimental reactions (see Table V). In these cases, the additionof specific monosaccharides or modifications masks thesequences recognized by microorganisms, toxins or auto-immune antibodies. Thus, for example, the addition of a singleC*-acetylester to the 9-position of terminal sialic acid residuesabrogates binding of the highly pathogenic influenza A viruses,and the extension of the oligosaccharide chain of GM! wouldprevent binding of cholera toxin. Likewise, the addition ofgalactose and sialic acid to the Tn antigen would abolish itsautoimmune reactivity.

Oligosaccharide sequences on soluble glycoconjugates suchas the mucins can also act as 'decoys' for microorganisms andparasites. Thus, pathogenic organisms attempting to gain accessto mucosal membranes might first encounter their cognateoligosaccharide ligands attached to soluble mucins. Upon bind-ing to these sequences, they could then be swept away by ciliaryaction, leaving me mucosal cells untouched. In these cases, thehost may successfully turn the specificity of the pathogenreceptor to its own advantage.

Oligosaccharides as specific receptors for 'symbiotic'functions

The possible evolutionary interplay between the 'traitorous' and'masking' functions of oligosaccharides is discussed below. Incontrast to these functions of sugar chains, there are some casesin which symbiotic relationships of animals with microorgan-isms appear to be aided by interactions involving specific oligo-saccharides. Thus, certain commensal gut bacteria in animalsand some root nodule-forming bacteria in plants appear tomediate their binding to host cell surfaces via specific sugarsequences, hi these cases, inter-species recognition via oligo-saccharides serves a function useful to both organisms in-volved. It is possible that such interactions are much morecommon and that they have not been carefully sought after.

Effects of oligosaccharides on the biological functions ofproteins: 'on—off and 'riming' functions

There are several examples in which glycosylation can sub-stantially modulate the interaction of peptides with their cognateligands or receptors (see Tables I and VI). Some cell surfacereceptors for growth factors appear to acquire their bindingfunctions in a glycosylation-dependent manner. Thus, the ac-quisition of function of a newly synthesized receptor may bedelayed until it is well on its way to the cell surface. This mightlimit unwanted early interactions with a growth factor synthe-sized in the same cell. Glycosylation of a ligand can alsopotentially mediate such an 'on—off or 'switching' effect.When the hormone human /3 chorionic gonadotrophin (/3-HCG)is deglycosylated, it still binds to its receptor with similar

Page 7: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccharides

Table IV. Oligosaccharides as specific receptors for noxious agents, antigens for autoimmune responses, or as facilitators of infectious and malignant disease: the'traitorous' functions

Oligosaccharide sequences Recognition by Biological effect* Examples

Terminal sialic acids

Terminal sialic acids

Specific gangliosides on cell surfaces

Specific oligosaccharide sequences ofglycolipids and glycoproteins onmucosal surfaces

Cell surface heparan sulphate chains

Traces of CMP-sialic acid ('serumresistance factor') found in blood

//-Linked oligosaccharides on gastricparietal ceQ proteins

Erythrocyte and platelet glyco-conjugates, e.g. polylactosaminechains on red blood cells ( T antigen)

Incomplete oligosaccharide structuresfrom infectious agents or

Siarylated, fucosylatedlactosaminogrycans on leukocytes

Highly branched and sialylatedAMinked oligosaccharides

Sialylated, fucosylatedlactosaminoglycans on tumour cells

Sialic acids and sialyloligosaccharideson many microbial surfaces

Neural glycosphingolipids

Receptors for a variety of vimshaemagglutinins. Recognition is affected bylinkage and/or substitutions of the sialic

acids

Trypanosoma cruzi trans-sialidase (has bothneuraminidase and sialyltransferase activity)

Receptors for several bacterial toxins e.g.Vibrio cholerae B subunits binds GM1

gangltoskie

Fimbrial proteins of pathogenic orcommensal bacteria; binding receptors ofcertain mycoplasma, chlamydiae, protozoaand fungi

Receptor for herpes simplex virus

?Surface transferase on pathogenic Neisseria

gononhoeae

Required for reactivity of someautoantibodies in autoimmune gastritis andpernicious anaemia

Antigens for spontaneously appearing 'coldagglutinins' and other autoimmuneantibodies

Natural or induced antibodies against theincomplete structures, e.g. Tn antigen

Ligandi for selectin molecules onendothelial cells. System can work 'toowell' under certains conditions of post-ischaemk reperfusion or inflammatinn

Expressed in increased amounts ontransformed cells

Ligands for selectin molecules onendothelial cells

Blocks generation and reactivity of manyantimicrobial antibodies, and facilitatesbinding of complement regulatory protein H

Naturally occurring monoclonal or poly-clonal antibodies

First step in infectious process of viruses. (73, 76, 397-422)Consequences range from lethal disease tomild self-limited infection

Parasite utilizes host sialic acids and (423-430)transfers them to its own surface, blockinganrJgenicity and complement activation

Cell binding and delivery of toxic subunits(e.g. A-subunit of Vibrio cholerae)

First step in infectious process ofpathogenic organisms. Also helps tomaintain localization of normal 'commensal'organisms?

Initiates infection

Sialic acid is transferred to bacterial

(95, 140, 141431-442)

(95, 140-144443-472)

(71, 473)

(474-477)surface, blocking anrJgenicity andcomplement activation

Antibodies associated closely with mucosalatrophy, parietal cell loss—likely to be in-volved in patbogenesis

Autoimmurje destruction of cells, e.g.autoimmune haemolytic anaemia

?Autoimmune damage to cells and organs.Also beneficial because of anti-tumoureffects?

Toxic or inflammatory injury to tissuesmediated by leukocytes exiting the blood-stream in excess

metastatictumorigenicity ""capability of tumour cells?

Enhances metastatic capability of tumourcells via selectin-mediated binding?

Protects microorganism from host antibodiesand alternate pathway of complement

Peripheral neuropathy (in some cases, it isnot clear if the antibody is the cause orconsequence of the disease)

(478)

(123, 479-485)

(486—490)

(83, 84, 86-93,491-495)

(121, 496—502)

(503—505)

(506-511)

(512—521)

affinity, but fails to transmit a signal via stimulation of adenyl-ate cyclase. Thus, an agonist is converted into an antagonist; theprecise mechanism of this effect remains unknown.

In most cases, such effects of glycosylation are not all ornone, but are partial, or relative. In these 'tuning' functions, thebiological activity of many glycosylated growth factors orhormones appears to be modulated over a significant range bythe presence and extent of glycosylation. For example, thecytokine granulocyte/macrophage colony-stimulating factor(GM-CSF) is known to be most active in the unnaturalnon-glycosylated form derived from recombinant technology.However, naturally occurring preparations of GM-CSF containa range of 'glycoforms', each of which shows substantialdifferences in binding affinity and signal transduction (see

Tables I and VI). Another excellent example of this 'tuning'function is seen in the addition of polysialic acid to the neuralcell adhesion molecule (N-CAM), which normally mediateshomophilic binding with identical molecules on other cells (seeTable XI). In the embryonic form, the oligosaccharides of thisprotein carry extended highly anionic chains of sialic acids thatmarkedly reduce its capacity for homophilic binding. Duringdevelopment, the length of these polysialic acid molecules isaltered, such that in the adult state they are much shorter. Thus,the adult N-CAM is capable of more effective homophilicbinding, presumably because there is no longer a need for asmuch plasticity in the nervous system.

In other cases, the function of proteins can be 'tuned' not byoligosaccharides on the receptors or ligands themselves, but by

103

Page 8: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varid

Table V. Oligosaccharide sequences that

Oligosaccharide sequences

9-OAcetyiation

9-O-Acetylatkm4-O-Acetylation

Terminal sialk acids oo glycoproteinsand cell surfaces

Terminal sialk: acids cm 0-Iinkedoligosaccharides

0-Gal residues

Cell surface heparan sulphate

Schistosoma mansoni miracidaoligosaccharide

Heterogeneous oligosaccharides foundon secreted mucins and in milk

protect from microorganisms and immune

Masks recognition of

Terminal siaiic acids

Terminal siaiic acids

0-GaI and/3-GalNAc residues

Core O-linked oligosaccharides (T andTn antigens)

/J-GkNAc residues

Underlying 'activators'?

Underlying antigenic structures of theSchistosoma

Gut epithelial surface membraneoligosaccharides

reactions: the 'masking' functions

Masks recognition by

Influenza A and B viruses (generatesrecognition by other viruses)

Bacterial and viral sialidases

Asialoglycoprotein receptorMacrophage Gal/GalNAc lectin

Natural antibodies to T and Tn antigens

Chicken hepatic lectin

Alternate pathway of complementactivation

The parasite, by the phagocytic cells ofthe invertebrate (snail) host

By various microbial pathogens. Solublemolecules act as inhibitors or 'decoys'

Examples

(73, 74, 76, 403, 404)

(73, 74, 76, 77,522-528)

(116, 120,529)

(486^190)

(116, 530)

(531-535)

(536)

(41, 537)

those on other neighbouring structures. An excellent exampleof this is seen in the modulation of growth factor receptors bygangliosides (see Table VI). The gangliosides are discrete andseparate entities from the receptor proteins. However, it hasbeen well demonstrated that the precise type of ganglioside thatis present in a membrane can have a substantial effect on thetyrosine phosphorylation activity of the epidermal growth factor(EGF) receptor and the insulin receptor. While the precisemechanism of these effects is uncertain and some conflictingdata have been published, it is clear that the specific oligo-saccharide sequence of the ganglioside is required, rather thansimply its net charge or size. Likewise, the polysialic acids ofembryonic N-CAM have been shown to substantially blunt thebinding of apposing cells via other unrelated receptor-ligandpairs, simply by physically expanding the space between cells.An extreme example of a 'tuning' effect of an oligosaccharideon a separate protein is that in which the heparin moleculemodulates the action of the natural anticoagulant antithrombinHI (see Table XI). In this case, the binding of highly specificheparin sequence to antithrombin m converts a very weakantithrombin into a potent anticoagulant. Such heparin se-quences are presumed to have a significant anu'-thrombogenicrole on the surface of endothelial cells that are in contact withthe blood stream.

Since these 'tuning' effects of oligosaccharides are usuallypartial and are rarely absolute, a sceptic might raise questionsabout their importance. However, when taken together, suchpartial effects could have a dramatic effect on the finalbiological outcome. Consider two different cell types that havethe same number and types of growth factor receptors, and thatare presented with the identical concentrations of the samegrowth factors. If the signal delivered to a cell was based onlyon the primary receptor—ligand interactions, there should beno difference in response between these two cells. However, ifdifferences existed in the glycosylation state of the ligands,receptors or membrane gangliosides, each could have a signif-icant positive or negative quantitative effect on the final signalsdelivered to the cell. Furthermore, glycosaminoglycan chainson the surface and in the matrix surrounding the cells could alsomodulate the action of each growth factor differently. Takentogether, the combined effects on the different receptor-ligand-

104

generated signals would be quite different for the two differentcells. These differences would be further amplified by the factthat the intracellular signalling mechanisms of many receptorsshow significant overlap and cross-talk. Thus, the final effectsof the same ligands at the same concentrations on the twodifferent cells in question could be dramatically different. Thus,glycosylation can be a general mechanism for generatingimportant functional diversity, while utilizing a limited set ofreceptor-ligand interactions.

As with most other functions of the oligosaccharides dis-cussed so far, clear exceptions can be encountered. There arereceptors whose ligand binding is not acquired in a glycosyl-ation-dependent manner, and there are ligands whose bindingand action is affected very little by the precise type of glyco-sylation found on itself or on its cognate receptor (see Table I).Once again, it is not possible to make a generalized theorybased on the specific instances studied.

The 'sink' or 'depot' function of oligosaccharides

Another recently appreciated function of oligosaccharidesappears to be that of acting as a protective storage depot forcertain biologically important molecules (see Table VII). It haslong been known that a variety of growth factors could bepurified by affinity chromatography on immobilized glycos-aminoglycan chains such as heparin. It now appears that thespecific growth factors may bind tightly and specifically tocertain glycosaminoglycan chains in vivo. This serves tolocalize the growth factors in question to the extracellularmatrix surrounding the cells that need to be stimulated, andprevents diffusion of the factors to distal sites. There is alsoevidence that such a 'sink' can protect the growth factors fromnon-specific proteolysis, thus prolonging their active lives. Asimilar role may be played by the glycosaminoglycan chainsfound in secretory granules that appear to bind and protectprotein contents after secretion, and to modulate their subse-quent functions. As indicated in Table VII, there are otherclassic examples where oligosaccharides may act as 'sinks' or'depots' for a variety of biological important molecules, rang-ing from water to complement regulatory proteins.

Page 9: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological rotes of oligosaccharides

Table VI. Effects of oligosaccharktes on the biological functions of proteins: 'on-off and 'tuning' functions

Peptide(s) Type of oligosaccharides Biological effect(s) Examples

Glycoprotein hormones, e.g. /3-HCG W-Linked oligosaccharides on the hormones

Haematopoietic growth factors(e.g. GM-CSF and erythropoietin)

Interleukin-1 and interieukin-2

Various growth factors andcytokines, e.g. FGFs, GM-CSF,IL-3, Pleiotrophin, IL-7 and thymkstroma-derived T-cell growth factor

Several proteases, proteaseactivators and protease inhibitors(other than antithrombin i n andheparin co-factor n, see Table XH)

Jack bean concanavalin A (Con A)

Some growth factor receptonb>c-<l

Some growth factor receptors (EGFreceptor, insulin receptor)

Certain intncellular proteinand pbosphodiesterases

Cell surface integrins

Unknown

Unknown

Unknown

Transcription factors, cytosolicproteins and RNA polymerase

Glycopbospholipid anchors ofmembrane proteins

W-Linked oligosaccharides on the factors

Binding to high-mannose-typeoligosaccharides on other molecules

Binding to heparan sulphate chains (eitherfree, or in the proteogiycan form)

Interaction with heparin/heparan sulphatechains

AMinked high-mannose-typeoligosaccharide on the newly synthesizedlectin

//-linked gtycosylation-dependantactivation: completion of disulphide bondsand native conformation requires partialprocessing of oligosaccharide (?)

Up- or down-regulation of tyrosinephosphorytation by specific gangliosidespresent in the same plasma membrane.Effects on growth control?

Modulation of phosphorylatkm by specificgangliosides. In some cases, specificphenotypk responses are seen in targetcells

G m and Gpj gangliosides

Specific types of gangliosides, particularlythose with more sialic acids

Neolacto- and GM gangliosides.Granulocytic or monocytic differentiation ofmyetoid precursors correlates with theirexpression

Different gangliosides added exogenously toneural cells in culture or administered towhole animals

O-LJnked GlcNAc residues at multiple sites

Other membrane proteins? Signallingsystems?

Required for signal transduction: removal (126, 127, 170-174,results in conversion to an antagonist. Role 176, 178, 538)in normal biology not fully defined

Binding affinities and biological activities (129, 195-197,change substantially with differing degrees 199-205, 208, 538)of glycosylation

Generates a surface membrane-bound form, (539—543)of uncertain function. The cognateoligosaccharides show immunosuppressiveactions in vitro

Controlled release from matrix. Negative (57, 60, 62-64, 72,and positive regulation of growth-promoting 544-565)effects? In some cases, heparan sulphatechains are required for high-affinity bindingof factors by their receptors

Varying degrees of positive or negative (69, 566-573)modulation of activities

Keeps the precursor form inactive, until it (342, 343)is deghycosylated during later processing

Prevents premature association of growth (115, 294-298)factor made in the same ceil with itscognate receptor?

Permits modulation of the function of (47, 49, 574-582)receptors without altering their number oraffinity for die ligand. Role in normalbiology not yet well defined

Modulation of signal transduction. Role in (46, 583—597)normal biology not yet well defined.Topological incongruity unresolved

Calcium-dependent association appears to (598-603)modulate adhesive function. Role in normalbiology not well defined

Suppressive effects on cell proliferation in (51, 604-617)the immune response. May be important inthe immunosuppressive effect! of cancers.Role in normal biology not well defined

Exogenous addition of these gangliosides (52, 618-620)triggers die appropriate differentiationresponse. Role in normal biology not welldefined

Neurotrophic effects, promoting (45, 50, 621-647)differentiation, potentiating healing,protecting from neurotoxic agents andpromoting calcium fluxes. Role in normalbiology not well defined

Indirect evidence suggests that expression (145, 648, 649)may be rapidly regulated inversely withphosphorylation at the same rites —amechanism for modulation of activities?

T-cell activation via different surface (650-652)proteins requires GPl-anchon

105

Page 10: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varki

Table VII. Maintaining local concentrations of specific molecules: examples of the 'sink' or 'depot' functions

Otigosaccharide sequences Molecules bound and locally concentrated Proposed biological effects Examples

Matrix and/or basementmembrane heparan sulphatechains

Cell surface and matrix heparansulphate chains

Secretory granule proteoglycans

Chondroitin sulphate chain ofmacrophage colony stimulatingfactor (M-CSF)

Plasma membrane gangliosides

Cell surface sialic acids

Sialylated A*-linked oligo-mrcharidrs in sea urchin

Sialic acid residues of fibrinogen

Cell surface sialic acids oncardiac cells

Surface sialic acids onsynaptosomes

Sialic acids, uronic acids andsulphate esters on manygrycoproteins and proteoglycans

Pig gastric mucus (majorcomponent it gastric mucin, aglycoprotcin with many 0-linkedsialylated and sulphated chains)

FGFs, GM-CSF and other cytokines in cellbasement membranes or intercellular matrix

Superoxide dismutase

Binding to other components of the granule,e.g. enzymes

Specific and selective binding ofoligosaccharide to matrix Type V collagen

Calcium

Facilitates high local binding and retention ofcomplement regulatory protein H on cellsurfaces

Calcium

Calcium ('low-affinity' binding site)

Calcium

Sodium?

Water

Water and bicarbonate ions

Maintains local concentration and availability (57, 60, 64, 72,of growth factor to the relevant cells. 544—560, 565,Protection of factors from proteolysis. Release 653-655)upon injury to endothelium stimulatesangiogenesis?

Maintenance of local concentration of the (656)enzyme in tissues?

Permits packaging of materials into storage (657-661)granules? Protects, localizes and modifiesactivity of bound molecules after secretion?

Maintains high local concentration of this (662)form of M-CSF in bone marrow matrix andodier sites of action?

Local increases in Ca2 + concentration, affect- (663)ing receptor recognition processes?

Prevents activation of the alternate pathway of (510, 523, 532,complement on homologous surfaces (requires 664-674)unmodified sialic acid side chain)

Facilitates Ca2 + sequestration for deposition (675)into the CaCQ, skeleton

At physiological Ca1* concentrations, (277)facilitate proper fibrin polymerization

Removal of sialic acid markedly alters (676—678)calcium currents into the cardiac cells

Removal of sialic acid markedly changes (679)kinetics of Na+-dependent uptake of thegamma-aminobutyric acid and D-aspartate

Help to create gel states of mucins and extra- ( 1 - 3 , 41, 54, 61,cellular matrix 65, 396)

Bicarbonate ions secreted by the gastric (396)epithelium are trapped in the mucus gel,establishing a gradient from pH 1-2 at thelumen to pH 6—7 at the cell surface

'Intracellular trafficking' functions of oligosaccharides

The best understood example of such functions is the role ofmannose-6-phosphate residues in targeting newly synthesizedlysosomal enzymes to their final destination in the lysosomes(see Table VJLLL). In this case, the human disease states in whichphosphorylation is deficient (I-cell disease and pseudo-Hurlerpolydystrophy) are characterized by a failure of lysosomalenzyme targeting in several cell types. This provides conclusiveevidence for the importance of the oligosaccharide modificationin mediating this important pathway. However, it is notable thateven this elegantly precise function of oligosaccharides appearsto have its exceptions: mannose phosphate is not absolutelyrequired for the trafficking of lysosomal enzymes in somelower eukaryotes, nor is it essential in certain cell types inmammals. As indicated in Table Vin, many other endocyticreceptors that recognize specific carbohydrate sequences havebeen described. However their role, if any, in intracellulartrafficking (i.e. during the biosynthesis of glycoconjugates)has yet to be defined.

106

The role of oligosaccharides in regulating the 'clearance'or turnover' of proteins and whole cells: 'intercellulartrafficking'

The effects of glycosylation on the stability of proteins toproteolysis has already been mentioned, and can presumablyaffect meir turnover and half-life in the single cell. In the intactanimal, recognition of oligosaccharide sequences by certainreceptors can result in removal of the glycoconjugate or eventhe whole cell from the circulation. There have been severalwell-documented examples of the action of such 'intercellulartrafficking' receptors (see Table VOT). Many of these inter-actions are highly specific for the oligosaccharide sequencesrecognized by the receptors, suggesting that their biologicalroles are equally specific. In several cases, rational meorieshave been put forward to explain the functions of theseclearance pathways (see Table VIE). However, to date therehave been very few naturally occurring mutants in thesereceptors described in an intact animal. This makes it difficultto obtain definitive proof of such functions.

Page 11: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccbarides

Table VIII. Intra- and inter-cellular trafficking of proteins: 'targeting' and 'clearance' functions

Oligosaccharide sequences recognized Lectin Proposed role in protein trafficking Examples

Phospborylated high-mannose-type

oligosaccharides on lysosomal

enzymes and other proteins

Exposed terminal /3-Gal residues on

mammalian plasma proteins

Exposed terminal 0-GlcNAc residueson avian plasma proteins

Terminal 4-O-sulphated 0-GalNAcresidues on glycoprotein hormones

Mannose-rich oligosaccharides ofendogenous and exogenous origin

Gal/GalN Ac-terminatedoligosaccbarides of endogenous andexogenous origin

//-Linked higb-mannose-typeoligosaccharides of endogenous andexogenous origin

Cation-independent M6P receptorCation-dependent M6P receptor

Asialogrycoprotein receptor

Chicken hepatic lectin

Specific receptor in the non-parenchymalliver cells

Macrophage Man/Fuc receptor

Macrophage Gal/GalNAc receptor

Circulating 'core-specific' lectin

Trafficking of newly synthesized lysosomalenzymes to lysosomes. Salvage of secretedphosphorylated enzymes?

Clearance from circulation: determinant ofhalf-life? Abnormalities in liver diseases,but significance unproven in normal

Clearance from circulation: determinant ofhalf-life?

Rapid clearance from circulation:determinant of short half-life?

Clearance of proteins from circulation?

'lectinophagocytosis' of pathogens?

Clearance of proteins from circulation?

'lectinophagocytosis' of pathogens?

Opsoninization of pathogens, allowingcomplement activation and phagocytosis.Clearance of proteins from circulation?

(107-113, 680-#>6)

(116, 117, 120, 529,697)

(116, 530, 698)

(118,699,700)

(95, 97, 119,701-708)

(709-711)

(97, 119, 712-714)

'Hormonal' actions of oligosaccharides

It is now recognized that free oligosaccharides can themselveshave biological effects in various systems, thus acting likehormones (see Table LX). The best documented examples arethe 'oligosaccharins' of plants, which induce specific responsesin a manner highly dependent on the structure of the sugarchain. Likewise, free high-mannose chains can have strongimmunosuppressive effects in in vitro mammalian systems in amanner dependent upon the specific structure of the sugarchain. It is also likely that free heparin fragments released bycertain cell types have effects on other cell types, acting perhapsvia binding and intemalization. However, in most of these casesthe putative receptors for these molecules have not beenidentified, and the mechanisms by which they work remainuncertain. Many other less well defined oligosaccharides orglycopeptides with proposed biological effects are known, andare listed in Table DC.

Role of oligosaccharides in 'cell-cell and celkmatrixrecognition'

Since all cells are covered with a dense coating of sugars, it haslong been predicted that oligosaccharides must be criticaldeterminants of 'cell-cell interactions'. In actual fact, there arerelatively few examples in which such functions have beenclearly defined (see Table X). Perhaps the best-documentedexample is that of the selectin family of receptor proteinsthat mediate the adhesion of leukocytes to endotheUal cells(L-selectin), the recognition of leukocytes by stimulated orwounded endothelium (E-selectin), and the interactions ofactivated platelets or endothelium with leukocytes (P-selectin).In each case, the minimal carbohydrate ligands involved inrecognition appear to be sialylated fucosylated sugar chains,such as sialyl Lewis" and sialyl Lewis*. However, biologicallyrelevant recognition may require specific glycoconjugates that'present' multiple copies of such oligosaccharides in a spec-ialized fashion, i.e. in a proper spacing on the linear poly-

peptide chain, or in the proper three-dimensional context Inthis regard, we have recently suggested that oligosaccharidesthat are very closely spaced together on the polypeptide mightbe packed tightly together, generating a 'clustered saccharidepatch' for specific recognition. This would allow the generationof uncommon recognition markers utilizing common oligo-saccharides. Alternatively, specific modifications of the oligo-saccharides (e.g. sulphation) might be creating unique bindingsites. There is also now substantial evidence that the binding ofsperm to eggs involves the Olinked oligosaccharides on thezona pellucida glycoprotein ZP3, possibly by interacting witha surface jS-galactosyltransferase. Other clear examples ofcell-cell binding involving specific carbohydrates includeCDw44, macrophage sialoadhesin and the B-cell lectin CD220(see Table X). In many of these cases, rational theories can beconstructed to explain the role of these cell—cell interactions.However, with the exception of the selectins, the specificbiological significance of these recognition events has not beenconclusively demonstrated in the intact animal.

A variation on this theme has been the proposal that carbo-hydrate—carbohydrate interactions may play a specific role incell-cell interactions and adhesion. Several examples of suchinteractions have been presented and appear to show specificityfor the structural details of oligosaccharides involved (see TableX). For example, there is provocative evidence that duringmurine embryogenesis, the stage-specific embryonic antigen(SSEA) which appears at the 16-cell stage is important in thecompaction of the embryo, due to an Le*—Le* interaction. Theaffinities of such interactions can be measured with somedifficulty and do not appear to be very strong. However, if themolecules in question are present in high copy number on thecell surface (e.g. glycolipids), the summing of a large numberof relatively low-affinity interactions could result in a sub-stantially higher avidity, sufficient for biological relevance.Such a 'velcro' effect may well be sufficient to mediatebiologically relevant recognition.

In many of these cell-cell interactions, protein—protein bind-ing phenomena clearly also play critical roles, e.g. the LFA-I/

107

Page 12: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varid

Table IX. Biologically active oligosaccharkles and glycopeptides: 'hormonal' actions

CHigosaccharide sequences recognized Target tissues or cells/cognate receptor Reported biological effects Examples

Specific /3-glucan oligosaccharides ofPhytophxhora fungal cell walls

Polygalacturonic oligosaccharkles ofplant cell walls

Exopolysaccharide of Rhizobium

species. Specific sulpbated, acylated or

fucosylated sequences

Oligosaccharides derived from

sycamore cells

Free heparin/heparan chains fromadjacent cells, e.g. smooth muscle cellsand endothelial cells

Glucosamine-containingoligosaccharide(s)—derived fromglycosylphospharJdyl inositol?

Sialylated fucosylated glycopqxidefrom brain cells

A glycopeptide from malignant tumoureffusions. An acceptor forgalactosyhransferase

A sialogtycopeptide circulating inpatients with sepsis or trauma

Free sialylated N-Hrikedoligosaccharides released from troutegg glycoproteins during oogenesis

Various plantsUnknown receptor

Tomato and potatoUnknown receptor

Alfalfa or soybean root cellsUnknown receptor

Tissue culture 'callus' of tobacco cells orduckweed cells. Unknown receptor

Unknown receptor in nucleus? Eventually

works via c-fos and c-myc in endothelial

cells

Various mammalian cell types

Unknown receptors)

Various animal cell typesReceptor of 150 kDa?

Various tumour cell typesOligosaccharide required for binding:receptor unknown

Unknown

Unknown

Elichor of production of phytoalexins(plant antibiotics against fungi)

Bicitor of production of phytoalexins.Induces phosphorylation of specificmembrane proteins and morphologicalchanges in cultured H« IW»

Elicits root nodulatkm in host: determinantof symbiotic relationship betweenRhizobium and plants

Selective induction of vegetative buddingor floral growth: hypothesized to modulateorgan development in the intact plant

Inhibition of cell growth

Proposed second messengers for some

(136, 137, 715-717)

(137, 718)

(138, 139, 719-724)

(725)

(60, 726-736)

Interleukin-2, NGF, and inailm-fTwyfinfr^signal transduction events

Growth inhibition of a variety of celltypes

Growth inhibition, antitumour effects

Induces endogenous proteoiysis in ratmuscle, simflnr to that occurring inpatients

Unknown. Large quantities suggest aspecific function

(80, 737-749)

(750-752)

(753, 754)

(755)

(756-759)

Table X. Lectin—carbohydrate and carbohydrate-carbohydrate interactions: examples of 'cell:cell and cdhmatrix recognition'

Lectin Oligosaccharide sequences recognized Proposed biological functions Examples

E-Selectin (ELAM-1)

P-Selectin (GMP-140/PADGEM/CD62)

L-Selectin (LAM-1, MEL-14 antigen,LHR)

CD44 (Hermes, Pgp-1)

CD220 lectin of B-lymphocytes

Macrophage Gal/GalNAc receptor

Macrophage sialic acid-specific receptor

Kupffer cell-specific Gal/Fuc receptor

Sialylated fucosylated polylactosamino-glycans on unknown leukocytegrycoconjugates

Sialylited fucosylated polylactosamino-glycans (on a specific myeloid £lyco-protein?) (sulphated ligands as well?)

Sialylated, fucosylated, sulpbated oligo-saccharides (on specific glycoproteins?)(other sulphated ligands as well?)

Hyalurorric acid

a2-6-linked sialic acids on lactosamineunits of specific glycoproteins, e.g. CD45

Terminal 0-Gal or /3-GalNAc residues on

blood cells or pathogens

Sialic acids on surface grycoconjugates,

in the sequence Sia a 2-3Gal 0 l-3GalNAc

?Specific oligosaccharide structures in liver

matrix

Primary adhesion of granulocytes, (760—771)monocytes and certain lymphocytes toacutely or chronically inflamedendothelium

Primary adhesion of granulocytes, mono- (763, 766, 768,cytes and certain lymphocytes to activated 770, 772—780)platelets or endothelium

Adhesion of granulocytes to inflamed (770, 771,endothelium and of naive lymphocytes to 781—787)endothelium of high-endothelial venules: adeterminant of lymphocyte trafficking

Adhesion of many cell types to endothelial (788-795)cells and matrix. Additional determinant oflymphocyte trafficking

Early step in interactions of B-cells with (796-800)activated T<dls or activated B-cells.Cross-Unking of CD457

Clearance from circulation: determinant of (709—711)half-life?? Phagocytosij of pathogens?

Interaction of bone marrow macrophages (801-804)with haematopoietic precursors and lymphnode macrophages with lymphocytes?

??Mechanism of localization and retention (805-808)of Kupffer cells in liver

108

Page 13: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccharides

Table X. continued

Lectin Oligosaccharide sequences recognized Proposed biological function* Examples

Surface /51-4 galactosyltransferase

Unknown, on mammalian sperm

Cell surface/soluble /S-galactoside-t>indinglectins in a variety of cell types

Cerebellar soluble lectin

Extracellular matrix proteins (e.g.laminin, fibronectin, thrombospondin)

Several extracellular matrix proteins (e.g.laminin, thrombospondin) membranereceptors (e.g. P-selectin) and solubleproteins

Macrophage migration inhibitory factor

Unknown

Unknown receptor in epithelium ofsandfly midgut

Gal-specific lectin of Bradyrhizobiumjaponkum

Unknown receptor on Capnocytophagaochracea

GlcNAc-terminating oligosaccharides ontarget cells? Transfcrase acts as a lectin?

a-Linked Gal residues on O-linkedoligosaccharides of egg protein ZP3

/3-Galactoskle ind/or polylactosarrrineresidues on other cells or in the matrix

31 kDa endogenous glycoprotein ligand?

Binding to beparan sulphate chains on cellsurface proteoglycans

Binding to 3-O-sulphatedgalactosylceramide (sulphatide)

Specific cell surface ganglioside

//-Linked glvcans, in some cases carryingpolylactosamines

Lipophosphoglycan of Leiihmania only innon-infective stage promastigotes

Unknown ligand on plant cells

Specific hexasaccharide repeat from cellwall of Streptococcus sanguis

Sperm—egg receptor function? Inducer of (147, 809—821)acrosome reaction? Role in cell migrationduring development and tissueorganization? Role in neurite extension?Role in tumour metastasis?

Sperm-egg recognition. Inducer of (822-824)acrosome reaction? Competing theory withsurface ^-galactosyltransferase

Implicated in cell-cdl and cell-matrix (94, 96, 104-106,interactions in development and tissue 390, 825—838)organization. Also may serve as receptorsfor certain immunoglobulins. Role intumour metastasis?

Mediates contact guidance of neuron (99, 100,migration by astrccytes? 839-843)

Role is mediating cell adhesion, (376, 844-850)differentiation, spreading or invasion

Role in mediating cell attachment and/or (774, 851—861)differentiation?

Lymphocyte cytokine that modulates (862, 863)macrophage migration into tissues?

Complex literature suggesting roles for (101, 864—868)oligosaccharides in interactions betweenlymphocytes, and between natural killercells and their targets

Allow stage-specific adhesion of non- (869)infective stage promastigotes and selectiverelease of infective stage promastigotes

Facilitates symbiotic interactions? (870, 871)

Co-aggregation of the two bacterial strains (872)is implicated in formation of dental plaque

CARBOHYDRATE 1 CARBOHYDRATE 2

Multimillkm molecular weightaggregation factor (MAF)

Xanthan gum polysaccharide

Hyaluronan

Baaeroides fragilis capsular poly-saccharide A

Lewis1 structure

ganglioside

MAF

Carob gum polysaccharide

Chondrohin sulphate

B.fragilis capsular polysaccharide B

Lewis1 structure

G,3 or Lac-Cer glycolipids (carbo-hydrate-carbohydrate interaction)

Mediates cell-cell recognition in the (873, 874)sponge Microciona proUftra

Intermolecular binding mediates gelation (875)and Tbinding of Xandwmonai bacteria

Specific inter-molecular (876)interaction—significant in matrixorganization? Involvement of protein notruled out

Strong ionic interactions create a complex, (877)aggregated polymer—a virulence factor

?MecSates compaction of the morula-stage (878-880)embryo

?Mediates interaction between different (881-883)cell types

I-CAM interaction in leukocyte—endothelium binding (87).However, these interactions appear to require activation of thecells and do not seem to work well under the shear forcespresent in the flowing bloodstream. Several lines of evidenceindicate that oligosaccharide-protein interactions provide the

initial specificity for the interaction, and the strength andpermanence of the association is then mediated by protein-protein interactions (reviewed in 87-93). This would allow theparsimonious use of a limited set of protein—protein interactionsas a generic glue for a variety of cell—cell interactions, while

109

Page 14: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varki

leaving the specificity to the diversity of oligosaccharidestructures.

Such intercellular interactions should be most importantduring embryonic development. The number of genes(50 000—100 000) available in the genome of a mouse cannotpossibly account for the numerous specific steps required forcomplete murine embryogenesis if a different gene wasrequired for a each step. However, a set of glycosyltransferasesexpressed in various combinations could provide a wide varietyof different potential ligands for cell—cell interactions. Thefrequent demonstration of regional, spatial and gradient expres-sion of carbohydrate structures during embryonic developmentstrengthens the notion that such specific interactions are indeedimportant at various steps in development However, proof thatsuch interactions are important requires the availability ofmutants with genetic defects in glycosylation.

Do any general principles emerge?

The discussion so far makes it clear that the oligosaccharideunits of glycoconjugates have many and varied functions. It alsoleads to the conclusion that while all of the theories about theirfunctions appear to be correct, exceptions to each can also befound. A corollary of this conclusion is that it is difficult topredict a priori the functions of a given oligosaccharide on agiven glycoconjugate. Fortunately, some other worthwhileprinciples do emerge from this analysis.

Temporal and spatial differences in the expression ofoHgosaccharides: the same structure can have multipleroles

The expression of specific types of glycosylation on differentgryconjugates in different tissues at different times of develop-ment implies that these structures must have diverse anddifferent roles in the same organism. For example, mannose-6-phosphate-containing oligosaccharides were first describedon lysosomal enzymes and are clearly involved in targetingthem to lysosomes. However, since that time, mannose-6-phos-phate-containing oligosaccharides have been found on a varietyof apparently unrelated proteins, including proliferin (1038),thyroglobulin (947, 948), the EGF receptor (1039) and thetransforming growth factor £ (TGF-0) precursor (895). Whilethe significance of these observations is uncertain, they raisethe possibility that mannose-6-phosphate-containing oligosac-charides have other biological roles. Likewise, the sialylatedfucosylated lactosamines critical for recognition by the selectinsare also found in variety of other tissues, where the selectins areunlikely to be functioning (16, 17). The polysialic acid chainsthat appear to play such an important role in embryonicN-CAM have also been found on proteins as diverse as an eggjelly coat protein and a sodium channel protein (18). Likewise,9-O-acetylation of sialic acids is found on a variety of differentglycoconjugates, in a variety of different tissues at differenttimes in development (7, 74, 76).

Given that oligosaccharides are post-translational modifica-tions, these observations should not be entirely surprising. Onceit is expressed in an organism, the same oligosaccharidemodification could have independently evolved several distinctusages in different tissues and at different times in development.If any one of these functions were vital to the survival of the

organism, then the transferase mediating the expression ofthe oligosaccharide structure would be conserved in evolution,thus perpetuating the less important situations where it wasexpressed as well. It is even conceivable that expression of aparticular structure on a particular glycoconjugate might be ofno positive consequence whatsoever in that particular situation.However, the transferase responsible for this structure mayhave been selected because of its vital contribution to the func-tion of an entirely different glycoconjugate. As long as therewas no strongly negative consequence for the first glyco-conjugate, its expression might persist in that situation and beconsidered 'revenue neutral' for the organism.

Can the interplay between traitorous' and 'masking'functions result in the formation of 'junk'oligosaccharides?

The 9-0-acetylester group that abrogates binding of the highlypathogenic influenza A viruses to sialic acids simultaneouslygenerates a specific binding site for the less pathogenicinfluenza C virus and coronaviruses (see Tables IV and V).Such 0-acetylated acids are frequently found on mucosalsurfaces of mammals Perhaps the mammalian organism firstattempted to mask the sialic acid receptor for the highlypathogenic influenza A virus by adding an O-acetyl group to it.However, subsequent selection could have resulted in theappearance of microorganisms (influenza C and coronaviruses)capable of binding specifically to the 'masking' structure.

Since microorganisms and parasites evolved in parallel withtheir multicellular hosts, they may have had to constantly adaptthemselves to bind to each new 'masking' structure evolved bythe host. In response, the host organism may have found it mostefficient to generate new masking structures, perhaps becausethe existing structure had already evolved a vital functionelsewhere within the organism. Having committed itself to thiscourse of action, the host would then be left with no choice butto keep the underlying 'scaffolding' upon which the latest'mask' was placed. Thus, yet another layer of complexitywould have been added to its oligosaccharides. Such cycles ofinteraction between microorganisms and hosts could explain inpart some of the extremely complex and extended sugar chainsfound on mucosal surfaces and secreted mucins. It also leads tothe possibility that 'junk' oligosaccharides do exist akin to'junk' DNA. While serving a general (and important) functionas a scaffolding, they may have no other specific definable role.

Inter-species variations in glycosylation

The existence of species-specific variations in glycoconjugatestructure indicates that some oligosaccharides do not playfundamental and universal roles in all biological systems. Forexample, the glycolipids of red blood cells from variousmammalian species show striking differences both in theprimary sequence of the glyconjugate and in the type of sialicacid on the acidic glycolipids (see Table XII). Likewise, whenthe ^-linked glycosylation on a conserved protein such asgamma ghitamyl transpeptidase was examined from a variety ofspecies, marked differences were seen in the sequence of thesugar chains (35). Such variations between species in the glyco-sylation of similar proteins or cells imply that these sugar chainscannot be crucial for the basic functions of these proteins orcells. On the other hand, such diversity in glycosylation could

110

Page 15: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological rotes of oligosaccharides

Table XI. Unique or unusual types of glycosylation more frequently mediate specific biological roles

Molecules) modified Unusual or unique type of glycosylation Proposed biological role(s) Reviews and examples

Lysosomal enzymes

TGF-/3 precursor

Neural cell adhesion molecule(N-CAM)

Endothdial and mast-cell heparansulphate proteoglycans

Extracellular matrix dermaunsulphate proteoglycans

Cell surface and matrix heparansulphate

Pituitary glycoprotein hormones

Rhizobium polysaccharides

Specific glycoproteins on myeloidand eodothelial cells

A'-Cadherin

T jminir)

Placenta] fibronectin

Endothelial thrombomodulin

Cytosolic parafuscin

Gtngliosides of nervous systemand neural crest cells

Several neural cell adhesionmolecules

Thyroglobulin

Mannose 6-phosphate on high-mannose-typeoligosaccharides

Mannose 6-phosphate ?in high-mannose-type oligosaccharides

Polysialic acid

3-O-sulphation of selected GlcNAc residuesin specific pentasaccharides

4-O-S-GalNAc and 2-0-S-G1A residues inthree sequential disaccharide repeats

2-O-S-IdoA residues within definedsequences

GalNAc 4-SO4 terminating antennae of/V-linked oligosaccharides

Sulphatkm and acylation of /91-4-Unkedgtucosamine residues

Sialylated, fucosylated (and sulphated?)lactosaminoglycans

GalNAc-phosphodiesten on O-linkedoligosaccharides

Polylactosaminogrycans on W-linkedoligosaccharides

Polylactosaminogrycans on AMinkedoligosaccharides

Chondroitiii/dermatan sulphate chainattached to a fraction of the molecules

Glc-P-Man on 0-linked oligosaccharides

O-Acetylation of a terminal a2-8-linkedsialic acid residue on potysialosyl units

HNK-1 epitope/Ll epitope: sulphatedglucuronic acid residues?

0Gal 3-SO4 |3GlcNAc 6-SO4

Mannose 6-pnosphate

Intracellular trafficking of enzymes bybinding to mannose 6-phosphate receptors

Intercellular traffic of precursor to permitactivation in acidic endosomes?

Inhibition of homotypic binding between

N-CAM molecules and general inhibition of

intercellular adhesion involving other

binding systems. Positive effects also?

Antithrombin Hi binding and activation,

resulting in anncoagulabon

Heparin co-factor II binding and activation,resulting in anticoagulation

Required for high-affinity binding of bFGFto its cell surface receptor

Effects upon turnover, plasma half-life andbioactivity of the hormones

Symbiotic host specificity: elidtation of roothair deformation and nodulation

Primary recognition motifs for the selectinfamily of cell adhesion molecules

?Involved in modulating adhesive functionsof the cadherin in neural development

Binding to soluble ^-galactoside-bindinglectins (galaptins): matrix organization?

Decreased binding to gelatin. ?Alteredbinding functions in the placenta

Negative regulation of all of theanticoagulant activities of thrombomodulin

Very rapid changes in phosphorylationaccompanying activation and exocytosil?

Expression is temporally and spatiallyregulated. Abnormalities seen in transgenicmice with decreased O-acetylation in certaintissues

Some evidence for direct involvement incelhcell adhesion

?Role in uptake and/or processing ofthyroglobulin into thyroid hormones

(107-112, 681, 683,884-894)

(895)

(18, 896-907)

(58, 62, 908-913)

(914, 915)

(72, 558)

(118, 130, 699, 700)

(138, 139, 719-724)

(83, 84, 86-93,760-768. 768-771,773, 777, 778,780-785)

(916-921)

(390, 825, 834,922-924)

(925)

(926-930)

(931, 932)

(933-940)

(941-946)

(947-952)

certainly be involved in generating the many obviousdifferences in morphology and function that are observedbetween species. Such differences could also reflect differingselection pressures resulting from different pathogens that infectthe different species.

