biofiles v5 n5 - enzymes and reagents for alternative energy · biodiesel ethanol h 3c–ch 2 oh o...

32
Volume 5, Number 5 Metabolic strategies in alternative energy Enzyme-based fuel cells Lignocellulosic depolymerization Enzymes for biofuel research Reagents for ethanol and biodiesel analysis Enzymes and Reagents for Alternative Energy Biofiles

Upload: dangdiep

Post on 25-Apr-2018

230 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Volume 5, Number 5

Metabolic strategies in alternative energy

Enzyme-based fuel cells

Lignocellulosic depolymerization

Enzymes for biofuel research

Reagents for ethanol and biodiesel analysis

Enzymes and Reagents for Alternative Energy

Biofiles

Page 2: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Biofilescontents

Introduction 3

Advancements in Enzyme-BasedFuel Cell Batteries, Sensors andEmissions Reduction Strategies 8

Selected Enzymes for Biofuel Cell Research 10

Enzymes and Reagents for Ethanol Research 12Enzymes for Lignocellulosic Ethanol Research 12Enzymes for Starch Hydrolysis 20

Ethanol Analysis 23

Enzymes for BioDiesel Research 24

Lipase 24Phospholipase C 24BioDiesel Analysis 25

Metabolic Standards for Mevalonate and Isoprenoid Pathway Analysis 30

BiofilesonlineYour gateway to Biochemicals and Reagents for

Life Science Research

BioFiles Online allows you to:

Easily navigate the content of •the current BioFiles issue

Access any issue of BioFiles •Subscribe for email notifications •

of future eBioFiles issues

Register today for upcoming issues and eBioFiles announcements at

sigma.com/biofiles

Greener ProductsSigma-Aldrich is committed to doing our

part to minimize our footprint on the environment. As a life science and high

technology company, we recognize your need for high quality chemicals comes

first. In cases where it becomes possible to consider alternatives, we have made it

easier for you to find greener options through our new “Greener Alternatives

and Technologies” product lists.

Products Including:

Quality Environmentally-Friendly Enzymes•Ionic Liquids•

Greener Alternatives: Solvents•Greener Alternatives: Reagents•

sigma-aldrich.com/green

Life Science Labware CenterThe Life Science Labware Center allows

easy browsing of labware products, including disposables, books,

and equipment

Features Include:Corning® cell culture selection guide•

Products by top manufacturers•New products by research areas •

New lab start-up programs•Start using the Life Science Labware center at

sigma-aldrich.com/lslabwareTechnical content: Robert Gates, M. S. M.

Page 3: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 3

Leveraging nature’s metabolic strategies for tomorrow’s energy resources.Although most of the world’s population understands that carbon dioxide is the predominant end product of energy production from combustible fuels, most of us forget that the “raw material” for most of our combustible fuel sources is also atmospheric carbon dioxide. Photosynthetic carbon dioxide fixation is most often the first step in the synthesis of both our renewable fuels and non-renewable fossil fuels. Even much of our hydrogen production is an indirect product of carbon dioxide fixation as it is often derived from fossil fuels.

The basic differences between non-renewable fossil fuels and our “new generation” renewable fuels is time, energy input and mass. Our non-renewable fuels, such as petroleum and coal required thousands of years of collection of solar energy to power carbon fixation for the biosynthesis of enormous amounts of biomass. That biomass then underwent millions of years of anaerobic decomposition to yield today’s fossil fuels. In our attempt to circumvent or speed up this process, we are finding natural “renewable analogs” to some of our fossil fuels, i.e., ethanol and butanol to replace or supplement gasoline and fatty acid esters to replace diesel.

However, we have not advanced far enough in our manufacturing technology to divest ourselves of the need for biological systems to do the complicated work for us. Current processes for ethanol production rely on plants to fix carbon dioxide, synthesize a “common currency” molecule such as

IntroductionRobert GatesMarket Segment [email protected]

glucose, and then needlessly polymerize this glucose into starch or cellulose. Then we often rely on microbial and enzymatic hydrolysis of these biopolymers to give back glucose and then ferment it to yield ethanol. Sugarcane ethanol employs a slightly simpler path via sucrose.

Our challenge for the future may be to find the “straightest metabolic line” between carbon dioxide and ethanol, butanol, fatty acids or even hydrogen. The ideal route to ethanol production might be to devise an enzymatic or cellular system to fix carbon dioxide and take the direct route from ribose-1,5-bis-phosphate to pyruvate to ethanol and bypass glucose biosynthesis, polymerization and depolymerization. We have included the Nicholson/IUBMB Metabolic Pathway chart on the following pages illustrating the specific pathways related to carbon dioxide fixation and glucose, cellulose, pectin, starch, lignin and ethanol production highlighted in yellow.