Intra-species variations in glycosylation

Genetic polymorphisms with no known biological consequenceare quite common in proteins. For example, in Sweden alone,at least nine different albumin variants were found, with acombined prevalence of 1:1700 in the population (1046). Thegenetic polymorphisms in glycosylation diat are recogruzed as'blood-groups' (discovered because of the unnatural practice of

blood transfusion) also have limited consequences for thenormal biology of humans. Similar intra-species polymorph-isms have been observed between the sialic acids on red bloodcells or hepatocytes in different in-bred strains of mice and dogs(see Table XII). It is clear that substantial intra-species poly-morphism in oligosaccharide structure can exist withoutobvious reason. However, these polymorphisms may be of farmore importance in the wild state, where protection againstcertain microorganisms or other noxious agents could prove tobe of survival value to a segment of the population expressinga specific oligosaccharide structure. In some cases, the patho-gens that originally selected for such polymorphisms may havedisappeared from the environment in the very recent evolu-tionary past, leaving behind the unexplained polymorphism.

I l l

Page 16: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varid

Table XII. Genetic defects or polymorphisms in glycosylation are uncommon in higher animals, but have variable consequences

Genetic defect/variation Basic defect in glycosylation Biological consequences) References

Partial or complete deficiency oflysosomal enzyme: UDP-GlcNAcGlcNAc-phospbotransferase

Partial deficiency of UDP-GlcNAc:a-mannoside GlcNAc transferase IIor processing a-mannosidase II

Partial deficiency of xylosylprotein4-0-galactosy Itrans ferase

?Decreased conversion ofGDP-fucose to GDP-mannose(general fucose deficiency)

?Deficiency of PAPS:Lactosaminoglycansulpbotransferase(s)

Defects at multiple steps inassembly of the glycopbospholipid(GPI) anchor precursor (7acquiredgenetic defect in haematopoieticstem cell)

Mosaic deficiency of UDP-' galactose: GalNAc 3-0-

galactosyltransferase affecting asubset of cells (usually acquired)

Galactose-1-phosphateuridyftransferase deficiency

Decreased synthesis of3 '-phospboadenosine5'-phospbosulphate (PAPS)

Hereditary opsonic defect

Partial or complete failure ofphosphorylation of mannose residues onlysosomal enzymes

Incomplete processing of AMinkedoligosaccharides: decreased addition ofpolylactosamine units

Decreased production of glycosaminoglycanchains with core Gal£l-4Xyl linkage

Low levels of GDF-fucose, low levels offucose on all glycoconjugates

Decreased sulphatkm of keratan sulphate incornea (?) and other tissues

Lack of pre-formed donor for GPI-anchonng of pro terns

Decrease in Gal01-3GalNAc of O-Unkedoligosaccharides. Increase in GalNAc-O-Scr(Tn antigen)

Defect primarily affects low molecularweight pools of galactose-rdated molecules.However, some abnormal galactosylation ofcomplex carbohydrates is also noted

Decreased surphation of glycosaminoglycansand abnormalities in proteoglycans

Point mutation in serum mannose-bindingprotein

Partial or complete failure of lysosomalenzyme trafficking in I-cell disease(mucofipidosis 0 ) and Pseudo-Huiierpolydystrophy (MUU)

Hereditary erythrocytic multinuclearity withpositive acidified serum test (HEMPAS),also known as congenital dyserythropoieticanaemia type II

Progeroid syndrome with delayed mentaldevelopment, and multiple connective tissueabnormalities

Leukocyte adhesion deficiency type n. Lowfucose on many glycoconjugates results inlack of ligands for selectins, and poorleukocyte adhesion. Bombay Blood grouptype. Infections, short stature, mentalabnormalities, skeletal defects

Macular corneal dystrophy type I:progressive clouding of the cornea resultingin blindness

Paroxysmal nocturnal haemoglobinuria(PNH): failure of GPI anchoring/secretionof several cell surface proteins on bloodcells —haemofytk *nam\a increasedinfections, progression to malignancy

Potyagglutinability of red cells by allnormal human sera: variable haemolyticunarm is. Can be seen as a precursor toleukaemias

May account for some of the abnormalitiesthat persist when patients are treated withgalactose-free diets

Brachymoiphic mice with skeletalabnormalities (because of partial defect,tissues with the highest sulphaterequirement, e.g. cartilage, are mostaffected)

Heterozygous state causes low opsonizationof pathogens. Increased infections inchildhood

(107-111,953-959)

(131, 960-965)

(966,967)

(968)

(969,970)

(132, 971-978)

(486,979-982)

(983,984)

(985-987)

(988-990)

Terminal sequences, unusual structures and modificationsof oligosaccharides are more likely to mediate specificbiological roles

It is reasonably clear that the biological roles of oligo-saccharides can range from those that are trivial to those thatare critical for the development, growth, function or survival ofan organism. The challenge then is to predict which sugarchains are likely to mediate the more specific or crucialbiological roles. Review of the matter suggests that terminalsugar sequences, unusual structures or modifications of theoligosaccharides are more likely to be involved in such specificroles (see Table XI). For example, the high-mannose oligo-saccharide structures of lysosomal enzymes are identical todiose found on a wide variety of proteins, ranging from theimmunoglobulin IgM in nrmrpmal<: to the lectin soybean

agglutinin in plants. It is reasonable to suggest tiiat such awidely expressed structure is less likely to be involved inmediating specific biological functions. On the other hand, theaddition of phosphomonester residues to one or two of themannose units results in the generation of the highly specificphosphomannosyl recognition marker that dictates traffickingof die enzyme to the lysosome. Likewise, segments of thecommon heparin/heparan disaccharide repeating unit are con-verted into specific ligands for antithrombin HI or basicfibroblast growth factor (bFGF) by a highly ordered series ofepimerizanon and sulphation reactions. Similar, although lessconclusive arguments can be made for other modifications suchas polysialic acids, O-acetylation of sialic acids, polylactos-aminoglycan chain formation and outer chain fucosylation (seeTable XI).

112

Page 17: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccharides

TaHe XH. continued

Genetic defect/variation Basic defect in grycosylation Biological consequences) References

IgG cryoglobulin

Type I procoUagen in i case ofosteogenesis imperfecta

Saposin B in a case of congenitaldeficiency

Haemophilia A variant

Cl inhibitor Ta

Albumin Redhill

Protein S (Heerien polymorphism)

Deficiency of UDP-Gal:3-or-galactosyhxansferase (inhumans, apes and Old Worldmonkeys)

Polymorphic expression of active ornull aDetes for UDP-Gal: H-precursor3-a-galactosyltransferase(B-enzyme) and UDP-GalNAc:H-precursor 3-a-N-acetylgalactos-amim/ltransferase (A enzyme)

Polymorphic expression of Sd*antigen in humans

Polymorphic expression of UDP-Gal: Galorl-4 galactosyltransferases(the P blood group system). Someindividuals lack the enzyme(s)(blood group p)

Primary enzymatic basis not fullydefined

Differing levels of expression ofganglioside biosynthetic enzymes inthe livers of different inbred strainsof mice

AMJnked glycosylabon in first heavy chain

hypervariable region

?New //-linked giycosylation site in

carboxy-terminal peptide

Point mutation eliminates a new AMinkedgiycosylation site

Point mutation creates a new AMinkedgiycosylation site

Additional giycosylation site created bythree-base deletion

New grycosylttion site and altered signalpeptidase cleavage

Loss of giycosylation site

Marked decrease ofGalal-3Gal01-4GlcNAc sequencesterminating glycoprotein and gfycolipidoligosaccharides

Polymorphism expression of A and B andO blood groups structures terminatingglycoprotein and glycolipid oligosaccharides

Poryroorphism in expression ofGalNAcj31-lfNeuAca2-3]Gal0l^GlcNAc

Polymorphism in the expression of P, PIand P* blood group structures terminatingglycoprotein and glycolipid oUgosaccharides

Polymorphic expression of Af-acetyl andA/-grycolyl-neuraminic acid on theerythrocyte gangliosides of dogs and cats

Differences in the overall pattern ofganglioside expression in the liver and otherorgans

Precipitation of immunoglobulin in the cold, (991)leading to vascular problems

Cause of increased fragility of bones? (992)

Unmasking of proteolytic site causes rapid (993)turnover, resulting in deficiency

Decreased function of Factor VIII, leading (994)to bleeding disorder

Type n hereditary angioneurotic edema (271)

No obvious phenotype(?) (995)

No change in protein C binding. (290)

No phenotypeNo obvious abnormality results. (996-999)All humans have a natural antibody (up to1 % of circulating IgG) against Galal-3-Galj31-4GlcNAc sequencesNo obvious abnormality results. Humans 90, 123, 148,have natural antibodies against the Mood 1000-1003)group sequences that they do not express

No obvious abnormality results (1004, 1005)

No obvious abnormality results. Individuals (140, 141, 444-446,with some P blood groups are at greater 449, 450)risk for urinary tract infections with E.colicarrying specific P-fimbriae, became theyexpiets the cognate oligosaccharide ligandon their urothdial surfaces

No grossly obvious consequences in dogs. (1006—1008)Possibly related to the geographicco-migration of dogs with humans, andsubsequent breeding patterns. In cats, thisaccounts for a major blood group system

No grossly obvious consequences (1009-1012)

Note: unless otherwise stated, the defects reported in this table were found in humans.

Unusual oligosaccharides or modifications are also morelikely to arise from interactions with microorganisms andother noxious agents

The constant balance between the 'traitorous' and 'masking'functions of oUgosaccharides has been discussed above (seeTables IV and V). In most cases, it is the terminal or outersugars and their modifications that are involved in these life-and-death interactions. Consequently, while such structuresmay be more involved in specific biological roles within theorganism, they are also most likely to vary as a result ofhost-pathogen interactions. However, the two functions neednot be mutually exclusive. For example, it is possible that whileO-acetylation of sialic acids on mucosal surfaces may play aprotective role in host—microbial interaction, the temporal andspatial gradients of expression of O-acetylation found in the

developing nervous system may play important roles in theprocess of development in the brain. The challenge then is topredict and sort out which of these two completely distinct rolesare to be assigned to a given oligosaccharide structure.

In some cases of sporadic autoimmune reactions to oligo-saccharides, the antigenic structures are normally present inadult tissues (e.g. antibodies against peripheral nerve glyco-lipids seen in some individuals with multiple myeloma).However, there are examples of oligosaccharide structureswhich when expressed postnatally by the organism resultuniversally in an immune response. The best examples inhumans are the conversion of A/-acetylneuraniinic acid toiV-glycolylneuraminic acid (1040, 1041) and the expression ofGalal-3 Gal sequences (see Table XH). In these cases, thestructures are not expressed in normal adults, but can appear in

113

Page 18: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varki

disease states such as cancer, resulting in immune reactions dueto newly induced or pre-existing antibodies. In at least one case(N-glycolylneuraminic acid), it is clear that expression actuallydoes occur in the normal fetus, but is then suppressed post-natally in the normal adult. The oligosaccharides in questionevidently must have no normal functions in the adult. However,it is likely that their expression in the fetus is a required eventand is a case of ontogeny recapitulating phytogeny.

Is there a common theme to the varied functions ofoligosaccharides?

We have reviewed the evidence that all of the diverse theoriesregarding the functions of oligosaccharides are correct, but thatexceptions to almost every theory can also be found. In the finalanalysis, the only common feature of all of these functions isthat they either mediate 'specific recognition' events or that theyprovide 'modulation' of biological processes. In so doing, theyhelp to generate the functional diversity that is required for theevolution and development of different types of cells, tissues,organs and species. There is a limited number of genesavailable in the genome for the generation of such diversity.Thus, it should not be surprising that an oligosaccharidestructure resulting from the action of a single gene productcould be utilized to generate a wide variety of functions indifferent tissues at different times in the life cycle of theorganism. However, even complete knowledge about thestructure, biosynthesis and expression of a particular type ofstructure does not necessarily give us clues to its specificfunctions. The challenge before us is to design experiments todifferentiate between the trivial and crucial functions mediatedby a given oligosaccharide.

Approaches to uncovering specific biological roles ofoligosaccharides

Some functions of oligosaccharides are discovered serendipi-tously. In most cases, the investigator who has elucidatedcomplete details of the structure and biosynthesis of a specificoligosaccharide is still left without knowing its functions. If itis possible to make educated guesses about the role of the oligo-saccharide in question, this can sometimes lead to definitiveexperiments. However, conclusive proof of the biological rolesof an oligosaccharide sequence often requires analysis ofmutants that are defective in such a structure. It is thereforeuseful to consider the lessons that have been learned to date bystudying such mutants.

Genetic or acquired defects in glycosylation are easilyobtained in cultured cells, but have somewhat limitedconsequences

The essential pathways of biosynthesis of most of the majorclasses of oligosaccharides have now been worked out andinvolve a large number of gene products, including manyfamilies of glycosyltransferases. Tissue culture cell lines withmutations in a variety of specific steps in the biosynthesis ofN-tiriked oligosaccarides, glycosaminoglycans, O-linked oligo-saccharides and glycophospholipid anchors have been obtained,including some with defects in very early steps in the bio-synthetic pathways (for examples, see 30,71,1043,1044).

Mutants affecting the biosynthesis of dolichol sugars, sugarnucleotides or sugar nucleotide transport into the Golgiapparatus have also been obtained, and have pleiotropic effectson the biosynthesis of multiple types of glycoconjugates in thesame cell. Likewise, cell lines can be grown in the presence ofglobal inhibitors of the biosynthesis and processing of severaltypes of oligosaccharides (for example, see 1042). In most ofthese situations, the abnormalities in glycosylation seem to havelimited consequences to the growth and maintenance of thesetissue culture cell lines. This suggests that many (though not all)aspects of glycosylation are of limited importance in the day-to-day housekeeping functions of the single cell, when it is in aprotected environment, under optimal conditions of growth. Ofnote, however, some of these mutants do show alterations indensity-dependent growth inhibition and others demonstratechanges in tumorigenicity or metastatic behaviour wheninjected into athymic mice (1045). This suggests that many ofthe more specific biological roles of oligosaccharides need to beuncovered by studying mutations in the intact multicellularorganism.

Genetic defects in glycosylation are rare in intactorganisms, but have highly variable consequences

In contrast to the situation in vitro, genetic defects in glyco-sylation are surprisingly rare in intact organisms. There are fewother biochemical pathways in which naturally occurringmutants in mouse and man are so uncommon. In the fewinstances in which glycosylation mutants have been observed inintact complex multicellular organisms, the consequences havebeen highly variable (see Table XII). In humans, the effects ofgenetically altered glycosylation range from severe lethaldiseases such as I-cell disease to apparently unremarkable con-sequences such the ABO blood group polymorphisms.Glycosylation mutants in intact mice are even more uncommon.The rarity of such naturally occurring mutations could beexplained in several ways. It is possible that they do occurfrequently, but have little detectable biological consequence.A more likely possibility is that the great majority of them causelethal aberrations that prevent completion of embryogenesis.A third possibility is that mutations in glycosylation remainundetected because of alternate or 'fail-safe' mechanisms thatensure that vital biological functions are carried out by morethan one pathway. In this regard, it is worth noting that the con-genital absence of a variety of highly conserved proteins inhumans (e.g. glycophorin A, haptoglobin, prekallikrein,myeloperoxidase, coagulation factor XII and high molecularweight kininogen) are also known to have little biological orpathological consequence. Likewise, many 'knockout' experi-ments involving highly conserved proteins such as cellularproto-oncogenes have surprisingly limited consequences in theintact mouse (1047, 1049).

Creating mutants in glycosylation in intact organisms:a challenge for the future

To explore these issues, it appears necessary to create mutantsin glycosylation in intact animals. Several possible approachescould be taken towards this goal. Antibodies or lectins specificfor certain oligosaccharide sequences could be expressed intransgenic animals or injected into specific developing tissues.However, since such molecules are multivalent, they may

114

Page 19: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccharides

TaHe XTJI. Altered oligosaccharides in diseases without • known primary defect in glycosylation

Glycoconjugale{s) affected Change in oligosaccharides Biological effects) References

Plasma fibrinogen in bepatoma and incongenital dysfibrinogenaemias

Plasma membrane and secreted proteinsin cystic fibrosis

CD43 Geukosialin, sialophorin) inWislcott-Aldrich syndrome

Serum IgG immunoglobulin

Several plasma proteins

Dolicbol oligosaccharides

Increased branching or number of AMinkedoligosaccharides and increased sialic acidcontent

Generalized increase in fucosylatkm andsulphalicm

Altered branching of 0-linkedoligosaccharides

Decreased galactosylation of AMinkedoligosaccbarides

Abnormal N-linked glycosylation of someglycoproteins. ?Primary or secondary defectin glycosylation

Altered processing and accumulation ofdolichoi-linked mannosyl-oligosaccharides

Prolonged thrombin time and reptilase time. (278-280)Inhibition of coagulation

TContribute to change in physical properties (1013, 1014)of secreted glycoproteins

Decreased expression (due to altered (1015-1020)glycoiylationT)

A general feature of many chronic (34, 248, 254)granulomatous diseases (rheumatoid arthritis,Crohn's disease, tuberculosis, etc.)

'Carbohydrate deficient glycoprotein (1021-1032)syndrome'. Growth abnormalities,characteristic fat accumulations, abnormaldectrophoretic mobility of certain serumglycoproceim, due to Valtered glycosylation

Neuronal Ceroid-lipofuscinosis. ?Primary or (1033-1036)secondary defect in humans, dogs and sheep

Note: unless otherwise stated, the defects reported in this table were found in humans.

disrupt development or other functions simply by causingunwanted cell-cell adhesion. Alternatively, the molecular clon-ing of glycosyltransferases allows overexpression, or thecreation of 'knockout' mice lacking a specific sugar sequence.If such an intervention blocks early embryogenesis, the con-sequences may not be available for analysis (study of first-generation chimeric animals may give some information ingene-deletion experiments). However, even if live homozygousanimals are observed with overexpression or with genedeletions, care must be taken in interpreting the results. Theconsequences seen could be the result of interference with othercompeting glycosylation pathways, or may be due to non-specific physical effects of grossly altered glycosylation in alltissues of the organism.

An alternate approach makes use of the fact that manymicrobial degradative enzymes are highly specific for certainouter sugar chain sequences. Thus, direct injection of specificendoneuraminidase into developing neural tissues yieldeddramatic phenotypic changes (901, 905), suggesting specificroles for polysialic acids, and injection of heparanase into thedeveloping embryo caused randomization of left-right axisformation (1048). Expression in transgenic mice of a viral sialicacid-specific 9-O-acetylesterase under the control of specificpromoters caused abnormalities either early or late in devel-opment (940). In principle, the latter approach could begeneralized to any situation where a cDNA is available encod-ing a specific oligosaccharide-degrading enzyme. Thus, ratherthan interfering with the basic genetic and cellular machineryresponsible for the synthesis of specific oligosaccharides, onemight eliminate them selectively after normal synthesis byexpression of a degradative enzyme as a cell surface molecule.Specific promoters should limit expression of the enzyme andallow the analysis of tissue-specific functions of oligosac-charides in later stages of development, side-stepping an earlylethal event that could have occurred with a gene 'knockout'experiment. In the short term, such approaches are likely togenerate even more new questions than immediate answers.However, it is much better to have many incomplete clues tothe biological roles of oligosaccharides than to have extensive

and specific structural information only, and no way to pursuetheir relevance.

Future prospects

As recently suggested, modern progress in glycobiology 'hasfinally opened a crack in the door to one of the last greatfrontiers of biochemistry' (36). The future now appears brightfor the understanding of many new biological roles of oligo-saccharides. Until recently, mainstream research was focusedeither on the molecular biology of the single cell, or on thephysiology of whole organs or organisms. In both of thesedisparate areas, the roles of oligosaccharides tend to be lessprominent and can often be ignored or bypassed. However, thefuture of biology and biotechnology now lies in studies ofcell-cell interactions, embryonic development, tissue organiz-ation and morphogenesis, and in the integration of these studieswith the molecular physiology and pharmacology of organs andorganisms. In these arenas, the biological roles of oligo-saccharides seem to be critical and their understanding becomescrucial to further progress.

Acknowledgements

The author thanks George Palade, Hud Freeze, Jeff Esko, Jerry Hart, Jerry Siu,Marilyn Farquhar, Mike Bevilacqua, Nissi Varki, 014 Hindsgaul and StuartKomfeld for helpful comments and discussions. Work in the author's laboratoryhas been generously supported over the years by the National Institutes ofHealth, The American Cancer Society and the Veterans Administration.

Abbreviations

bFGF, basic fibrobtast growth factor, CHO, Chinese hamster ovcry; EGF,epidermal growth factor; ER, endoplasmic rcticulum; GM-CSF, granulocyte/macrophage colony-stimulating factor; HCG, human chorionk gondotrophin;HNK-1/L1, the antigenic ephope recognized by the HNK-1 antibody; I-CAM,intercellular adhesion molecule; LDL, low-density upoprotein; LFA-1,leukocyte function antigen 1; MHC, major histocompatabiliry complex;N-CAM, neural cell adhesion molecule; SSEA, stage-specific embryonicantigen; TGF, transforming growth factor.

115

Page 20: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varid

References

1. Gctuchalk,A. (1972) Gtycoprotetns: Their Composition, Structure and Function. Ebevfcr.New York.

2. Horowitz,M. and Pigman.W. (1982) The Gyujtvnjugata. A' a'inmr Pros, New York.3. Rosenbergs, tod Scbernjrend.C -L. (1976) Biological Rola of Skilic Add. Plenum Press.

New York.4. Swcetey.C.C. (1979) Grtf Sujbor OycoUpids. ACS. Washington, DC3. Lennarz.W.J. (1910) 7V Biochemistry of Gtycoprouins and Prouogtycaa. Plenum Pros.

New York.6. Gmsburg.V. u d Robblns.P. (1981) Blotogj of Carbohydrata. I. Wiley. New Yort. Vol. 1.7. Scbauer.R. (1982) SiaUc Adds. Chemistry, Metabolism, mud Function. Sprmger-Verlag. New

York.8. IvanJU. (1984) The Biology of dyccprotetia. Plenum Press, New York.9. Ginsburg.V. and Rot*im,P. (1985) Biology of Carbohydrata. J.WUey, New York. Vol. 2.

10. Liener.l.E..Sharoo.N. and Goldstein,! J. (1986) 7V Lectins: Properties, Functions, and AppBca-lions in Bioiofy and Medicine. Academic Press, Orlanto. F1_

U. Margolis.R.U. and MargoliiJl.K. (1989) Neurobiology of Ctyaxomjugattj. Plenum Pren. NewYork.

12. Bock.0. u d Hamea.S. (1989) Carbohydrate Recognition In CeOdar Function. CDa FoundationSymposium No. 145. Wiley, New York.

13. Sbaron,N. u d Ui.H. (1989) Lectins. Chtprou and Hall. London.14. EveredJ). and WhdanJ. (1989) The Biohfy of Hyabironm. Cto Foundation Symposium

No. 143. Wiley, New York.13. Otosburg.V. and RobbuaJ1. (1991) Biology of Carbohydrata. J.Wtky, New York. VoL 3.16. Fukuda. M. (1992) CeU Surface Carbonydrata and Cell Development. CRC Press. Boo Raton.

FL-17. AJIcnJlJ. and KjaUta.E-C. (1992) Gtycoconjmgates: Composition, Strucart, and Function.

Dekker. New York.18. Roth. J.. Rotisfaauser. U. and Troy. F. (1992) Potystahc Acids. Bfakbtnier Verlag. Bud.19. Sharon,N. and Ui.H. (19S2) Qrycoprotdns: reseat ch buuraing oa long-Ignored nbiquinjs com-

pounds. MoL CeU. Bkxhem., 42. 167-187.20. Berger.E.G.. BuridcrlT£., KaroerlingJ.P.. Kooan.A., PaubooJ.C. and VBegenthart, J.F.O

(1982) Structure, bkoynthesii and functions of grycoproteiri grycam. Ejperlentim. 38. 1129-1162.21. CXdenJC.. ParemJ.B. and Whire.S.L. (1982) Carbohydrate moieties of grycoprotebis. A re-

cvamatioo of their function. Blodtim. Biophys. Aae, £50. 209-232.22. AnUnJ.D. and Hugnes,R.C. (1982) Complex caibuuydrale* of tbe earacellular matrix suuuujcs,

interactions and btotofical rotes. Bkxhim. Blopkys. Aaa, 694, 375-418.23. WcstX.M. (1986)QimMkVMC«irlKli»iiuTcanMofpTOenitJycc^lation.M>i CtU. Biochtm.,

72, 3-20.24. Rademaeber.T.W., ParektULB. and DwtkJLA, (19S8) GfycobWogy. Am*. Rer. Biochtm., SI.

7S3-B38.25. F W J O C J . C . (1989) Grycoprotetia: what an Che sugar chains for. Trends Blochem. ScL, 14.

272-276.26. Cummlng.D.A. (1991) GtycofyLatioa of recombinam protda rnenpeutjci: control and functional

Imnlirmnns. Gtycobtolofy, 1. 115—130-27. EtteiiiA-D. (1991) Tht role of N-ltetai oiifotaccnarides In glyuj)»melJ funakn. Tnmb

Bknecknoi..*, 346-352.28. DrickamerJC and CarrerJ. (1992) Upwardly mobQe s u p n gain Hams as brfonntaon-oeaTing

iiu»n»iii,ile<.ulCT. OUT. Optn. Strmct. Bid. 2, 653-654.29. RasmnssenJ. R. (1992) Effect of grycosylarJon on protem function. OUT. Opin. Sena. HoL, 2.

682-686.30. StanleyX. (1992) Gtycotytnkm engineoing. OycoUolofy, 1. 99-107.31. FukudaX. (1992) Funcaoa of carbonydnte rootato: membrane and uuuseucluiy grycoproteas.

In AlleoJIJ. and Kil»Uus.E.C. (eds). Oyaxa<JK{m: Composbkm, Strmcart. md Function.Marcel Dekker. New York. pp. 379-402.

32. Oiden^K.. Yco.T. and YeoJL (1992) Pimaloe of the carbonydnte mokdes of ttaaorjgryooconjufatea. In AHeoJJJ. and KiaaOusX-C. (eds), GtycocomJmpMtj: Composition. Strmaxrt,and Function. Mired Dekker, New York, pp. 403-420.

33. Csmmints.R.D. (1992) Symbols of aipangine-Unked oUgosacdmrides: palhwyi. genencs, u dnvtaboUc regulation. In AHea.HJ. and Krufluj,E.C. (eds) Ctycoxonhfo: Composkkm, Slruc-mrt. and Function. Marcel Dekker, New York. pp. 333-360.

34. Kobata>. (1991) Function and pathology of [be ngar chains of human hamunoglobuUn G.• Olycobiology. 1. 5-8.

35. Kornn.A. (1992) Structures and functions of the sugar chains of grycoproteins. Eur. J. Biochtm.,209. 483-501.

36. HaruG.W. (1992) Gfyoosyiatioo. Our. Opm. CtH BtoL, 4, 1017-1023.37. Dcrinc.P.L. and McKcrdcJ.F.C. (1992) Modm: Structure, function, and nurlalkml with

mangnancy. BloEssays, 14, 619-625.38. Carraway.K.L. and Huil^.R. (1991) Cell tnrfacc moctn- type grycopnxeira and nmdn-Gke

domains. GtycebMotJ. 1. 131-138.39. Jratoft.N. (1990) wby are proerim r>trycotytated7 Tmds Btodwn. Set. 15. 291-294.40. HDkemU.. 1 igtMirirrg.MJ.L. Voi.H.L. and UtvinovJ. V. (1992) CeU rnanbrane-ataocuted

mudns and their adhesion-modulating property. Tmdi Biochtm. Sd, 17, 359-363.41. RotcM.C. (1992) Mucms; Strucure, function, and role in pulmonary diseases. Am. J. PttysioL

tMXI CtO. UoL PhyHol, 263. L413-L429.42. CamwayJCL., FrcgienJJ., CtrrawayJCL. j n and Carraway.C^.C. (1992) Tumor snuomucni

r^wrplfrx as tumor »«Hunf and modnlators of *fh 1*T interactjocB and proufention. J. Ctll ScL,103. 299-307.

43. Hakomori, S. (1981) Grycotphingolipkis in r*JTtrf>T interaction, differentiation, and fflBifff^iiiAmm. Ret. Skxbcm., 50. 733-764.

44. Hakomori, S. (1986) Tumor moriatrrl grycoirpid antigaa, rhdr mrtaholiim and orgirrfnrinn.

hi ncoral dlffeieutiauon and repair; AO i o i Pnys. Uptds, 42, 209-233.

45. Schengnmd.C.-L. (1990) The roM«) of gperspective. Brnbt So. Butt., 24, 131-141.

46. Hanmm,Y.A. and Be0.R.M. (1989) Ptmctions of spUngoUpidi and tphinfolipid breakdownprodocts In celltdar regulation. Sdtna, 243, 500-507.

47. Hakomori^. (1990) Biftmctional role of giycoiphingolrplds. Modnlamrs for mmumubiaut dinal-tng and medbnon for ceftnar Interacnom. J. Bid Chen., 2«5, \S7\J-1S716.

At. ShaymanJ-A. and Radin JiS. (1991) Suuuuie and Amction of renal gryoapUrnjotlpids. Am. J.PhystoL R l j n i d E U l l t t r a F X

49. ? ^ W P B ^ r i U ^ - h ^ . D n {iOOClUPhysioL, 262, C1341-C1355.

50. SchnaarJLL. (1991) GtyojjpMngotipkU in ceU surface recognirioa. CfyxMotofy. 1. 477-4SS.51. Marcus, D. M. (1984) A review of tbe liNM-n..t. n. and immimo-mndulatory piupcrrks of giyco-

sphmgoljrnds. ttol bmomoi., 21, 1081-1091.52. Saitojkt. (1989) Bioacthre siatoftyaBpfamgalipids (gangliosiaes): Potent duTtroniirioo-taAjcm

for humtn myetofenous taikana cdh. Orr. Growl* Di£. 31. 509-522.

53. Hook.M.. Kjeuen.I_ and Johaimon.S. (1984) Cdl-surface glycosaminogiycans Anm. Rer.Biochem.. S3. 847-869

54. Ruoslahn. E. (1988) Structere and bmlogy of proteoglycaro. Am**. Rer. CeBBioL.A. 229-255.55. Burgess.W.H. and Madag.T. (1989) The heparin-blnding (fibrobutst) growth factor famdy of

proteins. Ann*. Rev. Blochem.. 58. 375-606.56 RnosIahn.E. (1989) Piuteoglyiaos in cell regulation. J. BioL Chem.. 264. 13369-13372.37. RnoslafatiX and Yamaguchi.Y. (1991) Proteogtycans as modulators of growth factor ictfrina.

CeB, 64. 867-869.58. KjeflenX. and Lindahl.U (1991) Proteogtycans: Strncrures and interactions. Ann*. Rer.

Biochem.. 60. 443-473.59. JacksooJLL.. BoscruSJ. and Cardin.A.D. (1991) Caycosamlnogtycans: Molecular properties,

protem uneracnons. and role io pnysiologica] processes. Physioi Rer., 71, 481-339.60. Klagsbrun.M. and D'Amore.P.A. (1991) Regulators of angiogenesis. Amm. Rer. PkysioL, 53.

217-239.61. Hanfinghani.T.E and Fosang.AJ. (1992) Proteogtycans: Many forms and many ftnrtmm

FASEBJ, t, 861-870.62. CeQagberXT.. Tumboil J .E and LyonJ*. (1992) Pi Hum of tdpfaatiori in beparan sulphate:

Pdymotptem sued on a common structural theme, fro. J. Bhchem.. 24. 553-360.63. YanagishitaX. and Hascau.V.C. (1992) Cell surface hepann sulfatt proteogtycans. J. BioL

Chem.. 267. 9451-9454.64. Rlfkio,D.B. and Moscatdli.D. (1989) Recem developments in me cell biology of basic fibroblasl

growth factor. J ClO Bid . 10». 1-6.63. Bhavanandan.V.P. and DavkboiLE.A. (1992) Proteoglyeans: structure, synthesis, function. In

Allen,HJ. and Kisauus.EC. (edi). Oycoconjugata. Composition, Structure, and Function.Marcel Dekker. Inc.. New York. pp. 167-202.

66. Wlgbt,T.N.. KmseUa.M.O. and Qwamstrom.E.E. (1992) The role of proteogtycani in celladhesion, mignnioc and proUferaoon. OUT. Opin. CeU BioL, 4. 793-801.

67. Uurent,T.C. and Fra*erJ.R.E. (1992) Hyaluronan, FASEBJ., t. 2397-2404.68. D«Td.G. (1992) Stroctural and functional diversity of the hepann suliate proteogtycans. Adr.

Esp. Mtd. BioL, 313, 69-78.W. Zhou.F.. HookT., ThompsonJ. A. and Hook.M. (1992) Henarta protem Interactions. An.. Esp.

Med. BioL, 313, 141-133.70. Hascall.V. (1981) Proteoglycans: strocnm and function. In Glnfburg,V. and RobbrnsJ>. (eds).

Biology of Carbohydrata. J.Wuey, New York. Vol. 1.71. EskoJ.D. (1991) Genetic analysis of proteogrycu structure, function aad metabolism. OUT.

Opin. C«U4W..3. 805-816.72. GauagherJ.T. and TumbullJ.E. (1992) Hepann sulphate m the binding and activation of basic

fihrotUn growth factor. Ctycobumygy, 2, 513-528.73. ScbanerJL (19tS) Salic acids and tbeir rob u biological masks. Trends Btochem. ScL. IS.

357-360.74. SchauerJL (1991) Biosynthesis and funcaoo of N- and O-substlmwd sialic acids. Oycobwlory.

1, 449-452.75. Tro7.F.A.,n (1992) Polysudyutdon: Frorn bacteria to brains. dyuMobgy. 2. 5-23.76. VarkirA. (1992) Dtverstty in the sialic acais. Oycobiology, 1. 25-40.77 Corfield,T. (1992) Bacterial siafidases—Roles ta rjathogerncky and rjotrukm. Oycobiology. 2.

509-521.78. Low.M.G. (1989) Clyrxiiyl-rjbotphaodyllnosuol: A venatUe anchor for ceD surface proteins.

FASEBJ., 3. 1600-1608.79. Usand, M.P. and Rodrigna-Boulan, E. (1990) CHycopboipholipkl membrane anchoring provides

dues to the mechainsm of protein sorting in polarized r^ititrWtA ceDs. Trends Biochem. Sd., IS,113-118.

80. LuantiX.P . Rodngnez-Boiuan,E. and SamdA.R. (1990) Emerging functional rotes for tbejtycoiyl-photphitldylmoiin4 meinbrane protein anchor. /. Membr. BioL, 117. 1-10.

81. Cros«,O.AJ4. (1990) GrycoUokl anchoring of plasma membrane jMXXdm. A*mc Rer. CeUBioL.«. 1-39.

82. Ftrpaoo,M.AJ. (1992) UpkJ ancbon on inemUane proteins. OUT. Opi*. Struct. BioL. 1.522-329.

S3. Yednock.T.A. and RosouS.D. (1989) Lymphocyte homing. Adr. bmwmoL. 44. 313-371.84. Bnndley3JC.. SwiedterSi. and RobbtasJ.W. (1990) Carbohydrate ligands of the LEC ceB

adhesion mokcnla. CeU, (3. 861-863.83. BradburyX.G. and P«rtsh,C.R- (1991) Characteruatioo of rympbocyte receptors for

gtycrjsanunogrycam. bnnmnology, 72. 231-238.86. Ftdli.T. (1991) Carbohydrate differennatioa antigens: ProbaUa ligands for cdl adneskm

molecules. Trends Biochem. ScL, 16, S4-C6.87. Picker4_J. and ButrtirrJ.C. (1992) Physiological and molecular mechanisms of lymphocyte

homing. Antrn. Rer. bnmunoL, 10. 561-591.88. SoohnanX.M. (1992) Sdealns (L£C-CAMs): lectin-Uke receptors involved in lymphocyte

recfrcoiatiao and leukocyte icuuiuncui. Io CeU Surface Carbohydrates and CeU Dereiopmcnt.CRC Press Inc. Boca Raton, FL, Fukuda. M. (ed.). pp. 71-98.

89. Varki>. (1992) Setecrim and orner mammalian sialic acid-binding lectim. OUT. Opin. CeUBioL.4. 257-M6.

90. Feln.T. (1992) CeU-ceD adhesion and membrane gtvcosvUtion. Our. Opi*. Struct. « o t . 1,766-770.

91. McEver J U . (1992) Leukocyte tndothdial cell interactions. GOT. Opt*. CtU BM., A, 840-849.92. Lasky.L-A. (1992) "**—>"• Intelpieieis of ceO-spedfle tarbohydrate mformatioo daring

inftammartoii. Science. 15$. 964-969.93. BevuacquaJH P. and Nthoo R.M. (1993) SHn-rim J.C31n.Imesu, 91. 379-387.94. HynesX.A.. DoddJ. and tesseLT.M. (1989) Carbohydrate recogmtion, cell Interactions and

vertebrate nerml dr>elopment. In MargollsJtU. and Margolisjl.il (eds). Neurobiology ofdycoco*y*gata. Plennni Press, New York.

93. Snran_N. and Lb.H. (19(9) Lecdns at cell recognitiori molecules. Science. 246. 227-234.96. Barondea^.H. (I9M) BUVnaiooal uiuueilles of lectins: LecrJns redefined. Trends Biochem. ScL.

U . 480-482.97. SohlJ'.D. (1992) The mannose receptor and other macrophage kctins. Our. Opin. bmnunoL.A.

49-52.98. Zbou.Q. and CammngsJt.D. (1992) Animal lectins: a disrinct group of carbobydTan: bind-

ing uioteiia Ui*ulved ta ceD *fh«^»v mnkrllar rrxognmon. and development. In PukudaX.(ed.), Cefl S*rhce Carbohydrata and CeU Development. CRC Press. Boca Raton. FL.pp. 99-126.

99. ZanenaJ.-P.. Knchler^.. UbmumJ.. Badache^.. Maschke^.. ManchalJ>.. Dofeorcq.P. andVmcendon.G. (1992) Cerebdlar kxdns. ba. Rer. CytoL, 135. 123-154.

100. ZanenaJ.-P.. Kndder^.. LctanmnJ.. BadachcA., MaschkeJ., TbomasJ).. Durbura)J>. andVtacendon,G. (1992) OtvcoprotCTS and bxtins ta ceU adheskn and ceO recogiilliwi processes.rBsMKhem. J., 24. 791-804.

101. McCoyJ.PJ. and Chambers.W.H (1991) Carbohydrates ta the funcriom oftamnJ kuler ceflt.Qycohiotogy, 1, 321-321.

102. Lc.Y.C. (1992) RWh-.n-ry of caibuliydiaui-uiuteta intnaction. FASEBJ., 6. 3193-3200.103. KnghcsJtC (1992) Lectim as ceO adhesion molecules. OUT. Opt*. Struct. BioL. 2. 687-692.104. Lotanjl. and Raz^i. (1988) Lectim in cancer cells. Am. NT Acad. ScL. SSI. 383-398.

116

Page 21: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

BrotogkaJ roles of oligosaccharides

103. Leffter.H.. M M n . F R and Barondes.S.H. (1989) Soluble lactose-binding »eHL>ate tectim:A rowing family. Biochemistry, 28. 9222-9229.

106. Lotu.R. (1992) Beta-galactoside-bindrag n u b m lecdm: synthesis, molecular biology, func-tion. ID AUtn.HJ. md Ktgihn.E.C- (eds). Clycocon)mtaies: Composition. Structure, andFunction Marcel Dekker. New York. pp. 635-672.

107. KonifcId.S.(1986)Trafriddngc>flysoso^enzynw in imirial and disease states../. Cfin. J i n n ,77. 1-6.

108. voa FiguraJC. and Hasilik.A. (1986) Lysosomal ouymu and their lete^Jtml. /ITOOL Rev.SOC**M. .55 . 167-193.

109 Komfdd.5. and Mellmm.I. (1999) The biogenesis of rysosomes. /Csn. An. Crfl Bid. 5.483-525.

110 Komfdd.5. (1992) Stmcntre u d function of the mannose o^pnosptate/rnsuKnUke growth boorn receptors, /ban. Xn>. Biochem.. 61. 307-330.

111 Varki.A. (1992) Rale of oUgosaccharides in the intracdmlar ud intercellular trafficking ofmammalian glycoprotcim. In Fukuda.M (ed.). CWI 5*r7bci Carbohydrates and CeU Develop-ment. CRC Press. Ann Albor, Ml. pp. 23-69.

112. Firouhxr.M.G. (1991) Protein traffic dmiofh the Oolfi complex. In Steer.CJ. md HanoverJ.(edi). /mrncrfojar TmfflddMi of Proteins. Cambridge University Press, New York.

113. fmicMMA\9%6)}Aoi>(ia&tmo(Yrman^cnrraamDiayoara^(llmM^ Ud CtU.Bind*m., 72. 47-63.

114. Freeze.H.H. (1992) Developmental grycobiotogy of Diayostelium discoUeum. In Puknda.M.(ed.). CtU Surface Carbohydrates and CeU Development. CRC Press Inc.. Boo Ramn, FL,pp. 285-317.

115. Otson.T.S. md Line.M.D. (1989) A caramon n»»*ii.m for ponrramlational activation ofplum weuinvie rereptois. FASEBJ.. 3, 1618-1624.

116 Ashwell.G. md HaxfbrdJ (I9S2) (^rtobydrate-speafk receptors of die Uver. Ann*. Jr .Biochem.. 51. 331-554.

117 Asbwdl.O. md Stecr.CJ. (19??) Hepatic wngn^int u d f»nhn]t«™ of serum giycoproleins.J. Mtd. Asoc. 24*. 2358-2364.

118. DrickamerJC (1991) Oeartaj. up gtveoprotein hormones. Crfl, 67. 1029-1032.119 Ezckowitzjt. A. and Stthl.P.D. (1988) The structure and function of vertebrate mammtff lectin-

Hke proteins. J. Crfl 5a.. SupoL 9, 121-133.120. Schwaro^A.L. (1990) Cdl biology of intracdlular protein trafficking. Ann*. Rev. bnmund. 8,

195-229121. DennaJ.W. and Lafeni J . (1987) Tumor cdl surface carbohydrate and the metastatic phenotype.

Gncrr Metastasis Rrr.. 5. 185-204.122. Drroo.G. (1990) Qycosphingolipid function in caocer. Cancer Celts, 2. 377-328.123. Fem.T. (1985) Demonstration by monodoeal "*ftwHU that carbohydme structures of

glyiiir«nlBli» and glycoUpids are ooco-devdoprnencal antigens. Nature, 314. 53-57.124. Uoyd.lCO. and Otd.LJ. (1989) Human monoclonal antibodies » grycoUplds and other

carbohydrate anrfpim: Dnaecdon of Ifae ounoraJ bmnDne icujoiuc in cancer patients. CatctrXn., », 3445-3451.

125. Khn.Y.5. (1992) Altered grycofytatkx) of mncin grycoproteim in cokxnc neopbola, J. CellfltodwM., 50 (SoppL ltG). 91-96.

126. SainmX.R. (1989) Role of carbohydratei in grycoprotein honnooe lignal tramdnclioo. FASEBJ.,i, 1915-1924.

127. Kobaa>. (1988) Stroemret, ftiia-iLai md transformadonaJ changes of the ngir chains ofgtycohormoses. J. Crfl fltodwm., 37. 79-90.

128. BaenzigerJ.U. and GreenuE-D. (1988) Pbnnry glycopnttin hormone oUgonccharkJes:sroenre. syntheili and fmakra of die aspangiiie-Unked oKgotaccharidei on hnropin, foUiiropniand dryrotropin. BttxMm. Btopkyi. Acta. 947. 287-306.

129. FdmdaX.. SasaUJL and PnlmdaX.N. (1990) Strncare and role of carbohydrate in humancrythropoietin. Adi. fip. Utd. Bid., 271, 53-68.

130 BaenzigerJ.U. and Orea^E.0. (1991) Souctnre, rynrhao and (unction of the asparagme-liiiladoHgrmrrhirldo on pitnltary grycoprotein huiuiuuui. In Ginsburg.V. aod RohbimJ*. (ah),Btoiotr of Carhohydmta. J.WDey. New York, Vol. 3.

131. FutmdaX.N. (1991) HEMPAS dnease: gemdc defat of glycoiybnion. Oycaiioloty. 1.9-16.132. Rosse.W.F. (1990) TH^primtdyihviflfni-fiTifrffi proteins and paimysmal nocturnal hemo-

globinuria. Stood, 75. 1595-1601.133. Chrispcel^M J. and tUHhd.N.V. (1991) Lecrins. kctJB genes, and dieir role in plan defense.

fiaa Crfl. 3, 1-9.134. EtdcM.E. (1992) Plant lorrtm: molecular biology, synthesis, and function. In Allen.HJ. and

Klsailuf,E.C. (eds), Gycoconjtt^ata: Composition. Slruaurt, aid Function Marcd DeldEer,New York. pp. 521-540.

135. BuaOe.D.R. and Yoonj.N.M. (1992) Carbohydrate-protein uneracdom in andbodiei and lecdns.OUT. Opix. Suua. Btoi, 2, 666-673.

136. Dar»ill>., Augur.C. Bergmann,C., CarUonJl.W., ChrongJ.-J.. Eberhard^.. Hahn.M.0..L6y.-M., Marft,V., Meyer.B.. MohnenJ).. 0'NeJH.M.A., SptroJU.D.. »m HaftedcH..YorlcW.S. and AlbersbeinvP. (1992) Olrgosacchanns—OUgosaccharides that regulate growth.dtniu|jium: and defence tnuuum in planes. Clycobiotyfy. 2, 181-198.

137. Ryan,CA, and Farmer.E.E. (1991) OHgosaochartde signals in pUnts: A current mrnwrrrtAm. Ret. Plant Pmyjiol. Matt MoL Bid, 42, 651-674

138. NapJ.-P. and BteeUng.T. (1990) Dcrdopmenalbiology of a piam-prokaryote symbiosis: thelegume root nodule. Scitnct, 250. 948-954.

139. FlsberJt.F. and Uog^.R. (1992) Rhin*mm-pUa signal eichange. Naurr, 357, 655-660.140. OfekJ. and Sharon,N. (1990) Adhesins as iwrfpr- SpeciJicity and role in infection. Cnrr. Top.

Wcntid. bmajid., 151, 91-114.141. Kartsson.IC.-A. (1989) Animal grycospUngolipids as membrane • " * • » " sites lor bacteria

Amu. Ktr. Biodum.. 58, 309-350.142. UngwoodX.A. (1992) Bacterial adbesins/grycaiipid receptors. Oar. Odn. Una. Bid, 1.

693-700.143. CHHna-OarberJ<. and GarbcrX (1992) Microbial leoins. In ClyaxanJMtma: CompotUoa.

Smaxn. and Function. Allen,HJ. and Koailm.E.C. (eds). Marcd Dekker. New York,pp. 541-592.

144. WkkXJ. . MadanJX.. Flddj.B.N. and NormartS J. (1991) Meeting review. Molecular m mtalk buwujj rprrhriial ceUs and [MIIWUFUJ. uuuuuigantsms. Crfl. 67, 651-459.

145. HarLO.W., HaUwangerJLS.. HotO.D. and Kefly.W.O. (1919) Orycosyuajoo in die nucleusand cytoplasm. Ann*. Rn. Bkxhtm., 51, 841-874.

146. Rmrman.S. (1970) The synthesis of carbohydrates by muhigrycosyltjaiuferase systems and tbeirpotennal nmedon in intercellular »o—*"" O m Phjt. Ufids. 5, 270-297.

147. ShurJ.D. (1989) Expression and mncdan of cell surface galactojyhransferase. 8Jodn»t. Bfopftjs.Am. 918. 389-409.

148. namm.H. and Hakomorl3. (1989) ABH and rdmd rdno-Hood group andgent: immuno-chemical (ttrlerences in carrier bocypn and then- distribution. Vox Smnf.. 56. 1-20.

149. OnccM.E. and Grabowjld.G.A. (1990) Human add 0-fbcosatoei Grfcosytalioii b required forcatalytic acdvtty. Btochtm. Bklphjx. Ra. Canon . . 1M. 771-777.

150. Semenkovich.C.F.. Luo.C.^.. NatanbjhiJ^.IC. fhm.^.-H.. SnmhO-C. and Chan.L. (1990)In Wm> apmsioo and site-specific "•"••.' '• of the cloned human Upoproteln lipasa gene.

151

153.

154.

155.

156.

157.

158.

139

160.

161.

162.

163.

163.

166.

167.

168.

169.

170.

171.

172.

173.

175.

176.

-177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

Potential /V-linkcd glycoayuulon Iht asparagine 43 is important (or both enzyme activity andsecretion. J. BM. Chtm.. US. 5429-5433.Ben-Zeer.O.. Dooltale.M. H.. DavnJLC. ElorsonJ. and ScbotzJ^.C. (1992) Mamratioii ofliHV"""' lipase. Expressioo of foil catalyse activity requires glucose trimminf bo nottranstocatioo to nV cis-Golgi compamneffl. J. Bid. Otrm.. 267. 6219-6227.CarroUJI.. Ben-Zeev.O.. DooltaHe.M.H. and Seversoo.D.U (1992) Acnvation of Hpoprotemlipase in cardiac mrocytn by grycosyuuion reqoira uliuuuug of glucose residues in the endo-puomic raiculum Bkxhtm. J., 2S5, 693-696.BarbaricJ . Mrsa,V.. RiesJ. and MDdner J>. (1984) Rote of the carbohydrate part of yeast addphotpharaac. Arch. Biodttm. Biopkyt.. 234. 567-575.Riederer.M.A. and HlmwuA. (1991) Removal of rV-grycosyuttion sites of the yeast arid pnospha-Doe severely affects protein folding. J. Bacterid. 173. 3539—3546.Laraon,0. and Engstrom,W. (1989) The rote of AMinked gtycosylaooo b the regulatioo ofactrnry of 3-hydmiy-3-rnethytghnaryt-coenlyme A reductase and praUferalioa of SV40-transfbrmed 3T3 cells. Biodum. J.. 260. 597-600.ColleUC. and Fiddmg.CJ. (1991) Effecg of inhibilors of N-linked oUgUMLUiai «Je processing onthe secretion, stability, and activity of tecithin-cbotesteroJ acyttransferase. Btodtemiswi, 30.3228-3234.SahnkcO.. Divis.R.C.. E)ooUnle,M.H.. Wong.H.. Scboa.M.C. and Will.H. (1991) Effea ofN-Unked glycosylatkm on hepatic lipase activity. J. Upid Ra.. 32. 477-484.Gksdmami.V.. gHwmrit B tod voa Furura.K. (1992) bt vitrv mutagenesis of potential N-

grycosylation sites of aryuon&lase A. Effects on grycasybaon, phosphorylation. and uHiactlhuarsorting. / Bid Ottm.. 267. 13262-13266.WintberJ.R.. Stevens.T.H. and KieUand-BrandtX C. (1991) Yeast carboiypepodase Y requiresgrycosyuuion for efficient '"*"«•»<*"'" transpon, but not (or vacuolar aorung. in vivo nabdity. oractivity. Eur. J. Bbxhzm.. 197. 681-689.Vemet,T.. TnsirrJ.C.. Richardson.C., Lal&crte\F.. Khoun.H.E.. B d l > W.. S«orcrA.C. andThnma n V (lOOTrj faiw^i nS ftmrrinjMl p«r*i" p«^""«« frm n w n cr*W Reqmremem forMgrycosylaaon of the pro-region. J. Bid. Ottm., 265. 16661-16666.Powell,L.M. and Pain.R.H. (1992) Effects of glycosyuuwo on the folding and stability of human."s-nmhinT< md dcaved a,-«ntitrypsm. / . Md. BioL. 224, 241-252.AikawaJ., Yamashto,T.. NishryamaX.. Kortnoochi^. and Beppu.T. (1990) Eflects of gry-cosyhuion on the scuetiuu and enzyme activity of Umcor remain, m aspartic proteinue of Mucorpasilha, produced by •^^M^.m yeast. J. Bid. Otm.. 265. 13955-13939.PrnrrijJ. and AOsideffJ^. (1992) The effea of carbohydrate removal on die properties ofhuman liver OM.-rocosidase. Biochim. Biopnys. Acta ProuiM Smtct. Ud Enzymd, 1119,194-200.Burgemeifler.R., DanesoU. and GocnuotauW. (1990) Grycosylaaon and processmi of carbo-hydrate side ''halm of ecti>-5'-mirlfOtida>e in cultured IMIIIWII chonotnc rriri Bid. CTttn. HoppcStyitr. 371. 333-361.Bernard J.A. . NewtocuS.A. and OUen.K. (1983) Effea of size and location of t>e oligosac-rfrffj>fr Hfin OQ r»pHfitf dfiii nTtnTi of twT irw f r^rfftrr ribofwrlffft J. Bid. Cttnu., 25S,12198-12202.JoaoJLC, ScraggXC. and DweMLA. (1992) Effects of gtycosylation on protein conformationand amide proton " - I T rates in RNase B. FEBS Ua., 3*7. 343-346.GnflJL. UngJC., Vogljl. and Sctald.F.X. (1987) Tha mecharusm of IbUing of pancreaticriboauckases is independent of the uieseuce of covaiently linked carbohydrate. 7. Bid. Cnetn.,2*2. 10624-10679.MackenzieJM. (1990) The effect of N-linked grycosyauion on the substrate uiefutum of UDPgbjcnrorjosyhransferases. Sachem. Biophys. Res. ConamoL, 166, 1293—1299.LaccD., OlaveaezuA.H. and Gacesa^P. (1990) The effects of degrycosyboioo on the propenksof native and btocinylatnl bovine irslii iilar hyaUui.inwtaiff Carbdtydr. Res., 2wv. 306—311.ManjtmathJ*. and SairamJH.R. (1982) Blnrhrmiral. biologicaJ. and Uiuuuuulugkal properties ofchemically degrycosylated hmnan choriogonadotropin. / BioL Chem.. 257. 7109-7113.CbenJl.C.. Satrnohigastn,Y.. DufauJ^.L. and Can.KJ. (1982) Q . . , . - I . . 1 , M 1 ™ md biologicalproperties of chemically degrycotytsted human choriooic gonadotropin. Role of carbohydratemrjfena in adenynue cyctase acdvation. J. BioL Chtm.. 157. 14446-14452.Kcutmann.H.T., McllroyJ'J.. Bergen.E.R. azd RyanJU. (1983) CbermcaDy dc(rycoiyuotdhuman chorionk f ^ l»*»^»n inWrtilw characterization and biological properties. Biochemistry.22. 3067-3072.KalyanJ4.K. and Bahl.O.P. (1983) Rokof carborrjrdrate inrmmmdioriorncgonao^arooin. EfTectof deglycosylalioo on the subumt interaction and on its in vitro and In vtwo biological properties.J. Bid Chtm., 258. 67-74.ReboU,R.V. and FohrmuuP.H. (1983) Deglyooaylated human choriumc gooadotropin. Anantagonist to '<^vllf1't"lt'l"l and do«m-regutalion of the gonadotropin receptor-adcmiafe cydMsesystem. J. Bid Chtm., 258. 12775-12771.Rcbois J? V. and Fishman.P.H. (1984) Antibodies against human cbonomc gomdotropin conventhe degfyoosytand honnooe from an antatomst to an agonist. / . Bid C a m . 259. S087-8090.k«hj,l_R. and Wdmrmub.B.D. (1983) Naturally occurring forms of tbyrotropin wuh low tno-acdvity and altered carbofaydiate ''""f*"* act as coinpctitiva antagonists to more btoacuve forms.Endocrindofy. 1U. 2145-2154.DahlJC.D.. BioalcTA. and Hsueh^AJ. (19S8)NamraUy occurring anunormooes: iccmloo orFSH antajoedsts by women treated with a CnRH analog. Science, 239, 72—74.Sairam,M.R. and Bhargavi.O.N. (1985) A role for the grycosylatioo of the alpha-subumt m thetransduction of biological signals in gtveoprotein bormoues. Science, 229. 65-67.MjnntM.M.. KeeneJ.L. and BoimeJ. (1989) She spedficily of the cboriomc guiMuu""!^ ""linked oligosaccnarides in signal transduction. J. Bid Chem.. 2*4, 2409-2414.Bluhe.D.L. (1990) N-Unked oligosaccbarides on free a '"'"f"" wnfa its abuity to combine withhuman choriooic gonadotropin^ subumt. / Bid Chem., 265. 21951-21956.Wangjl., SegalJJ. and KoideJ.S. (1989) Carbohydrate m e n of sman ptacemal bCG:Reouiiement of i"mi»w suuuuie for bioiogicaJ acriviry. Md CeU. Endocrind., 61, 13-22.

t(Ooadotropio obfoocchirfaics. BioL RtprocL, 40, 48—53.Kaeod.D.M., VirgmJ.B., CUy.C.M. and NUjoo J.H. (1989) Disruption of N-linked grycosyl-j*t*fJtI Oi OO^IQC F^* ir^* * IHB hoy^prt^*^ n^^mj^^pfll^ DV ^^^^*^^TfT^tf ISOt4lXCDCSl3 Q^l^DAodJ^^ OCXCSSd

in InrnfrflTTltr fttbtLrty bn docs on tffoct bioto(iQj •ciivity of the iccietcd h* ff rrw^it' T MoLEndocrind, 3. 1763-1774.SmahJ'.L.. KaetzdJ}., NBaonJ. and BaenzlgerJ.U. (1990) The slarytaied oHgmarrharides ofr~~-*ln.m bovine tetrofM moduUte hormone bioactrrity. J. Bid Chtm.. 265. 874-881.GalwayA.B.. HsuehJU.W.. KeeneJ.L., Yamou.M.. Fanscr.B.CJ.M. and BoimeJ. (1990) hrttro and In rfio bkacdvuy of irrnmhininl bumm foOidf-sthmuating hormone and partiallydegrycosylated variants i f !-»•< by trmsfected eukaryooc cell lines. Endocrinology. 127.93-100.Thouiiua^N.R.. UCalziJ— and WduuaubJ.D. (1990) Tha role of carbobydratc in dryrotropinaction assessed by a novd approach using enzymatic degrycosylatkn. J. Bid Chem., 265.11527-11534.SdraicuM.R., UnggenJ.. SairamJ. and Bhargavi.O.N. (1990) Influence of caiUiliydiatfsonthe•nriyti^ nnT1t T*-ftff.Mi*iitHinfJm- Distinction of agonists and antagonists. Bkxhem. CeU Bid.68.889-893.

117

Page 22: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varki

IS8. Sairam.M.R.. Bhargavi.G N. and Yamey.T A (1990) Hormone gtycosylabon required forratropin receptor recognition In sheep tesus. FEBS Lett.. 276. 143-146.

189. Chen.W., Shen.Q-X. and Bahl.O.P (1991) Carbohydrate variant of the recombinanl 0-subunnof human choriogonaoouuuin expressed in baculovirus expression system. J. BioL Chan-. 2**.4081-4087.

190. Chen.W. u d Bahl.O.P. (1991) Recombuant carbohydrate and sdenomethionyl n r i u n of h u mtropra. J. BioL Chan., 26*. 8192-8197.

191.

192

Hodscher.S.R-. SanamX.R. and AscoliX. (1991) The stow me of internalizxtion of de-grycosylated buna chorionic gonadotropin is aot due to ia Liability to tmnii—» cyclic adenosinemonophoiphati accumulation. Endocrinolofy. 128. 2837-2843.Hocmann.R., Scfcumm-Draeger.P.-M.. Rehbach.K. u d MatmJC (1991) Asaloagalacto-humuchoriooc gonadotropin, • carbohydrate-modified variant of human chononic gonadotropln.amagomTes die stimulatory actions of bovine thyrokd-sthnutating hoenwoe on tnyrcwJ function mdHLA-DR expression in h u m ttryroid In vitro and In vtx. J. CUn. bmaL. SI, 1947-1954.

193. SairaroX R. u d JiangX-G. (1992) Comparaoa of rne biolopcil md imnxnological propertiesof grycosylanon deficient bumu choriomc goaadotropin variants produced by she dlrrnrrlmuagi mill! u d chemical degiycosyladon. MoL CrtL ExdocrmoL. 85. 227-235.

194. Jl.I. a^Ji.T.H. (1990) Differentia) imeticocm of bunmnchoncto^^tagrycosylated analog with their receptor. Proc. Nad. Acad. Sd. USA, 87. 4396-4400.

195. Moooeo.P , MermodJ , ErmtJ.. HirjcM.M. and DeLamanerXF. (1987) Increased btologfcal•ctlVicy of degfycosylued r *fwnb "*w hiirrwn pifP'Uyytc^rn^ci'ortmgc cvi<ytrf-^rnti^MtiT'f ftdorproduced by yeast or animal cells. Proc. Nad. /lead. Set USA, 84, 4428-4431.

196. CebonJ.. NkohJ'.. WardX.. GardnerX. Dempsey.P.. LaylonX, DonraefcU., BurgestA-W .NiccE. and Morayn.O (1990) Gramuocyte-macropbage colony nt™»ii tng factor from hmnantymphocytei. Tbe effect of glycosybmon on receptor binding and biological activity J. BioLOaiL. 2*3. 4483-4491.

197. OtuntKD.M.. NakalX.. Naxayama.C, Yanagijl., MatsuUL, Nogudujl., NamikiX.. SakaiX.KadooJC . FukuiX. and Hxn.H. (1991) Pun fiat km and characterization of three forms ofdifferently glycosylated rccombinant twtn an granulocyte—macrophagc colony-stillMilating factor.An*. Btodiem. Biopmyx , 2S6. 562-368.

198. OrfcbenXO., Devereux,S., ThomaiJJ^., KebruM.. JonesJtM., Goldsone,AJt u d 1 Inrh.n.C.(1990) Development of antibodies to unprotected glycosytation sites on >f mutanai* human GM-CSP Lancet. 333. 434-437.

199. fttoineX-.Loreniini.T..GifftaJ.,MartinJ.,JacobsnU:.Boone,T. and ETuott,S. (1992) Roleof ftycwrUtioc on the secretion and biological activity of erythropotaln. Biochamiarj, 31,9871-9876.

200 FukudaX.N., Sasaki.H.. LopezX, and FukudaX. (1989) Survival of recombinant erythro-pnetin in the circulation: The role of carbohydrates. Blood, 73. 84-89.

201. DubaJ., FlsherJ.W. and PowelU.S. (1988) Grycosyiation at specific sues of et»thiu|Xjicun besseffiiai for ixnyttbaa. secretion, and biological function. J. BioL Ckam., 263. 17516-17517.

202. TakeucUX.. Inoue^., Strlck)and.T.W., KubotaX., Wada,M., ShimmJL. Hoshi4..rrmirsnrmM-. Tatwaii.S and KobattA. (1989) Rdatioashin between sugar chain stroctnre andbtologicBi activity of recombinam human erythropotetin produced m f**™*** hamster ovaiy cells.Proc Mat AcaL Set USA, M. 7819-7822.

203. TakeocM.M.. Tak»s»H.S., SWmadsuM. and Kobata>. (1990) Role of sngar dams in tbe fa»<m>Hftlngiral anility of human ery tnropoietin produced in recombinanl f*Mn*** h*mcr*r ovary ceDs./. BioL Oem., 245, 12127-12130.

204. Imai.N.. HigacM.M.. H m r n i . A Tnmnnnh K <1h-^. M £,,p~.r. M SWmmh V andOcM.N. (1990) Physicochemkal and biological characterizarioo of asmloerythropDierin—Suppressive effects of umbc acid In tbe expression of bMogical activity of kaman erythropoieda« rim Ear. J. Oochtm., 194. 457-462.

205. Wnley.L.C.. runony.O., MurtbaJ., SmudennrtJ.. Domer.A-1.. CaroJ , Krlegcr.M. andKanfinm.R J. 11991) Th» i . . y . u . . n f N- ^ fUmtri n l l g .^ . I—hW— Ihr tt> (A-v»t»d« —<in rim md 01 rhc biologic actrvtries of cryrhrapoktin. Blood, 77, 2624-2632.

206. TsudaX. Kawanishi.a., Uecla.M.. Masuda^. and Sasaki.R. (1990) The role of carbohydrate ianimiJJinn hnmu erythropoioin. E*r. J. Btochtm., IS*. 405-411.

207. YamagachiJC. A t t J L . Eawamshi.a.. UedaX.. MasodaJ. and SasaUJL (1991) Effects ofsne-ifirected removal of N-giycosylarion sites ia human erymropoietm on ia production andbiological properties. J. BioL Ottm., Ut, 20434-20439.

208. NarbJX.0., Arakawa,T., AokiXH.. Elmorejli, RohdeX.F.. Booot.T. and Striddand.T.W.(1991) The effcac/carbohydrate on die structure and stability of eryrhropoiedn. 7. BioL Ottm..16*. 23022-23026.

209. iwm.M. and lihinta K (IW7) In v4tm mnrinl.Ani nf .r^j^ypim-H T--HI| hy * gly~yltinn-uuubiting factor that regulates the formation of antigen-specific supprestiva ucsors. Proc Nad.Acad. ScL USA, 84. 2444-2448.

210. KatamuraJC. IwaouM.. Mori.A. and IsmtakaJL (1990) Biochemical Identification of glycosyl-adon inhibiting tactor. Proc Nad. Acad. ScL USA, 87. 1903-1907.

211. Tagaya,Y.. Mod^A. and tAf>«fr r (1991) Biochemical characlerbMiao of marine glyujsylauon-inhuwing factor. Proc Nad. Acad. ScL USA. 88. 9117-9121.

212. Tbor.O and BrinuA.A. (1992) Oycosylation variants of marine interkutaa-4: Evidence fordifferent funcuoual pioualio. brwaaaioxy, 75, 143-149.

213. Yeo.T.-K., SengerJJ.R., DvorakJl.F., Preter.L. and Yeo. K.-T. (1991) Oycosylarion b essen-tial for efficient secretion but not lor nenneabUity-enhandng activity of vascular penneabiliryfactor (vascular endorhelial growth factor). Bux**m. Biophyj. Ra. Commx*., 179, 1568-1575.

214. Perea.D.. Gitay-Goren.H., SafranX., Kimmd^.. GospodarowiczJ). and NeuieM,G. (1992)Qhycosyiadon of vascular *r**r*k*i\*A growm factor is not required for its iniMigMih activity.Bhchem. Blcptm. Ra. Commwt., 182. 1340-1347.

215. CapUn^.. Grcco.R., RoccoJ. and KurjanJ. (1991) Qycosylation and stmaura of the yeastMFa\ v-factor precursor is unnonam for effkieni transport through tbje snuecmj' padrway.J. BaacrioL. 173. 627-635.

216. MurphyJLA-. CMmnecky.V., SmfflieX.B., CarpentexX., NanrlssX., AndersonJJC,RhodesJ.A., BartrrJ.A.. SiminostdJL and Campenot.R.B. (1989) Isolation and character-izarion of a gtycosyhmd form of beta nerve growth factor in mouse mbmandibutar fitah.J. BicLChan.. 264. 12502-12509.

217. Hofmatm.iL. JoseptuA.. BhargavaX.M., Rosen^.M. and GoldbergX (1992) Scatter factor Ua grycoprotein but grrcofyumon is not required for its activity. BtocUm. Biopmys. Aaa PwubtSma. UoL EiajmoL, 1120. 343-350.

218. KefterJl.C.. Ylp.Y.IC. AndersonJ". and VftxM. (1983) Eflectsof glyamdaierjeamientonthephysicochemical properties and biological activity of human imerf eron-gamma. / BioL Cham.,258. S010-4013.

219. Feizi.T. and Larkin.M. (1991) AIDS and grycosyhuion. GlycotiolotJ, 1. 17-24.220. Watter J . D . . KowalsMX.. Goh,W.C. KaortkyJC. KriegerX.. Rosen.C, RohrsrhnrWiTX..

Haidlim.W.A. and SodrosiiJ. (1987) InMhWtm of hnmu immnnoddkancy virus syn-cytinm fbrmatioa and virus replication by casanospermina. Proc Nad. AcaL Set USA. 84.8120-8124.

221. Matthews.TJ., WeinholdJLJ., LyertyJl.K.. LangioisAJ., Wigiefljl. and BologDesiJl.P(1987) Interaction between the > •'. T-ceU Ijiiqil ,,h virus type DIB Laydope glyuiuimeuigp!20 and the surface antigen CD4: Role of carbohydrate in binding and ceil fbstoo. Proc Nad.Acad. ScL USA, 14. 5424-5428.

222. Gnuers.R.A.Neef>^J..TersmetleX..deGoeae.R.E..TlilpA..Huiiman.HG..MiedemaJ:

and Ploeghjl L. (1987) lumfeience wuh HTV-uidnced syncytium formation and viral infecnvityby inbibitoa of trimming gutcosidase. Naturt, 33*. 74-77.

223. Momefion.D.C, Robuison.W E. and Mitchdl.W.M (1988) Role of protein W-grycoiylanon mparhogenesis of human inaiwihM*fri''l#"''y virus type I. Proc. Nad. Acad. Sd. USA. 85,9248-9252.

224. FenouuleuE., Cierget-RaslainJ).. GlucknlanJ.C., Guetard.D.. MontagmerX. and Bahraoui^.(1989) Role of N-luixd grycans in die interaction between die envelope glycoprotem of humaninnnunodefideacy vims u d its CD* cellular receptor Structural enzymatic analysis. J. Eip.Utd., 169. 807-822.

225. Fenouakt,E., GluctaanJ.C. and Bahraotti,E. (1990) Role of N-ltaked grycans of envelopegrycoprotetm m infectivny of human immuoodeficiency virus type 1. J. V\roL, 64, 2841-2848.

226. Dedera.D.. Vander Hcydm.N. and RatnerX. (1990) Anrouaaoa of HTV-1 infeahnty by nhthibnor of oligosacdande processing. AIDS KB. Hum. Rtmrinua, 6, 785-794.

227. Lee.W.-R.. Syu,W.-J., Du.B.. MatsudaX., Tan^., Wolf^., EssexX. and Lee.T.-H. (1992)Nonrandorn distribution of gpl20 N-lmked glycosylation sites important for mfecdvLty of humuinxnunodefldency virus type 1. Proc. Nad. Acad ScL USA, 89, 2213-2217.

228. Aieunder.S. and EUerJ.H. (1984) Carbohydrate dramanrally influencei immune reacdvity ofandsera to viral grycoprotein antigens. Sdata, 226. 1328-1330.

229. Doom.CM., CatonjU. and Schulze.l.T. (1986) Host cell-mediated selection of a mutantinfluenza A vims that has lost a complex ougotacchande from nV np of die hemagghidnm. Proc.Nad. Acad Sd. USA. 83, 3771.

230. SodonuD.L., Cohcn.0.H. and EtsenbergJU. (1989) Influence of asparagine-linked oligosac-charkies on amigemcuy. processing, and cell surftce expresuon of herpes simplex virus type Iglycoprotan D. / VimL, 63. 5184-5193.

231. DelmasJ. and Laude.H. (1991) Carbohydrate-induced conformatioral changes strongly rnodulatedie anugenicuy of coronavims TGEV grycoproteinl S and M. Vina Ra., 20, 107-120.

232. MimkJC, Pmzer,£.. KicusUmuu£., OnrnrJ.. Ganen.W. and HenMJ -D. (1992) Carbo-hydrate »"*«Ving of u anngemc epitope of inftnjtr™ v i m luwiiaggliamin independent ofoUgosaccharkle siza. Ojcabtobty, 2. 233-240.

233 QmiZ-, Tudro.F. and GlUam,S. (1992) The influence of ff-lmked glycosylation on dieanrigeniaty ud immunogenicity of rubella vims El grycoprotein. Yiiohj}, 190, 876-881.

234. Gibaon,R-, SchlesingerX and KornfebLS. (1979) The nongrycosylated grycoprotein of vesicularstomatita virus is temperature-sensitive and uimkigocs unracdhilar aggiegatiuu at elevatedtemperatures. J. BioL Cham., 254. 3600-3607.

235. HsiehJ>. RosnerX.R- md RobbiosJ'.W. (1983) Host-dependent variation of asparagme-Unkedoligmarrharldcs at mdrvidual glycosylation sites of Slndba vinu grycoproteins, J. BioL Chan..258,2548-2554.

236. BurkeJ., MathnJC. Banse^., Legler.G., PeynerasJ4.and Ploegh,H. (1984) Inhibition of fl-unked oiigotaccharkJe trimming does not interfere with surface expression of certain integral

. EMBOJ..3, 551-556.237. NgJJ.T.W.. HieberuS.W and LambJLA. (1990) Different roles of todtvidoai N-Unked

Trlifinai"'hirMh* chains in foisting assembly, and transport of die simian vims 5I w ^ H i m . h ^ . i . A v ttoL CtO. BtoL, 1*. 1989-2001.

238. ArpuuN. and TalbouPJ. (1990) Molecular characterization of die 229E strain of humuUJiuuamus. Adr. £iz>. Mtd BioL, 27*. 73-80.

239. QtaX. Hobmu.T.C, McDonaldJI.L, Seto^.O.L. and OUTamA (1992) Role of N-linkedoUgosaccbandes in processing and intracelhilar transport of E2 gtycoprotein of rubella vims.J. VboL, 6t, 3514-^521.

240. Shakin-Eshlemaa^.H.. RenaieyA-T.. EshlemanJ.R.. Wunner.W.H. and Snhalnil.S.L. (1992)N-linked glycosylation of rabies virus giycoprotein. Indrvidnal tequons dUTer in their gjycosylationefficiencies and influence on cell surface expression. J. BicL Chan., 2(7, 10690-10698.

241. FetoerJLH. and Rom.MJ. (1992) Mutatiooal anatytis of die N-Unked giycosylatlon sites of dieSU envelope protein of Moloncy murme leukemia virua. / ViroL, U. 4258-4264.

242. GallagherJ>J.. IlenneberryJ.M., SimbcookJ.F. and OednngX.-J.H. (1992) Glycasyfamonrequurments for ^v*^""'^' uauiport and functioa of the benagghmnin of inflnrnra virus./ VtroL, 66, 7136-7145.

243. AmnvA-R-, TammaJXX.. OppenheimJ.D., Flnkriman.F.D., Kieda,C., Coicojl-F. andTborbecke.GJ. (1991) Spedfidry of die marine IgO leccptoi on T cells b for N-linked grycanson IgD molecules. Proc Nad. Acad. ScL USA. 88. 9238-9242.

244. Hickman£. and Kornfeid3. (1978) Effect of mnicamycm on IgM. IgA, and IgG secretion bymouse plasmacytoma cells. J. bunnnoL, 121, 990-996.

245. Sktman.C. (19*1) Differing requirements for gtycosybmon in die secrerion of reuned glyco-protems b 'W^m,n>rf neither by the producing cell nor by the relative number of oUgosaccharideonus. J. BtoL Cham., 256. 9374-9376.

246. WinkdhakeXL.. Kunkki.TJ., EkombcBX. and Ajttr.R.H. (1980) Effects of pH treatmentsand degiycotylation of rabbit hmnunoglobuUn G on me binding of Clq. J. BioL Cham.. 255.2822—2828.

247. NoseX. and WlgzeU.H. (1983) Biological rigmfifjnn. of carbohydrate chains on monoclonalantibodies. Proc NatL Acad. Sd. USA, 80. 6632-6636.

248. ParekhJLB.. I>«tJLA.Junnn3J., Femanrtn.nX., l.mng.A., StanwonhJ3., Radenacher.T.W.,MlzuochiX, Tanignchi.T., Matsuta,IC, TatenrhiJ., Nagano.Y.. Mlyamoto.T. ud KobanuA.(1985) Association of * — « ^ arthritis and primary osteoarthrius with changes in rheglycosylation pattern of total serum IgG. Natm, 31*, 452-457.

249. WaDlcfcS.C., KabauE.A. and MorrbooiL. (1988) dycosyiation of 1 Vu residue of amonorlooal antibody agamst a (1—6) doaru increases its affinity for antigen. / Exp. mUd.. 168.1099-1109.

250. WrightJJ1-, ShulmuXJ., Isenman.D.B. and PaimerJl.H. (1990) Cl binding by mane IgM.The effect of abnormal grycosybnion at position 402 resulting from a serme to asparaginc exchangeat residue 406 of rhe ,-cham. J. BtoL CVa..2«5, 10506-10513.

251. Wright^., Tao.M., KtbatXA. and MorrbocuS.U (1991) Antibody variable region glycosyl-aoon: Poshjon efrccts on antigen binding and carbohydrate structure. EMBO J., 10. 2717—2723.

252. NoseX. and Hcymm.B (1990) Inhibition of processing of asparagmn-lmked carbohydrate chainson IgG2a by using »wqiitt<miiw has no influence upon antibody effector fimrtinm in vhro. J.bmamoL, 145,910-914.

253. DoraiJL, Mueller3.M., RosfeldJLA. and Gmies^.D. (1991) Aglycosylated chhnerfc moose/human IgGl antibody retains some effector function. Hybridoma, IV, 211—217.

254. AxfbrdJ.S., SumarJ^.. Alavi.A.. IseobergJ)j<-. Young>., BodmuJC.B. tad RoinXM.(1992) Changa in normal gtycosylattou "—''•"'•"" in luldiniKitir- rhmmarir disease. J. CSn.onco. ,89 , 1021-1031.

255. Himrn.l.. Btoe.Y.. BaroneJC. CoOenJ). and Larsen,G.R. (19S8) Functional effects ofaspaiaglne-linked oUgoxaccharide on uatmal and variant >"i" n tissue-type rJTMll<"f*" activator.J. BioL Cham., 263, 15713-15719.

256. Wtttwer,AJ., HowanUSX.. CarrX-S.. HarakasJ^.K.. FederX. PirekhJLB.. Rudd.P.M..Dwak.B.A « ™ t B . A m - W T W (lo«0)FffWt.nfA(-tryrn^rtark.ionmvilroaaivnvofBowesmelanoma and l» colon flbtobiast derived tissue nlasminogea auivatui. BtochamistTy. 2%,7662-7669.

257. PirekhJLB.. DwekJLA.. RuaUPX.. ThomasJ.R., Radenacher.T.W.. WarrenX. Wun.T.C.HeberuB.. RemuB. and PaumerX. (1989) N-glycosylatian and in vhro enzymatic activity of

118

Page 23: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biotogkal roles of oligosacchandes

human recombunnt tissue prttmmogcn activator expressed in CMrw. hamster onrf cells lad Imunne cxtl line. Biochemistry. 28. 7670-7679.

258. Wtawer.A J. and HowinLS.C (1990) Glycosytetloo tt Asn-114 inhibits the conversion of single-d a n to two-chain tissue-type ptasnunogen activator by p**p"t" Biochemistry, 29. 4175-4180.

259. HowardJC. Wktwer.AJ. and WdptyJ.K. (1991) OligosnrHia ridel u each giycosytatloo siterate soncture-depeodent contributions to biological properties of human tissue puamiiiugmactivator GfyeoMotoxy. 1. 411-418.

260. WUhehnJ.. Kalyan,N.IC., Lee.S.0.. Itam,W -T , Rappeport,R. Md HmjJ'.P. (1990) Degry-cojylnioo increases the ftbrinorytic activity of • deletion mutant of tissue-type pUsuuuugmactivator A/Dmt- HatmoB..a.*6t-*l\.

261. BaDeid.NJ.. Bassd-Duby.R.S.. Freedom,R.B.. SambrookJ F. and Gerhing,M.-J.H. (1992)Cell-free synthesis of cnzymicaily active tusue-type ptasmtnogen activator. Protein foldingdetermines the extern of AMlnked gtycosylation. Bhckrm. J.. 216. 275-210.

262. Knmnen,V and MooooenJ. (I9SJ) Hemoglobin binding to oegiycosylaled haptoglobui.Btoddn. SfopAyi. Aaa. *S3, 345-352.

263. PnrrVMi.C.B. lod Blackbutu.M N. (1985) flftl"^^" and characterization of an arfahrornoia ITTvariant with reduced carbohydrate cornea u d mharrrrl hepartii binding. J. BioL Otm.. 269,610-615.

264. BjorkJ.. YtoenjirviJC, OtamS.T.. Hermendn,P.. Con™h.H.S. and Zettimeissl.G. (1992)Decreased affmity of recombtnam antiibrombin Tor bepann due to increased gfycosylation.Bioditm. J.. 286. 793-MO.

265. GrtmeO J W.. WallsJ.D. and GerlitzJ. (1991) GtycosyUnan of human protein C affeca itsKuajuu, processing, ftt™tW»n| activities, and activation by drrombin. J. BioL Ottm., 266,9778-9785.

266 HiIlJ.W., VandenBerg,S.R. and Gomu.S.L (1990) Plasmmogen ctrbobydrate side chains mreceptor binding and enzyme activation: A study of C6 flioma ceils and prunary cultures of rathepttocytes. J. CtO. Bioditm..*). 213-227.

267. EdelbergJ M.. EnghfldJ-l.. Plzio.S.V and Goozalez-Gronow.M. (1990) Neonatal ptasmirJDfendisplays altered cell surface bradlng and activation HTVH;™ Correlation with increased glycoiyl-arjoo of the protein. J. Of*, /mar . M. 107-112.

26t. SuckM.S., Plno.S.V. and Oonzalez-Grooow.M. (1992) EfTect of desiaryiadoo on die biologicalproperties of human ptasminogen. Siockrm. J., 184, 11-86.

269. Wabh.M.T.. WatdawictH., PWoamJ.W., SctamdJL and BrossroerJL (1990) Effea of thecarbohydrate moiety on the secondary structure of beta 2-gfycoprotcin. I. Implications for thebiosynthesis and folding of gtycoproteiBS. Biocbemutrj, 29, 6250-6257.

270. Lemch.C, Pannell JL, HenkmJ. and Gurcwich,V. (1992) Hie influence of grycosylarioa on thecatalytic and Dbrinorvtic properties of pro-urokinase. Thromb. Harmon., 68, 539-544.

271. ParadJLB., KramerJ., StnmkJLC, RotenJ.S. and D«vis,A.E. (1990) Dysfuoctional CllnhMurTa:oeletknofLyi-251 results tn acontiitioo of an W-grycosytadon sat, Pmc. Sat AaxLSet USA. 87, 6786-6790.

272. GralrJc*,H.g., WUUams^.B. and RickJU.E. (19O Rote of catliouydialr w muMmcric stracmreof bdor VHIATO Waknrand factor protrto. fwc NmL Mod. Set USA. 80, 2771-2774.

273. BertowteJ.D. and Ftderia^Ai. (19tg) Salic acid prevents loss of large von Wtnebrand factormuhnnen by prottoing againB amun-terminal prouolytic cleavage. Blood, 72. 1790-1796.

274. Federid^.B.. ElderJ.H.. Oe Mareo0_. RujgCTi.Z.M.tnd Ziromennan.T.S. (1984) Carbo-hydrate moiety of von WIDebrand factor Is oot necessary for mahxatning murtinicrk structure andr'tvnrrttn cofaoor acdvhy bm protects from proteoryric dtgiadatlun. J. Qbt btvttL. 74.2049-2055.

275. Kcnicr.C.M.. Flovd.C.M.. FrmaJI.C. and Ortboer.C. (1990) Critical role of the carbohydratemoiety in human von WUlebraad factor protein for rmrrtmnm wfm type I coOagen. Thrvmb. Aer,,57.59-76.

276. Langei J.O. , WcadJ.W., Dbavcr.P.A., Nagaswami.C. and BeO.W.R. (19S8) Degtycosylaacmof Bbrlnogtn aixekiam porymerizadon and increases lateral aggregation of fibrin ftbera. / Bid.Otm., 2O. I5O56-15O63.

277. Dng.C.V., Shrn.C.C, Bdl.W.R.. Nagaswinn.C and WeisdJ.W. (I9S9) rtbnnogcu skuc acidresidues are low afflniry caicinm-binalttg sflo dm Influence fibrin asmUdj. J Biot. Cbem.. 264,15104-15101.

278. Grmuack.H.R., avdberJL and Abrcra.E. (1978) Dysfibrinogenenna assorialrfl wtdi l»|—Increased caitmuydiale conten of dK fTbrinogeo mokcule. N. EnfL J. UaL. 2M. 221-226.

279. Dawson.N A., Birr.C.F. and AMngJ.M. (1985) Acquired dysTMnogenemla. Pr-n^irJ^L-syudjume in renal cefl ctrcinoma. Am. J. Med., 78, 682-686.

280. Maeluwa.H.. YamazsmiX, Mcramatsn^.. KanekoX., Huili.H., TakzhasM.N., Arocha-PlSango.C L.. RodrignezJ., Nagy.H.. Perez-ReonejoJ.L. and Matsoda.M. (1992) FibrmogenLun: A horoozygous dysHbrinogcn with an Ao-arginine-141 to serine substituooo im4^*A withcura W-gfvcosylanon at Ao-asparagiae-139. Impaired fibrin gd formation but nonnal ftbnn-faHllrrrrd pbsminogen activation catalyzed by tissue-type putsminogen acuvalor. J. CUn. hml..90. 67-76.

281. WatzlawtcUL. WabhJ^. T.. EhrhardJ.. SbyterJLS., Hauptjl.. SdrwicULa. Jourdnm.C.W..Hnc£., Sdtmid.K. and Brossmer.R. (1991) The effea of the carbohydrate moiety upon die sizeand conformation of human plasma galactogrycoprotein u judged by electron microscopy andcircular dicluoisiu. Smcmral studies of a grvcoprotein after stepwrw enrymic carbohydrateremoval. Bhthm. J., 277, 753-758.

2(2. ChoM-DuncUrJ., RouJ.B. and Creenjl. (1991) Expression of biologically active bmnancorticosteroid binding glnhnlin by bttoct ceQs: arrimsiTion of fuuoiou icouiies gfycosyiation andtransport. Fnx. Mai Acai. Sd. USA. 88, 6408-6412.

283. Oenrd.C. and HugJi.T.E. (1981) MnrrifVatkin of danical anaphybioim as die des-Arg form ofthe C5a mokculc: evidence of a "•"•*"'""•• rote (or the oljgmarrhirlde unh in human des-Arg74-C5a. Fnx. Mat Acad. Sd. USA. It. 1133-1837.

284. Luo.C. TOckrnHN.M.. GagnonJ., GtU. . SarvariJ^.. Tseng,Y., TosiJU., ZavodszkyJ>..Aibou,CJ. and Scbunaxer.V.N. (1992) Recombinant human coroplemem mU-m,,n.lt Clilacking g-aydiruyisi«i iginr, siaoc add, and one of its two carbohydrate chains stQQ reassembleswih Clq and Clr to Conn a functional Cl compLex. Biockrwdury. 31. 4254-4262.

283. Godfroidi and OcarveJ.-N. (1990) CBycosyuuion of the amyloid peptidc niecui-soi """"""gthe Kimin protease inhfljiior domain Improves me rnlribfrinn of trypsln. Biodnm. BlcfJrp. Ka.Cam*.. 171, 1015-1021.

286. OrimaldU.. RobbinsJ. and Eddboch.H. (1985) Infraction of carbohydiile and proem inthyroxine binding globulin. rfedWmfnry. 24. 3771-3776.