Enzymes and their metabolic pathways enter the energy equation from other directions. Microbial strains are being discovered that can ferment cellulosic biomass to yield hydrogen. Some photosynthetic microbes, such as algae, are capable of splitting water to produce hydrogen utilizing solar energy. Hydrogenases are being targeted not only for hydrogen production but also for the oxidation of H2 in fuel cells. Immobilized enzyme-based fuel cell batteries can utilize multi-enzyme systems that mimic in vivo glycolytic and Krebs Cycle pathways. Immobilized enzymes are also being studied for the sequestration of carbon dioxide emissions.

Page 4: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

4

Engineering organisms and enzyme systems to maximize biofuel production could require insertion of exogenous enzymatic pathways from various organisms into a new host. In addition, alternative metabolic pathways such as the mevalonate and isoprenoid pathways are being studied as sources of biofuel.

This issue of BioFiles is devoted to how Sigma-Aldrich enzymes and reagents are involved in many of these areas of research. As summarized above and illustrated

Hydrogen

O

OH

OH

O

O

H

O

O CH3O

HO

O

CH3O

OH

OH

H

HO

CH3O

O

CH3O

CH 3O

HO OHO

O CH3O CH3O

O

CH3OHO

HOHO

O

O

CH3O

CH3OO

O O

OH

O

CH3O

OCH3

HO

O

OCH3

HO

HO

HO

HO

HO

O

OO

OH

OH

O

O

O

H

OH

OH

OH CH 3O

CH3O

CH3O

O

HO

CH3O

O

OCH2OH

OH

OHO

CH2OH

OH

OH

OH

O

OCH2OH

OH

OH

O

OCH2OH

OH

OH

O

OCH2OH

OH

OHO

OH

CH2OH

OH

OH

O

n

OCH2OH

OH

OH

O

OCH2OH

OH

OHO

OCH2O

OH

OH

O

OCH2OH

OH

OHO O

n

OO

OH

CH2OH

OH

OH

C

H

H

H

H

C

H

H

H

C

H

H

C

H

H

H

CH

H

HCH

H

H

CH

H

CH

H

CH

H

CH

H

CH

H

CH

H

CH

H

H

CH

H

CH

H

CH

H

CH

H

CH

H

CH

H

HCH

H

CH

H

CH

H

CH

H

CH

H

CH

H

O S O

OH

OH OH

OH NH2 OCOOH S

SO

S

HO H

ON

OH HO

HO O OH

OH

CH3

H2

CH3H2

H3CCH2

CH2C

CH2CH2

CH2CH2

CH2CH2

CH2CH2

CH2CH2

C

O

O

CH3H2

H3CCH2

CH2C

CH2CH2

CH2CH2

CH2CH2

CH2CH2

CH2CH2

C

O

O

CHH2

H3CCH2

CH2C

CH2CH2

CH2CH2

CH2CH2

CH2CH2

CH2CH2

2C

O

O

CH3H2

H3CCH2

CH2C

CH2CH2

CH2CH2

CH2CH2

CH2CH2

CH2CH2

C

O

O

Solar Energy

CO2

Carbon Dioxide

CO2

Fixation

Biomass

Cellulose

Starch

Lipids

Glucose

Anabolic InVivo Enzymatic Conversions

FuelsNon-Renewable

Fossil Fuels

Renewable Fuels

Combustion

Microbial, Enzymatic andChemical Conversions

AnaerobicDecomposition

CO2

Carbon Dioxide

Methane (Natural Gas)

Propane

Gasoline

Diesel

Coal

BioDiesel

Ethanol

H3C–CH2 OH

OO

OH

CH2OH

OH

OH

Glucose

Lignin

Todays fuel sources originate primarily from the biosythesis of hydrocarbons originating from photosynthetic carbon dioxide fixation. The combustion of these fuels results in production of carbon dioxide. Ideally, this might someday be a “closed-CO2-loop” system with solar power as the only energy input. Many of the structures shown are basic examples of simple unbranched molecules intended to represent heterogeneous mixtures.

below, many of these areas require an understanding of metabolic pathways and enzymatic processes.

References

(1) S. Atsumi, J. C. Liao, Metabolic Engineering for Ad-vanced Biofuels Production from Escherichia coli, Curr. Opin. Biotechnol., 19, 414–419 (2008).

(2) H. Alper, G. Stephanopoulos, Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?, Nature Reviews, Microbiology, 7, 715–723 (2009).

(3) P. P. Peralta-Yahya, J. D. Keasling, Advanced biofuel pro-duction in microbes, Biotechnol. J., 5, 147–162 (2010).

(4) J. M. Clomburg, R. Gonzalez, Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology, Appl. Microbiol. Biotechnpl., 86, 419–434 (2010).

(5) D. Klein-Marcuschamer, V. G. Yadav, A. Ghaderi, G. Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic DNA, Adv. Biochem. Eng. Biotech-nol. in press (2010).