2S7. Cheng J . . MorroocS. and RobbinsJ. (1979) EfTect of deglycosylanon on the binding andimmunoreaoMty of human dryroxioe-brndmg globulin. J. BioL O m . . 254. 8830-8835.

288. Jceprj.D.R.. LjwrmccW. and Duao.BJ. (1992) Tbe role of asparagini-Hnked oUgosacdaridesin the srirnrrrft SUUOUJC, steroid h*rwB»g tod secretion of androgen-bindmg protein. MoLEMtoabxL. t. 1127-1134.

289. Lnhn,C.A. (1991) Tbe rote of gfycosyumon in the hioayntliesis and attiilililun of Dgand-bindingacrivhy of the fooue-binding protein in entered KB ceDs. Blood. Tl. 1171-1180.

290. Bcnina,R.M.. Ploos van AmseUfJL, van Wrjngaarden^A., CoeaenJ.. I ir inlinii.M.P.. Deuu-TerlouwJ'.P., van der UnoenJ.K. and RetanaJ'.H. (1990) Heerten porymorprasm of proteins,an immnnologic ^ujuul i l iui due » dimorphism of residue 460. Blood. 76, 538-548,

291. BemardJ.A.. YamadaJCM. and ddenJC. (1982) Carbohydrates selectively protect a specificdomain of fibroncabi against proteases. J. BioL Otm.. 257, 8549-8534.

292 UngevddJ P.M.. NoefkenJ^.E.. Hard.K.. ToddJ>.. ViiegtnthanJ.F.O.. RouieJ. andHudson.B.G (1991) Bovine glomemlar basemeot membrane. Location and structure of theasparagioc-llnted oltgosaccharidc units and their potential rok in the assembly of the 7 S collagenFV tetramer. J. BioL Ctow.. 26*. 2622-2631.

293. Kdm,RJJ. and MannJC.G. (1991) Tbe cottages bintting speciricity of bone and plateletotleuuectui a reined to differences in grycosylatioo J. BioL CVm.. 266. 9632-9639.

294. Sieker.LJ.. Marttnsen.T.M. and Lane.M.D. (1986) Synthesis of epidermal growth factormiuuii in human A43I <<W Crycosyiuioa-depenaem aroorthlra of ligand bmdiig activityoccurs poB-transbuionally in the r^A^im^iur reticumm J. BioL Orm.. 261. 15233.

295 CaroJ.F.. CecchouF. and SinJa.M.K. (1984) Is giycosyuaion m the liver needed forinsulin binding, !••«• m^lg and action? Evidence for heterogeneity. /. BioL Chem.. 259.I28I0-I28I6.

296. Duromo.V., Jacobs^, and Cunrecasas.P. (1916) Complete gryenyraaoo of die insulin andtnsu!in-10w growth factor I receptors is not necessary for their biosynthesis and fuumoii. Use ofswainsonine as an ismbimr in IM-9 ceDs. 1 BioL Owm.. HI. 970-973.

297. PodstmlnyJ.M., RouOkrJ} G.. Grunberger.G., Baxler.R.C.. McEktuff^. and GordenJ1

(1986) Grycosylation defects alter utwlin but not imulm-likr growth factor I bmdmg c Chinesehamster ovary cdls. J. BioL Otea.. 2al. 14076-14081.

298. Duronio.V.. Jacobs^., RomeroJ>.A. and Herscovics>. (1988) Effects of inhibitors of N-Unkedoligosaccnaride processing on the biosvnthesis and function of msulm and insulin-tike growthfactor-) receptors. / BioL On*. . 263. 5436-5445.

299. LecomJ.. Auzxn.C, DebanuA.. Rossi3. and Ctauser.E. (1992) N-linked oltgusacchandechains of the tnsulm itceptu 0 subunil are *****n*\ tot ovttmembrane signaling. J. BioL Ottm..2*7, 17415-17423.

300. FdgeJ J. and Bairfl\A. (1988) CHycosylatioo of the basic fibrobtast growth (actor receptor Theconttftuooo of carbohydrate to receptor function. J BioL O*m..263. 14023-14029

301. Rens-Domiano3. and Rcicnc.T. (1991) Structural analysis and functional role of the carbohydrate. ••mMMH'w of somamttatin icteutuis. J. BioL Oiem-, 2*34, 20094—20102.

302. DiamoorLM.S., StaunmcDX., MariinJ.D. and Springer.T.A (1991) Binding of the integrinMac-1 (CDIlb/CDIS) to rhe dnrd immunogiobuUn-like domain of 1CAM-I (CD54) and iuregulation by grycosyiadon. CtU, <5, 961-971.

303. AkryaimuS.i:.. YamadLS.S. and YamadaJC.M. (1989) Analysis of the role of gtycosytation ofthe human Gbronaom receptor. J. BioL Otm.,164. I8OI1-ISOI8.

304. Koyama,T. and HoghesJLC. (1992) Functknal integrins from normal and grycosyladoo-deftcientbaby hamster bdney cells. Terminal [•~-^*lllg of asparagine-linked oligosaccharides is notcorrelated with Sbronecon-bmding acnvity. J. BtoL Ottm.. 267, 25939-25944.

303. KccajM.A., LutberX.A.. KnoppersX.H.. Nexlhanlt,E^A.. Khandekar^.S.. Coodoo.M.F ,SdmnitJ>.A.. FrandsJ^.A., Moeb.nl.U.. ReinboldJ.B.. Reinhold.V N. and Retaberz.E.L.(1992) tf-grycosylatioo is required for human CD2 immnnoadbesioo functions. J. BioL Chtm..267, 22428-22434.

306. LublKO.M.. GriffithJLC. and AtxiBjorJ.P. (1986) rnflnence of gfycosytarJon on tOeUc andceO-spedfic Mr variation, leceuux processing, and ligand binding of die human aanplcnicntC3MC4b receptor. J. BioL O*m.. 261. 5736-5744.

307. Web J J. and FearonJS.T. (1983) Tbe idendAcarion of N-Unfccd oligosaccharides on me humanCR2/Epfiem-fiarr vims loteuujl and their fcnc&oo in leceuuji mrrabnliim. plasma lueoibiaileexpression, and ligand bmdmg. J. BtoL Oum., 2U. 13824-13830.

308. WeUa-Y.. BnmtrrHrJ.-M., BeDX.. CbncC, NiboajL, Browna^A., Pfav.l. and MdCetnJJJ.(1991) Fimaiooal effeco of N-unked oligosaecharides located on the enemal domain of murinedass D mofacuies. J. bmwxoL. 146. 2358-^2366.

309. Nag.B.. PassmoreJ}., Kendrick,T.. BhayaaUL and Sbarma.S.D. (1992) N-linked ollgo-saccharides of marine major MjiocompuibilHy complex dass U molecule. Rote in anttgemcpepdde bmding, T cell recognition, and donal uumespousiveness. J. BhL Chut. 2(7.22424-22629.

310. JIX. Slaughter JLO. and Ji.T.H. (1990) N-Unked oHgutati hamin are not reouired for bonnootbinding of the tatropm receplor m a Leydig tumor cefl line and rat granuksa cells. Endocrfnotoxy.127. 494-«96.

311. OoJU.. HulA.C and OiacommiJCM. (1992) Inhibition of N-ltaked gtycosyladoo affectsorganic cation mmspon across the brush border tucuuiiauc of opossum kidney (OK) rrih J. BioLCWM..247, 133-139.

312. FeugeasJ.-P., Ned.D.. PiruuA.A.. UahanvA.. Oontsanrt.Y. and Derappe.C. (1990) Grycosyl-atioo of die human ciyduucyu glucose transporter is rssemial tor glucose transport activity.Bioddm. Bicftrp. Aaa Blo-Mtmbr.. 1030. 60-64.

313. FeugeasJ.-P.. NedJJ.. Goussault.Y. tnd Derappe.C. (1991) C-lycojylsooo of the humanerythrocyte glucote transporter A minimum structure a reouired for glucose transport activity,gfcettx. Biopkyt. Aaa Bio-Mmbr.. 10tt, 59-62.

314. Asano.T., Katagiri.H., Takata.K., UnJ.-L., Ishiharajl.. InukalJC.. Tsukuda.K.. HknchiX..HlranoJI.. Yaab, Yjnd Oka.Y. (1991) The rote of W-glycosyuttion of GLUT1 for glucosetransport activity. /. BioL Orm., 266. 24632-24636.

315. Smouya,K., ChibaJ.. Miyagawa.K.. Kitamura,T., MiyazoooJC and TakakuJ. (1991)Structural and *••• 'fa ' analyses of grycosylatioa on the distinct molecules of human GM-CSF

. receptors. Ear. J. Bkxhtm. 198. 6J9-666.316 CaseyJ.R.. Prrraglia,C.A. and Rdduneier.R.A.F. (1992) Enzymatic degrycosytarJoo of human

band 3, die anion rxansport protein of the erythrocyte meinbiaue. Effect on protein structure andtransport properties. J. BioL OOL.W. 11940-11948.

317. rflaomryaji.. StewaruB.H.. RoUim.S.A.. ZhaoJ . Borh»en.A.I_M. and Snm.PJ. (1992)Contribution of the N-lmkcd carbohydrate of erythrocyte antigen CD59 to its complement-inHbicory tctrrny. J. BioL Otm.. 267. S404-44IO.

318. Sdlet.G.L. (1985) Deglycosyuued mammalian beta 2-adrenergic receptors: effect on radinllganibinding and peptioa 'l"|TJ"g Arch. Btodttm. Btophyt., 237. 65-71.

319. George^.T., RnobojCE. and Malbon.C.C. (1986) N-GJycosyUooo in expretsioa and functionof fl^drencrgic receptors. J. BioL O m . U l . 16339.

320. BoegcF.. Wtrd.M.. tenJL. HeknatM. tad Hftmrrirh.EJ. (1988) Role of grycosytatioo forbeta 2-adrenoceptor function In A43I ceto. / BioL Otm.. 263. 9040-9049.

321. Frost,0 H.. BergmamU.S. and Carney.D.H. (1991) Grycosyladoo of rrigh-afflnhy tniuuibmleceutois appears •"•' I ' T for dtrombin binding. Biochem. BhpkjL Ra. Com—* . 180.349-333.

322. Ptrcryk.K. and Koch-Bnndt,C. (1991) The role of carbouyiliaies In vectorial ciocymo: Tbeseu etiuu of the gp 80 glyuptotein complex In a ridn-resistant mutant of MDCKceQs. FEBSLttL.278. 267-270.

323. HunULC. Ricgfcr JL aad DavisA-A. (1989) Changes m gtycosyumoo aber the affmky of diehuman transferrtn receptor tor its Ugaad. J. BioL Chtm., 264, 9643-9648

324. HocM.H. and rrnm,g-C. (1992) Loss of one asparagine-unked oligostfcharlae from humantraorfcrrto rcccpton rexubx in specific dtsvue avnrf mpf TrHtfan with the f ^J. BioL Otwi.. 26

323.

326.

J. BioL Otwi.. 267, 4916-4923.WuUmtsA.M. and Enra.C.A. (1991) A mmated tnnsferrin receptor lacking asnaragme-linkedglycosylaoon sites shows reduced functionality and an tir^i•*•"•" with binding immnaogiobulinprotein. J. BioL O*m.. 266. 17648-17634PtaoJ'.M., •Jrtssoo.G J . and Jacob.G J . (1992) Modulation of ceU-strrface rrtmfcrrin receptorby the mine sugar \-butytdeoxyno^ririiycin. Ear J. Ekxhtm.. 208. 187-193.

119

Page 24: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Vaitt

327. Smah.M.M.. ScUesnger.S.. UndsromJ. and MerlieJ P. (1986) The effects of inhibitingoligosaccbaridc uiuuiiiug by I-oeoiynojmmycm on the rocodnk acerykholiiie itccyux. I. Bid.Orm., 261, 14825-14832.

328. Q Battari.A.. Forget,P.. Fouchier.F. and PIc.P. (1991) Effect of inh&itiag /V-jrycrjayiaooa oroligtaaiUiaridc processin| en vaioactrve intestinal prpude receptor binding activity aad structure.Biochtm. J.. 278. 527-533.

329. Wiej.M. aad EdWio.M. (1988) Constraint of die translation! diffusion of a n»ml. . , - gryco-protem by in external rfnm™ S d m , 242. 412-414.

330. Jans.O.A.. JEM.P.. I itrtn.H. and Fahrtobob,F. (1992) N-Qycosylatioa plays a rote to bio-synrhesis tod imcrnauzauon of die adenytate cydase nhmitthig »a»opieuin Vj-receptor ofLLC-PK, renal epubdial cdls: Ail effect of concanavalin A on bindin| and expression. An*.Bicdum, Mopftjs.. 294. 64-69.

331. ran Koppen.CJ. and Nathansoo.N.M. (1990) Soe-dlrected . . - . i^- , - . . . of die m2 mnartocacerytcholine receptor. Analysis of the rote of Mflycosylation in 1104x1* expression and function.J. Bid O m , 2*5. 20887-20892.

332. FUiponcJ. (1989) Effect of InMboiag rV-gtycosyUrion on the lability and binding activity of Ibelow demity lipoprotein receptor. J. Bid Otm.. 264. Ml5-8820.

333. Fucher.T.. Thoma.B.. Scheunch.P. and PfizenmaterJC (1990) Grycosylarion of the humanimerferon-gamma receptor. N-linked carbohydrates coaribote to structural beterogeoeity and arerequired for lifand binding. J. Bid Otm.. 265. 1710-1717.

334. Fouawilabi.M. and Gentt.R. (1992) Effect of gfycoiytitioo 00 properties of soluble imerferongamma receptors produced in prokaryodc and eukaryodc ejuiieulou systems. BioTiduulogj. It.1143-1147.

335. Brcitfetd.P.P., Rnp.D and Scbwara.A.L. (19*4) Infloence of die N-Untad oiigosaccharidei oarhe biosynthesis, mtracdtular routing, and function of the taunan asialoglvcoprotein receptor.J. Btd Ottm., 259. 10414-10421.

336. Wmdknd.M.. Waheed^A.. Schuat.B.. HUlcA.. Nagd.0.. mo FIguraJL and Pohlmana.R.(1991) Gryratyiadon of the ifr 4«.0TO ramote 6-pbo«pbate receptor. Effect on Ugaad binding,stability, and conformadoa. J. Bid Ottm.. 266, 4598-4604.

337. HogneJJ.U. HodponJCC. and Caii.C.E. (1990) EffeCT of uthftakjoof rWinbrf grycotytadonby tumcamycla on nuckoside trmmport porypeprides of L1210 leukemia cells. Biodrnn. CtO Md.68. 199-209.

33». Komgjl.. Ajhwell.G. and HanoverJ.A. (1988) Olycosytadoo of CD4. Tunicamydn inhibitssurface expression. J. Bid Ottm.. 263. 9502-9507.

339. TifFuCJ.. ProaJLL. and CEDcrini-Otcro.R.D. (1992) The foidmg and cdl surface expressionof CD4 requires grycoryladon. / . Bid Oitm., 267. 3268-3273.

340. Rimrj.D.. Charmhilr.O.D., Nagayama.Y., WadjworrhJl.L. and RapoportJ. (1991) Site-directed mutagrnrrli of me human tbyrotropis rtie)nui. Rote of asparagme-liaked ougosac-cfaarides in rhe expreauoa of a functiooa) receptor. UoL Endocrixd, f, 29-33.

341. Keatmg.M.T.. Harryman.CC and Wainni .LT (1989) Platelet-derived grown factor receptorindncibilrty U acquired I mlim ly after tramlarion and does not require glycosylatioa. /. BidOtm.. 264, 9129-9132.

342. SheldonJ-J. and Bowlei.DJ. (1992) Tht glycoprotein precunor of coocmniyaUji A it conratodto an active kctin by defrjreofybnion. EMBO J.. 11, 1297-1301

343. Mta.W., DumvA J. and Jooa.D.H. (1992) Noo-glycosylated i ~ - » i N ~ « pro-concanavalin A isacsvc without polypepade deavagc EMBO)., II. 1303-1307.

344. Orto.A.H. and Vojd.C.-W. (1989) The olifosacchande chams of cobra vtnom Etoor arerequired for 1 imifili limit •ctrratkn. UoL bummoL, 26, 563-574.

345. DcxierJ. and Srroos.OJ. (1990) Covalea oiijomertiation of rat antrfc nmichi occurs in dierouiji endnptjimig irtmlim it w^yr^yi-i^-w^j-.-t. , , , .nH J—TTI^* "M'< O-gryctBTiatioa.J. Bloi. O O R . . 265, 18116—IS122.

346. UgrandJ).. Mazurier J., CotavtmJ)., MontrcullJ. and SpitO. (1990) Properta of rhe iroa-budnit site of tbe N-tenninal lobe of buman and bovine lactotransferTtan. bnparDmceof tbegrycasmoiety and of die noo-covalent luoiactluus between the N- and C-vaminal lobes is die stabilityof die iron-Mafias site. BUxhtm. J., 266, 575-511.

347. OordonJrt.M., Hn,C, CboksWJl.. HewinJ.E. and AlpersJJ.H. (1991) C31ycosylatio« a mrequired for Bjand or receptor binding by apressed rat intrinsic factor. Am. J. f+yttoLCimrobata. Ltvrr fkjsioL. 2*0. O736-G742.

348. ShlfrtnJ.. ConsiiiB^. and Kooni.D. (1983) Effm of rhe c o o n ^ cmrbolivdiata moiety on rhestrocture of rhyrogiobulhi. / . BloL OHM., 258. 3780-3786.

349. FenottineuE., Fayet,O.. Hoviepian^.. BahraoulX.M. and Rooin.C. (1916) Inevidence for a role of complex carbohydrate chains in thyroglobtUin antifeocity. / Bid Orm.,261. 15153-15158.

350. Maione.T.E. and Jatendorf.A.T. (1984) Partial deglycosyhmon of chtoroptast coupling factor I(CF1) prevents rhe rrmmHinnon of rAotopbosphorylatkn. Pwc Nad. Aaxi. Set USA. 81.3733-373«.

351. Struck,D.K.. SiutaJ.B., Lane.M.D. and Loman.W J. (1978)Erfectof tunicamyemonthesocre-tjoa of serum proteins by primary cultures of rat and chick nepatocyies. Studies on transferrii),very low density lipoprotein. and serum albumin. J. Biol Owm.. 253. 5332-5337.

352. Lodfah,H.F. and Kooj.N. (1984) CBucose removal from N-Uaked oli(osaccharides is required forefficient iniiniiiirw of certain secretory grycoproteiQs from rhe rough - • • ^ • • m t - Tthe Oolgi complex. J. CM Biol. » , 1720-1729.

353. Pan.Y.T.. Hori.H. aod Hbdn^A.D. (1987) The effect of glyc .protean* g inhrbilors on thesecretion of glycoproteins by Madln-Oarby canine kidney cells. Biodum. CHI BhL, 65.345-353.

354. Yeo.T.K., YeoJC.T., ParcaJ.B. and OUcn.K. (1915) Swainsonme ueauueul —"•-•—r im*-cellular transport and secretion of glycoproteins in human hepatona ceOs. J. Bid. Oitm.. 260,2565-2569.

355. LodlsliJi.F. (1988) Transport of srnrtijiy and membrane glycounnems from the roagh endo-prasmic rrtimhrm D the Golfi. A rate-Umiring step in protein matuialiuu and secretion. /. BidOum.. 263, 2107-2110.

356. Driomch_A.. OooneU>., Makkie.M., Uine^. -C. and Faye. U (19S9) Tberoleof Mgb-mannoieand comptei aspaiaglne-linked gtycarn in rhe secretioo and jability of glycoproteins. flm, ISO.96-104.

357. Ob-cchuM., UasegawaJiC. HaooriX. Ksbooiwa.H.. Kojima.T.. Orm.T.. Tomooou.K..Yamazaki.T. and OcU.N. (1990) CHmted mgar chain of buman grarauocyte coh^-sdmutatkiifactor protects it against porrmertoujoo and duauuniion aDowiog it to retain its bioiogicalacthmy. J. Bid Oum.. 265, 11432-11435.

358. WoodwanUl.D.. Rinxlcr.NJ.. Setvakumar.R., SlmcU.M.. BtaamBmdin,V.P. andD»rvid»onJ^(l987)r>grrcosrlati«stDd>sonlradicalr»c^5315-5322.

359. Sbogrenjt.. Oerten.TJk. and Jentoft,N. (1989) Role of glycosytation on the coofonnatian andchaindimeosioas of O-Qnked gfycoproteins: Ligfat-tcaiteiUig «""<i of crvint scbmuiUtry """'"Biodmrniar/.n. 552J-553«.

360. NainurLY. and Lcmze>IJ. (1992) Impact of O-grycosytalion on d s fusccon of hms&a t"i»«Jii'»ibctase-pUorizio hydnJase. aoncterizatioo of giyciifuiua varying in enzyme aarrily andlocaliorjon of O-grjrcoside ****n™< J. Bid Ckex.. 267. 25494-25J04.

361. DsrvieaJM. and Hrw.C.L. (1990) Biochemistry of fob amifreexe pmems. FASES J.. 4.2460-2468.

362. WUllannon.G.. Bdshaw.NJ.. Nod.T.R.. Ring^.G and Wnfiamscn.M.P. (1992) O-glycosylatioii and stabdiry—UnJblding of ghKoamylase indoced by beat and guamdiiienydrochlonde. Ear. J. Biod*m.. 207. 661-670.

363. SadkrJ.E.. PaulsonJ.C. and Hill. R L. (1979) The role of sialk acid la the eipreision of bumanMN blood group antigens. / Bid Oum. 254. 2112-2119

364. Prohaskajt.. Kaeroer.T.AJ.. ArmnageXM. and Farrhmayr.H. (1981) Chemical and carbon-13nuclear •^pwir runmnrf studies of the blood group M and N active sialogfycopeptides fromhuman glycophorin A. J. Bid Oum.. 256. 5781-5791

365. O'ConneflJJ., Cerkn.V. and O'ApkxAJ.F. (1991) Variable O-glycosybuion of CD13(smbopepridaie N). J. Bid Ourn.. 266. 4593-4597.

366. Davis.C.G.. EDwnmti.A.. Rimdl.D.W., Sdmeider.WJ.. Komfeld^.. Brown.M.3. andGoldstemJ.L. (1986) Odctioa of clustered 0-imked carfaohydiates docs not t rn** funcDoo oflow density Bpoprotdn receptor u transfected fibrooUja. J. Bid O n . 261. 2828-2838.

367. SbneJ., Segucai.T.. Yothid>,T.. KohnoJC.. Ono.M. aad Knwaao.M. (19S8) A new classmutation of low density Upoprotein receptor with altered carbohydrate chains../. Bid Cheat., 263.19286-19289.

368. Kuwano.M.. Segucbi.T. and OooM. (1991) Grycosylmon mutatiora of serine/rhreomne-linkedrrllriTw fliinftn la low-density lipoCTOtrin rcccpcor*. lnftHp**nnMf rala ot O-ctycosytuiocL/. Cffl ict .98. 131-134.

369. Srgirfri.T.. MerkleJtK.. Oao.M., Kawano.M. and Cumminp.R.D. (1991) The dysfunctionalLOL ruxptu in a monensin-feslsant mutaal of Chinese hamster ovary cells lacks selectedO-Uaked oligosaccharides. ArdL Biodum. BScfhyl.. 284, 245-256.

370. Roghani jk. and Zaonis.V.I. (1988) Mutagenesis of the glycosylation sue of human ApodJL 0-Unked gtycosybnkn b not required for ApoCHI secredoo aad liptd buamg. J. Bid Own, 263.17925-17932.

371. Mama-X M.. Krieger.M.. Corlcu.C.L. and BoimeJ. (1987) Effects of preventing 0-glvcosYtanon on the secretion of human chorionic gonadotropin in Clnrrsf hamster ovary cells.frxx. Had. Aad. Sd. USA, 84, 6354-6358.

372. Chrn.W. and Bahl.O.P. (1991) Recombmanl carbobydrate variant of humaa choriogonadotropia-subtnnt (bCGp*) descarboxyl terminus. (115—145). Expressioa and characterization of carboxyl-

terminal dektkn mutant of bCO/S in the baculovlrus system. J. Bid Oam-.lt*. 6246-6251.373. LeBaroaJLa.. HoSi.A.. EskoJ.O.. Gay.S. and HoStM. (1989) Binding of heparan sulfate u

type V collagen. A n»«-t.™tpn of ceU-substrate adbesioa. J. Bid OOL. 264, 7950-7956.374. YurchcncoJ> D . Cheng,Y.-S. and Scnlttm-J.C. (1990) Heparin modubbon of tanulin porymer-

Iratioa, J. Bid Oitm., 265. 3981-3991.375. StowJ.L.. Soroka.CJ., MacKay.K., StrikerJ_, Snfter.O. and FarquharX.O. (19S9) Basement

umnbrme befwru sulfkto pcoccoglycvi it tbc m m pnecoytycu lyocbcuzcd by fkxocrtittfepithelial cells in culture. Am. J. fahd, 135. 637-646.

376. Carey.OJ.. CmmblingJ}.M., StaUJLC. and EvuaJD.M. (1990) Anociaooo of cell surfacebeparaa sulfate pronogrycans of Schwaan cells wnh extracellular matrbt proteiiis. / Bid Oheai,265, 20627-20633.

377. S*unden.S. aad BernfiekLM. (1988) Cell surface protaoglycan binds moose uiauauaiy epithelialcells 10 fjbroaecdn and behaves as a recepnr for rrontirial matrix. J. CtU Bid. 106, 423-430.

378. Yamagnchi.Y and RuoslahtiX- (1988) Expression of human proteogrycaa ia Chirjese Uamsmovary cells inhibits cdl prolifcnnoa. Heart, 336, 244-246.

379. UBirooJLC.. EskoJ.D., WoomvA.. Johansson^, and HookM. (1980 Adhesion ofgivcosaminoflycan-dcfkient Chinese hamster ovary ceD mutants to flbronecrin snbimta. / CtUBid, 106. 945-952.

380. BldanseuDJ.. UBaroaJL. Rajenberg,L.. Murpny-UllriczuJ.E. and HookX. (1992) Regulaooaof ceU substme adhesion: Effects of smafl |^lac»osan*>oglycan-containiag proteoglycans. y. CMBid. 118. 1523-1531.

381. DdaJ., SkubtxA.P.N., FurcsuL.T.. Warneri.A- aad McCantayJ.B. (1992) Coordmne rolefor ceD sarface cbondroidn sulfate piuieuglycan and o*B\ integral in "~<»^"f mtlauuma ceDadhesion ID flbronecdn. J. CM Bid. 118. 431-444.

382. EaghOdJJ.. Salvesen,G.. HtfoJ.A.. ThogerseaJ.B.. RutbermrdJ. and PtttoJ.V. (1991)Choadroirin 4-sulfate covalenrly cross-Unks rhe chams of tbe human blood protein pre-o-moibaDr.J. Bid OHM.. 266. 747-751.

383. KapseabergJlL.. Sdetona,F.E.M.. KalhnuA.. BojJ.D. and RocarmoadJLC. (1989) Tberesli'mive roW of sialic add in antigen presentation to s subset of buman puipbejal CD4*T lymphocytes the requires araigen-presamng dendritic ceUs. Emr. J. bmamd. 19. 1829-1134.

384. Ardman3.. SJionkJ.Mjk. and Slaunma.D.E. (1992) CD43 iulufnes with T-lymphocyteadhesion. Pwc Ned. Acad. Sri. USA. 19. 5001-5005.

3S5. van Meer.O. and Simons.K. (1988) Upid polarity and sorting to epithelial cells. J. OB Blodm..36, 51-58.

386. van Mecr.G.. Stetzer.E.H.. WijnaendD van ResandtJLW. and SimonjJC. (1987) Somag ofspUngollpals in epithelial (Madin-Oarby canme lodney) cells. J. Cttt Bid. 105. 1623-1635.

387. Browu,D.A. and RoatJ.K. (1992) Sorting of GPI-ancbored proteins to gtycoUpid-earicbedmembrane tnrrlmmnn during transport 10 tbe apical cdl surface. CtU, 68. 533-544.

388. Dotti.CG.. PirtDoJLG. and SimoraJC. (1991) Polarized sotting of grypialed proteins tohmpocampal neuions. Naturt, 349, 158-161.

389. Cooper.D.N.W., Masa^.M. and Barondes^.H. (1991) Endogenoas muscle lectln Inhibitsnrrobhtn adhesion to lammin. J. CtO Bid. 115. 1437-1448.

390. Zbou.Q. and C lnfi.R P (1990) The S-type Lecrm from calf bean dssue binds setecttvdy tothe carbuliydiale coaim of lamlnia. Ardu Biodum. Bhfmjs., 281, 27-35.

391. Woo.H.-J.. Lotz.M.M., JuagJ.U. and Mercario^.M. (1991) Carbohydrate-binding proton 35(Mac-2). a lamtma-binding t^f^n forms ftn^t^ml dimcrs using cysteine 186. J. Bid Ottm.,26t>. 11419-18422.

392. RosenbergX. CbcriyUJJ.. UsdbacnerJU. and PObu S. (1991) Mac-2-bindiag gl»i<4)li.ilrlinPutative ugands for a cyttaolic 0-galactoside trctm J. Bid Oitm., 266. 18731-18736.

393. H M O . , Wram,DJ.. Mectam.R.P. and BaroodesJ.H. (1988) The dasnn retepiu. agabcmaide-bindtag protein. Sdna, 239. 1539-1341.

394. McchcnJLP.. WtutebouseX.. Hjy.M.. HineiuA. and Shmr.MJ. (1991) Ugand affmity of die67-kD etafiin/banimn binding protein b modulated by die nrotem's lectln domala: Vbualizatiooof elastin/laminin-feceptor complexes with gold-agged Hgands. J. CtU Bid. 113. 187-194.

395. LemanskyJ'., Fateml^.H., Gorican.B., Meyale^.. RosseroJL and Tanakoff.A-M. (1990)DynamiaandkngevltyofrhegryailipU-aactDrednietnbnmeraT^^ CtU Bid. UO.1525-1531.

396. BbaskarJLR.. OarikJ'.. Tumer3.S.. BradleyJ.D., Bansfljl., StanttyJl.E. and LaMonU.T.(1992) Viscous fmgermg of HO throorh gastric mucin. Namrt, 360. 451—461.

397. Martwen.M.A. and PaulsonJ.C. (1980) Sendai virus adbzes specific rialytoUgosaccbarides ashost cefl iixqum •^trnr^r^n Prx. fad. Aad. Sd. USA, 77. 5693-5697.

398. MarkweUJ>4.A.. Svnmrrholm.L. and PaubonJ-C. (1981) Specific gangftmirtn function as hostceD receptors for Senon rints^Proc Nad. Acad. Set USA. 78. 5406-5410.

399. CarroUXM. and PantaoJ.C.-(4«5) Difreremial infection of receptor-modified bos ceDs byreceptor-specific bfraeuza viruses. Vina Ra-, 3. 165-179.

400. Rogers,G.N.. Dmicts.R-S.. SkrheUJ., WDeyXI.C.. WangJCF.. HlgaJLH. and PauisoaJ.C.(1985) Has-imdiited - ^ ^ - of tofbienza virus receptor variamx Sialic add-alpha 2.6Gau-spedfic doses of Vduck/Ukraine/1/63 revert to sialic acid-*lpha 2JGat-specifk wOdrypetaovo.J. Bid Otm.. 260, 7362-7367.

120

Page 25: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles or oligosaccharides

401. Suzuki.Y.. Sumb.T.. M n u n p . M . and Mmmnu.M. (I9S5) GangUosides as paramyxovirusietr|j<ui. Structural lequiiemcrfl of sialo-otlfosacchiriacs m imxpms for hrTnaqr"tl"*ring virusof Japan (Sendai yina) and Newcastle disease virus. 7. M a . (Toho). 97. IIS9-1199.

402. Sazub'.Y.. Mimrmp.M. and Mauamoto.M. (I98S) W-AatyincurarriiriyuactnsylcrraTrode.GM3-NeuAc. • new mftnenza A vina rectum wtucb medaaes the admpiioo-fusiop process ofviral iofectioa. Binding specificity of tnftueaza vina "A/Aicm72/68 (H3N2) to uieuibiafic-•nodnedGW wto aWcreffl n»lecuiaT species of sialic add. / Slot Otm.. 260, 1363-1363.

40}. ftoferi.G.N..Herrier.G.. PaulsanJ.C. «nd Heok.H.D. (1986) Influenza C virususei 9-O«xryl-rV-acetytneuraminic add as a high affinity tixqmji determtnanl for ••'• I'nr •• to cells. J. BioLCVrm., 261. 5947-5931.

404 Herrler.G.. Remer.G.. R00.R-. KlenkJl.D. md SctaocrJt (1917) M«xtyl-9^>KXIytacunmnKacid, me receptor determinant for inftuenza C virus, is a differentiation marker on rtnrtrneryrhrccytes. I M Ctan. Hopot StyUr . 361. 431-454.

403. Herrler.G., Ron.R.. Kknk.H.D.. Muller.H.P.. ShukhuA.K. and Schanerjt. (19*5) Tbereceptor-destroying enzyme of influenza C virus b netmnunse-Oacetyttslense. EMBO J.. 4.1503-1306.

406. Wia.H.H.. Rogen.G.N. and PanliociJ.C. (I9S5) Inflaenza virus hunaajJuOuim duTerenmuebcrweeo receptor detenniiiaiia bearing S-tcaj\-, N-grycoryl-. and //.Odueerylnearambnc aods.Wrvbfj, 144. 279-252.

407 Kga.H H. and PaunrjrU.C (1983) Sialytanan of gtycoprotdn ofafosacdarides with fV-acctykA'-gtycoryK and ^-O-ducetylrieimminic acids. J. BioL Cntm., 260. 8S38-8S49.

408. Mochmore.E. and Varta,A. (1987) Inacdvatioo of influenza C essnrase decreases mfectrvirywithout loss of binding, a probe for 9-O-Ketyuued sialic adds. Sdencr, 236. 1293-1295.

409. Prhchrn.TJ. and PaulsonJ.C. (19*9) Basil for the potent tnMbtaon of influenza virus infectionby equine and goinea pig <r,-macrog!obalin. J. SbL Chtm., 264. 9830-9858.

410. Weat.W.. BrownJ.H.. CtusckJ.. PaulsonJ.C. SkeheU-l. and WueyJJ.C. (1988) Smtcmreof tne infhjcoza vims haemaggtnrinm complexed with in itcejjux. stalk add. Naairt, 333,426-431.

411 Wmoogbbyjt.E. and Yoaen,R.H. (199O)SA11 rotaviruao ipccifkalry tahibrtodby aoacetytatdsiabc Kid. J. Infra. Or.. 1(1. 116-119.

412. Hara.T.. Endo.T.. PurukawaJC. KawaldtaJH. and Kobata,A. (1989) Ehckladon of the pheoo-typk change on tne surface of Had-I cell, a mtant cell Utie of m o i FM3A carcinoma cellsselected by rtsisailce to Newcastle disease virus infecdoa. /. Biodam. (Tokyo}, 106. 236-247.

413. Pml.fLW.. Choi.A.H.C. and Lcc.P.W.K. (1989) Tbt o-aaomeric form of italic acid is theminimal receptor determinant rrrngniTrri by reovirus. Viroioa, 172. 382-3S5.

414. FukudomcX. Yoshfc.O. and Koono.T. (1989) Comparisoii of human, simian, and bovmeroraviruses for requirement of slaUc aad in bemaggtntinauon and cell adsorpooa. Virology, 172.196-205.

415. Srhrtlrrf.B.. Qrou.H.-J.. Broixmcr.R.. HenfcH-D and Henier.G. (1990) rlinnagghninatmgenceplalotnyelms virus troches to N-«atyW-O*cayli)curamIiBc aad-comamint receptors oneiydiiucjtcs: Comparison wan bovine coronavirus and Influenza C virus. Wnu Ra., 16.183-15X.

416. TBvakxolA- and BomenA.T.H. (1990) Evidence for a direct role for sialic add ro tne •'••• '•••»<"of MM 1 |i>MioiDiMcaiu*His virus to Qumari erytnrocytes. Biodu*dary, 29, 10684—10690.

417. ScbohztJ., Cross JI.-J., BroasmerJL and Herrler.O. (1991) Tne Sprotcm of bovine cororawirusis a henajjtaanio recognlziia) 9-O-*cetybied sialic add as a receptor determinant../. VlwL. U,6232-6237.

418. CBictG.D., Tootood jM_, WQey.D.C. Skebd J J. and Knowies J.R. (1991) Ugand recognUooby irJtoenn virus. The bmomg of brvalent saVskks. / « o i CVCTL. 266. 23660-23669.

419. ScbakztM and Herrler.G. (1992) Bovine coiounlna tact ^-»cayl-»-O-«ceiylaeuramlnlc add asa receptor dennnmtnt to Initiate the mrecdon of cultured cells. / Go. VlroL, 73. 901-906.

420. Suzulri.Y.. Nagao.Y.. Kiro.H.. MauorDoro.M.. NeromcJC.. Naka£maJC and NotraawtE-(1986) Humas rnflwirra A virus h*m«gjindw4n distinguishes liaryloligosacchsriaes in tnembrane-

^ ai io receptor wliitli mediates the adsorption and fusion processes of virusinfection. Specifidty for oligosaccharides aad tiaUc adds and the K T ^ T ID wrocb sialic acidb attached. /. BwL Otm., 241. 17057-17061.

421. GenodU.R. and Padaj^.F. (19*5) Effect of Deunmtnitlaw treatment of cdb and effea of•olubk trvcoprtxeim on type 3 roorinu •^^*"—" to murine L cells. J. V\nL. 56. 336-364.

422. Utagaira£.T.. MiyanmraJL, Mukoyann^A, aad KonoJL (1982) Nenramimdase-sensiriveerytfuocyte iccepm for eumutiius type 70. J. Ctn. VlwL, 63. 141-148.

423. Zingala.B.. Carmol.C.. De UdertremcrJLM. and CoDi.W. (1987) Direct sialic add transferfrom a protein donor to grycolipiitt of trypomndgote forms of Trypamnmt crvi ttoL Blxhrm.PanuHoL, 26, 133-144.

424. Ubby.P. AlroyJ. andPtrerraJrf.&A. (1989) A norrarmnldase frrm Topoiiowiiiocnid remove!sialic add from the surftce of mammaliaii myocardnl and "••'""-"•I cells. J. CUn. brtB., 77.127-135.

423. Ptnin.M.E.A. and Hoff.R. (19)9) Heaofcaxm dbtrlbutian of ""•^-'"t<~- activity instrains and clones of Trypantuoma cntd and its possibfe assoaatioa vitn pafasit> oiyouutasju.UcL Sfadwm. PamstaL, 20. 183-189.

426. RosenbergXA., PrioUJtP.. McjlaJ.S. and Perdra.M.E>. (1991) Oifferamal oprcaioo ofTrjpancnama end wmmli^M* jo incra- and nrtnrrllnllr trypomastigotes. l Srcr. /mourn., 59.464-466.

427. Schenkman^.. JiiojX.-S.. Han.O.W. and Nussenzweig.V. (1991) A novel cdl surface trans-lialirltsa of Trjpamaoma cntji | n r i i ^ f a stage-specific eoitope reqnired for invasioQ ofmanimalrin cells. CtU, tS, 1117-1125.

421. Vhrnlrman.S.. Ponies de CarvalhoJ- and Nussenzweig.V. (1992) Trypmaoma cnai traro-souldaje and neuramimrUsa actmries can be mediated by the same enzymes. J. Exp. Utd., 175.567-575.

429. Parod3.AJ.. Pollevick,G.D.. Maurner>4.. BmrliiaTTnA. SanchrxJJ.O. and FrasdvA.CC.(1992) inrnrirVirinn of the gene(i) coding for the trans-sialidaM of Trypamam cnai. EMBOJ., II. 1705-1710.

430 FreverUJ.. Scbenkmaz^S. and Nuasenzweig.V. (1992) Stage-tpeciSc aijueuiuu and imn-ctOtdar shedding of tbe cell surface mmr-sialidase of Tnparacme CTKL bfra. h n a . . 60.2349-2360.

431. NathnvA. and Yrrin.E. (1989) F^riodatc-mocancd gangliosiaes enbmce surfaca bindrng oftetanus unm tu PC 12 rAeochrooocytooa cdb. J. Ntmnx&tm.. S3. tt-94.

432. BremnauMJ.. DmdJ.L., EenimerJ.a. and Mandart,C.R. (1983) Lecmviaz binding ofpertussis train to a 165-fcOodaltoo Onrne hamster ovary cell glycoprotein. / BioL Oitm., 263.4*95-099.

433. WahDoJLM.. SandbergJC. Rotm.T.B. and SrimatTjH- (191S) Complci gangUosideoprcssion and tetanus min binding by PC12 uheochiuuiocytorot cells. J. BtoL Oem.. 263,2055-2063.

434. Schengrund.C.L. and Riugler.NJ. (1989) Binrfing of Vibrio dMeroc toxin and the beat-labileof Eidmichle call to GM1, derivatrves of 0MI. and noolipid oligusariharide

l l d [ M i h l I 9 * 9 5 ^ > K BioLppOn.. 264, I3233-I3I37.

435. UzarovidJ1.. YanaiJ1. and Yrrin^. (1987) Molecular Inlcurtioni between mkxOarpolysialoganguosides and affinity-purified ~ — — ~ ' ~ in aqueous solution. J. BioL O n . 262.2643-2651.

436. Ctark.G.F.. Krivan.H.C. Wiltms.T.D. and Sntith.D F. (19S7) Toun A from OoanUumtSffkilt bmds to rabbit eryrhrocyte glycolipids wnh terminal Gal alpha I 3Gd beta l-4GlcNAcsetpences. Arch. Btocion. Sqriro.. 257. 217-229.

437. Lindberg,A.A.. BrownJ.E.. Srromber|,N.. Wesrllng-Ryd.M.. SctataJ.E. and fOrbmruK A.( l 9 r ? ) U i l I k b 2 i U d i

438.

439.

440.

441.

442.

443.

444

445.

446.

447.

448.

449.

450.

451.

452.

453.

434.

456.

457.

458.

459.

460.•

461.

462.

463.

464.

465.

466.

467.

46i.

469.

ytype I. J. BioL O*m.. 262. 1779-I7J3.CobetuA., HaTmlgan.G.E.. WiHoBns3.il. and Unr<rood.C.A. (1987) Roles of globotriosyl- andlaiabiosytceramide In verotoxiii binding and high affinity Uuerferoo nxtytui. 1. BioL Clam., 262.17CW-17091SdratTOad.C.-L.. DasGuptaJ.R. and RingkrJ<J. (1991) Binding of botuBnum and tetaousneuromms to gangUoside GTlb and derivatives thereof. / iVevccnen.. 57. 1024-1032.SarnodJ.E.. PereraO-P.. WardJ.. 0'Brien.A.D.. Ginsburg.V and Krrvao.H.C (1990)Comparison of the grycoUpid recepior specificities of SJaj>-likt tosm type II and Shiga-Uke tountype II vanants. btfea. tmauaL. 51. 611-618.Sctnaro.G.. Drrod.R. and Montecocco.C. (1991) On the role of pc4ynatoffrcospHngolipids astetants toxin receptors—A study with lipid monohryers. Eur. J. Biochtm., 199. 705-711.MassenniJvl..Freire.E.PalestimJ>..CUlappiiandTaramanti,G. (1992) Foc-GMl gangUosidemirnics the rccepmi fuuuiuu of GMI for cholera toxin. Biochemistry. 31, 2422-2426FiroruN., Ofck j . and SharonJf. (1982) Interaction of T^nnrmf-, •aifttring oltgosacchandcs wuhthe ffanbrial earn of EschtricUe cotL Biodiem. Bwphyi. Ra. Comma.. 165. 1426-1432.Eden.CS., Freterjt., Hagberg.L, HuU.R.. Hufl^., Lefflcr.H. and Schoolnik.0. (1982)Inhibition of experimental ascending urinary trad infection by an epirheliaj cdl-surface receotDTanalogue. Ntmtrt. M . 560-562.Lomberg.H.. Hansoo.L.A.. Jacoosson.B..todal.U., Lefflcr.H. and Eden.CS (1983)Correladooof P blood group, vesicottraeral reflu. and bacterial attachment in patients with recurrentpyetenephrhis. N. EnfL J. Utd., 3M, 1189-1192.Kallemtis.G.. SrcmccS.. MoUby.R.. Cedergren.B., Hultberg.H. and WlnbergJ. (1981)Stroctorc oc c^roooyviAtc psUt 01 receptor on nmTi n w11.1^]^^ly\ry ^"^T lor |jyci*j<ntfppj'HOjmicEldxriddo coO. Loxtl. 2. 604-606.LindbergJ1.. Lnnrl.B. and Nornuuk^. (1986) Gene products specifying adhesion ofuropafhogenic Esdnridda coti are minor components of pdi. Pwc Sad. Acad. Sci USA. S3.1891-1895.Uhlin3.E.. NorgrenX.. Baga.M. and NorrMrk.S (1985) Adhesion to human cells byEjcMridua coH lacking the major subunu of a digalacmside-speciiic pUus-adhesin. Proc. NarLAcad. Sd. USA. 82. 1800-1804.O'HanleyJ1., Lark.D.. Falkow^ and 5cnootnit,G. (1985) Molecnlar tma of Eidxridiim coBcolonizaiion of the upper uituary tract ra BALB/c nihr Gal^al pill IHHIMHII'"'^' pteventsEschtridda coti pydonepfaritb m the BALB7c mouse model of homan pyelonephritis. J. CUn.baOL. 75, 347-360.O'KanlcyJ>., LowJJ.. RomeroJ., LartD.. VosdX. Fallow^, and Scboolnik,0. (1985)Gal-Oal binding and hemorytin phenotypes and genotypes associated with uropathofenJcEsdxnddm cod. N. EnfL J. Utd., 313, 414-420.Stromt«=r|.N.. Ded.C. Nyberg.O.. NonmrtS.. So.M. and KarlssonJC A. (1988) Idenuncaoonof uutxirydiate strucmrq that are possible leteptms for Ndstrria gvnuiihutm. Proc Nad. Acad.Scl USA. 85. 4902-4906.Korbonen.T.fC, Vabanan, Rben,V., Rheo.M.. Pert,A.. ParkkJnenJ and FmneJ. (1984)Etdwriduo coB flmbrut recognizing lillyl galactosldes. J. BaatrioL. 159. 762-766.Oeai.CD. and KrrvanJi.C. (1990) Lacto- and ganglio-series glycolipids are adhesion lecepmitfor toatria tonorrkttt. J. BioL O K - . . 2*5. 12774-12777.PechaJ.. Lx»X>. and O'HanleyJ1. (1989) Gal-Gal pill vaccines prevent pyelonephritb bypUnttd EidteridOa coB in a rourine model. Singie-componem Oal-Gal pOi vaccines preventpyelonephritis by buuiologucs and hoerologous ptloied £.co6 strains. J. CHM. bnaL, 83.2102-2108.PamcburtDX, SeiftruHJ., Apoka.RJ.. KarlssonX-A. and So.M (1990) Identification andduuaualmfcm of a Ncisstria tomxihxm gcac mrnding a grycoUpid-binding adhesui. PwcNtd. Acmd. i t USA, fl, 333-337.Lovetess,R.W and Feizi.T. (1989) Sialo-ougosacchandc receptors for Uycnpiaxmc imnmemkwand related oligosaccharides of pory-rV-wstyUactosamme series are polarized at die cQia andaptol-mkrovuuu* domains of the ciliated cells in human bronchial epimelinm. Infect Immmn., 57.1285-12t9.Tencberg^., WiaenaeiuP., de Graaf.F.K. and KarioonJt.-A. (1990) Receptor-acdvegtycoUpids of TmMiP^ cells of the small intestine of young and adult pigs in relation toHmrprlbiirty «o infection wim Eittxridda coil K99. FEBS Let., 263, 10-14.Softnberi.N.. MarUund3.-I.. Lnod.B.. nvtr.D.. Haraen.A.. Gatstn,W.. KarbsoMC.-A. andNormark^S. (1990) Host-spedflcuy of uropathogenic Esdttrtchia coti 'Vr'mrh on differences inbinding specificity 10 Galal-4Gal-containmg boreceplora, EMBOJ.,t. 2001-2010.Stromber|,N. and KarbsrjoJL-A. (1990) Charactcrizatioci of the binding of Pwpton&ocuriimgror%%iootM to tTy'HTf1tT^fyftpt'ta •djorbod on sur&ccs. An ipptrcsi rccofnitioo of fwcxr wtuctiis dependent 00 the ccramidc strocture. J. BioL CVm.. 26S. 11244-11230.Stromberg.N. and KarbsooJC-A. (1990) Characterization of tbe binding of AcdnomrcaKscomfif (ATCC 12104) and Adnomyca vixosa (ATCC 19246) to |4ycofpnmgolipids. usinga solid-phase overlay approach. /. BioL Owem., 2*5. 11251-11238.Nvbcrg.C. SarJmbergJ<.. AnssorcA., KarlssonJC-A. and NormarluS. (1990) Erythrocyu;gangllntitlrfi act as leupiuis for Hdsstrim Bibflava: Identification of the Sis-1 adnesin. tmfta.bmmm., S*. 2555-2563.Eobem.D.D.. Olson.L.0.. BarueX.F., Gmsburg.V. and Krivan.H.C. (1989) Safe add-rtrprniViit adhesion of Uycopiasma annmoniot to purified glycoproreins. / BioL Ottm.. 264.9289-9293.ChandlerJ3.K., GrabowskiX W. and Birilt.M.F. (1982) Mycoplaima pntwmiai attachment;corrmetidve inhlbUon by niycoptasmal bindiaj mnpoutut and by sialic acW-containini glyco-consugatea. tnfto. brnom., 31, 398—603.Demmh.D.lL, Ootub.EE. and MafaunodJ). (1990) SorptocnrraHnsl " T T K — Strocnral andfi.n^wt analysis of a Strtptococaa uapds icu^Jtrjr for a human salivary glycoprotein. /. BioLOtm., 245. 7120-7126.Bemhard.W., GbarahA. and Sharon,N (1992) LecDnophagocynsis of type I fkubiiated(mannose-speclfic) Eahtridda coti in the mouse peritoaeum. J. Latocytt BioL, S . 343-348.KriratHC., Roberts.D.D. and Omsburg,V. (198S) Many pulmonary pathogenic bacteria bindspecifically 10 the caiuuhydiale sfrairnm CalNAc01-4Oal found in some gryeoliplds. Pwc NaLAad. Sd. USA, 15. 6157-6161.KyogashfaravM.. Ginsborg.V. and Krtvan.H.C. (1989) Etdurtdtla coB K99 binds to N^jwb/\-siatoparaglorjoaide and A^flycoryl-GM3 found in piglet man intestme. At*. 4fce*on. Bicptm.,I7». 391-397.Junenez-Lucho.V.. Ginthurg.V. and Kitnn.H C. (1990) Cryptococna mcojonmau. Candidaotbicwtt, PTM] ofhcT fonci bind cxciilcilJy to tbe tWcosphiGtolipid I trrpiy h*rn mkic(GaU)l-4Glc01-ICer). a possmte adnesion receptor for yeasts, lnjta. brnnrn*., St. 20S5-2090.KrrvanJl.C, NilssonJ).. Ungwood.C.A. and Ryu.H. (1991) Chlamydhi iradtomais andOdomySa pmmmoniat bind specifically to pbr>phaiidytethanolamine in HeLa cells and 10OalNAC#l-4Gattl-4Glc seqaences found in asfaOo-GM, and ualo-CM,. Btocktm. SMRa. Comm.. 175. 1082-1089.

121

Page 26: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.VarkJ

470. Friedman,MJ.. Fukuda.M. tod Laine.R A (1985) Evidence for I malarial parasite interactionshe on the major transmembrane protein of the human erylhrocyte. ScUmct. 23%. 15-TI.

471. Ortandi.P A . KJottJ.W. tnd HayoesJ.D. (1992) A malaria invasion receptor, the175-kUodauoa eryrhrocyte binding antigen or PUumodham faldpantm iwrynwf the terminalNeu5Ac(a2-3)G«l-seqoences of glycopborui A. J. ail Bid, Mi, 901-909.

472. LniHmnrnJ.. Haataja.S.. TikkanenJC. Krlm.S. and Fmne. J. (1992) Identification of /f-acetyl-neimminyl a2—3 pory-/'-acetvUactosamine grycans n the icu^ftji of sixlic add-bindlngSlrtptococna sub strains, y. BM. Ohm.. 167. 21105-21111.

473. Shieh.M.-T., WuDunn.D , Montgomery. R. I.. EskoJ.D. and Spcar.P.G. (1992) CeU surfacei a t | U i for herpes umpta virus are heparan sulfiue proteoglycans. J. CtU BbL. 116.1273-1281.

474. Partons.NJ . PudJ>.V.. Tan.E.L.. AodradeJ.R.. Malrn.C.A.. Goldner.M.. ColeJ.A andSmidi.H. (1988)Cyridine5'-flionopr»spho-/l'-acety1 neuramhric acid and a low molecular watt*factor from human Mood cells induce Irpoporysacchande alteration in guuococci when conferringrrsrginm to kill ing by human serum. Microb. Padtogtn., 5. 303-309.

475. Naim.C.A.. ColeJ.A.. Patel.P.V . Parsoos.NJ.. FoxJ.E. and Smnt,H. (1988) Cytidlne5'-monopriosplio-#-acefyineuramittic acid or a related <-nwp™>nH b the low W( fador from humanred blood ceUs wtucfa induces gooococcal " i i p w w to killing by human serum. J. Gen.Wcmbiol, 134. 3295-3306.

476. De Honraechc.R.D . Van Crevd.R. aod Hormaeche.C.E (1991) Nttntrie tonorrhotat LPSvariatioo. serum rr-trnanrr and In induction by cyodine 5'-niooopbosphc>A/-acetylneuriminicacid. Mlcrcb ftntojw.. 10. 323-332.

477. RestJLF. and FrangipancJ.V. (1992) Growth of Ntiiurim pxiorrhoeat In CUT-N-accrylncuiaminic aod inhibits rjooopsonic (opadry-assoctalcd outer membrane pilrtff iivtr** H** )imeracooos with human neutrophili. hifta. bnmm.. 60. 989-997.

471. GotdxoraJ . Qecsoo.P.A and T00.B.-H. (1989) Gasmc parietal cell anti|ens of 60-90. 92.and 100-120 kDa associated with autoimmune gastritis aod pernicious anemia. Role of N-gtycans in the structure and anugenidry of the 60-90 tDA coiupoiieut. J. Bid. dttm., It*.18768-18774

479. KarmagLR.. Roefcke.D . Peterson,K.A.. Okada.Y.. Levery.S.B. and Hakomori.3. (1983)Characterization of an ephope (determinant) structure in a deveiopmentaUy regulated glycoUpidantigen defuied by a cold agglutinin Fl. recogmuon of atpba-suuosyl and alpha-L-Aicosyi grottpsin a branched structure. Carbohydr. Rts.. 16. 143-157.

430. Fem.T.. CmTds,R.A.. Watanabe.K. and Hakomori.S.1. (1979) Three types of blood groap Ispecificity among monoclonal anrH autoaoribodies revealed by analogues of a branchederythrocyte glycoUpid J. Eip. Mtd., 149. 975-9*0

481 WatanabeJC.. Hakomon.S.I., CUldsJl.A. and Fcm.T. (1979) Characterization of a blood groupI-*cnve ganglimidr. Structural requirements for 1 and 1 specificates J. BioL CJttm.. 254.3221-3228.

482. Rodcke.O., PruzanskLW., Eben,W.. Romer.W., Flscber.E., Lenbard.V. and Raaterbergji.(1989) A new buman monoclonal cold ipiimnii Sa rrrngnmng terminal rV-Acetylnainmurylgroups on the cell surface. Blood. 55, 677-681.

483. RoelckeJ)., Hengge.U. and KirschfuilcM. (1990) Neolacto (type-2 cbln)-sialow3toandfens• wn-tgnii^ by buman cold •p^ntnirri Vox Sang.. 59, 235-239.

484. UemuraJC.. Rodcke.D., Nagal.Y. and Fdzl.T. (1984) The reacuVtries of numan erythrocyteautoaadbodies ami-Pr2. and-Gd, Fl and Sa with gangliosides in a chromaiogram binding asiay.BtodmL J., 219, 865-T74.

485. Koeraer.T. A.W., Weinfeld.H.M., BoDardi^.B. and WUllams,L.C J. (1989) Antibodies againstplatelet giycosphlngollpids: EVtecoon in scrum by quantitative HPTLC-atnondiography andassociation with muiiniinime and aQoimmDne processes. Blood. 74, 274-284.

486. WilionJ. (1977) A review of serotogic problems caused by r ^ y i j "-h^ red cclla. Am. J.Mtd. TtdumL, 43. 147-155.

487. Oroft.T.F., Harvtej.N. and LangkOdCvN.C. (1990) O-Unked mndn-type gh/coproteim inoonnal aod maUgnant colon mncosa: Lack of T-astigen **{****'**> aod acaamladon of Tn andsialosyl-Tn amlgem in carcinunas. bu. J. Omar, 45, 666-672.

488. Inooc.M., TotU., Ogawajl. and Tanoawa,0. (1991) Expression of Tn and siatyl-Tn antigensin nnnor dunes of the ovary. Am. J. CB*. PadtoL. »6, 711-716.

489. Itr±owitt3., Kjesdsen,T.t Friers^A., Hakomori^.-I., Yang.U.-S. and IGm.Y.S. (1991)Expression of Tn, sialosyt Tn, and T antigem in human pancreas. GamoutwiotJ, 100,1691-1700.

490. Sata.T.. RothJ.. Zuber.C. Stamm.B., RinderleJJ.. OoldstelnJJ. and HetaJMI. (1992)Studies on the Thomlen-Friedenreich antigen in human colon wkt the lecda Amaimakhr. Normaland neoplastic epithelium express only cryptic T antigen. Lab. ctves., 66. 175-186.

491. Wauon.S R., Fomk.C. and Laity.LA. (1991) Neutrophil influx into an inflammatory siteinhibited by a soluble homing receptor-IgG dumaera. Naxrt, 349. 164-167.

492. Mu01gan>IJ.. VaranU., Dame^t^., Lane.C.L., Smah.CW., AndenonJ).C md Ward.PJk.(1991) Rote of mrtnchriial-leutocyte adhesion molecule I (ELAM-I) in oenrophil-mediated kinginjury in rao. / . CBn. boot,, SS, 1396-1406.

493. GundeULH.. Wegner.C.D., TorceuM,Cj^., Oarke.C.C, HaynesJ*.. RodnemJL, SnMfa,C.W.and LcmX.O. (1991) Endotbelial leukocyte adhesion molecule-1 mediates andfen-induced acuteairway inflammation and late-phase airway obstmedon in monkeys. J. CCn. hrrat, 88.1407-1411.

494. DawionJ.. SedgwlctA.D., EdwardsJ.C.W and Lees.P. (1992) The monoclonal antibodyMEL-14 can block lymphocyte migration into a site of chronic mftafnmatkm. Ear. J. immunoL.22, 1647-1650.

495. MuIllganJrt.S.. PoOey.MJ., BayerJIJ., NnnnJtJ.F., PaulsonJ.C. and WardJ>>. (1992)Neutrophil-dependenl acme lung injury. Requiremeist for P-sdectin (GMP-140). J. CBx. bnaL.90. 1600-1607.

496. Yamashita,IC..Tachibana,Y..Ohknra,T. and KobanuA. (1985) Enzymark hasij for the stmcmralchanges of asparagme-Unked sugar chains of membrane fjycuuiuteins of baby hamster kidnay ceilsinduced by poryoma transformadoa. J. BioL dm*.. 260. 3963-3969.

497. Conn.n .CnrrniF. «nri Wjrrfu I |I»H) liriT«ri .l^yt^k^ nf rr^fa, ^yr^^nW-i ttirrhigdirferentiation of mouse embrvonal laiUuuma ceffs. Difftrnaimicm. 2*. 63-67.

498. DenmsJW., Lafene^.. WaghorncC, BretemuvM.L. md KerbeULJ. (1987) Beta 1-6 branch-ing of Asn-Unked ougosaceharidei is directly * « ~ ^ — H with •~~«~-'- Sdtuct, 236, 582-515.

499. Ptaxt.M. and AjangoJ. (1936) Rons sarcoma vmn-transfbrmed baby barmter kidney ecusexpress higher levels of asparagine-lmked tri- and tetraantennary grycopepodes oxmkung[OcNAc-ben (l,6)Mainapha (l.6)ManJ and pc4y-fV^cetyuacloianilne sequences than babyhamster kidney cells. J. BtoL Otm.. 261. 10772-10777.

500. BolscherJ.G.M.. Van der Bijl.M.M.W., NeefjesJJ.. HanjL. Smen,I_A. and Ploejh.H.L.(1988) An (proto)oacogene induces N-IInfad carbohydrate modification: Temporal irtalimrUilpwith tadacdoo of bmsrve poacadal. EMBOJ., 1. 3361-3168.

501. Sanrer.U.V., OeSandsJL. HardXJ.. Van KuitJ.A.. vnegentharUJ.a., W00.B. aadGlictM.C. (1989) N-liaked oHgntai 1 luiiue changes wuh umigiuli triMkbrmdOD reqajrasaUytauon of mnlrlinnniae. Ekr. J. Biodtrm.. 181. 249-260.

502. EastonXW.. BolscberJ.G.M. and Van den Erjndeo.D.H. (1991) EnrynMdc —rH«~«w.Involving giycosyltransferascs forms tbc bans for tbe increased size of asuuagine-Ucked grycaosat the surface of NDi 3T3 ctOs expressing the N-nu proto-oncogeoe. / BioL Otm.. 2U.21674-21680.

503. Rice.G.E.. Gtmbrone.M.A. Jr and BevUacqmuM.P. (1988) Tumor ceU-endothelial rmrramons.Increased adbesioo of homao meranoma cells to activated vascular endorhelhim Am. J. Pahol..133. 204-210.

504. Takada>.. OtenorlJC.. Takahashi.N.. Tsoyuoka,K.. YagoA.. ZemtaJO. Hasegawa_A- andKamagi.R. (1991) Adhesion of buman cancer cdls to vascular endothetium mediated by acarbobydralt antigen, siaryl Lewis A. Uockm. Bioplijs. So. Commu*.. 179, 713-719.

505 Kouma.N.. HandaJC. Newman.W. and Hakomori^ (1997) lnMbrooo of selecrin-dependenttumor ceil adhesion 10 endorhdlal cells and platelets by blocking O-glycosyladon of these crih.BbdwH. ticflra. Ra. Commm.. 182. 1288-1295.

506 McCrackea.G.H. Jr. SarffX.D . Glode.M.P . Mize.S.G.. Sddffer.M.S.. RobbimJ.B..Gotschucb,EC.. Orskov.I. and Orskov.F. (1974) Rehum between Eiduridiia coB Kl capsularpolysacchanoe andges and dimcal outcome m nmrml ii^ningim Lanctt. 1. 246-250.

507. HiaoJD.L. Narayan.0 and Hart,G.W. (1988) Sialic acids on the surface of caprineaiUuUii umphalita nrus define the biological properties of the virus. / Virol, 62. 1974-1980.

508. S0vcrJl.P.. Vann,W.F. and Aaronsoo.W. (1984) Genedc and molecular analyses of EichtridUmevil Kl antigen genes. J. Boatrtot, 157. 568-575

509. Wetzleri.M.. BarryJC.. Blake.M.S. and GoochlichJ£.C. (1992) Gonococcal UpooUgosac-charide sialybdoo prevents couiplemem-dependenl kiliing by immune sera. Ar/Srct. Immm.. 60.39-43.

510 Markhamjt B . Nichohon Weller^., Schiffman,G. and KasperJJ.L. (1982) The presence ofsialic acid 00 two related bacterial polysaccharides determines the site of tbe primary immuneresponse and the effect of complement depletion on the rrsprmsr in mice. J. tmmmnot. 128.2731-2733.

511. Jtrvis.G.A. and Vtdrm.N A. (1987) Sialic aad of group B Ntituria mtubifUdis regulatesalternative < raujJi nw "t pathway acti*alion btftu. fwwu., 53, I74-~I8O.

512. IlyasA.A., WiHuocHJ.. DalakasX.C. WhitakerJ.N. and QoarlejJt.H. (1988) Idrrmfinnrmand characterizatJoo of gangliosides leauiug with IgM piiMtifHrirri in three patients wuhgg g g ptneuropathy aoociaied with btdonal gammopadry. J. Nnrochem., 51, 851-858.

513. nru.A.A.. Quarla.R.H.. DalakasJti.C. and BradyJLO. (1985) PDlyncnropBhy with mono-dooal gammopatby- gtycolipids are frequently antigens for IgM paraprotems. Proc Nad. Acad.Set USA. 82, 6697-6700.

514. DyasA-A.. Quarles,R.H.. Madmosil.T.D.. DobersenJrfJ., TrappJ.D., Dalakas>«.C. andBrady JtO. (1984) IgM In a human nmropamy related 10 uaiauiixeinemia binds to 1 carbohydratedeterminant m the mvel in-associated grycoprotein and to a gmgtiosirie Proc. Sad. Acad. SetUSA. tl. 1225-1229.

515. Dcune.O.C. Farrer.R.0.. DtlMkn.M.C. and QuarlesJtH. (1992) Sensory neuropathy asso-ciated with monoclonal unmunogiobulin M to GDIb ganglinnrtn Am. NcumL. 31. 683-685.

516. DyasA.A.. Dalakas.M.C. Brady.R.O and Quarks.R.H. (1986) Sulfaad glucuronyl grycolipidsreacting wui and-myeUn-assodated gtycoprotein monodooal amirndiri including IgM para-proteins m uemuyalliy: species distribution and partial cbaracterizadon of epitopes. Bn±i Ra..3*S. 1-9.

517. Sauaar-QruesoJLF.. RoutbortJHJ., MartinJ., Dawson.G. and RoosJl.P. (1990) PorydonalIgM anti-GM, g^f"~'^' antibody in patients with motor neuron disease and variants. AXILNfxml, 27.558-563.

518. FreddoJ-, Yu.R.K.. LatovJ*.. Donofno.P.D., Hays^A.P., OreenbergJl.S.. AlbersJ.W..AOessi^G and Keren.D. (1986) n*»jil*.u*. Gul and GDO are antigens for IgM M-procnnm a patient with motor neuron disease. Nturolofy. 36, 454—458.

519. Lugaresi.A.. CortcM.. Thomas.F.P.. Mryatani.N., Ariga,T., Yu,R.IC. Hays>.P. andLatov.N. (1991) IdendAcation of gfycoconjugates which are targets for anti-Galtf l-3)0alNAcautoantibodies in spinal motor neurons. J. NturoimmmoL, 34, 69-76.

520. Weng,N.-P.. Yu-Lcr.L-Y.. SanzJ.. Pmen.B.M. and MarcusJ).M. (1992) Structure and ipco-n^ri-t >j ^1-g^gi^.iA. -^^mlhfwfl^ associated wim m n neuropathies. J. immwtoL. 149.2518-2529.

521. nyai.A.A., MlttaiJJL. MakasJ^.C, Wargo.M., fhm,7 -W., Bktorr.L. and C00U.D.(1991) Antibodies to sutfned gtycoUpids in Goillain-Barre syndrome. / Nnroi Sri., 105.108-117.

522. DrzeiueML (1973) Substrase spectficiry of neuramimdaaeL HUaodwm. J.. 5. 271-290.523. Varki,A. and KornfaldJ. (1910) An autosomal dominant gene regulates tht extent of 9-0-

acetylatjon of mnrineciyHuocylesMic adds. A probable exphmannn far the variation In capacityko activate tnt human ahemax complement paluway. / . Exp. Mtd., 152. 532—544.

524. CorfiekUlP.. Veh.R.W.. Wcmbcr.M.. MicbaUkiJ.C. and Schaoer.R. (1981) Tho rdeasa ofN-acetyl- aod N-jiycotyl-aeuriminJc add from solubla complei carbohydrates and erymrocytesby bacterial, viral and mammalian tialidwrs. Btochtm. J., 197, 293-299.

525. Sander.W.M.. SchauerJL and Corfidd.A.P. (1982) Substrate spedfkity of viral, bacterial andmammalian siaUdases wmi regard to different N.O-acetytated sialic adds and GMI. Adv. Exp.Mtd. BioL. 152.215-222.

526. Virki.A- and CHrtS. (1983) A neunmuddase from Sarptococau lanpds that can rdeaaeO-acctyUttd sialic acids. J. BioL Om., 258. 12465-12471.

527. VarUA. and Kai,S. (1984) Tbe release and porKlolloci of sialic acids from grycocoojugates:m^riifA to mijiiinijw the loss and uiigiaiiup of 0 at 1 Ijl giuups. AmoL BiochtaL, 137, 236-247.

528.-HanaokaJC. Prischett.TJ.. Takasald^.. KocbibeJ4.. SabesanJ., PaulsonJ.C aad KobaouA.(1989) 4-<>acetyl-M^4cetylneuranunic add in roe N-Unked carbohydrate orocmra of equine andguinea pig c^-macrogtobulins, potent inhttbors of influenza virus infection. 7. BioL Otrn.. 264.9842-9849.

529. Kawasaki.T. and AshweU.G. (1976) Chemical and physical properties of an hepadc membraneproton dm specifically binds asfauoglytmxotelns. J. BioL Own.. 251. 1296-1302.

530. KawasakLT. and Ashwell.O. (1977) Isolation and characterization of an avian bepadc landingprotein spcdAc for rJ-flf'ylnl"rm'"iiitf-^lllli"*t'wl grycoproteim. J. BioL Qum.. 252.6536-6543.

531. IUzatdianeJ^.D..r«ronJ3.T., SnbenJ.E-andAustenJC.F. (1979) Surface-aisodated heparininhibhs zymosan-indoced activation of the human alternative complrmrrn pathwiy by aogiirniingthe reguLatory action of tbt control proteins on pardcte-bonnd C3b. J. Eip. Mtd.. 150".

1 be 1 md Douctlncon of (be1202-1215.

532. M o i i . and PngburaJ>4.IC. (1990) Dijcrinalternadve pathway of complement: Ragulation via a sialic aad/poryanion binding site on hctorR Proc Ned. Acad. ScL USA. 87, 3982-3986.

533. MaffleuF., Pcmou.M.. Choay J. and KantchkineX.D. (1988) Strocmrc-funcooo rrlariomhinsin the inhibimry effect of beparin on complement activarjan: Independency of the anti-coagulantand and-crxnpfcmenrary sites on the hepartn molecule. MoL bmmaoL. 25. 917-923.

534. WeaerJ.M.. EdensJLE.. UnhardUU. and KapdansHJJ.P. (1992) Heparin and modifledheparm inhibit comuluuLia activation b, Ww. / bmmnoL. 148. 3210-3215.

535. Ekrejl.-P., Naparaek,Y.. Ljder.O.. Hyden,P., HagrnnartA. Nilisoo,T.. VlodavskyJ. andCohenJ. (1992) And-inflimmainry effects of beparln and Its dtnvsttvB iaMhkioa of craraiarrnrs.and of lyrapbDcyte nMgratioo, Adr. Exp. Mtd. BioL, 313. 329-340.

536. DnaoB.C. GrrychJ.M. and Capron.A. (1986) SfrVirmmaan mtmsoml shares a protectiveoTi^uiALj-Mjmit CpllOpC will) frdfawKCT COd DUrlOC WllTl. rniOLTt, 5 Z J , 443—443.

537. YolkenJLH.. PeteraonJ-A.. VooderfechtJ.U, FounJL T., Mk*bttn.K. and Newbnrg,DA(1992) HuaHn rmTk raorin inrubttj rotavirus repBcadon and prevents exuaiuieutal gastroaaerms.J. CE11. o n o t . **. 19*4-1991.

122

Page 27: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of olrgosaccharides

538. Svtkowski.AJ.. Fetdman.L. and Znrbuch.DJ. (1991) BmtopcaJ activity and structural nabOiryof N-deglycosytated recombinant human erythropotelin. Btoditm- Biophys. Ra Common, 174.698-704.

339. Brody.D.T. ml Durum.S.K. (1989) Membrane 0.-1: IL-la uieuusur bmds to the plismimembrane m i kcnn-uke uBeTscrjon. J. bmmoL. 143. 1183-1187.

540. Sathyamoortby.N.. DeckerJ.M.. Sherblom.A.P. and Mochmore.A. (1991) Evidence thai spedfichigh mannosc structures directly regulate maniple cellular activities. MoL CtU. Btochtwt.. 102,139-147.

541 Sberb4om.A.P., SnhyimJUilliy.N.. DeckcrJ.M. md Muchmore.A-V (1989) fL-2, a lecdn withspecificity for high mannrjse jlycopeptkla. J. bmmmmL .143. 939-944.

342. Muchmort.A., OeckerJ.. Shsw,A. md WingfiekLP. (1990) Evidence that high mumosegrycopepbdes are ible to ruin miii ny nnenci wdh recombinam Donor necrosis factor mdremmhlmm Inrcrkukui 1. Canctr IUs.. St. 6215-6290.

543. Muchn)oreA.V., Salbyamoorthy.N., DeckerJ. md SberbloraJk.P. (1990) Evidence dm specifictdgh-mannose ollgosaccharides c u directly lahibu antigen-driven T-cdl rrsfiorrws J. LeukocyteBtoL. 48. 457-464.

544. GordonJvl.Y., Rfley.GJ1.. WatuS.M. aod GreavesX.F. (1987) Companmentaliratioii of ahaematopoietic growth ractor (GM-CSF) by gryecsaminogrycatts in tbe boot marrow micro-amronraem. Atootnr, 336, 403-^*05.

345. Ishai-MicbaeiiJJ., Svahn.C.M.. Webcr.M., anoek-Shanl.T.. Korner.G., Ekrejl.-P. andVlodavsky J. (1972) lulpurtauue of size and tulfauoo of nepann m release of basic Ebrobtastgrowm factor from ma vascular endotbelinm and extracdhilar matrix. Btochtmisvj, 31.2080-2088.

546. BasMnn.P., Neufeld,a . C3tay-Goren,H. and VlodavskyJ. (1992) Rdease of ceo surface-assocstted bane ftbrobtast growth factor by t^vcrayb^wsphaodyllnoiarjl-ipeafk phospboUpase C./ . Crfl. PhysoL, 151. 126-137.

547. Rogdj.S.. KJapbnmJrf.. ArzmouJL, Kurokawajrf . HainwrkuA.. Futa.Z. md VlodavskyJ.(1989) Basic flbroblast growth factor is an extracellular matru component leqmred for supportingme proUfcratioo of vascular endomeliai celb and me differentiation of PCI2 cells. J. CtU BioL.109. 823-831.

548. VlodavskyJ., Fuks,Z., Ishai-Michadljl., Bashkrn.P., Levi,E., Korner.C. Bar-Sbant.R. andKlagsbnm,M. (1991) Extracellular matru-rakJent baik Rbroblast growth factor Implication forme control of angiuguiuls. J. CtU. Biodttm.. 45, 167-176.

549. OmitrJJ.M.. YayomA., FUnaganJ.G., SvahnX.M.. Levi.E. and LederJ>. (1992) Heparfa isrequired for ceO-free binding of baste fibrobtast growth factor to a soluble icceptor and formitogenesis to whole cells. MoL CtU. BtoL. 12. 240-247.

550. Yayon>., POatsbrunX., Esko J.D , l.crtcrj. and Ornia J5.M. (1991) Cen surface, hepartn-Ukemolecule! are required for bmding of basic fibroblast grown factor to its high affinity receptor.CtU. 64. 841-848.

551. Sahrla.O., MoacatefliJX. Sommer,A. and RlfkmJ).B. (1988) f~wt~H»i ceH-deriv«d neparansnUau binds basic fteobtasl growm tacmr and protects it from proteoryrk degradation. J. CtUBid., 107, 743-751.

552. Scmmcr.A. and Rifkin,D.B. (1989) Imrrarnoo of beparin with outran basic Sbrobtast growthracton Procecoon of tbe angiof emc protem from proteotyric degradation by a grycocaminogrycan.J. CtU. PSynoL. 13*. 215-22a

553. Salud.,0. and RJttKD.B. (1990) Releaae of basic ftbroblast growm factor-oeparan snltatertm^rrf fjoo) fiphiitrm cells by ptasmmogen activator-rnediated ^utedyuc activity. J. CtUSioi, l i t , 767-775.

U4. Flaummriaim., MoscatelliJ}. and RifkmJ3.B. (1990) Heparrn and nepann salfale increase meradia of duTasion and action of basic nbrobiast growth factor. J. CtUBicL. 111. 1651-1659.

555. bhaJ-MichaeUJL. EhkxA. md VlodavskyJ. (1990) Heparanase actMiy expressed by platelets,netttrophfli. and rympboma cells rekoei active fibrobras) growth factor from ntrarrilnIlT matrii.CtURrjmL. 1.133-842.

556. Sahgnrhi.lC.. Yanagrthtra.M., Tixenctn.Y. and Anrbach,G. D. (1991) Identification of bepannsurftte proteogrvcan as a nigh arTrnity itixpaji for aadic fnroblast growth DKSOT (ax QF) m apaiamiiold cell line, y BioL Cam., tU,. TTJ0-T2Tt.

557. Bnmner.O., GabriVrreJ., RiftinJ)3. and WlhnvE.L. (1991) PbosphoUpase C release of basicfibroblast growth (actor ban human bora: marrow cuinrres as a bnioffcaDy a a t e crjmplei wfina ptotpbarJdyttnsfaot-anchored neparan sdfate proteogrycu. J. CtU BtoL. 114. 1275-12S3.

551. TumboD J.E., FermgJD.C. Ko.Y., WtlMnson>4.C. and OallagnerJ.T. (1992) Identiflcatkn ofme bane fibroblast growth factor binding T " " ^ » in fibroblast neparan suliate. /. BioL Oum.,267, 10337-10341.

559. Hagemu.G.S., KhTnorT-RcmpeX.A., Lcwis.G.P.. FUhcr.S.K.and AndersorUJ.H. (1991)SequestrarJon of bask EUouUst growth facmr in rhe primue retioal interpbofiorecepax matrix.Pnx. NmL Acai. ScL USA, SS, 6706-6710.

560. Habnchl.H.. SunudJ., Saito.T., Tamnra,T., Harada,T., YoshjdaJC and Kmata.K. (1992)Structure of a neparan sulphate oligosaccharkie dm binds to bask Gbrobutst growth factor.Biodum. A. 2S5. SQ5-813.

561. Rjpracger.A.C., Knrfta^A. and OtwinJ.B. (1991) Rtqulremea of neparan sulfate for bFGF-mediatal fibrobtast growth and myoblast difTercmiation. Scixt, 252. 1705-1708.

562. 0rwin3.B. and RapnegerA. (1992) Repression of myogemc differentiation by aFGF. bFGF. andK-FCF is dependent on cdmlar beparan snlfau. J. CtU BioL, US. 631-639.

563. Ghay-Gortn,H., SokerJ., VlodavskyJ. and NeofekUl (1992) The binding of vasculariwijjli n«l giu^iij factor lo its n-»[i'^i is dependent an ceQ imfr1 r »«"• in>H heparm ike

molecules. / BioL Otm.. 267. 6093-6098.564. Kimnra,lC. Matsubaraji.. SogohJ., IQta,Y., Saksta,T.. Nishrani.Y., WatanabeJ..

Hamaoka,T. and FajrwaraJJ. (1991) Role of grycosauuuutlytaus hi me regulation of T cellproliferation induced by drymk stroma-derived T cell growth ractor. J. btmtaoL, 146,2611-2624.

565. Mosccdll.D. (1992) Bask fibroblasi growth factor (bFGF) <!•" I»M rapidly from beparannlfatiluihiHylmniimpm tmrJlr Am fr, m» li.nlini. rfhglP rrtrru- fmm rT<ra41nhr

matru. / BioL Omn., 267, 25803-25809.566. Broze.OJ.Jr, WesidachmidtJL, rfigtcUJ).. Girard.T.. UkenJC. MjcPlaflX- and Won.

T.-C. (1992) Tbe interaction berween LAO and beparin. Air. £xp. Utd. BioL. 3U. 189-197.567. Abildgnrt.U. (1992) Trssoe factor pamway uunbimr and beparin. /WrV. Exp. Mtd. BioL, 313.

199-204.568. riinnin<h..n n D W^iwfil ™\ g^ril n U (1007) I T I . U .rfprro—» nf.ln-1 nhAty

by beparin and heparan sulbte. Ad*. Eip. Mtd. BioL, 313. 297-306.569. Andrade^tordonJ1. and StriddanU. (1989) Anrlroagirtaw low molecubrr weight bepann does

not enhance (he activation of pUsuuuufuj by dssue plasminogen aorvatsr. J. BioL Oitm., 264.15177-15181.

570. Knhn.l, A.. GrifBnJ.H., Rsher.CX., GreengardJ J . , BoumaJ.N., EsparlaJ1. and Tainer J A .(1990) Fli>-»1atins; the structural cheuiiniy of t ycosarnmogrycan ncognhion by protein Cinhibitor. Proc Nad. Aad. ScL USA, 87, 1506-8510.

571. rionmihm,ICJ., FaflerJ. and BiemJ.G. (1991) Hecann Kroagry decresael the rate of bMbiuonof nentropbJ] etastasa by ai^imeimse inhibitor. J. BioL Otm.. 266, 15356-15362.

572. GeigerX.. PrigUnger.U.. GrifBnJ.H. and Bkder.B.R. (1991) Urtnary protein C inhibisor.eaycosamlnogrycans syintnintl by the epimdiai kidney cell line TCL-59t enhance o interactionwith orokmase. J. BioL Ottm.,266. 11851-11857.

573. Faller.B . Mdy.Y.. Gerard.D. and BierhJ G. (1992) Hepann-mduccd coofortroional chanje andacQvarjoa of mucus proteinase inhibitor. Bkxhtmisrt. 31. 8285-8290.

574 Bremer.E.. Hakomon^.. Bowen-PopeJ) . Raines.E. and Ross.R (1984) Gaogliosjac^iediatedmodubmoo of cell growth, growth factor binding, and receptor phosphorytation. J. BioL Oum..259. 6818-6825.

575. Bremer. E. and HakomorM. (I9S2) GMj f^^inak induces hamster nbroohm growthmhfhrrinn in cbemicany-deruied rrt mrri- gaaglioside may regulate growth factor receptorfunction- Biodum. Biophyj. IUs. Commm.. 186. 711-718.

576. HamuJJ.. DoU.T.. Nores.G.A. and Hakomori J . (1988) A novel ganglioside.de-N-aceryl-CM3.acting as a strong promoter for cuiUquial growth factor receptor kinase and as a gfmirlayir forcell growth. / BioL O n . . 263. 6296-6301.

577 Hanai.N.. Nores.G.A.. MacLead.C, Carmen-Rosa. Torres-Mendez. and HakomoriJ.(1988) GanglknleHnedialed modulation of cdl growth: specifk effects of CM3 and lyso-CM3 in tyrosine phospborylatioa of the epidermal growth factor receptor. / Bial. dtm.. 1SS.1-35.

578. No^ri.H.. StroudX. and Hakomori^. (1991) A specific type of ganglbside as a modulator ofinsoliSHlependent cell growth and instdm itixutoi tyrosue kinase actrviry. Possible association ofganglioBoeHndDced mhfbirJoo of insulin receptor function and mooocytk dirTereisdauoa mducrionm WL-m cells. J. BioL d u n . , 166, 4531-4337.

579. Song.W . Vacca.M.F.. Welti.R. and Rimoul.D.A. (1991) Effects of gangiiosides G^ and de-W-acetyl C B on epideruul growm ractor receptor kinase acthnry and cell growth. J. BioL Ckem..266. 10174-10181.

580. Wm.F.M.B. and Davrs,RJ. (1990) Regulation of euidtiuial growth factor receptor signaltramdncnoa. Role of ganglmirln. J. BioL Omr.. 26S, 12059-12066

581. OgnraJC. and Sweeley.C C (1992) Mnogenk effects of bacterial neuraminldase and lactosyl-eramide on human cultured fibroblasts Eip CtU Rts., 199. 169-173.

582 Usub^., HoopsJ* and SwecJey.C.C. (1988) Growth control or human foreskin fibrobuaa andrnHbirJoo of extracdhuar *M]A*t* activity by 2-deoxy*2 J-denydrr>W-*cetvlMieuranunic acid.J. loL Cham., 263. 10595-10599.

583 TsnjiJ.. SasakJJ. and Nagai.Y. (1983) Bioactive ganguosides. IV. nanglmsidf GQIb/Ca:*'**l»"'*'" proteiD kinase actrviry exists m the plasma membrane fraction of neurobUstoma cellline. GOTOI. J. Btodam. (Tokyo), n, 969-972.

584. CbanJL-FJ. (1989) r±nrfbyLi*-iT~~*<Ji~i protein phosphorylatioii in muscle. Actrvslion ofpbospnorylase b kinase by gingt«»irlrs. J. BioL O n . . 264. 18632-18637.

585. CbanX-FJ. (1989) Pbospboryuoion of mydin bask protem and pepodes by gangispside-stimulated protein Unase. Bioditm. Bhok-p. Ra. Corwmm.. 1(5. 93-100.

586. ChanJC.-FJ. and Lra.Y (1991) Oanglioside-brnding proteins in skdetal and cardac musck.Oyabioioty. 1. 193-204.

587. XhOC.-J., GuJC -B., SantoreUi^.C. and YuJLK. (1989) Effects of Inducers of differentiationon protein kmase C and CMP^-^cetyineurarnink add:tactosylceramide stalylrransferasc activlriesof HL^O leukemia ccQs. J. UpU Ra.. X. 181-188.

588. HlgasU, Hard Yamafaa, T. (1992) Mechamsm for pnglinslrtf-mediased modularion of a| n enzyme. ModulaDoa of almoduluvdepcndenl cycuc rajdeotidenbosphodi-

activity through MnrHng of ganrltiiiiiri to calmoduun and the enzyme. J. BtoL Own.,2*7,9839-9843.

589. HigasUJi., OmonA. and Yamagan.T. (1992) ralmndrilrn. a tmjlBttfc-bmdtoi protein.» h ^ 1 n f | . i 1 i u . ^ . m ^ l i ^ t . l i i , » t t . r m ^ i n . / i f i n l r i i m I BioL Otm., 267.9831-9838.

390. SpiegdJ.. FtshmarU'.H. and WeberJU (1985) Direct evidence that endogenous GM1f f ' ^ i W " can mediate thymocyle proliferation. Sdtmct. 230, 1285-1287.

591. Massertai.M.. PaksrimJ., Ptao.M.. CUgoroo.V., Tomasi.M. and Tmamaml.G. (1990) CydkAMP amrmnlarkm In HeLa cells induced by cholera toxin. Involvement of the ceramkk moietyofGMl g - r l ~ w i . Btxhem. J., 271, 107-111.

392. Spiegel J . (1989) Possibk mvolieuieul of a OTP^anding protein in a late event daring endogenousgangtaoskJe-rnodulated cellular proliferation. J. BtoL Ottm., 264. 6766-6772.

593. SpiegeUS. (1989) Inhibitjon of protem kmase C-dependent cdluiar prolifemkKi by interaction oftiaiugujoul g—g»~irf. 0,,, with the B subunn of cholera toxin. J. BioL dm.. 2U.16312—16317.

394. SpiegeUS. (1990) r«nL»i»ry note on rhe use of the B sobuntt of cholera toxin as a gtnglinslrkGMI probe:r><acdonofdioleraloxuAsubirniimBsubunhprepaialioabyasensit^cydase assay. J. CtU. Blodttt*., 42. 143-152.

595. Tsuji^.. YamashuVT. and Nagai.Y. (1918) A novel, carbohydrate signal -mediated cdl surfaceprotein phospnorylarJon: Gangtlosidc Goib *tnr»il«^< ecfc>protein kinase activity oa the cdlsurface of a human rmrobUsuma cell line. GOTO. J. Biodttm. (Tokyo). 104. 498-503

596. KramerJ}.. KlmJ.Y.. GoldenrlngJ.R.. Rasmirssm.H., Ukomadii.C.. DeLorenzoJtJ. andYuJLX. (1987) Regulaoon of proceh kinase C activity by pnglinreVs. / BioL Otm.. 262,1633-1637.

397. VaccarinoJ1., GuidottiA. and Costa,E (1987) Ganglioside hihthirinn of grutamast-mediattdprotein kjnasc C translocatioo ui primary cultures of cerebellar nenrons Proc NmL Acai. ScLUSA, 84. 8707-8711.

598. CbereshJ)., HarperJ., Scnurz.G. and ReisfeldJL (1984) l ~.K*™**> of the pnglintirW GQ,. and G— m arlhesirtn plaques and on the surface of human melanoma cdh. Proc. NmL Aad. ScL

USA, 81, 5767-5771.599. CheraiuD.A. and KJier J.G. (1986) ruri. i^.^ii^Lv G n distributes preferenmlry into

fibrooectin. / CtU BtoL. 102. 1887-1197.600. CheresluD.A.. Fierscbbacher.M.D., HerzigJ>4_A. and MnjooJC (1986) MsnuogangliniirW O ,

and n are involved in ft^ f ^ im^ m of human m* »ii iiiM and ocuroblaslooia «* i' toextracdhilar matrii proteins. J. CtU BioL. 102. 688-696.

601. ChereshJ>_A., PytetaJL, PierschbacberJkt.D.. Xiier.F.G., Ruoilaid.E and RdsttkULA.(1987) AD atTj-gly-Uifr-dirocixd rtccpwt oo dio tosftcc of htiitfti "*»••••'"*»• cdls nHn in ftdrvafcm catjon-dependent ftmcoonal complex whh disialogailgiiosibe GD2. J. CtU BioL. 105.1163-1173.

602. Stalkup.W.B.. PytdaJL and Pnn«l«hri p (1989) A oeuroectoderm-assodated g««gitft«^uparticipates m fjiiuumiu receptor-mediated adhesion of terminal ecus to frbronectm. Orr. BioL.132. 212-229.

603. YavinX. GabaLA. and CHS. (1991) Nerve growth factor mediates mnnnri.hy^ln.1*-.abxalniaxo/tSb€taecmtxa)\hcmtdstToaC6i)ioaaccDi.J.Nnirodttm.,S6.105-112.

604. Miller,H.C. and Ersdman.WJ. (1973) "nrfni^l^ of rhe terrene response by antigen-reactivelymphocytes after curdvatkxi with gangtinslnVs. J. ImmmoL. 115. 839-143.

605. OobbjU. (1986) The suppressive effect of gangUosides upoa 1L 2-dependent prollferatkc as arbnoion of tniin»itiM\ of IL 2-receptor assocboion. J. ftiwtiaM1, 136°. 971-976.

606. LarfisduS.. GQlajdJS.. Woog,C. and UbzuL. (1983) Qi «fcnit| and tm»*»tiBmn «i-««Tw activityof YAC rympboma cdl gmgHneirirs Coccr XCL. 43. 3308-3813.

607. Gocwa,T.A.. WestrickJil.A. and MacherJi.A. (1984) Inhibition of mitofen- and aatgen-iiirT"*^ tynpbocyce ACtivuioo by **'mm ldkcnm cdl (snflioQdcs. Gmctr no., 44.3467-3470.

60S. Udrscfa,S.. Ullh.L.. GHlard3. and Woog.C. (1984) Modufltjon of rhe immune response bygangliosides. !nri'Nft"*' of adherent monocyte accessory functkm in vitro. J. CSK. Amst.. 74.2074-2081.

123

Page 28: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varkl

609. Maron.D.M . Dusarajl.. Dtego.l.. OsovitzJ. arid Lewu.D.E (1987) Smdies of the rrcchanisniby which ganguosides inhibit the proliferauve response of raurine spienocytes to concanavalln A.CtU bnmuioL, 104, 71-71.

610 Ladiscn,S., Khada.S. and Hays.E.F. (I9S7) Gangliondes shed by atmor ceUs enhance tumorfonnation in mice. J. CUJL hrvta., 79. 1879-1882.

611. Esmann.M., Marsh,D., Schwarmttmn.G. and SandhorTJC (1988) Ganglioside-protelninteracaoas: spin-Ubd electron spin resonance stodjes with (Na+.K+)-ATPase membranes.Biochtmixrry. 27, 2398-2403.

612. CbuJ.W.K. and Sharom.FJ. (1991) Effea of mtcdlv and bOayer gangUosMes on proliferationof imrrlrritlrt-2-<lrpcriornl lymphocytes. CtU. bnrmaoL, 132. 319-338.

613. BergdsorU-D . Dyadovrtskaya.E.V., Kryuchareva,T.E., Kryukova,E.V., Lemenovskaya,A.F.,Matveeva.V.A. and Starayna.E.V. (1989) The role of glycrjsphingolipias a natural immunity.Gangllosioes modubae the cytotoxicdy of natural killer cells. Eur. J. hmiuuvL, 19, 1979—1983.

614. Fkwois.G., Ulsh.L. and 1 *^vb S (1989) limnimrniii^rtijw activity of haman nearobUutomatumor f "t'WJH'f ba. J. Cancer, 43, 6-9.

615. CnuJ.W.K. and Sharom.FJ. (1990) Imerieuldn-2 binds to g - ^ i ™ - ^ In ndceOes and Upldbflayen. BlocUm. Bbphys. Aaa Bto-Mtmbr., 1023, 205-214.

616. Grayson.0. and Ladlsch,S. (1992) Immunosuppression by human gangliosirtn. n. Carbohydraaimjcture and inhibition of human NK activity. CetL brnmuatoL, 139, 18—29.

617. Ladlsch,5., Becker,H. and U1SQ.L. (1992) limiMimitinnH^yl—i by bmnan gangliosiaes:I. Relationship of carbohydrate structure to tbe inhibition of T cell responses;. Blochlm. Biophys.Aaa Upidt UpU Mas*.. 1125. 180-188.

618. Nojui.H.. Kitagawa^., Nakamura,M.. Kiruo.K., Enomoto.Y. and Saao.M. (1988) Neobcto-senes p " | ) i ^ ^ T induce granulocytic (fl/ferenrjation of human promyeiocyoc !i-iv»"»t« cell lineHL-60. J. BloL O n . 243. 7443-7446.

619. KitagawaJ.. NcjH.H., Nikamun.M.. GaHafherJt.E. and Saito.M. (1989) Human mydogenoosleukemia cell line HL-60 i~^i\* resistant to differentiation induction by retinoic acid. Decreasedcontent of glycosphingolipids and grannlocyrJc difTcrracatioc by neoiacto series ganguosides.J. BioL Cktm-.O4, 16149-16134.

620 NakammvM., Opno.H.t Nojiri.H , Khagawa,S. and SaitoX. (1989) Characteristic rncorpor-atkn of gangliocide GM3, which induces monoevtic differentiation in human mydogenousleukemia HL-60 cells. Blochtm. Blophyj. Ra. CommmiL, HI. 782-789.

621 Sobue.G.. Tiki.T., Yasuda,T. and Mitsuma.T. (1988) r-nglL-M^ modulate Schwann cellproliferation and morphotofy. Brain Ra., 474, 287-293.

622. DateJ., Fdten,S.Y. and Feilen.D.L. (1989) Exogenous GM, f t n ~ - < — induce partialrecovery of the rrigrostrianf dopaminerpc system ui MPTP-treated yonng mice but Dot m agmgmice. NeuroxL Lett., 106, 282-286.

623. Bihr.M., VansetowJ. and Thanes, S. (1989) Ability of adult rat ganglion ceOs to regrow axonsIn vitro can be mfliininTl by fibrobuut growth factor and g-ngn~«~ Ntunad. La., M,197-201.

624. Barirm.E.. Bremer,E.G. and CulpX-A. (1991) Neurite uumiowdi In dorsal root ncurona! hybriddones modulated by g™gH~n» GM1 and disintefrins. Exp CtU K c , 193, 101-111.

623. YitruS.H., Y a v m i , HammerJ.A. and QuaiiesJl.H. (1991) Exogenous GM3 gangUosidcsrhnnlam process fonnation and glycoprotein release by cttttnred bovine oUgodcudiocytes. /.Nemmditm., 57, 2144-2147.

626. Favaron^t, Manev.H., Alho.H., Bertoiirc.M., FcrraJ., Ooidotd.A. aid CoBa.E (1988)C^F^jrktitln prevent ghifirnM^ u d Viiratr rKprntojtk ry tn priuwry ryi'P ffl cutamo of ncondlrat cerebeflum and cortex. Proc Nad, Mad. ScL USA, 85, 7331-7333.

627. Lombard!.G., Zanom.R. and Moroni.F. (1989) Systemic treatments with GM1 fan|0oaide redoceouinaunic ackHnduced Jtrtral lesioni in rhe TU. Emr. J. Pharmacol, 174, 123-123.

628. NVotnti.F., CavallaroJ., Bmno.V., VirffliJtL, Catania^CV., ContestabOeA. andCanomcoJ'.L. (1989) Ganflioaida •"*••••*• NMDA • - •iin-fmiliTii exctmory amiao addrelease in cultured •:»"Mltr neurons. Ntmrop/unmaajtofy. 28, 1283-1286.

629. BenechX., SoteloJ.R. Jr. Martinez,R. and Correa-LunaJL (1990) Effects of pagUoudes on rhemrrhiminr uptaxe in crushed sciatic nerves of rats with aOoxm diabetea. toad USL. 114,220-224.

630. BhmrhlJL, Berti-ManenJ_N.. Fiori.M.G. and EichberfJ. (1990) Correction of alteredmetabolic acttridel in acuoic nenrcs of sroptoiocin-mductd diabetic rats: Effect of gangHnsUn••«•'••»••' Dtabtus, 39, 782—788.

631. Slnnlra.lf , -SydJ(. and Rahmann,H. (1990) Inflnence of exotenotn fanfuasides (Om. C^,O , J on a Ca -activated Mg1'-dependent ATPase In ceOular and n i W t H y brain fractions ofthe djungarian dwarf hamster (Phcdopw ntnfona). Ncuroctitm. bo., 17, 609-614.

632. Spoerri.P.E., Caple.C.G. and Roisen,FJ. (1990) Taurine-indoced mronal dfferentiation: Toeinfluence of calcium and me ganglioside GM1. ha, J. Dry. NrxrmcL. 8, 491-303.

633. Cootestabu».. Virjili.M.. Migani.P. and Bamabei,O. (1990) Effecn of short- and long-tennganglintlrlc treatment on the recovery of nenrochemical marten In the Ibotenic aod-lesiooed ratstrianim. / . NnroscL Ra., 26, 483—487.

634. Emcrich.D.F. and Walsh,TJ. (1990) GangUostde AGF2 uiomotes task-speafic recorery andiiimiurrs rhe cnotinergic hypolunctJon indnced by AP64A. Brain Ra., 527, 299-307.

633. FagloU,S.. Cwriliryi.C. OhvenoA. and Toftano.O. (1990) Effect of chronic GM1 gangliasideadministration on passive avoidance retention in mice. Nomad. Ua., 1*9. 212-216.

636. Par7ini,E.. Durso.fL, Davoudi.H.. Szabo.G.K. and AJben,M.L_ (1990) GM1 t r ^ 1 " - ^ -aher acute MPTP-induced behavioral and neurochemical nxidty in mice. / NtmwL ScL, »9.39-68.

637. OW.T.. Furukawa.S., HayashiJC. and MatsukuraJ. (1990) "—f*M- sttmulation of oervegrowth factor synthesis in cultured rat Schwann cells. Biodttm. bo., 20, 739-746.

638. rmrrlla.M.S.. Oderfeld-NowaL3.. OradkowskaX., SkupX., Oarotalo.L.. Codlojk.C. andLcdcen.R.W. (1990) Derivatrves of gangUoadc OMI as neuronotrophic agests: ComparUon ofIn vivo and In vtaro effocta. Brabi Ra., 513, 286-294.

639. DateJ., NonerJvl.F.D., Fehen^.Y. and FeltenJJ.L. (1991) Stereooxic tajoction of ODlaganghVnirtr indnces limited recovery of striatal dopaminergic system in MFTP-ireued aging race.J. NtmwaL Ra., 28, S23-330.

640. FfgliomcmJ.. Bacd3-. Pmono.C. FogaroloJ., Triban,C. and Ftori.M.O. (1992)Experimental diabetic neuropathy: Effect of i n " " * " * uuuutal on aional transport ofcytoskeletal proteins. Diabm, 41. 866-871.

641. Dc Enuaonm.C.A., ManerJI.. Goidoai^.. Costal, and Brooker.G. (1990) fl«n|lins»lrioormafixe distorted single-cell !••••• Ihrrir free Ca1* dynamics after toxic doses of |im«ni"m incerebeBar granule cells. Pnx. Nad. Acad. ScL USA. 87, 8017-8021.

642. Wu.O.. VaswamJCK., LuX-H. and LedeenJLW. (1990) n-ngfl™;^ sunulam calcium OuxJ ( ) gin neuro-2A cells and require exogenous calchrm tor neuritofenesis. J. Ntmrocktm., 55.484-491.

643. Vaswani.K.IC. Wu,G. and LedeenJLW. (1990) Exogenous g-^ti~i-<- stimulate broakdowa ofLXCUT^ZA pHf fjifirtrrwafTtfftn Is i PTflnrci prrr^T*^1 to nrvihp <m<uiii*ili J. tftwdunL, S5,492-499.

644. Wu.O. and Ledeen,R.W. (1991) Stunnhnion of neurite mugiuwlli in neuiuulastomi rrtH bynonramtnktase: Putative role of GM1 g-^"~J-<- in differenrlatian. J. Nt*rvd*m., 56, 93-104.

643. Goeroid.B.. Massarellijl.. Forster.V.. FreyszJ- and Dreyfusjl. (1992) Exogenrjos gangTrmirfrsmodulate caldum Buxes m cultured neuronal ceus. J. NtMmscL Ra., 32, 110-113.

646. NixxnnrroJC. Wu.G. aid LedeenJLW. (1992) Projection of nsttro-2« ceDs cjsinst rrlrtirmionontore cytntoxjdty by gmglinsnVi. J. NmmcL Ra.. 31. 243-233.

647 Hflbush.B.S and LevineJ.M (1992) Modulation of a Ca signaling pathway by Gul

ganglioside in PC12 cells. J. BloL Oum.. 247. 24789-24793.648. Kdly.W.G. and HaruG.W (1989) Qycosylarjon of chromosomal proteins: Localization of

O-Unked W-xxtvtgtucosamiae in Drosophila chromann. Cttt. 57. 243-231.649. KeaneJC.P. and Han.G.W. (1991) Lymphocyte actmbon mduces rapid change] in Dodear and

cytoplasmk fiycoprotefais. Proc. Nad. Acad. ScL USA. SS. 1701-1703.630 Robmson.PJ.. MUlnio.M.. AncraiooJ.. Slmjjwo.E. and Menor.A.L. (1989) A grycophospho-

lipid anchor is required for Qa-2-medtaied T cell activation. Namrt, 342, 83-87.631. Sd.B . Waneck.G.L . Flavenji.A and BothweU^.L M. (1991) Tbe glycosyl pbosphatidyl-

inoshol anchor is critical for Ly-oA/E-medbned T cefl acrivation. J. CtU BloL, 112. 377-384.632. TbomasXJ.. DeGasperi.R.. Sugiyama.E.. Chang.H.-M.. BecsuPJ., OrleanJ1.. UrakazeX..

Kamiomi.T.. SambrookJ.F.. WarreruCD. and YehXT.H. (1991) Functional analysis of T-ceflmutants defective m rhe biosynthesis of gtycosyhphospratidylinosool anchor. Relatrve importanceof atyccjylphasnhaudyhnosltol anchor w m N-Unked glycosybmon in T-ceU activation. / BioLO n . . 26*. 23175-23184.

633. Lazaras,)^3.indHar3nan,G.S.(1992)Xyk)sioe-liiirucedAsruptioooftapmeogrycam results In retinal rtrlarhiiirK omen. OphhelmoL Hi. ScL, 33. 364-376.

654. McCaffrey.T A.. Falcone.DJ. and Du.B. (1992) Transforming growth factDr-£l is a beparin'bmdug protem: IdenuTication of putadve beparin-bintfing regions and isolation of hepartm withvarying affinity for TGF-fll J. CtU. PkjrioL. 152. 430-440.

633 LantzX.. Tbysell.H , NHssonX. and Olsson.I. (1991) On the binding of tumor necrosis factor(TNF) to heparto and tbe release in vivo of rhe TNF-oinding protein I by beparin. J. CBn. fnvat,88. 2026-2031

656. SaudsuouiJ.. CarUion.L., MirkhmdJ.L. and Edlund,T. (1992) The heparin-hmding domainof extracellular superoxide '»H f* C and foiusmou of variaots wrm rednced heparin affnuty./ . fltoi Otm.. 2*7. 18205-18209.

637 Stevensjl L., KamadaXM. and Serafln.W.E. (1988) Structure and function of rhe family ofproteogrycans that reside in the secretory granules of natural kffler ceQs and other effector cellsof rhe immune response. Oar. Top. kficrobioL /•—mi/,. 140, 93-108.

638. Rotnenberg.M.E.. PomerantzJ.L., Owen.W.F.Jr, Avrahan^S.. SobermanJU., AnstenXF.and Strvaa.R.L. (1988) Characterization of a human eosinophll proteogrycan. and augmentationof its biosynthesis and size by interieakln 3. hncrleukm 5. and grataiJocyle/macropbage coiooy-)—•^^g factor. J. BloL O O L . 243. 13901-13908.

659. SurvensJlL.. Kanadi.M.M. and Serafln.W.E. (1989) Structure and function of the family ofproteogrvcam that reside in rbe seueuny granules of natural killer cells and other effector cellsof rhe immune response. Curr. Top UcroiioL tmiuBtoL, 140, 93-108.

660. Stevens,R.L., Fox.C.C. I k-htnrstrhi.L.M. and AuslenJCF. (1988) Identification of dtondroidnfn\tt^ £ proicojiyciDj iod beptrio protcoflycux in the secretory fremles of luinan luuf mutcdls. Proc Nad. Acad. ScL USA, 85, 2284-2287.

661. Sommerhoff.C.P., Ruoss^J. and Caugney.G.H. (1992) Mast cell proteogrycam modulate thesecretagogne. proteoglycanase, and amiaotytic activities of dog mast cell chytnase. / bommoL,148,2859-2866.

662. S m j . . OtmU.T.. Makishima,M., YanaiJ4., Cawasfaima,T., Nagata,N. and Monyosta, K.(1992) Biological activity of a proteogtyen form of macrophage colony-stimnlating factor aod itsbinding to type V collagen. J. BloL Chtm., 1S1. 16812-16815.

663. Maggn.B., SDrrtevantJ.M. and YnJl.K. (1987) Effect of calcium ions on die tnermotropicbehaviour of neutral and anionic glycosphingoripids. Siochim. Biopkyi. Aaa, Ml, 173-182.

664. KmtchlJrje.M.D.. FeamuD.T. and AtmrnJC.F. (1979) Human ittemative complementpathway: »»• nJ" "'^-""^^'infil siabc acid regulascs the * li'i|*Ot^wi between B and betal H tofcell-bound C3b. J. bmmnoL, 122. 75-81.

663. Nydeijer.U.E., FcarocD.T. and AustenJCF. (1978) Autoaomal locus regnlatn Inverse

t pathway. Proc Nad. Acad. ScL USA, 75. 607J-60S2.666. FearooJXT. (1978) RegulatioQ by HWHIJBM^ siatk add of betal H-dependent occay-dhwwtiiinii

USA, 75. 1971-1975.667. HindULL., Orifflrj.D.E. and WhikelstehU.A. (1981) Host modification of Sndbis virus

J. bmmmoL, 127, 1740-1743.668. McSharryJJ.. Pickering.RJ. and CaligufaiX.A. (1982) Activation of the attemadve compee-

ODCQI pdl^^i^y * y eoveioped vii^sej K\onmlnrirf * *f d aiiMrmHs 01 siftxic nQd* *ir@tot?ti \x4t

507-515.669. Rademaker.P M.. Van, Dijk.H and WulenJ.M. (1981) Involvement of membrane-assocurted

sialic acid in the *»«"»»"••» of sheep erythrocytes to lysis by mouse complement. ImmmneL Lea.,3. 221-225.

670. Edwards,MJ., KaspcrJJ.L.. JmnrnglJiJ., Baker.CJ. and Nlcholsoo, W.A. (19*2) Capsularsialic add pieveuu activation of the alternative complement pathway by type m, group Bstreptococd. J. tmtmnoL. 128, 1278—1283.

671. Lambre,CJL, KazatchktocM.D., Miuio,F. and TWhoo.M. (1982) Guinea pig erythrocytes,after their contaa with influenza virus, acquire the ability to activate the human atteraativecomplement pathway throogh vmn-irjduced desiarylarJon of the cdls . / . Immimol.. 128.629-634.

672. MfchaletM.T., MoldX. and Bremer^.O. (1988) Inhibition of the alternative pathway of humancomplement by structural analogues of sialic add. / . bmmMnoL, 140. 1388-1594.

673. Koisdnen,V. (1992) I imii~l trypdc cleavage of complement factor H abrogates rrmgnrrinn ofsialic acid-containing surfaces by the alternative uadiway of complement. Biochtm. / . . 283,317-319.

674. TomDnsortS., Pomes de CarvaIho,L., VandekerckhoveJ'. and Nussenzwehj.V. (1992)Resiarytation of statidaso-treated sheep and btrmao erythrocytes by TijjuiHUMjmi end trans-sJahrtisr Resandon of complement resistance of desiaiyuuBd sheep erythrocytes. Gtymbiokfj,2. 549-551.

675. Farach-CarsonJ4.C.t CarsonJ>.D., CollierJ.L.. Lemarz.WJ., PartrLR. and Wright,G.C.(1989) A cahnam-binding. asoaragine-Unked oligosaccharide is involved in skeleton fonnanou inthe set urchin embryo. /. CtO BtoL. 109, 1289-1299.

676. FrankJ.S., Langer.O-A., NnddJ-M. and SaaydaiianJC (1976) Sank add: effect of removal oncafcnnn exchangeabBity of entered bean cells. Sdtxt, 193, 1013-1015.

677. TVimiiii B and NarhanJLD. (1991) Removal of siatic aod alters both T- and L-typc cmkiamcurrents b cardotc myocytes. Am. J. PhysioL Htan Ore PhydoL. 260. H735-H743.

678. FauiiulJ. and NamanJLD. (1990) Sauc add and tte surface charge assorlaird withhypejpotarization-acrivated. inward rectifying channels. / . Utabr. BioL. 114, 61-69.

679. ZateskaX.M. and Erecmska,M. (1987) Role of stalk add in synapsosomal transport of ammoadd trammrners. Proc Nad. Acad. ScL USA, 84, 1709-1712.

680. Sehagian.G.Cj., Dfedtr J. and Joanflan,G.W. (1981) Hi*'"''*'1""*1™ of a iiinnliiliir-asH'ii'illrdfrom bovine Ever that binds |i1n[i1»ii-'i"™)H residues of bovine leslkulai beta-

. Proc. Nad. Acad. ScL USA, 78, 4289-4293.681. Varki,A. and Iomfdd.S. (1983) The spectrum of anionk oHgnsarrharides rdeated by emto-bcta-

from 11 y«*»'q* r *i rw Stiuctunl nudioi cod tnicnctnB with tbeptaospaomarmusyl receptor. J. BioL dttm.. 258, 2MS-2818.

682. VHrrrAW. nd RtmeX.H. (1982) Assay and u-iilflf irirvi of a sabbuized memtsnme in.q'ujdm tthtds rhe rysajomtl enzyme a!pha-L-Wuronida«. Arch. Bhditm. BTophyt.. 214. 681-687.

124

Page 29: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaccharides

683. Futher.H.D.. Crtek.K.E. and SJy.W.S (19S2) Binding of phospborylated oligosacrrnrirln toimmobilized ptospbomamosyt receptors. 7. SM. d m . . 157. 9938-9943.

684. Hafl«ck.B. ud Komfdd.S. (I9U) Purificmoo u d charaaertztiki] of i cation-dependentmannost 6-phospbate receptor from murine P3S8D1 macrophiirs red bovine l i w . V. BidOka.. 260, 12008-12014.

683. N«towic2,M.. HjlloUJ.W.. Fner.C. Ctajrf.. SchtamgerJ'.H. tad BaenzigerJ U. (1983)RccuguUiuc u d rtccptor-oicdimtcd uptake of phospborytated high mannase-rype ollgosaccnaridesby cultured k a n IBIIUUMO. / Crf/ fltot, 96. 913-919.

686. CreekJCE. ud Sy.W.S. (19J2) Adsoipdvt pinocytosti o/ (im»(Juorylaiul oligosaccbarSdes byhuman fibroblajts. J. Bid Okem.. 257. 9931-9937.

687- Rscner.H.D., CreckXE., StradujHo.P. u d Sly.W.S. (1983) Comparative kinetics ofphospbornannosyl receptor-mediated pumilusn of flbrabUn jecraioo add hydrolases nldgl)rcopeptides prepared from them. / Ctfl Btodnm.. 22. 69-86.

688. CreekXE. u d Sy,W.S. (1983) Bkxynrhesis u d tarnovtr of the pnospbominnosrl iem«ui tohuman ntrobUsa. Buxhem. J.. 214. 333-360.

689. Sahagian.G.G. u d Neufeld,E.F. (19S3) Biosynthesis u d turnover of the mannase 6-ptospnatereceptor ta cultured rh imf hamster oviry cdls. J. Bid Cham.. 251. 7121-7128.

690. BtetemolenJ.E.. Strin.M.. n o FlguraX. SloU.W. u d GeutcHJ. (198S) The two m u mc -pho*phate mxpuas have almost ifV^vi subcdhilar distributions tn U937 monocytes. Ew. 7.Oil Bid. 47. 366-372.

691. LemanskyJ>.. HnOOuA.. voc FrguraX. Hdmy.S.. FtshmanJ.. FuJC.B.E.. Kederlha.N L. mdRome,L.H. (1987) Lysoaomal enzyme [ n i u l i m in coaled vetides derived from the exocyric a&dendocyik pathways. /. CtH BioL, 104. 1743-1748.

692. HiIle.A., WiheedA. u d von FtguraX. (1989) Tbe ligand-btadmg conwrmatioo of V, 46.000mfgwtff 6-phospbaic-specifk itLcptor. Acqursraon of binding activity during in vim synthesis.J. Bid. Orm.. 264. 13460-13467.

693. H3KA.. WaheerLA. u d ran FiguraX (1990) Assembly of the Ugand-bindiBg conformation ofMt 46.000 m»™«w 6-pbospbare-sDedfic inqjm takes place before reaching die Goigi mmnlrx.J. CcOBid. l i e . 963-972.

694. Johnson JC.F.. Cban,W. n d Komfdd.S. (1990) Cadoo-depradenl manoosc 6-pboaphate receptorcontains tvo imernalizBtJoo sifrjaU in its cytoplasmjc domain. Pnc Nad. Acad. ScL USA. 87,10010-10014.

693. Baron,R., NeffX.. Brown, W., Louvard.D. and CourtoyJ*. J. (1990) Selective tntcroalizaDon ofthe apical ptasma uiembiane and rapid redistribution of tysosomal enzymes and mannose6-pbosphate i m ) U i during otteodast inacuvaoan by cakfcomn. J. Oil ScL, 91, 439-447.

696. M a m c U - M . , OoodhooseJ. and FarquharX.G. (1990) The rccydmt itinerary of the 46 kX>amnoosc 6-pbocpfastc roceptuf—-Goigi ID lm "t krKm w i i rtiivKV^ vnh thu of the 215 kOiM6PR. Emr. J. CtU Bid, 53. 203-211.

697. R—niTign i n u d Maynard,Y. (1980) Hnman hepatk tectin. Fhysiocbemcal properties andapeciAcity. J. Bd Owm., 255. 4607-4613.

698. UmneyJ.andAsbwcfJ.G.(l976)Ariep«ticreceixarofaviuc<is^capib^ofbmdm|srxciflcallymodified irycoaroteim. Pmc Ned. AcaL Sd. USA. 7 ] , 341-343.

699. FiacD., Srrnstara,V., Hindspul.O. u d Baenzi(eTj.U. (1991) A hepatic retjcokimrlnrhrililcell receptor specific ior SO4-4OalNAc01,4GkNAc01^Mana that nwrfUnf rapid clearance ofhnropin. CM. (7. 1103-1110.

700. BactaitTrJ.U.. Knmar^.. BrodbeckJl.M.. Smii.P.L and BcrmctM.C. (1992) aranacoryhaUf-Ufc but not tntcnctkn with the luiro^Hu/cborionic y**t^niTTT1 raccpior H loodutAtcJ bytulSvkx of bovine horopis olitooccharides. Prvc Hal Acad. Sd. USA, 19. 334-338.

701. Shrnhmd.V.1-, LecY.C. SchtainttrJ'.H. n d SohU>.D. (1981) L-Fneoc-tcrminatedttycomirjiitivs are rocognfaed by puMXyuais receptprs on tmumiia|tx. Pnc Nad. Acad. SdUSA, 78, 1019-1022.

702. Sohl.P.D.. Rodn»nJ.S.. MBkrXJ. and " f c y " (1978) Evidence for receptor-bincSni of (tycoprotcins, flycoconjufates, and rytosomal (tycosidaia by alveolar

macrophajej. Pmc Mat Acad. ScL USA. 75. 1399-1403.703. Suhl.P., ScblesiaterJ.H.. Sifardjoo^.. RodmnJ J . and Lm.Y.C. (1940) Receptor-mediated

pioocytosa of mtnoon (tyoooomjufMBS by rrt*'.Ti.T*wf i* dMutctsrizatJoa tod evidence forreceptor recydrnt. CtB, 19. 207-213.

704. LeammMJL, WttamnXE. and Snhl.P.D. (1917) Isoratioo and duiaumimion of a mamose-speatk cndocyiosii lemim from rabbit alveolar macrophates. Btodttm. J., 245, 705-711.

703. Umara,M.R.. CoU.F^., Sberjaerd.V.L.. WOanan.T.E. and SaM.P.D. (1987) liolatioo andchiraaxiUatlon of a gannose-speciflc endocy toils receptor from human pUcema. J. Bid Oem.,2*2.9942-9944.

706. Haltnnn(erJLS. and H31JLL. (1986) The isolatioriof a rat alveolar maucyoage tectin. J. BloLO a t , 261. 7440-7444.

707 U.M.. Wada>4.. Kawasaki.T. and YamashinaX (1988) Isolation ud characterization or teennsspedfjc for rnanDC^rDcose/ZV^acetylglucotanune frorn rat peiiluueal macrophafes. J. Biocfuwi.(Tokyo). 104. 5T7-590.

708. Ezetar«ta,R_A.B.. WTffiams.DJ.. Koziel.H.. Amutrooj.M.Y.K.. Warner^.. RichardsJ'.F.and RoseJLM. (1991) Uptaxe of Pnttanocyais cwinii •••-<n«f"t by the mauoufaage marmnaoreceptor. Heart, 351. 153-138.

709. Lcr.H.. Krlm.S.. MicbalsUJ.-C. and Schauerjt (1990) Influence of sialic acids on thepl»rn—..w-.yl-r;»| toLeulm of rat prrit"iir l macropfaafes. BhL Qttm. Hoppt SrfUr. 371,307-316.

710. Kawasaii.T., IU4. and YtmashinaJ. (1989) Gtlactra^MacrlylfataarnmiiK-Mndrni pniteinand mannc«/L-raco>e/N-«cctylj^ncot>imnc-biDdiiii proteira from rat pcjuoneal niM-rnrJKii-i.Method, £ c 7 « o i . 179. 322-326.

711. nj^..KurataJi.,ltohJ<.,Yamashina4. and KawaiaM,T. (1990) Molecular doninf and sequenceanalysis of cDNA eocodint the <r-lr"{*T (coin specific for f l * ~ m f and Maceryl|alactos-mom.J. Bid Otm.,2iS. 11295-11298.

712. SastryX. ZahedlX. LeliuJ.-M.. WhUebeacU^. and EzekowtazJLA.B (1991) MofcmWi liiia* Inlatioo of tbe moose mannose-bhidhlg protems: Tbe marmose iindrnf protein A but DotC b an acme phase itactaru. J. bmttmnd,147, 692-697.

713. CoDeyXJ.. Bcranet^MX. and BaenziterJ.U. (19S8) Pmiflcatioo and i lnmtnl ration of thecore-«pecific tedin from human semm and liver. Stoctoa. J.. 256. 61-68.

714. Wdj.WX, Crichlow.O.V.. Krishna MrmhyMM.. Hendrfckion,W.A. «nd DrctamerX (1991)FTiyijcil chinm-i Lm.M"ifi m ] r ryqap^mij^1. of tbe albohyifattc-iccoyiinop ^V*1"!" 01 • tmnnDnvbintfinf protein ftom rat. J. Bid Otm., 166. 20678-20686.

715. SbarrUJC. ValemJI. and AIbersheim.P. (1984) Pmiiicatioi and pantal characterization of a beta-(rncan baftnent that didts pnytotleiin — .i«ii~ in soybean. J. Bid d m . 259.11312-11320.

716. SharpJ.K.. McNeflX. and AlbershcimJ'. (1984) The primary structures of one e&dlor-activeud seven didror-mactrre hexa(beow>-fracopyrtnosyi>«-fnicitoei botaied from (he myedidwalb of Phyuptohor* mtpaptnmi 1. sp. fr>CDMn./. Bid Cktm.. 259, 11321-11336.

717. SharpJ.K-. AftcnbetaJ., OtxxnUJ.. Pikni.A.. GarenJ1. and I mfhrnJ. (1984)Compartsoo of tbe stroctnres and efidnr aajriuej of • synthetic and a mycdial-wall-derrvedbeuO««-i>-i#>copyrn>osyi><>-flnchDl. J. Bid Ottm.. 259. 11341-11345.

718. Farmer.E.B.. MoknhotT.D.. Sajoon.MJ. and Rj-mn.C.A. (1991) OUaosacduride ripaUnt Isptann. Sped fldiy of olispuronide-enhanced plasma oembrane protein pbosphorylarlon. J. BidOUT*.. 266. 3140-3143.

719. Trucbet.G.. Rocbe.P.. LerOBjt.P.. VasieJ.. CamuuS.. De BUIy.F . PromiJ.^:. andDenaniJ.. (1991) Sdphated llpooiltoMcchiride signals of Rtezobixf mcUlod didt root noduk

ortmnOfenesis in alfalfa. Hatxrr. 351. 670-673.720 Lerouie.P.. RocoeJ>.. Ftrrhcr.C, MtilJeuF.. TrucheLC. ProorfJ C and DenartfJ. (1990)

Symbiotic bosvspenficiry of Kdioboat mrtikxi h determined by a mlptaed and acyiatedtJnrmaminr olitosaccharaJe signal. Namrt. 344. 781-784

721 SpainUl.P.. SheeVy.D.M.. V u Bnnsd^-A-N.. CtashkaJ.. YortW.S., Tak,T.. Co|er.O..KemxdyiP.. Rdnhold.V.N. and Laftniberf 3 J J. (1991) A novd highly unsaturatal fatty acidmmety of Itpo-ofirOMcdarnfc stfnats linn gs boa specificity of Bdtobbtm. Mnrr. 354.123-130.

722. LeveryJ.B.. Zahn.H.. Lte.C.C . LeJjtJ.A. and Hliomorij;. (1991) Strucmral aoaryses of asecond acidic exoporysacchande of KJuzobimm m^Bixjd thai can ftmcrioo in alfalfa root nodulemvaskn. CmMndr. Ra.. 210. 339-348.

723. Bardsn.L., LaraJ C. and LdjiJ.A. (1992) Speafic oliiosacchande form of tbe SUtatiummcUlod ciopolysaccbande promota nodule invasion m alfalfa. Pnc Nad. Acad. ScL USA. 89.5623-5629.

724. SamuanJ., Carbonjl-W.. Spamk.H.P., Bhat.U.R., Barbour.W M.. GhisakaJ. and Stacey.G.(1992) A 2-0-methylfocose moiety is present in the lipo-oligcaaccharide noduladoo signal ofBradyriihsimm japatiemm. Prvc. NaL Acad. ScL USA. 89. 8789-8793.

723. V u ThanhJC.T.. TouharuP., CooisotuA.. DamfJ^.G.. Gollln,DJ.. Oldf.P. andAlbcnbcini.P. (1983) ManqntaDon of tbe morpho|enetK pamways of tobacco explants byollgosaccbanns. Noon. 314, 613-617.

726. CasteUoUJJr. Frrrou.LV.. Karruvsky.MJ. u d Rosenber|.R.D. (1982) Inhibition ofvasauar smooth muscte cd] growth by endotbeiial ceU-denved heparifl. Possible role of a platelelendogrycondase. J. Bid Oum.. 257. 11236-11260.

727. Wright.T.C.Jr. PokacLA., CasteUoUJ. Jr. Karooviky.MJ.. LCTrneJLA.. Krm-Pnt.H.Y.and CampraJ. (1989) Heparin suppresses tbe inducoon of c-foc and c-myc mRNA ra murinefibrobiafis by selective inhibition of a protein ajnase C-dependent pathway, proc Nad. Acad. ScLUSA. St. 3199-3203.

728. CasteaoUJ.Jr, Pnk»c.L.A.. Caleb.B.U. Wrigta,T.C. Jr and Karnovsky.M J. (1989) Heparinsckcdvdy lnhtbnsaproiembrmeC-depcndenlrnpAanismofceUcydeprctressic«mcilfaorticsmoom musde cdU. J. CtOBtd. 1M, 3147-3153.

729. PnkacJ-A.. CajteUoUJJ . Wngbt,T.C. Caleo3 L. and Kamovsky.MJ. (1990) Heparininhibits c-fos u d c-myc mRNA expression in vascular smooth mtade cells. C*U RtfMiaiiOH, 1,433-443.

730. VtodavdcyX. Ishai-Michadi.R., Mohsen.M.. Bar-Snavn.R.. CataneJL. Eare.H -P.T. andSvahn,C.M. (1992) Modnlaaan of neovrinilanrannn and metastasis by spcoo of heparin. Adr.Eip. tttd. Bid. 3U. 317-327.

731 FotkinanX and Shing.Y. (1992) Control of attgiogencsa by beparin and orncr sulfatedpolysaccbarides. Adr. Eip. Utd. Bid. 313. 335-364.

732. Pukac.L-A.. Onlingcr.M.E. and Karaovsky.MJ. C 9 9 2 ) Heparin trrppmin speciac secondnwiungui pamways for pmooncogene ciuicsikm in rat vascubrr smooth moadc cells. J. BidCStm.,261, 3707-3711.

733. FedarkDj^.5.. isbihanJM. and Coorad.H.E. (1989) Control ofccO drvisno in hepatoem cdls byexofenous heparan sulfate pmeogtycan. J. OIL Pkpid. 139. 287-294.

734. Benta,W.E.. Kdkyjl-T . Anderson.C.M.. Lorant,D.e and BemfleHM. (1990) Eodohdialheparan snlfaa proteogrycan. I. Inhibitory effects on smooth nuncio ceQ proUferarJou. AM. J.Rapir. Oil Ud Bid. 1. 13-24.

733. bhflnrvM.. Fedarko.N.S. and Conrad.H.E. (1987) Involvement of pbospharidyUnositol andinsulin in the uxjtnTimue regiilatiop of proteoheparan mifte metabolism >nd uet«lu.yie growth.J. Bid Otm-. 262. 4708-4716.

736. Ishtharaji4.. Ftdarto.N.S. and ConradJl.E. (1986) Transport of heparan Hlfate into the node!of bepamcytes. J. Bid Oum., 261. 13575-13580.

737 SahidA-R., FoxJ.A.. SbcriineJ>. and Cuatrecasa>,r\ (1986) imuliB-sdrrauaied hydrolysis of anovd giycoUpid generates modulators of cAMP phtaphodiesterase, Scim, 233. 967-972.

738. Sahld.A.R. and CuauecasasJ1. (1986) Insulin stimulates tbe gtiirrsrkii from hepatic plasmaumiuauo of modulators derived from u inotitol grycolipid. Proc. Nat Acad. ScL USA, 83,5793-5797.

739. Mato J.M.. K d l y X U . Abler,A. and imnX- (1987) irtmrirVaTirw of a novd imuDMensmvegrycophospbolipid from H35 bepatoma cdls. J. Bid Owm., 262. 2131-2137.

740. Romero.G.. Gamez.0.. H m u j X C . Ul leyX and Luttrdl.L. (1990) And-inratolgrvcaritfflih^fn sdectivery block some of the scrjoos of insulin In intact BC}H1 cdls. Prvc Nad.Acad. ScL USA, 87. 1476-1480.

741. VarclaX. AtvarezJ.F.. Clcmente.R.. Ruii-AIbusacJ. M.and Malo, I. M. (1990) Asymmetricdistriburjon of tbe pbospbaddylLnDsilol-laiixd pbospbo-oligosaccbaridc that monies tnsaQn actionin tbe plasma membrane. EMT. J. Bioditm.. 188. 213-218.

742. PtourdeJL. D'AlarcaoJ^. and Silud>.iL (1992) Symhesii and cbaracterizatian of sn insulin-mimetic daaccnaride. J. Orj. Ocm., 57, 2606-2610.

743. MudJXE. and SaUd^.R. (1992) An tooctcj phosphate grycu derived from a Trjpamaamabncti gJyccayl-rjbrMpbaodyunosUol manics some of tbe metabolic actioos of insnlm. J. Bid

- Ottm., 267, 16266-16273.744. Suzuki J . , SugawaraJL. Sasoh,Y. and Tcrvoa.T. (1991) Insulin "'"•"'"'• the gumatiori of two

putativt insulin n»».n—•• axnitol-glycan and diacytgrycerol in BC3H-1 myucyies. / Bid.Otm.. 166, 1115-8121.

745. AlvarezX.. AW1..M.A.. Mao J.M.. CastadoXG. and Varela-Nkto.l. (1991) msulin-lika effecaof inosnol phosphate-ftycan on messenger RNA expression in rat bepatocytes. Ud £*docrtad,5. 1062-1061.

746. AlvarezJ.F.. Sancba-AnasJ.A., Guadaflo^., EsteVczJ1., Varda.I.. FdhJ.E. and MamXM.(1991) Trasspon in isolated rat bepatocytes of tbe ph'uprgvoligosacfrriride that rrmracs insulinaction. Effects of adrenalectomy and gtocccordcoU ummum. Biodm*. J., 274. 369-374.

747. EardleyJJ.D. and KothlandJrf.E. (1991) (ByciaytpliasuuaiidyUiiositol: A candldaie system forinterieukiD-2 signal tranadnctioa. Sdtna, 251, 78--8I.

748. ChanJ.L-. ChaoJtl.V. and SaldeO.R. (1989) Nerve growth factor stimulates the hydiolysis ofgiy'i*jri-jJi«>^h«tiifylinnalfnj {n PC-12 rrifs' A >Ti*^fi-"'Ji" of procem rmtr C regubmon. Prvc.Nad. Acad. ScL USA. 84. 1736-1760.

749. RcpresaX. AviKM.A.. Mber.C. OinHrr.F., Romero.G., CremmtcA. MatoXM. andVarda-NictoJ. (1991) Glycoiyl-pruspimidyUncaitQl/uiotilol pbosptaoglycan: A signaling systemfor tbe low-affinity nerve growth factor receptor. Proc Nad. Acad. ScL USA, 88. 8016-8019.

730. Fmcy.H.. Wmjoo.T.C. and Qcxi.H.-H. (1989) inKbirioo of ONA rrmheia and cefl divisionby a ccO surface siaiogrycopeptide. 1. CtlL PkydcL. 139, 269-274.

731. FanaayJi.IL. Bascom.CC. ud JohnsonXC. (1991) Mnmilitirwi of growtb-rdated gent expres-sion and cefl cydc syncbroninrion by a sialoilycopepooe Inhibrtor. Eip. CtB KB., 194.62-68.

752. Sharifl3.G. and JohBson,T.C. (1987) Aflmity labeling of tha sUogrycopeptide aommofeBreceptor. J. Bid dam.. 262. 15752-13753.

733. PDdabkyJJ>X. CancrJLA- and IsaefbacnerJCJ. (1983) inMMiim of primary and mnatiaik-tumor growth in "<trr by cancer-assodated galacuxyluansferase accepnr. Conor te-. 43.4026-4030.

734. PatohkyXl.t. and issdbachtr.KJ. (1982) Transformation-spednc eel] lining by a cancer-associated galaoosyttrusfensc acceptor and cdhuar bindiog. Skxhtm. J., 208. 249-259.

125

Page 30: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varkl

755. Clowes.G.HJ.. Oeorge.B.C. Villee.C.AJ and Saravis.C.A. (1983) Muscte proteolyili Inducedby • circulating pepade in patients whh sepsis or n u m . N. EngL J. tied.. 308. 345-552.

756. Seko.A.. KnajnnaX. tnope.S. u d Inoae.Y (1991) Idenuficarjoo of Tree glycu chain Iteratedby ae-A-grycosytaoon of ihe conical alveolar glycopolyprottin (hyosopbonn) duriag earlyembryogenesb of the Medaka rish. OryzUa tadpa. Btodtem. Bioptrp. Ra. Commit.. 180,1165-1171.

757. Seko.A., KrtajtmaX. Inooe.Y. u d looseS. (1991) Pepdde-Jf^lycosidae activity found in thearty embryos of Orrzto kmpa (Medaka fab). The first demonstration of the oixuireuce ofpepode:/l?-glycosidase m animal cdb u d m irrmlinnnri for the presence of • de-/V-glycoiyunioosystem in livta» orpntani. y. BioL Gum.. 16*. 22110-22114.

758. W n l X . Iwasakl.M.. Inoae.S.. Kenny.P.T.M.. KonmraJl. u d Inooe.Y. (1989) Free titio-k \ h i f d

761.

storage pool of complex-type bt-. tri-. u d tetraantetmary sialooUgasaccnanlei. J. BioL Chtm.,264. 1623-1630.

759. laoue.S.. IwnaklX.. IshflX. KuajbmX u d Inooe.Y. (1989) Ijolmc u d structures ofgrycoprotem-denved free suriooligosai i Itiiides from the unfertilized eggs of IriootodonAaconenrir. • dace. IntncellDiar accumulation of • novel d m of yj*m^nmry disialo-oligosaccharides. J. BioL Cham.. 264. 1852O-1S526.

760. LoweJ.B., StoohmtU-M.. Nalr,R.P.. LanenJl.D.. Berhend.T.L. u d MarksJl.M. (1990)ELAM-I-dependent cell adhesion to vascular endotheiiuin duu mined by a transrected Hi manfocosyltransfcrase cDNA. CtU. 63. 475-484.

. PhWipi.M.L.. Noddman,E.. Oaeta.F.CA.. Perez.M., Smghal,AX. Hakomon.S. andPaulsooJ.C. (1990) ELAM-1 mediates cdl adhesion by recognition of a carbobydrate hgmd.sblyl-U1. Sdtxa.-lSt. 1130-1 i n .

762. WaliG., ArnfTb.A.. Kouma.W . Bevilacoua.M. and Seed.B. (1990) Recogmxioo by ELAM-Iof the sbJyl-Le" determinant on myetotd and tumor edit. Sdcm. 250. 1132-1135.

763. PoOcyJvU., PhilUps.M.L., Wayner.E.. Noddmu.E.. SInghal.AX, Hakomon.S. andPaubonJ.C. (1991) CD62 and enrtnrhrjial cdHcukocyte adhesion molecule 1 (ELAM-I)recognize the same carbohydrate Ugand. sbryl-Lewis x. Pnx. NaL Acad. ScL USA. 58.6224-6228.

764. Berg.E.L., RnHinon.MX, Mamson.0.. BMCher,E.C. and MagnanU.L. (1991) A carbohydratedomain common to both liafyl Le* and siaryl Le1 is T " * ~ < by the ~-wt-«*i cell leukocyteadhesion molecule ELAM-1. J. BioL O w , 266. 14869-14872.

765. Tyrrell.D.. JamesJ>.. RaoJJ . Foxall.C.. Abbej.S., DHfuntaJ1.. NashedX.. HasegawajC.KisoJU.. AsaJJ., KhMJ. aad Brandley J ) X (1991) Structural requirements for die carbohydrateIifand of E-selectin. Pnx. Nart. Acad. ScL USA, 88. 10372-10376.

766. BergJ^L.. Yoahlno.T.. Ron,L.S.. RobtasonJrfX, WarnockJtA.. Kbhhnoai.T.K.. PickerAJ.and BrtrhrrJ-C. (1991) The cutaneous lymphocyte antigen is a akin lymphocyte homing leiepmfor the vamlar lecun rnriwhriUI ceO-lenkocyia adhesion moleaik 1. J. Eip. Mtd., 174.1461-1466.

767. Lartmji!., Ahern,TJ., StoUX.S.. ShanerJU.. Sako.D., O'BrknJ.. Yuea,C.-T..LawiomA.M., ChIldsJl.A.. BaroneXM.. Laoger-SarerJ>.R., Hategswa^.. BsoJ«l.,Laraen,a.R. and Feizi.T. (1992) Spectrum of siahylaied and oomdalylated nxo-ollgosacchirldesbound by the endotheUaHaikDcyte adhesion molecule E-seJectm. r>^ienaeocec<nVc«rbooydratnbindtsi actrrny on E-sdectm density. /. BtoL OKXL. 267. 13661-13668.

768. Unra.G.R.. Satai.D.. Ahem.TJ.. StnrTerJ4.. ErbanJ , Sajer.SJL. Oij«o<l,R.M..Wajnor.D.D.. F u r k 3 C . and FurieJ. (1992) P-sdecnn and E-«deerin. Disnnct but overtapptagleukocyte ligand spociflcjdes. 7. « o i On*.. 267, 11104—11110-

769. Yoen.C.-T., Lawsco_A.M.. Chai.W.. Urtm,M.. Stoll.M.S.. SomuA.C. SnllivanJ.X..Ahem,TJ. and Fcui.T. (1992) Novd sulfated Uguds tot the cdl adhesion motecnle E-setcctmrevealed by the neogrycollptd technology among O-lmked otigoaccoarkles on an ovariancystadeooma grycoprotein. Bkxlttmisirj, 31. 9126-9131.

770. Fcotan.C. WatsonJ.R.. DowbenkoJ)., Fennle.C.. I j sky i .A . , KisoJrL. rtaegmwa^., As«.D.and BranaTey J X (1992) The rhrce IUCU^JCJI of die sdecrin receptor family imjfuki a commoniji-bauydiate epitope. the tklyl Lewis* oligosacchartde. / . CtU Blot, 117. 895-402.

771. Berj.E.L.. MagnanU.. WarnockJLA., RobonxjoJH.lC. and Bu<cber.E.C. (1992) Comnarisoo ofL-selecrin aad E- adectm Ugand spedfidtks; The L-adecrJn can brnd rhe E-adoctin Uguds siarylU" u d siaryl Le*. Biocnm. Btcfhjt. 9a. Camm.. 184. 1048-1055.

772. Larseni , Palahrica,T.. Stpx.S., <3Dben.O.E.. WajnerJJ.D., FuneJ.C and FurioJ. (1990)PADOEM-oependent «^hiiii7n of r*—»»«« to monocyta and ueuuupUfls b i"T-fiM 'H by a lineage-spodflc carbohydrao. LNF JU (CD15). CrB. 63, 467-474.

773. Moore.lCL., Varki^i. u d McEverJLP. (1991) GMP^IW bintb B a grycoorottin receptor onhuman neutroptdU: Evidence for a lecdn-Uke interaction. J. CtU BioL. 1L2. 491-499.

774. Aruffo,A.. KoUmo.W.. Walx.0.. FredmanJ1. and Seed.8. (1991) CD62/P-ie)ectra recogmoooof myeloid and tumor cdl nlEaddes. Cdl. 67, 35-44.

775. Handa.K., Nnrlrrman.E.D.. Stroud.M.R.. SUoawa.T. and Hakoanri^. (1991) SdecdnGMP-140 (CD62; PADGEM) binds to staknyl-Le* and sUksyl-Le1. and sulEtnl grycammodulate this binding. Blockrm. Btopkys. Acs. Comxm., 181. 1223-1230.

776. Zhou.Q.. MooreJCX.. Smim,D.F.. Varki^A.. McEverJU. and CummingULD. (1991) Thesdectin GMP-140 buds to siah/botd. focosylated i^^.min^iyr .n . on both myeloid andoomnyeioid cefls. J. CrO BioL. IIS. 557-564.

777. Do Bnrijne-Adrmraal.L.0., MooVfcrmanJ.W.. Von dem BorntA.E.G.K. and Soonenbcrg^.(1992) P-selectin mediates Ca'^-dependem adhesion of acdvatad ptanlea to many diflerent typesof leukocytes; Detection by flow cytnmetry. Blood. 80. 134—142.

778. MooraXL., Stuh»,N.L.. Diai^.. SmithJJ.F.. Cumminp,R.D., VaricLA- and McEvcrJLP.(1992) Identification of a specific grycoprotein Ugand for P-sdcctm (CD62) on myeloid cells.J. CtU BioL. 118. 443-436.

779. Palabrica.T., LobbJL, Furi«3.C, AronovictM.. Benjamtn,C. Hsu.Y.-M.. Sajer^.A- andForic3. (1992) Leukocyte • ^ ^ " ' » ^ " [MiMiBMiitg nbrin «^pr^i'^» is n**M*int t* rrto byP-selectm on adheron platelets. Naur*. 3S9, 848-851.

780. NorgaidXE.. MooreJLL., DiaiJ. . StutaJJ.L.. UsUyamaX. McEverJLP., CmmnhlgsJLD.and VarkJA (1993) Qaiaciniiailon of a specific Ugand far P-«ctom on myetaid cefls. A mtnorgfrcoprottta with liarylated CM inked nHgourrhaiktes. J. Blot Oam.. to press.

781. Rosm.S.D.. SingerX-S., Yednock,T.A. and StoamunU-M. (1985) Iuvolveroenl of mbc acidon rnrtollaHnl cdb in organ-specific lymnhocyte recirculadon. jdencr. 22S. 1005-1007.

782- Imi.Y., SingerX.S.. Fenme.C, LaskyJ-A. and Roaen^.D. (1991) •'•*•"'"• •''"" of acarbohydrate-based mrtnthrihil Ugand Car a rymiimcyie bommg receptor. J. Cdl BtoL. 113.1213-1222-

783. lamrs.S.P.. Murakawa.Y.. IJOof.M.E. and Berg.M. (1991) MnMplo rota of LcD-tTMEL-M laleokocyo: adhtsinn and ftmabm. hmaovL Ra.. 10. 282-292.

784. taal.Y.. L>sky.I_A. and RostnJ.O. (1992) Further dniauuUarlon of the imni'iimi betweeaL-seleam and in rmtnrhrHal hjands. CPycoototogy. 2. 373-381.

783. LaskyO-A.. Smger>l^., DowbenkoJ).. hmi.Y., Hemd.WJ., GrimSey.C. Frmrif.C.CaCmJ*.. WttsmuSJL and SoteaJJ). (1992) An «-tnttvdbl Djand (or L-adactin a a novelnodn-nkc rrmlrmln. CM, 69, 927-938.

786. GreenJM., TananmuT.. Wanmabo.T.. MryatalouM., HaaegawaJ^., KixxM.. Yue«,C.-T..StoDX^. aod Fcki.T. (1992) High affinity binding of rhe leucocyte adaoion molecule L-srifnfn to 3'-snlp!iaad-Leb rrd -Le. oHgotccchnrtoa rxd rhj predtniinEce of snlpfca to rMs

interaction demonstrated by trading studies with a series of lipid-unked oligosacchandes.Bkxhtm. Biookyi Ra. Comma.. 188. 244-251.

787 NorgardX. Hin.H.. Powdl.L.. Krkglerjtf., VarkiA. and Varki.N.M. (1993) Enhanced-.i.,.-.;™ of L-sdectm with me Ugh endorhdbl vennJc ligand via sdecovdy oxidized sialicacids. Pnx. Noll. Acad ScL USA. 90. 1068-1072.

788. St Joim,T., MeycrJ.. Idzerda,R. and GaDjnn.W.M. (1990) Expression of CD44 confer! a newadhesive phenotype oo li •"*'*• "d cdb. Cdl. 60. 45—52.

789 Arufrb.A.. StamenkovicJ.. MeUck.M.. UnderhiQ.C.B. and Setd.B. (1990) CD44 a theuiinUpal cdl surface icuvc m for byahtronate. Cdl. 61, 1303—1313.

790. Cullyjrf.. MlyakeX. Kincade.P.W.. SaorsatE., Botcher.E.C. and Undertun.C. (1990) Thenyahironaie receptor a a member of the CD44 (H-CAM) family of cdl surface glycoproteins.J. Cdl BioL, 111, 2765-2774.

79I.Serh>.. GoteJ_. Nagarkatn.M. and Nagarkani J> S. (1991) T-ceU-receptor-indepenoentactivation of cytotytic acdvity of cytotoxic T lymphocytes mediated through CD44 andgp9r/OL-" Pnx, NaL Acad. ScL USA. 88. 7877-7881.

792. LesleyJ.. He.Q.. MiyakeX. HamamA.. Hyman.JL and Kincade.P.W. (1992) Requirement!for hyaloronk add binning by CD44: A role for the cytopunmic domain and aarrauon byantibody. J. Exp. Utd.. 173. 257-266.

793. Cuhy J*.. NguyetuHA. and Underhm.C.B. (1992) The byaluronan receptor (CD44) parridpateiin the uptake and degradation of byaluronan. J. Cdl BtoL. 116. 1035-1062.

794. Tbcmas.L.. Byers.H.R., VtatJ. and StamenkovicJ. (1992) CD44H regulates mmor cdlmigration on hyaluronata-coated substrate. J. Cdl BioL, 118. 971-977.

795 Gunrhert,U.. HofmennX.. Riidy.W., Rcbo.S.. ZoUer.M.. HmmnumJ.. Matzku.S..Wenzd.A.. PooouH. and HerrlichJV (1991) A new variant of gtycopmein CD44 coofers••>• •••I«IL pntrtmal to rat carcinoma cdb. Cdl, 65, 13—24.

796. StamenkovicJ , SgroiJ).. Aruflb.A., Syjrf-S. and AndersoruT. (1991) The B lymphocyteadhesion motecale CD22 interacts with leukocyte common antigen CD45RO on T cdb and al-6snlyttransfense. CD75. on B cdb. Cdl, 66, 1133-1144.

797. StamenkovicJ., Sgroi.D. and Arurrb,A. (1992) CD22 binds to q-2.6-sialyllransferase-d>|» nrtnnepctopes on COS cdb. Cdl, 61. 1003-1004.

798. ArufrcA.. Kamer^.B.. SgroiJ}.. LedbetterJA. and StamenkovicJ. (1992) CD22-mediatedsrlrmittmnn of T cdb regulates T-ceU receptor/CD3-tnduced signaling. Pnx. NaiL Acad. ScLUSA, *9. 10242-10264.

799. Sgroi.D.. Varkj.A.. Braesch-Andersen ,S. and StamenkovicJ. (1993) CD22b. a B cell-specificbnmunoglobulin superfamay member b a sialic aad-bmding leclm J. BioL Ottm., a press.

800. PowdlJ-D., SgroiJJ., SJoberg.E.R., StamenkovicJ. and VarU.A. (1993) Natural Ugandt of theB cdl adhesion molecule CD22b carry N-linked oUgusacUiarides wUh a2.6 linked siaUc adds thatare required for pi'^gnhH'" / BioL Owm.. m press.

801. MorrbJ-, CrockerJ'.R., FnserJ.. HHlJrf. and OordonJ. (1991) Expression of a divalentcatjon-dependeot erythrobbm « i>*t » lojepmi by stromd macrophages rrom murina bonemarrow. / . Cdl ScL, 99. 141-147.

802. CnjckerJ>J(.. KdmJ.. Dubob.C. MarrmJ).. McWmiaawA.S., Shoaon,D^I., PanbonJ.Cand Gordon^. (1991) Purificatiaa and properties of ijalnarlhrtrn, a sialic add-bincBng receptorof munne dsue macrophages. EMBO J.. 19, 1661-1669.

803. V u den Berg.TX, BreviJJ.P.. DamobeauxJ.G.M.C. D6ppJJ-A.. KdmS.. CrockerJ'.R.,Ogkstra.C.D. and Kraal.G. (1992) qaloadhrrln on macrophages: In identification as alymphocyte adhesion molecule. / Eip. Utd.. 176. 647-655.

804. CrockerJ'.R.. WerbZ.. Gordon^, and Bainton.D.F. (1990) Uttrastrocmni kmliialkw of atrictcd sWk add binding hemagghtdnia, SER, in mauuv*iag<- buualupoictic ceD

dusters. Blood. 76. 1131-1138.803. Ticmeyer.M., BranfleyJX. Ishiharaji*., SwtaflerJiJ.. GreeneJ., Hoyte.G. W. and HBU.L

(1992) The binding apedfldty of normal and variant rat Kupfficr ceD (lecdn) receptors fi|nrsstvlla COS cdb. J. BioL Oat., 267. 12232-12257.

806. Utanan,M.A.. HaMwangerJIS. and HmjLL. (1986) Tba binding of fbcose-containbgglympnilriiii by hepatic learns The binding specificity of the rat Uver IOCOM lecdn. J. BioLOOWL. 261. 7426-7432.

(07. LehnnanJvl_A. and HU1.R.L. (1986) The binding of nicose-comaimng grycoprotdns by hepatici~^j~- PtmAcarjon of a rbcose-binding Icctin from rat Irvcr. J. BioL Chtm.. 261, 7419—7423.

808. LehnnenJ>4-A.. Pirro^.V.. ImberJH J. and Hill.R.L. (1986) The binding of rbcoav-containlnggrycoproteins by hepatic tectim: Re-examinarion of rha clearance from blood and die binding to

809. Shur j).D. and HaU.N.G. (1982) A role for mouse sperm surface gaUctosyttransferase in spermtinting to me egg zona peUudda. J. Cdl BioL. 95. 374-579.

810. ShurJI.D. (I9S3) Embryonal cardnoma ceO adhesion: die rote of surface gabctosyhnnsferaseand its 90K tadosamlnoglycin sobstnte. Drt. BtoL. 99. 360-372.

811. ScuOyJ4.F., ShaperJ.H. and Shur3.D. (1987) Spatial and temporal expressna of cdl surfacegali Mnjlimn^r^T* during mouse spuuiatugmms and epididymal maturation. Drt. BtoL. 124.111-124.

812. BaynaJlM.. ShaperJ.H. and SburJ.D. (1988) Temporally specific involvement of cdl surfacebeta-1,4 gabctosyltransferase during mouse embryo manna compacdon. CdL. 53. 143-157.

813. BetovacJ>.C. and Star J).D. (1990) Cdl surface gabctosyltransrerase mediates rbe bndatkm ofnenria outgrowth from PC12 cdb on htmimn. / Cdl BioL. 110. 461-470.

814. Begovac JVC. Hafl J5.E. and Shur3.D. (1991) Lamlnm fragment ES mediates PC12 cdl neurheoutgrowm by binding to ceD. surface 01.4 gabictosyltransferase. / . Cdl BioL. 113. 637-644.

813. Hathaway J iJ . and Shnr3.D. (1992) CeD surtace 01,4-fjlactosytaansferaje (unctions duringneural crest cdl migration and neurularioo in vivo. J. Cdl BioL, 117. 369-382.

116. MiDerJJJ.. MacefcM.B. aod Sbur3.D. (1992) ri«ii|a>ii« luarily between sperm surtace^1.4-fjlactDryl-transfeme and en-coat ZP3 mediates iptrm egg binding. Manor. 357.589-593.

817. Bsrcdlos-HofTJrf.H. (1992) Mammary ephfaefial leugaiilnlinn on ffiracrltulaT matrix bmnmated by cell surface galactosyllransferase. Eip. Cdl Ra.. 201, 225-234.

818. HamawayJIJ., RomagnanoJL-C and Babiarz,BJ. (1989) Analysb of ceO surfacegabuus/Uiausferase acdviry during motae tropbearjdcmnl difleremiatioa. On. BioL. 134,351-361.

819. rrmnphreys-BeherJrf.G.. Zefla.T.. M*edaJ4.. PurushothamXR- and Sctoerer.CA- (1990)as as a general modnnoor of m adnar ceD proiUeranon. HoL

CdL Biodttm.,95. 1-11.820. RomagnanoJ. and n«M«rT n (1990) The role of murina ceD 1 rfaa gala sfer

unyfr'.Hnr Laminin interactiom In vimx Dn. BtoL. 141. 234-261.821. Puxtsiti.A_ and Hm.G.W. (1990) Meomasb-ttssocimd murine mdanoma ceD surface

gabemsyttnasferase-. CUaiaueiUalion of enzyme acrhray and identification of the major surfacesubstrates. Cancer Ra.. 50. 7261-7271.

822. KmtocxuS-A., Monfflo.S., Stew«n.CJ_ szd WtasarmmJ*. M. (1991) EmluyuAil un-iriimjcdb mnsfected wim ZP3 genes difTercmally glycosyuoa shrdlar pdypepnnes and secrett activeo m tpcrm roccpsr. /. Cdl BioL. 115, 655-664.

823. BteBJ.D. and WassarmanJ>.M. (1988) Gabctose at the i»mir<aiilng tuuikuu of O-UnkedoUgosaccharida of mouse egg ran p-""-"- (dvconroteln ZP3 b essential for the glyccprcsehi't

r redvity. Pnx. Nad. Acad. ScL USA, 85, 6778-6782.

126

Page 31: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of ollgosaccharides

104. Wasssrmao.P M. (1990) Profile of a mammtluui sperm receptor Development. 108. I"17

IC5. Cbtodrasekaran.S.. DeuJ. W.jn. Glmger.M.S. and Tanzer.M.L. (1991) Laminin carbo-hydrates ire lmplictted in cell signaling. J. CtU. Biochtm.. 4*. 115-124.

K26. GrttTon.C. Monsigny.M. end Kieda,C. (1991) Cell surface leams of human granulocytes: ibdraipicuiuu ts mortirUred by ranmdar cells and grtnulocyte/rnacrophage cosony-stunirlathighoof. OyaMototj. 1. 33-38.

K27. LeeJLT.. lchikawa,Y.. ADra.HJ. and Lee.Y C. (1990) Binding characteristics of gtlartrmrln-binding lectm (galapdo) from human spleen 7. fltoi O m , 265. 7864-7871.

ICH. AllenJlJ.. SOCBOJ).. GoamueJ.. K W h u i . . N i n j l . . PerndhJ^.. Casnllo.N. and Wilson.D.(IWlUiTr.llnrin.1 nfmtnfiw.ii ^.[^-..prtf-^njin, ttpjj j,, hnmtn .-.Hi inri m a g . 7n>UrBioL. 12. 52-60.

109. Cbenya.BJ., Wdner.SJ. ud PilW^. (1989) The Mac-2 antigen U • galactose-specific Iranthat binds igE. y. Eq> UaL. 178. 1959-1972.

H.W. RobensonX.W.. AIbrandl.K.. Kdler.D. and U u J -T. (1990) Hunan I|E-bindinf protein:A sorobte lectra exmbumg a highly conserved imrnrimn sequence and differential recognitionof IJE glyooforms. BtodKminrr, 29. 9093-1100.

K3I. Cher«)rO.BJ..ChahovtaJ..Woo|,C. and POlai J . (1990) Molecular dcoing of a human macro-phate lectio specific for galactose. Proc. Nad. Acod. ScL USA. 17. 7324-7328.

X32. Hyna.M.A.. OnM.. Baroodes.S.H . JesseTJ.T M. and BudU-B. (1990) Selective ciprauooof a rndogrnous lactose-balding lectin gene hi subsets of central aod [»it^r»l neurons.J. NanacL. 10. 1004-1013.

U3. Brassart,D . Kolodzlejczyt,E.. Grtnato.D.. Wota.A.. Pavulard.M.. PeronlJ.. Frigeri.LG..LmJ.-T., Bord.Y and NeeserJ.-R (1992) An intestinal galactme-speafic lectin mediatesthe binding of marine IgE to mouse •"'rrircil epithelial ceOs. Ettr. J. BuxMcm., 203,393-399

834. S»m.S. and Hughes.R.C. (1992) Binding speafiary of • baby hamster kidney tecdn for H typeI u d II rhaim. poljukctosamirje grycans, and appropriately grycosybtted forms of btrmnin andfibrooeain. J. BioL Otm.. 267, 6983-6990.

835. Hso.D.K.. ZubenJU. and Lm.F.-T. (1992) Biochemical and biophysical rhsrtnmTStioo ofhuman inmiiitniw igE-binding protein, an S-type animal lectin. J. BioL Oiam., 267.M167-14174.

836 PoirierJ.. runroomJ>.M., Chan,C.-T. J , OoeneU.-L. and RIgby.P.WJ. (1992) Expression oftbe L14 lectin diirm| mouse embryofenesa suggests multiple roles during prc- and post-implantatioa developroent. Drttiopmaa. 115, 143—155.

837. Iriinura,T., Mitlmhrra.Y.. SuooaJtC. Cirrtkro.D.. OnannesUn.D W., OearyJLR..OtaJ>.M., NkobccO.L. and LoauUt (1991) Increased content of an »i»iiit»~.n lactose-bmdiAg lectin in human colorectal carcinoma progressed to r~nrfmti* stages. Omar Ra., 5] ,3T7-393.

838. SahotO., W Q J . W . - C . , LoonJL and FnbxfcX. (1992) CMHcrential glycosylatioil and cellsurtact uprenion of lysosomal mrnJifaiy grycopnMems m snblines of a tnmtn colon canceroldbmng distinct metasntic poteadals. J. BioL Ottm.. HI, 5700-5711.

839. KochlerJ.. FraumodX.. SarbereX-L., VbcendoiuG. u d ZanenaJ.-P. (19S8) Cercbeflvsohibki lecdn is responsible for cell adbesioaand panidDUa In myctin compaction incolnired rttoUgodeodrocytei. Dn. NemnacL. 10, 199-212.

840. MmdMl j>.. Kceber^.. Neeset J.-R.. VuKendon.0. and ZanetnJ.-P. (1989) Carbohydrate andgrycoprnein specificity of mo mrtntemiri cerebellv lectta. BtacUmit. 71. 645-653.

841. Kochler^.. Herbem,G., SarlieveX.L.. VincodccG. md ZtnetoU-P. (1989) An endogmouslectin \Si.* htteracts wuh grycoprotein components is peripheral nervous system mydin. CtU.MdL BioL, 35, 581-596.

842. I rhnarm,.S., KnchterJ., Therenjnij^.. Vincendon,0. and Zanetoj.-P. (1990) An enttogenensIccdn and one of its Dearontl glycopioieui Ugands are inrotved In comet gnidanct of neuronmigration. Frx. Not AaxL ScL USA, 17. 6455-6459.

843. l x t a m i , KuchlerJ.. BHbche^.. ZacpfeUbf., Meyers, and ZanettaJ.-P. (1991)Iunil»mieul of the endogenous lecttn CSL tn adhesion of Chuiese hamster ovary cells. £ v J.Crfl«W.,5«, 433-442.

844. l u e r n j . , SUbertJ.E. and Cuh)J-A. (1983) CeO sar&ce heparas sutfne tae&MUa some adhesiveresponses to grjcosamfaofjycan-biafing matrices. Indudmj Rbrotactin. J. CtQ BioL, 9«,112-123.

845. SonX.MothCT.D.F. lodRjfTiciCTJMlSWlHccm^juJta-inafi^WsmtMX |jiu«e»Jtlyiaii go mmnbospondin. J. BioL Oitm.. 264, 2885-2889.

846. DrakfcS.U. IQein.DJ., MWOJISODJ) J., Oegtma.T.R., FurehtX-T. tnd McCanhyJ.B. (1992)CeUsnrfscephoiohatidylinrjstol-anchoralhcparMsdtoceU adhetioii to a fibroneafa-derired, beparWjindlng synthetic pepbde. J. CtU BioL. 117,1331-1341.

847. HangaUMC, McCanhyJ.B., RocheJC.F., Fnrcht,L.T. and Looumcau.P.C. (1992) CeMral andperipheral neuilte outgrowth dlfiers in prefcreace rbr heparin-bmding versus onegru>bindingsequences. J. NtmrascL, 11, 2034-2042.

848. HaujenJUf... LooumcsDj>.C.. DrakeJ.L., Furcte,L.T. and McCarthyJ.B. (1992) A ccU-surrjee heparaa salrate proteogrrcaa mrtfiatn neural ceQ "ffw ^™ and rr«^«^"g on a definedscqiienrc from tbe C-termmal cell and heparin bindmg domaio of fTbronectin, FN-C/H fjJ. NamcL. U, 2597-2608.

849. HangeoJ'.K.. McCanhyJ.B.. Sb4ta>.P.N., Furcht4_T. and LetoumeajJ1. C. (1990)l t i of the A chain carboxy-terrmoal beparin httvTtwg repon of fuVonecdn umjives

sitei: Two frwrigm^n I*.|II>IM» aa independeotry 10 pracaote neural cell adhesion.J.CtUBieL, 111. 2733-2745.

850. Dxvid.O., BaUC M.. Van dcr SchnerenJ.. r-^rim.- J..J. and Van den Bergbejl. (1992)DevehopmentaJ changes in beparan snlfats expression: In shn iVfrrrkm with mAbs. J. CtQ BtoL,119. 961-975.

Ul.ftobertsJXD.. Rao.ON., Magnaniji.. Sprami i j i . . UomU_A. and Oinsbttrg.V.(1985) Laromta bindj specifically to ad&ud gtycolipMs. froc Nad. AtuL ScL USA, 82.1306-1310.

852. RoberDuD.D.. RJO.C.N.. LloaaJ-A.. GnlnickJUL and 01nsburg.V. (1986) Compuisoii of thespecificities of lammm, rhromboipondln. and von WlDebrand boor for binding to sulfatedgrjrcolipklj. J. BioL O m , Ml. 6872-6877.

853. RobernJXD.. Wniima^.B.. GraUiick.HJL and Omsborg.V. (1986) von WiUtbrand factorbinds spedficaDy to sulfimd grycohpids. / BioL Otm.. 241. 3306-3309.

854. Bobem,DJ5., HnrentickJJ.M.. Dait,v.M.. Frarier.W.A.. Santoro^.A. and Ginsburg.V.

O o t . l M , 9403-9411.835. RoberrLO.O. and Gmsbarg.V. (19W) Stdrated grycolipsd] and ceO adhesion. An*. Biochtm.

Bk**fL. M7, 405-415.836. HotLO.D.. KrtmJl.C.. Gastc.OJ. and Gtnsbnrg,V. (1989) i n t m l n an Lnhflwor of

rfgiilitlnri and mrrasraris. binds n sulradde (OilO-SO>5l-lCer) and has a unj f hnujulutywith other proteins tno bind snl&ted grycocoojugates. J. BtoL Otm., 264. 1213*-I2I4O.

157. Hoh,O.D.. PangbunuMJC. and Ginsburg.V. (1990) Propenfin binds a> smfaale[Q*iQ'SQJ6\'\OB\ and has a irryr** bomology wtth other proteins that bind suliatedgrycocoojogstts. J. BioL Oieai.. US. 2*52-2855.

834. Todderud,0.. AtfordJ., MiDsapJLA.. Aruflbjk. and TramposchXM. (1992) PMN binding top k l ij inbibitnd by sol&tkle. J. Lniocyu BioL. 52. 85-S8.

859. Kurob.Y.. Gasa^.. Ogasawara.Y.. Makaajk. and Akino.T. (1992) Binding of pulmonarysurfactant protein A tt> galactosyicertmide and asuuo-G Mrh. Biodam. Biophyj.. 299.261-267.

860 CrossinJCL. and Edelman.G.M. (1992) Spedfic binding of cytoowm to sulfated glycolipidsJ. NnmcL Ra.. 33. 631-638.

861. G00.N., Kruusch.H.C. Negre.E.. Vogel.T.. BlakeJJ.A and Robera.D D. (1992) Hepann-aodsulUde-binding peprides from the type I repeats of human thrombospoodiri promote melanomacell adhesion. Proc Nad. Aad. ScL USA. » . 3040-3044.

862. UuJD.Y.. Yui.F. . Remotd.H.G. and DavidJ.R. (1985) Grycolirid receptor for humanmigration iiJinjiIMy factor. fUcose and stalk add are important for the human monocyte responseto migration tahBntory factM CtU tmmatoL. 90. 539-546.

863. Lro.D.Y., PeacheiJt.D.. Remold.H.G. and DmdJ.R. (1982) Isolation of a fumca pigmacrophage glycolipid with tbe properties of tbe putative migration inhBxtory factor receptorJ. BioL Otm..2S7. 159-162.

864. PoweflJ_D.. BaineJ.. Legler.O.. MorynemJU. and Hart. G. W. (19J5) Influence ofaspangine-Unked oUfosacchirides on tumor cell lecognltiuu in the mixed lymphocyte reactionJ. bmamoL. 135. 714-724.

863. Hart,G.W. (1982) The role of aspar»s^-linkni oligosaccharides m celrular recoi iition by mymiclymphocytes. Effects of tnnjeamydn on die ""**«* rympbocyte reaction J. BioL Ottm., 257,151-158.

866. WUlenborg.O.O.. Pnuh.CH. and Cowden.W.B. (1989) Inmbttion of experimental aDergk:encephaiomyelitis by the a^htcosidase mhibrior castanospermine. J. NnroL Sd., 90, 77-85.

867. AhrensJ.B andAnkd.H (1987) The role of aspanujme-finked carbohydrate ro natural bDerceD-mednied cymryus. /. Bid. Otm.. HI. 7575-7579.

868 GlTben.C.W.,2jrouldaii,M.H. and Essebnan.WJ. (1988) My^<*cetyllactrjs^nrnmne cell surface T200 grycoprotein parocipetB in natural biter cell binding to YAC-I targets.J. bnamoL, 14S. 2821-2828.

869. PtmennU'.F.P.. Turco^J.. McCooville.MJ.. LawyerJ'.G.. Perkins.P.V. sad SacksJJ.L.(1992) Stage-specific adbesjon of LtLdmai\ia promasngotes to the sandfty mvdgtit. Scttmct. 15i.1812-1813.

870. HO.S.-C.. WangJ.L. and Schladler.M. (1990) Carbohydrate binding activities of BnxMuzobamj~pnmirum i. Saccharide-spedfic inhibdion of bomotyptc and neterorypK adhesion. J. CtU BioL.111. 1631-1638.

871. rfo.S.-C.,SchindlCT,M.andWaiigJ.L(199(nCarboliydratefc«ndingact^^Japoniaom. U. l*nitw« and characterization of a galaoose-specific lectin. /. CtQ BioL. 111.1639-1643.

872. Clucij.FJ.. FalesJl.M.. UndonJ.. Carbon.R.W. and van Halbeek.H. (1990) Structure of astrcptDcoccal adbesm carbohydrate icceptoi. J. BioL Qtm., 265. 14127-14135.

873. Misevic.G.N. and BurgerJil.M. (1990) The spedes-specific cdl-buiding she of tbe aggregationfactor from the sponge Mavdona proUftm a a tnghly repetitive oovd glycan mraarrringgtucuromc acid, fbcose. and matmose. J. BtoL Oitm.. US, 2Q577-2O584.

874. Miscnc.G.N. and BurgerX.M. (1990) Involvement of a highly poryvalent grynn m tbe cdl-brndiag of tbe aggiegatiuo factor from the marine sponge Wcrodtma prvtiftra. J. CtU Btoditm..43, 307-314.

875. Cairns J . and Morris.VJ. (1986) lnin inJn nlrr bindmg of xanrhan gum and ctrob pan. Afantrr.322. 89-90.

876. Turley Ji. A. and RoduS. (1980) Interactions between tbe carbohydrate chains of hyaluionate tndLhuudiuiUn sulphate. Mmrr. 283, 268—271.

877. Tramabo.A.O., PamosnA.. BaumanuH., Brisaon, J.-R.. JenningsJIJ. and KasperJ) L.(1992) The capsular porysaccharklc of ftsarroWo frafUii comprises two ionjcaDy linked pory-saccharides. / BioL Oitm., 267. 18230-18233.

878. EgtensJ.. Fendersmjl.. Toyotami.T.. DeaaJ.. Srrood.M. and HakomortS.-I. (1989) Specificinteraction between Le* and U ' rtrtrrmiranrs. A possible basis for cell rrmgnitinn in preiniplan-tadoo emlsyos and in embryonal carcinoma cells. / . BioL Oam.. 264. 9476-9444.

879. FendcnoaSJL, Zehavi,U. and Hakomori^. (1984) A murtivalest lacnvAMbcopsntaose m-rysyuysina " ^ " g — - < - " I T * ^ prchnplaotatioo mouse erabryos, while the free oligosacchandob ineffective. J. Ejp. UmL. 160. 1591-1596.

880. BirdJ.M. and Klmber^J. (1984) Otigrmrrharides rnmiimng fucose faked alpna(l-3) udaiphaO-4) to N-*cetylgrocosamine cause iWrmirnrtion of mouse morulae. Dn. BioL. 104.449-460.

881. Kojuna^J. and HakomoriJ. (1991) CeO adhetkn, spreading, anri modlity of O^-exprcssingceDs based on grycoUptd-gtycolipid interaction. / BioL Own.. 266, 17552-17558.

882. Kojbna,N., SUod.M.. Sad>hira,Y., KandaJC tnd Hakomon^. (1992) CeU adhesion in adynamic flow system as compared lo static system. C-lycosprasgolipid-glycosphingolipidImrrtnlffli m tbe dynamic systern predominates over lectin- or imegrin-btscd mrrhanjgns inadhesioa of BI6 melanoma cells to non-*ctivated endochellal cells. J. BioL O a t . 2*7,17264-17270.

883. Kojima,N. tnd Hakomorl.S. (1989) Specific interaction between garntfiotrlacsyiccrimide (Og^and stauxvOacsosylceraiiude ( G ^ as a basis for specific cdhdar recognrrirm between lyoaAomatnd mdanomi cells. / BioL Otm., 264. 20159-20162.

884. DistterJ.. Hleber.V.. Sahagian.G.. Sctankxd.R. and Jourdlati.G.W. (1979) Ideodrauoo ofmatmose 6-phospbate in gtycoproteini that inhibit tbe tssunuarjoo of beta-gal*closidase byflbroblists. rroc Nad. AcaL ScL USA, 76. 4235-4239.

883. KjptauK.. Achord.D T. and Sy,W_J. (1977) Phosphohexosyl umi^iuimiu of a rytosomalenzyme are r^njnir^ by ptaocytosia iojt\luMt on homan fibroblasts. rVrje Nad. Acad. ScL USA.74. 2026-2030.

886. HasilitA. and NeufekULF. (1980) Biotymbesis of rysotomal enzymes in fibrobUBs.Phospborytation of marmose residues. / BioL Own., 255. 4946-4950.

887. TabasX and KornfekUS. (1980) Biotytuhedc uuermodlates of beta-glucuronidase contam rnghmaanose oligusacUuuides wich blocked phosphate residues. / BioL Oen. . 255. 6633-6639.

883. VarU^k. and CornfcklS. (1980) Stroctnral studies of phosphorytatDd high mannuse-rypioltgcaccharides. J. BioL On*., 255. 10847-10838.

889. HtsOitA.. Bein.U.. WahoedA.. Strecker.G. and von FiguraJC (1980) Pbospharyltted

diepho(6) groups. Proc. Nad. AcaL ScL USA. 77. 7074-7078.V i 6890. von FtgnrtX. Gksetmaan,V. and HuiHx>. (1984) Antibody to mannote 6-pbospfaste specUk

receptor induces receptor deficiency is human rtbroblasts. EMBO. J.. 3. 1281-1286.891. KrohnJC, EbertemJC and Gercken,G. (1978) Separation of glycolipids from rjeutrai Upids and

phospholrplds. J. Oromamtr.. 153. 350-352.892. NuowicLM.. BaenzigeTj.U. and Sly.W.S. (1982) Stroctural studies of tbe pbospnorylated

high mannose-iype oUgosacchandes on human betx-fbeuronidase. J. BioL Ottm., 257.4412-4420.

893. HofljckJJ.. Fa£momjr_ and Komfdo\S. (1987) The mteracnon of uhosphoryUued otigoh b i i tidd

£ gaod lysosomal eniymes wrrh bovine liver cation-dependent marmose 6-phosphate

receptor. / BtoL Ckem.. 262. 123-129.894. DtefcrJJ.. GooJ.. kponU»n.G.W.. Srivastava,O.P. aod rDndsganl.O. (1991) The binding

spedfidry of high tnd low mnlmrltr wdfrn pr«iS4<ii»iiaiuaayl receptors from bovine lestes.Inhibition smdies wuh cbemicaOy synthesized 6^fhospboryl>ted oUgomumosides. J. BkJ.Oxm., 266. 21687-21692.

127

Page 32: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varkl

896.

S9S.

899.

900.

901.

902.

903.

904.

905.

906.

907

908.

909.

910.

911.

912.

913.

914.

915.

916.

917.

918.

919.

920.

921.

922.

923.

924.

925.

Denms.P.A. and Rifkin.D.B. (1991) Cellular activation of latent transforming growth factor 0requires binding to rhe cauon-independent mumntf 6-pbosphAe/lmulm-llkc growth factor type Dreceptor, ftoc Mai /Icot Sri. USA. 88. 5*0-584.Hoffman^., Sorku.B.C. WKtt.P C . Brackcnbury.R-. Mlitammer.R , Rutbbauser.U.,Cotminghain3.A. and Eddman.G.M. (1982) Chemical characterization of a neural cell adhesionmolecule purified from embryomc brain luemUam-S. ./. BioL Cher*., 257, 7720-7729.Cnnrnngham.B.A.. Hoffmm.S.. Rntisftauser.U.. HemperlyJJ. and Edehnan.G.M (1983)Molecular topogiauuy of the neonl cdl •<<>»—i™ molecule N-CAM: surface oncuuuiun andlocation of dalk add-nch and biodmg reftam. Prx. Nad. Acad Set USA. «B. 3116-3120.Acbesoo^A.. SunstrineJ.L. and Rutbhauier.U. (1991) NCAM potysiaiic acid can regulate bothceD-cefl and ecu-substrate Interaction. J. CeU BioL. 114. 143-153.Rnrhsharnrr.U., Acheson>.. Hall.A.K.. Mann.D.M. and Samhinn.I. (I9S8) The neonl ceD«*"*-«•«»« molecule (NCAM) as a regulator of cell-cell liHn'tri1^ Seine*. 240, 53-57.AchesotuA. and Rurahsuser.U. (1988) Neural cdl adbeuoo molecule regulates cell comet-mediated chaiigi t bi i. hiiJmc acetyttransfcrasc activity of embryonic dock sympathetic oeuroos. J.CeU BioL. 10*. 479-4*6.Rutishsuscr.U., Watanabe.M., Silver J. . Tror.F.A. and Vimr.E.R. (1985) Specific altendoo ofNCAM-meduted cell adhesion by as endonrrrrammirtasr. J. CeU BioL, 101, 1842-1849.Dobeny.P.. Moolenasr,C.E.C.IC.. AsntomS.V., MKhaUdesJU.A.M. and WalshJ.S. (1992)The VASE exon downregnUees log neume growtb-prornoong activity of NCAM 140. Mmur. 356,791-793.YangJ.. YlrOC and Rmisnauser.U. (1992) Intercellular space u affected by the potysaUc acklcootco of NCAM. / CHI BioL, 11*. 1447-1496.DoylcE.. NolatU>.M.. Bell,R.. and ReganX.M. (1992) Hlppocarnpal NCAM ISO transientlyincreases sialytarioa during the acquisition and coosolidalion of a passive avoidance letponjc Inthe adult rat /. NemnacL Res. . 3 1 . 513-523.TanjJ . landmetser.L. and Ruojhauser.U (1992) PolysiaUc and influences speafic furhflnrlnnby avian moroneurons. Neuron, 8, 1031-1044.Doherty.P.. CobenJ. and Walsh,F.S. (1990) Neurhe outgrowth In response D transfectedN-CAM r*nnj~f daring development and is modulated by potysuhc aod. Neuron., 5,209-219.Doberty J>.. Fnras.M.. Seaton,P.. Dickson.O., Barton,C.H., SeanXA. and Walsh.F.S. (1990)A threshold effect of the major informs of NCAM on neurile outgrowth. Nature, 343. 464-466.LinrJaU.U.. Backstroiri.O.. Thunberg.L. and LoderJ.O. (1980) Evidence for a 3-O-tulfatedD-ftucotamme residue in the anlilhrombin-btnding sequence of bepann. Proc. Nad. Acad. SetUSA. 77, 6551-6555.Atna,D H., Sttphens>.W., Rimon^. and Rosenberg,R.D. (19*4) Sequence variation in hepariaccnsaccbaridn wirh high affinity (or aumhtombui DX Biochemistry. 23. 5801-5812.KnscncM., B*ckstrom,G., RiesenfeldJ.. Pedtou.M., ChoayJ. and Lindahl.U. (19SS)Biosymbesis of hepartn. 0-sulfation of the antitrironibbi-buidmg region. J. BioL dm.. 2*3,15474-15484.

U., Bickmom.O., HootM.. TbunberfX-. Fnmra .LA. tod UnfacA. (1979)h l USA, It, 3198-3202.

OT7

Otcaruoa.L-O., Pe^er.O. and Lindahl.U. (1989) Location of the antrthrombto-bindlnf aequencein the heparm chain. J. Blot. Om.. 2t*. 296-304.Ku*che>4., Torri.O.. Cuu J . and Lindahl.U. (1990) Biosynthesis of heparin. AvaOability ofgluconminyl 3-O-snlnoirjn skes. J. BioL CVm., 2*5. 7292-7300.ToUetei.D.M. (1992) The interaction of t^ycosamiaotrrcans with beparui cofactor II: Strocturemd activity of a hijb-^BrJty dennatan sulArtt bexasaccharide. Adi. Ejp. Utd. BioL, 313.167-176.Mmnocg.M.M. and ToOeficn,D.M. (1990) Snocture of a dennaom anltale hetnarrharlde thatbinds to heparin cofactor U with high affiouy. / Blol CHem., US. 18263-18271.GrrJ-OomflcL.. BalsimoJ., Swaminarhan.N. and UlienJ. (1991) Aodbodies n the retinaM--~'y'r'~-'~"-^T'p^"T'—i"-*™- inhibit ncurite uulgiuwh- J. Nomad. Ka., 29.474-480.BatemoJ.. PrattJt.S.. EmmerlingX.R.. GnmwakLG.B. and LDknJ. (1986) Idendflcadoi ofthe chack neural redna cdl surface N-acervta^lactDcaminytmmsfense osing nwnrlnnslantibodies./. CtD fltocAm., 33, 123-141.BabamoJ., PntULS. and UlimJ. (1986) Chick neural retina N-acflylgllacnaminvttram-ferasc/ K-IT|*;W * ^ - T ^ " - catalysts invotvea transfer of N-acttylgaiaaosaanDe ^ n ^ i i m toendogenous acCByujis. BiodumJstrj, 15. 5402-5407.S c o n . H . C , BabamoJ., SanesJ.K. and LUienJ. (1990) Synapdc localaadoo and ncaralregulation of an MtcetylgalactDsamittyl transferase In skeletal muscle. /. HtumcL. 10. 346-350.Bahama J. and LDienJ. (1990) /V-cadberin is ttabry **^^t«-rf with and b an acceptor for a ccOsurface M^cerylgiJacnaimlrrylpbrjsrjaotransfense. J. BioL On*.. 245, 2923-2928.BmlMtnoJ.. Th9x4deaui.R., Swaminatnan,N. and LOienJ. (1991) Antibodies u me retinaM-^-«ylpl^>n.,miny4rJ.J|j » f ^ ~ n^rtnla. N-cadherin-mediated adhesion and uncouplethe N-cadberm uamftjase complex from the aam-cooouning cytoskdeton. /. Ceil BioL, 113,429-436.Ammutham,R.O.. Hsieh.T.C, Tanier.M.L. and Laine JLA. (1986) Structures of the asparagine-Imked sugar chains of l*mjntn BiocMim. Biopkys. Ada. 883, 112—126.DeanJ.W. j n , Chandmekaran J . and Tamer Jrf.L. (1990) A biological role of the carbohydratemoieties of laminin. J. BioL Ottm..26S. 12333-12362.ChammasJL, Vdga^.S.. Line.S., Potocnjik.P. and BrentaniJLR. (1991) Asn^inked oUgosac-charide-dependent imeractkn between utrnmln and gp 120/140. An crS/01 intcgrin. J. BioLChaL, U6, 3349-3335.ZimJ.C.R. and Ume.R-A. (1990) Novel byperglycosylated weak getttin-binding Sbranectinfrom bmnan fetal placenta— Fracrionarion of a nigh poly(N-acerynaclosaniint) tas^nea by tomatolectin affinity coromarography. EMT. J. Bioctstm., 188. 67—71.

. Pndssncr.lLT.. Koyama,T.. MuOer.D., TschoppJ. and Maller-Bergbaus.G. (1990) Domainstructure of tba endomehal cell •»• •["••! u ronurarnodulin as ri—w^ nrm modutadon of itsatrrtrrngnlant functions. Evidence for a glycoaamirnglycari-aVpErjdeat secondary binding stta forthrombm. / BbL Om-. 2*5, 4913-4922.

U OD [DACuYUiOtl y fof nbrinofen by OuuuiAu and rhrombtn-ctalysed activation of Factor V. Biodnm. J., 279.419-423.

928. roymma,T., ParkinsonJF.. SWJ>., B«ng,N.U., MuDer-Berghaus,G. and PrdssnerJCT. (1991)Different grycoforms of buman mrornbocnodulin—Their glyfotauanpglyfM^fT"4"'* modu-buory effects on thrombm Uaui»aiiun by heparin co£acmr II and antithrombin m. EMT. J.BUxktwL, 198. 563-570.

929. Koyama.T.. PaikuauuJ.F.. Aoki.N., BangJ4.U., M0Uer-Berghms,G. and PieimerJCT.(1991) P^i"ii<^|iiip tjuwujj post-translatiomd glycosylatkin and i r n W y 1 " " njnetion ofsecretable recornbimn mutants of hnman rt..~..l......inim BT. J. HaemaoL. 78. 313-522.

930. ParkinsorU.F.. Vlahos,CJ., YanJ.C.B. and Bans^N.U. (1992) P f " ' - ' " human rhrambo-moctalm. RrgcUticc of cofacsor activity and anticoagulant (unction by a glyujiamlmiglyuau sidechaisL Btodw*. J.. 283. 131-157.

931. Srisomsap.C. WchardsonJC.L.. JayJ.C. and Marchaje.R-B. (1989) An o^gtanws-l-phosphatephospbodiesteraje is present in rat liver cytosoL J. BioL Ckem., 264. 20540-20346.

932.

933.

934.

935.

936.

937.

938.

939.

940.

941.

942.

943.

944.

945.

946.

947.

941.

949.

950.

951.

Saor.B.H . Srisomsap.C. ReKhman.M. and MarchascR.B. (1990) Parafusin, an exoevtic-semidve priospboproteui. b the primary acceptor lor the f>cosylpbosphotraiBferaie inPnwmtrw wmreiia and rat liver. J. CeU BioL, 111. 901-907.Ghtdoei.R., Sooniao.S., Chigorno.V., MalesaA- and Teoamand.O. (1984) Comparative anddevelopmental behavior of alkali labile ganglknides in the brain. Adr. Ejp. UaL BioL. 174.307-318.LevineJ.. Beasley.L- and StaDcup.W. (1984) The Dl.l antigen: a ceD surface marker forgerminal cells of me central nervous system. J. NttmaeL, 4, 820-831.Consomtioe-Paloa.M., Blumjt-S.. Mendez-OteroJL and Barnstabk.CJ. (1986) A cdl surfacemolecule dutribated in a aorsoveotral giadiem m the pejiuaial rat retina. Nam/t. 324. 459-462.SparrowJ.R. and Bamstabte.C J. (1988) A gradient molecule in developing rat retina: Expressnaof 9-O-aceryl GQ, in relation to cdj type, drvdopmemal age, and GQ, ganguoside J. NewtcL,21. 398-409.Schloashauer3., BhmuA.S.. MendezOteroJl.. Bamstable.CJ. andConstaadne PamtuM. (1988)Devetopmemal regulation of g ^ « ^ ^ » armgens n»«nni»«ii by the JONES antibody. J. Nemm-scL, 8, 580-592.

953.

954.

935.

956.

957.

951.

959.

960.

961.

962.

963.

964.

Mendez Ocro.R.. Sdnoohtuer3.. BarnstablcC J. and Comontine Patonjrf. (1988) A develop-rrn»ntaiity f^yiiwipd ^fH'tCT WTfr*riiifid with ntVT*\ r^i Tiri pf^xt it roiEnDoa. J. NttttmcL, 8.

564-379.Choo JJ.K.H . Flores^. and JungalwaU J.B. (1990) Idenrificatioa ofdisialosyl paragloboside and0-acetytdlsiaknyl paragloboskle in cerebellum and embryonic cerebrum. J. NevoOwm.. 54.1598-1607.VarbA.. HoothmandJ1.. Diaz.S., Varki.N.M. and rhdricsuS.M. (1991) Devdopmentatabnormalmes in tramgemc mice expressing a static add-speciftc 9-O-acetylestense. CeU, ii.65-74.SeUbeaner3- and Schadmer.M. (1988) Studies of adhesion moH-"ln ••• •<i«ting interactionsbetween cetb of peripheral nervous system mutate a major role for LI m mrrllarmg sensoryneuron growth on Schwann cells in culture. J. CeU BkjL. 107. 341-351.Yoshihara,Y.. Oka^.. Waanabe.Y. and MoriJC (1991) Developtnemany and spatially regulatedexpression of HNK-1 carbohydrate antigen on a novel p*w«ph«tMytinn«itnl-«iM »M»^ grvcoprotemm rat brain. J. CeU BioL, 115, 731-744.Kadmon.0.. Kowiajk.. Attevogt.?. and SchachrMtr.M. (1990) Functional cooperation betweenthe neural adhesion molecules LI and N-CAM a caibuuy<lnie dependent. / CeU BioL, 110.209-218.MTbJJD.D , GulcherJ.R. and Ste&utssonJL (1990) The oligrjdendrocyte-myelin gtycoproteinbelongs » a distinct family of proteins and contains rhe HKK-I carbohydraie. J. CeU BioL, 110,471-479.Nccdbam.HL and Schnaar.lLL. (1990) Adhesion of primary Sdnmm edb to HNK-1 reactiveglycuspnlngocpids. ^ n . HY Acad. ScL, M5, 416-419.Gnfftth4-S-, Scbmttz.B. and Schachner>f. (1992) L2/HNK-1 carbohydrate and protein-proleulutteiiction tnediaca rhe nomophihe bmding of theaoural adhesion molecule P0. J. NeumscL Xcx.,33.639-648.i cnMDtoioJC., Tsofl,T., T*\ruuni,O. end OUWA,T. (1965) PhtMphnryttad bifb iDavaoH-typc•nd hybrid-type odgoucdurttle ctuim o( h"!1!"1 tfayrojlobpllp jjoirtcd from cwiijiasiiu thyroHltissue. Boehtm. Biopkyj. Ada, 838, 84-91.Herzrjg.V., Neumuller.W. and HolzmamvB. (1987) Thyroglobulrn, the major and obligalDryexnonable protein of mynxd follicle cells, carries the lysoaomal recognition marker mannase-6-phoaphaa. EMSO. J.. t , 553-560.KamertlngJ.P.. RijkseJ., MaasA-A.M., Van KuDU.A. md VUegenmarU.F.O. (1988) SuUnedN-Unked carbooydrate daans m porcine thyioglobuum. FEBS Leu., 241, 246-250.SprroJLG. and Bboyroo.V.D. (1988) Occurrence of sulfmte b the aspaiagine-1 inked " " T 1 "carbahydrate units of tfayroglobaliB. EdcnnficanoD and locaUzation of gff«»-«T» 3-odfmte and/V^cetylgtacosamint 6-«unaE residues in me human and calf proteins. /. BioL Oum.. 2*3.14351-14351.Sched.G. and Herzog.V. (1989) Manme 6-phosphase recepaor in porcine thyroid fbUlda cdb.I r-~»j)fjafsn strnj ponibwfl Impfff1^1"* for ttw intTawYfiniT tnmport ot tt'Yn^}^w?\in Ettr. J. CW/BioL. m, 140-148.De Ward.P.. Kocrcvur.A., Kamniin,j.p. and VHegeatbarU.F.O (1991) Structure aetermin-ation by 'H NMR spectrotcopy of (saUated) statyuned N-Uatai eaioohydiatt chains releasedfrom pordoe ftiyrrntfrtwdin by p pHrtft-" - /tf-x ^yi-ft-jint i— minyl)an'nf»jtnay unidnc-F.J. BioL Oem.. 26*. 4237-4243.ReitmanJrf.L.. VarUA. and KomfekLS. (1911) Fibroblasts from patiena with I-cdl disease andpseudc-Hurlcr porydystrophy are deficient in undine S'-dfysosrjaate-N-acctylgfacafarnine:glycoprotein N-acetylglucosajrdnylphosphotrBnsferase acnvrty. J. din. btvesL, 67, 1574—1379.Varti^., Ratman.M.L. and Koni/dd.S. (1981) Identification of a variant of nmcoUpidosis HI(pseudo-Hurier pot/dystrophy): a cataryticaDy active N^ceryla>cosanmnylpbasphotransferasethat falls to phosphoryuue rysosomal enzymes. Pwc Nad. Acad. ScL USA, 71, 7773-7777.Hasilikjk.. Waheed,A. and von Figiin.IL (1981) Enzymanc paospborytation of lysoaomalenzymes in the presence of UDP-N-v^ls^ucosamine. Absence of ihe activity in I-ceO fibroblasts.Koenen. Biopi-n. Res. Camm.. 9S. 761-767.WaheecLA.. Pohunaaa,R-, HasiUXA., von FiguraJC.. van Ehrn.A. and LeroyJ.O. (1982)Deficiency of UDP-N-acerylgnamsajniBe:lvsasomsi enzyme N-acetylghimsiminr-l^JB.ntJii>-uanifeiasa in organs of I-cdl patienn. Btodttm. Blopkyx. Ra. Comma., 195. 1052—1058.VarUjt. ReumanJ^.L., Vannler.A., Komfeld\S.. GrubbJ.H. and Sy.W.S. (1982)Dfnmiisiiilinn of rhe heterozygous state for 1-cefl disease and pseodo-HBrler polydvstropby byassay of N-*r*<yHftM ""••'laytiJll»|J"'iiirwfrr»** in wbhx Uood ecus and fibroblasts. Am. J.Hmi. Gmtt.. 34. 717-729.MueOer.O.T.. UmeJ_E.. Miller>.L.. LoTrin.C.B. and Shows.T.B. (1985) I-cdl disease andpaeudo-Hmier polydystropny. haeiuiyguu: detemon and chaiai-lrriairs of the altered N-acenrt-p y yg

fnnft m genetic vatlapok CQit. Odm. Ada, ISO, 175—183.E ^ L d S h T B (1983) M U

g f p gMueller.O.T.. Hooey.NJL. LinUX-E., MUer^.L. and Shows,T.B. (1983) MnrnUpirlnsis Dandm. The genetic "t-^TThT between two disorders of tysotomal enzyme biusyudiesls.J. OOL faves.. 72. 1016-1023.Pukodi.M.N.. Klier.G. and ScamrrmiJ. (19S7) Congenial dyseryrhropoietic anaemia type n(HEMPA5): characterization of aberrant imnedtmar organdies by li rngiild decrronminnai-i-niy. Br. J. HaemeuL, 67. 93-101.FuknrauMJ .. DeDA. and ScamzziniJ'. (1987) Primary defect of congenial dysay duivieucanemia type II: Failure m grycosylation of eiytfuuiyu) tacnsanmoflycan protons caused bylowered N-acerjtlglocoMiiunyUiansferasa Q. J. BioL Chem.. 261. 7195-7206.FukUBVM.N.. Borhner.B.. ScammniJ. and Defl A. (1986) Isolation and characerizadoo ofDaly^-aceryDactosarturyicerBnaaes —-• i«t«^ in the erythrocytes of ujnguutal djaujthio-pokdc anemia type D patients. Oum. Pkyt. Upidt, 42. 183-197.PuknoXM-N.. MasriJLA., Deu^., Tbomr.EJ.-M.. nler.G. and LowenmaULM. (1989)Defective glycDsyunion of erytbroevte umnLiain. glyummjugaas in a variant of n«tyiilnld/»Li»u»uyL«ulc anemia type II: Associaliuuof lowlerdof inembnB»4ioeridfbrmof i^nclDsyl-rxamfcrase. Stood, 73, 1331-1339.FuknrhuM.N.. MasrUXA.. Defl.A.. Unmro.L. and MoremenJLW. (1990) Incompletesynthesis of N-glycans in congenial dyseryrhropotooc anemia type n caused by a defect in tat gens

. Proc Nad. Acad. ScL USA, 17. 7443-7447.

128

Page 33: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

Biological roles of oligosaceharides

963. Fukuda.M.N.. Gaetanl.G.F.. Izxo.? . S a r e n . P . and Defl.A- (1992) incompletely processed 99J.N-grycans of serum glycoprotelrts la congenial] dyserythropoietic —*»«•—1« type D (HEMPAS)fir. J. HaematoL. 82. 745-752.

966. Qnrfflin.E.. GladetuA-. Rodin.L. u d Kresst.H. (1990) A |enaic defect ta the biosynthesis of 999ilriimlin sulfale proteogtycaa: Galactosyttranslense I deficiency in nbrobUsts from • patient witha progeroid syndrome. Pmc. Nail. Acad. Sd. USA. 87, 1342-1346.

967. Kresse.H.. Ronhoj.S.. Qaentin.E.. HoUmannJ.. GlouiJ.. Otada.S. u d Tonoesen.T. (19S7) 1000.Grycasammogrycan-free small proteoglycan core protein is secreted by frbroblasts tnxn a patientwith a syndrane resembling progeroid Am. J. Horn. Cateu. 41. 436-453. 1001.

96S. Etzioni.A.. Frydman.M., PoUackJ.. AvidorJ.. PbflKm.M.L.. PadsonJ.C. and Gershom-Baruch.R. (1992) Brief report: Recurrent severe infection caused by a novel leukocyte adhesnndeficiency. N. EnfL 1. Mat. 327, 1789-1792. 1002.

969. Nakaiawa.K,. HassdlJ.R.. HascaU.V C . Lonmander.L.S and KrachmerJ. (19S4) Defectiveprocessing of keratan ml foe in macular cornea! dystrophy. J. BioL O m , 259, 13731-13757.

970. Midura,RJ.. Hascall.V.C, MacCallum,D.K.. Meyer.R.F.. Tbonar.EJ.-M.A.. HassdlJ.R.. 1003.Smirh.C.F. and Kbnrworm,G.IL (1990) Proteoflycaa biosynthesis by human corneas frompatterns wuh types I and 2 macular cornea! dystrophy. J. BioL Cheat., 165. 15947-13933.

971. Van der Scnoot.C E., HuUnga.T.WJ., Van 't Veer-Konhofi-T.. WljmamJL, PinksterJ. andVon den Borneo.E-C K- (1990) Deficiency of g*yi™yl-riw»«fh"i.4ylin1tl(.ii-tinfr^ ^ " N ' f 1004grycoprotems of leukocytes in paroxysmal nocturoal hemoglobronria, description of a newdiagnostic cytoflDoromerric Buy Blood, It, 1853-1859.

972. EdbergJ.C. SsrmooJ.E., Whitlow.M.. Kimbcrty.R.P.. BarinskyX. and Triscari.C. (1991) 1003.Preferential expression of human FcgammaRHI^^ (CD16) in paroxysmal nocturnal hemoglobm-uria. Discordant rxpresiinn of grycosyl pt»*ph—^ty'"**""''-''"*' pioteuis. J. Gin. Arrest. 87,58-67. 1006.

973 HTrose.S..Ravi.L..Hazra,S.V and Medof.M.E. (1991) Assembly ard deacetylation of/V-«cetyl-grncoiaiirliryl-plasrnanylinosrtol in normal and affected paroxysmal nuamual hemogiobinuria 1007.ceOi. Proc Nad. Acad. Sd. USA. tt. 3762-3766

974. Josl.C.R.. Caniard.M.L.. FransenJ.A.M.. Daha.M.R. and Guad.L.A. (1991) IntnceUnlarlocalization of glycosyl-phosphaudylinosuol-ancnored CD67 and FcRlU (CD 16) m affected 1008.neatrophtl granulocytes of patients with paroxysmal uuiuuual bemoglobbnirU. Blood. 78,3030-3036. 1009.

973 MahoneyJ F.. Unknc.M., Hall J . . DeGaspcrl.R.. Chang.H.-M.. SugryamuE.. Warren.C.D .BorowrtLM.. NIchobon-WeUer.A.. Rosse.W.F and Yeh.E.T H. (1992) Defective gfycosylpbos-phalldylinosrfol ancbor synthesis tn paroxysmal ooctunstl bemoglobinuru granroocytes. Blood. 101079. 1400-1403.

976. HWmen.P.. HowsJ M. and Luuatto.L- (1992) Two disuoct patterns of •^ycosylphosphmdyl-inosnol (CPI) linked protein deficiency m the red cells of patients wttb paroxysmal nocturnal 1011.haemoglobinuria. Br J. Haemanl.. M. 399-403

977. HamcS.. Ravi.L. Prince.G.M.. Roicnfdd.M.O.. Stlber.R.. Andresen.S W., Hazra^.V. and 1012Medof.M.E. (1992) Symhesis of mannosylgiiicosaminvjinosrtol phospholipids m normal but notparoxysmal nocturnal bemoglobinuna cells. Pmc. Sail. Acad Set USA. 89, 6023-6029.

978 Thomas.LJ.. Urakaze.M.. DeOasperi.R.. Kamrtam.T.. Sugiyama,E.. Chang.H.-M.. 1013Warren.C.D. and Yeh.E T H. (1992) Differentia! exprexsioa of glycosylptmsphuidylmosnol-ancbored proteins m a marine T cell hybndoma mutant producing limiting amounts oT theglycolipid cure. Implicauons for paroxysmal nocturnal hemoglobinuria. J. C7/A. htmL. 89,1172-1177 1014.

979. Nurden.A.T . Dupuis.D.. Pidard.D.. KielTcr.N.. Kumckl.TJ. and CartronJ.P. (I9S2) Surfacemodificattons in the platelets of a patient with atpha-/V-acetyl-t>-fEilactosamine residues, the To- 1015.syndrome. J CIIA. hma.. 70. 1281-1291.

980. CartronJ.P. and Nurden.A.T. (1979) Gabctoiyllransferasc and membrane grycoproteinabnormality in human rJ** '*«« from Tn-syndrome donors. Nature. 282. 621-623.

981 Tbumbcr.M . Oatnen.H.. Fierz.W.. UnzavecchuuA. and Berger.E.G (1992) Tcelldooes with 1016.normal or defective O-galacu»ylalion from a patient wnh uciuuumm mixed-field polyagglutiQ-abUoy. Ear. J. hrnmnol.. 22. 1835-1842.

982 Gahmberg.C.G . Peltokorpi.L. and Anderssoa.L.C. (1986) B Lympbobtastokl cell lines withnormal and defective O-giycosyUtton rrti^nhni from an individual with blood group Tn. Blood. 10174. 973-979.

913 DobbieJ.A . HotemJ B. ard CbmpJ.R. (1990) Defectives^la^osylalionorproteins In culturedskin fibrobuats from galactosaemic patknts. Am. CTUL Btochrm., 27. 274-275. 1018

984. Ornsteiu.K S.. MCCO.IT.E.J.. Berry.G.T . RothS. and Sepl.S. (1992) Abnormal galactosytalioiiof complex carbohydrates in cultured fibrobUsts from patKots with placlose-1 -phosphateuridvhraasferase deficiency. PrdUnr. Rrs., 31. 508-511 1019.

985. Sugahara.K. and Schwaru.N.B. (1979) Defect m 3'-phospho>detiosuie S'-pbospbosullaleformation in brachymorphk mice. Proc Mrrf. Acad. Sd. USA. 7t. 6615-6618.

986. Sugabara.K. and Schwaru.N.B. (1982) Detect in 3'-pbosphoadcnoslne 5'-phosphosul(ile 1020.synthesis ia orachymorphic nnce I. Chanoenxarion of the defect. Arch. Blockem Biophts..1\A.589-601 ' 1021.

987 Sugahara.K and Schwuu.N B. (1982) Defect la 3'-phosphoaueaosine 3'-phosphosulEatesyohesisiabrachymorphicmice.il Tissue distribution of the defect. <4/t*. Bfachem. Biophrt., 1022214. 602-609.

988. Super.M.. Thid.S.. l u j . , Levusky.RJ. and Tumcr.M.W. (1989) Association of low levels of 1023.imuman-bindmg protein wiifa a common defect of opsonisation. Lanctt. 2. 1236-1239.

989. Sumlya.M.. Super.M.. Tabona.P.. Levinsky.RJ.. Ani.T.. Tumer.M.W. and Summer- 1024.fietdJ.A. (1991) Molecular basis of opsomc defect In uiuuuimMlcflaem children. Lancer. 337.1569-1570 1025.

990. Lipscombe.RJ.. Lao.Y.L.. Uvmsky.RJ.. Sumiya.M.. SummerfleldJ.A. and Tumer.M.W.(1992) tA^rifi poun mutalioo leading to low levds of mannose binding protein and poor C3bmediated opsonkauon in Chinese and Caucasian populations, ftmsmrf. Lett.. 32. 253-258. 1026.

991. Middaugh.C.R. and Lhman.G.W. (1987) Atypical grycosyhtuon of an IgG mooodonaloyofanmunoglobulln. J. Blot Otem.. 2*2. 3671-3673. 1027.

992. PettooenX., Pahme.A. and Prockop.D J. (1980) A defect in the structure of type I procoltageam at pujem v^o bsu f?ttrrpyfnfTW imprrp~i. !•' f^r^ti nvnoosc 10 use COOfr cTTnliiaU propepuoc-Proc. NaL Acad. Sd. USA. 77, 6179-6183. 1028

993. Kretz.K.A.. Ctnon.C.S.. Morimovj.S.. Kishimno.Y.. Fhjtany.A.L. and O'BrknJ.S. (1990)Characteruation of a uiuuioti in a family with sapostn B deficiency: A gtycosyiallon siu defect.Proc Nal. Acad. Sd. USA. 87. 2541-2544. 1029.

994 Aly.A.M.. HiiuchjJH.. Kasper.C.K.. Kunian.H.H.Jr. Antonarakis^.E. and Hover.L.W.(1992) Hemophilia A due to mmaiinns that create Dew N-grycosytalioo sites. Proc. Nad. Acad. 1030.Set USA. 89. 4933-4937.

993. Brenmm^.O.. Mytes.T.. Peach.RJ.. DoroJcbon.D. and GcorgeJ'.M. (1990) Albumu Redhill(—I Arg. 320 Ala—*Thr)' a grycoprotein variant of human serum albumin wnose precursor has an 1031.aberrant signal nrprirhnr cleavage site. Proc. Nad. Acad. Sd. USA. 87. 26-30.

996. GaUh.U. and SwansouJC. (1991) Gene sequences suggest mactivatioo of a-IJ-galaclosyltrans-fcrase in cataTrfaines after tbedi vergence of apes from monkeys. Proc Natl. Acad. Sd. USA. 88. 1032.7401-7404.

997. Haraadeh.R.M.. Jarvis.G.A.. Galili.ll.. Mandrdl.R.E.. ZhouJ>. and GritTuaJ.M. (1992)Human natural and-G«J IgG regulates ahernatrve cumpkuica pathway activation oo bactcnal 1033.surfaces. J. Cttn. anal.. §9. 1223-1235.

Galili.U.. ShooeuS.B.. Kobrm.E.. Smhs.C l_ and Macher.B.A. (1988) Man. apes, and OldWorld monkeys differ from other mammatl in me expression of alpha-galactosyl epitopes onnucleated cells. J. BioL Otm.. 2*3. I775VI7762GaliH.U.. darkX.R.. SSoheti B.. BoehlerJ. and MachcrJ.A. (1987) Evolutionary reunion-ship puacm die natural ana-Gal antibody and the Gal a!phal-3Gal epnope m prumoes. Proc.NaL Acod. Set USA. 84. 1369-1373.Yamamoto.F., dausen.H.. White.T . MartenJ. and Hakomon^ (1990) Mo4ccctar genericbasis of the Usn-blood group ABO system. Naur*. MS. 229-233.Navaratnam.N.. FlnuTayJ B.C.. KeenJ.N and Watkfais.W.M. (1990) Purificaooo, propertiesand partial unite acid seqoence of the blood-groap-^-genc-assocuted o-3-A/-acetylgaiacios-aminyhransfcrase rrom hurntn gut mocosal tissue. Biochat. J., 271, 93-98.Kypranou.P.. Beneridge^.. Doodd^.S.R. and Walim.W.M. (1990) Purinatno of tbeblood group H fax asvxHatrrl a-2-L-focosyttransferase from human plasma Oycecatjutmt J..7,573-588.Yamamoto.F., MaTtenJ.Tsujl.T .White.T.. ClarnenJJ. and HakomoriJ. (1990) Clonmg andchancterlzalioci of DNA complementary ID human UDP-GalNAc: Fuc alpha l~2Gal alphal-3GalNAc transferase (histo-blood group A rransferase) mRNA. J. BioL Otm.. 245.1146-1151BbmchardJ).. CartronJ P , FoumetJ.. MomreuOJ.. van Halbeek,H. and VllegemhanJ.F.(1983) Primary structure of the oligoiaccharide determinant of blood group Cad spccUiciry.J. BioL Ottm.. ISt. 7691-7693.SohX.PC, Dooald.A.S R-, FeenryJ.. Morgan,W.TJ. and Watkms.W.M (1989) Eniymicsynthesis, cnemkal characterisation and Sd* activity of GalNAc0l-4INeuAca2-3)Gal0!-4Glc-NAc and OalNAc01-4(NeuAca2-3)Oaltfl-4G)c. aycoca&cgott J.. i. 319-332.Ando.N. and YamakawaX (1982) On me minor ganghosides of eryrhrocyle umiibiaiMU ofJapanese cats. J. Btodtcm. (Tokyo). 91. 873-881.YasueJ.. Handa^.. Miyajawa.S.. Inooej.. HasegawaA. and Yamakawa.T. (1971) Differencem form of siallc acid in red blood ceO grycoiipVls of different breeds of dogs. J. BteV™.(Tokyo). 83. 1101-1107.Andrews.G.A.. CbaveyJ'^.. SmtmJ.E. and RkhX. (1992) N-Grycoh/lnettramilQC acid andN-acetylneuramlnic acid define feline blood group A and B antigens. Blood. 79. 2483-2491.Sekine.M.. Sakalzuml.M.. Morrwaki.K.. Yamakawa.T. and Suzuki.A. (1989) Two genescontrolling the expression of extended globogh/coiipids m moose kidney are dosdy Daked to eachother on thiouioionie 19 J. Bbchm. (Tokyo). 105. 680-683.Hashimolo.Y.. Sakalzum!J4.. Nakamura.Y.. Morrwaki.K.. Yamakawa.T. and Sumld.A.(1989) Further studies on polymorphic expression of GMI and GDIa m moose liver. Thepresence of a third allele on the Ctm-I locus. J. fiioc/Km. (Tokyo). 10*. 319-322.Nakamura.K., Hasmmoto.Y.. Moriwaki.K.. Yamakawa.T. and SumkJ.A. (1990) Oeneticregulalioa of GM4(NeuAc) expression in mouse erythrocytcs. J. Btochem. (Tokyo). 107. 3—7.Kooo.M.. Sekioe.M.. Nakamura.K.. Hasntmoto.Y . Seyama.Y.. Yamakawa.T. and Sundu.A.(1991) Two pathways for GM2^NeuGc) expression ui mice: Genetic analysis. J Biochem.(Tokyo). 109. 132-136.Wang.Y.-M.. Hare.T.R.. Won.B.. Swwell.C.P.. Scanlin.T.F . Qick.M.C. HanLK., VanKuikJ.A and VliegentnanJ.F G. (1990) Addniona! fucosyl residues on membrane gtyco-proteins but not a secreted grycoprotcnl fmm cystic flbrosls fibrobbsu Out. Odm. Ada, 188.193-210.Swwdl.C.P. Scanlia.TF. and Glick.M.C. (1986) Charaderualion of human (Ibronecanglycopepudes from cystic fibrosts and control skin fbroblasts. Corbohydr. Res.. 151, 279—292Shdley.C.S.. Remold-ODoimell.E.. Davu>.E..III. Bruns.G.A P . Rosen.F.S.. CarroU.M.C.and WhilchcaJ.A.S. (1989) Molecular characterization of sialopborui (CD43). tbe lymphocytesurface sialogrycoproteio defective rfl Wiskott-Aldncb syndrome. Proc. Nad Acad. Sd. USA.U. 2819-2823Greer.W L.. Higgirs.E . StuhcrumdJ) R.. Novogrudiky.A.. Brocknauscn.l.. Peacocke.M .Rubin.L.A . Baker.M . DcnmsJ.W. and Sirmnovrtch.K A. (1989) Altered expression ofleucocyte sialogrycoprotein in Wiskott-Aldncb syndrome b associated with a specific defect inO-glycosylauon. Blodtcm. Cell BioL. *7, 503-509.Hrggins.E.A.. Siminovitcb.K.A.. Zbaang.D.. Brockhausen.l and DomaJ.W. (1991) AberrantO-l*uiked oligosaccharioe busynrhesis in rympbocytes and pUtetets from patients with dieWiskon-Aktncb syndrome. J Bid CV™.. 244, 6280-6290.Pxllam.A.. Fukuda.M. and FrdingerJ.G. (1990) CD43 (leukosialin. sialophorin. largesialoglycoprotein) can be expressed in both normal and Wiskott-ALdnch fibroblasts viatransfection of a leukosialu cDNA. Ear. J. hmaaol.. 20. 1423-1428.Piller.F.. U Deisl.F . Wdnberg.K.I...Parkman.R. and Fukuda.M. (1991) Altered O-glycansynthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. J. Exp. Hed., 173.I5OI-I5I0Fukuda.M. (1991) Lcukosialm, a major O-gl>can-containing sbloglycoprouin definingleukocyte differentiation and malignancy. Ctycobiotofy. 1. 347-356.Ramaekcrs.V.T.. Stiblerjl.. KimJ and JaekenJ. (1991) A new variant of the carbohydratedeficient grycoproteins syndrome. J. litter. Uetab. DU.. 14. 385-388JaekenJ . Hagberg.B. and Stromrae.P. (1991) Clinical presentaticn and natural course of thecarbohydrate-deficient gtycoprotem lyudiuuic. Ada Paedtatr. Scand . 80(ScppL 375). 6-13.Btermow.G . JaekenJ. and Wiklund.L.M. (1991) Neurological findings in the carbohydrate-*^-VrH glycoprotein syndrome, Ada Patdkar. SC&ML. SOtSoppt. 375). 14-20.Stibter.H.. JaekenJ. and KratianssonJ. (1991) Biochemjci] characteristics and diagnosis of thecarbobydrate-deficient gtycoprotein syndrome. Acu Paediatr. ScamL. 80(SuppL 375). 21-31.Stibier.H. aad Krisianuon.B. (1991) Analysis of transferTU and a^-fctoprotein in ammoticfluid and neonatal serum: A possible means for mdirect prenatal <*rTvril of the carbobydrate-deficienl grycoprotein syndrome. Aam Patdtalr. ScamL, SfXSuppl. 375). 32-38.Nonfborg.C. HagbergJ3. and KristiaaaocuB. (1991) Sural nerve pahotogy in the carbofaydrale-dcficJem grycoproteu syudronie. Aca POKBOV. Scand.. 8<KS<ippL 375). 39-49.Conradi.N.. De Vos.R.. JaekenJ.. lnnrrm.P.. Krrstiansson.B. and Van Hoof.F. (1991) Liverpathology in the caiuutiydiate-deficienl grycoprocem syodrome. Acu Patdknr. Srnvt .SWSuppL 375). 50-34.Stromme.P.. Maebkn J. . Strom, EH. and Torvil.A. (1991) Postmortem findiBgs in two patientswith me carbohydrate-oeficicnt gtycoprotein syndrome. Ada Patdiatr. Scaxd.. StXStmpL 375).35-62.Eeg-Orofsson.lCE. and WafalstromJ. (1991) Genetic and epkJemiological aspects of thecarbobydrale-oefaHent glyujytutein tyudiomc. Ada Patdiatr. Scand.. KKSnppJ. 375). 63-63.Otmo.K.. Yuasa.I.. Akabosm.S.. lloa.M.. YosmdaJC.. Ehara.H.. Ocmai.Y. and Takesmta.K.(1992) The carbohydrate deficient gryeoprotem syndrome in three Japanese children. AVarjt Der..14. 30-35.Harrisoo.H.H.. MUler.K i_. Harbtson.M.D and Skjnim.A.E. (1992) Multiple serum protein•boonmlitio in cxrbc4ijTlrii£^Jcficicin jlycoprotctn jyodrotnec Puhofuuuioutc findrng of two-dimensional dearopnoresa? din. Oern.. 38. 1390-1392W«tU.Y.. NUhikjvn.A.. Otamoto.N.. mn.K . Tsukamoto.H . Cftjda.S. and Tamguchi.N.(1992) Structure of serum transferrin in carbonyanrte-deficient glycoprotem syndrome. Biochem.Biopkp. Ret. Commut.. 189. 832-136.Pull«rkal.R.K.. Kim.lCS.. SUower.S.L. and Patd.V.K. (1988) Oligosaccharyl drphospbo-dolichols in the ceroid-lipamscmoses. Am. J. tied. Genrt.. 5. 243-251.

129

Page 34: Biological roles of oligosaccharides: all of the theories are correctcmm.ucsd.edu/varki/varkilab/Publications/B25.pdf · 2019-12-14 · Glycobtology vol. 3 no. 2 pp. 97-130, 1993

A.Varkl

1034 Hall,N.A. and PatnduA O. (1987) Accumaurtion of pbosphorylaled ddicbol m several lissaesin ceroid-Jipofiiscinosis (Batten disease). Ctn. Otitn. Acta. 170, 323-330

1035 KeUerJlK.. A i m u o n | . D . Crum.F.C. and Koppang.N. (1984) OoUchol and doBchylphosphate levels in brain tissue from English setters with ctrod lipofuscinosis J. NetuucktM..42. 1040-1047.

1036. Danid.P.F.. Satrls.D.L. and Bouttmy.R.-M. N. (1992) Evidence for proccstlnf of dolichal-linked olrgosacchanoes in ptlienu with IK1111"1'1 oerokMipofbicinosis. Am. J. Ued. Gowf., 42,586-392.

1037. Springer.T.A. (1990) Tbc «f»aftnn and regulation of imenctjoas wab toe ezmceilalaTenvironment: The cell biology of lymphocyte irihrsino ict^JUMi. AIUOL Rev. CttI BtoL, 6,359-402.

1038. Lee.S-1. and Nathans.D. (I9S8) Proliferin secreted by curtnred cdb binds to numnp6-phosphate receptors. J. BloL Oat., Hi. 3521-3527.

1039. Toddcrul,G. and Carpemer.G. (I98S) Presence of manoose ji*n{iu\e on tbc epidermal growthtactor receptor in A-431 cells. J. BtoL Otm.. 2*3. 17893-17896.

1040. MaTy^M..Z*^b.K.^MtiimmJA197S)aMl*c&ral^o1lteHir^uxiMi-[>ckitei(serum-sickness) antigen as ganglKMkks conaining N-glvcdylnearBmink acid. hv. Ardi.Atltrjy. AppL ftawl., 57. 477-480.

1041. Hlgashi.H.. Hirabayasbi.Y.. Fakni.Y.. Naiii.M., ManumotoX.. Ucd.5. and KaloJ. (1985)CharacrerizatJoa of N-gtyco)ylneararainic aad-comamirjg gangliosiaVs ai mrrjor-associatedHanganutziu-Dcicner antigen in human colon cancer. Omar. Ra.. 45. 3796-3802.

1042. Flhrin.A.D.. Pan.Y.T.. Soir.R. and Vosbeck.K. (1983) EfTect of iwainsonme. an inbibnor ofglycoprotein processing, on cultured mammalian cells J. CtU PftyxioL, 115, 265-Z75.

1043. Stanley.P. (1989) Cnmesc hamster ovary cdl mutants won multiple glyeosylatioii defects forproduction of gjycopnxdra with minima] uaibubydiau; beterofeneily. UoL CtU BioL, 9.377-383

1044. Sunley.P. (1984) CHycosylatlon mutants of animal cells, i tox. Rrr. Gtna.. 18. 525-552.1045. EskoJ.D.. Rostand.K.S. and WaokcJ.L (1988) Tumor formation dependent on proteoflycan

biosyntbesjs. Selena, 241. 1092-1096.1046. CarlsonJ.. Sakamoto.Y . Laurdl.C.B . MadnonJ.. Watldnt4. and Pumam.F.W. (1992)

AtloalbuminciTiia in Sweden- structural smdy and phenotvplc distribution of mne albuminvariants. Proc. NaL Acai. Sci. USA. » . 8225-C229.

1047 Capecchi.M.R. (1989) Altering the genome by homologous recombmaun. Sdmc€. 244.1288-1292.

1048. Yost.HJ. (1992) Regulauon of vertebrate left-right asymmetries by enraceuular matrix Nature.357. 158-161

1049. Grosveld.F. and Kollias.O. (1992) Tmnitnlc Animah. Academic Press. Su Diego.

ox December 31. 1992: accepted on January 19. 1993

130