(6) J. L. Fortman, S. Chhabra, A. Mukhopadhyay, H. Chou, T. S. Lee, E. Steen, J. D. Keasling, Biofuel alternatives to etha-nol: pumping the microbial well, Trends in Biotechnol., 26 375–381 (2010).

(7) D. B. Levin, R. Islam, N. Cicek, R. Sparling, Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates., Int. J. Hydrogen Energy, 31, 1496–1503 (2006)

(8) M. L. Ghirardi, S. Kosourov, A. Tsygankov1, A. Rubin, M. Seibert, Cyclic Photobiological Algal H2 Production, Proceedings of the 2002 U. S. DOE Hydrogen Program Review

(9) A. A. Karyakin, S. V. Morozov, E. E. Karyakina, N. A. Zorin V. V. Perelygin, S. Cosnie, Hydrogenase Electrodes for Fuel Cells, International Hydrogenases Conference 2004.

Page 5: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 5

The New Enzyme ExplorerRedesigned Format and Expanded Resources.

The Enzyme Explorer Indices provide paths to find more than 3,000:

Enzyme/proteins•Inhibitors•Substrates•Cofactors•

The Enzyme Explorer Product Features include enzyme and protein related products for Cell Biology, Diagnostics and industrial scale manufacturing.

The Enzyme Explorer Learning Center

includes:IUBMB Metabolic Pathways•Proteolytic Enzyme Resources•Enzyme Assay Library•Carbohydrate Analysis Enzyme Resource•Product Guides and Protocols•The New Protease Finder•

Allow the New Protease Finder to help you locate both the endo and exoproteases needed for precision protein cleavage.

Request Enzyme Literature•Proteolytic Enzymes•Protease Inhibition•Diagnostic and Metabolic Research•Detection Substrates•Metabolomics and Dietary Research•Cell Dissociation and Lysis•Plasma Proteins•Carbohydrate Analysis•Proteomics and Protein Expression•

sigma-aldrich.com/enzymeexplorer

Page 6: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

6

2H+

H+

OX

ALO

AC

ETA

TE

PYR

UVA

TE

SU

CC

INY

L-C

oA

GLU

TAR

ATE

CIT

RAT

E

MA

LATE

2-O

XO-

ASP

AR

TATE

NO

2-

NO

3- N2

NH

4

CH

3CO

SC

oA

AC

ETYL

- CoAHO

H

CO

2

NA

D

TRANSAMINAT

ION

2H+

2H+

+

CO

2

5-A

min

o-le

vulin

ate

Gly

cine

H+

H+H+

H+

H+H+

c

H+

H+

a

F0

F1

F1

β 2

β

α

γ

10c-

sub-

units

A D

P+

Pi

aaH

+

3.6.

1.34

H+-tra

nspo

rting

ATP

synt

hase

α

δF 6

oscp

ATP

ADP

+Pi

FUM

AR

ATE

UQ

H2

UQ

UQ

H2

NA

DH

+H+

CH

2CO

O-

C(O

H)C

OO

-C

H2C

OO

-

CH

(OH

)CO

O-

CH

CO

O-

CH

2CO

O-

- OO

CC

OC

H2C

H2C

OO

-

- OO

CC

H2C

H2C

O.S

CoA

- OO

CC

OC

H2C

OO

-

CH

3CH

(OH

)CH

2CO

.SC

oA

- OO

CC

H=C

HC

OO

-

CCCCC

Gly

oxyl

ate

C

ycle

-OO

CC

HO

GTP

GD

PAT

P

+

HEM

EPr

otop

orph

yrin

ogen

Cop

ropo

rphy

rinog

enU

ropo

rphy

rinog

enPo

rpho

bilin

ogen

5-A

min

o-le

vulin

ate

CO

O-

CH

2C

H2

H2N

CH

2C=O

FAD

H2 FA

DC

yt.bFe-S

SU

CC

INAT

EII

CH

3CO

CO

O-

PYR

UVA

TE

P i

XY

Cyt.c

1

Fe-S

2e-

2e-

1e- 1e

-

III

2UQ

UQ

UQ

H2

2UQ

H2

2UQ

._

UQ

._

Cyt

.bL

Cyt

.bH

Cyt.c

IV

Cu A

CuB

Cu A 1.9.

3.1

2e-

Hem

e a

Hem

e a 3

2H+

2H+

4H+

4H+

2H+

NAD

+

NA

DH

+H+

NA

D+

1.1.

1.39

1.2.

4.1

2.3.

1.12

3.1.

3.43

4.1.

1.32

4.1.

3.7

4.2.

1.3

1.1.

1.41

1.2.

4.2

2.3.

1.61

6.2.

1.4

- OO

CC

H2C

H2C

OO

-

1.3.

5.1

4.2.

1.2

1.1.

1.37

6.4.

1.1

4.1.

3.8

4.1.

3.1

4.1.

3.2

ISO

CIT

RAT

E

2.6.

1.1

2.3.

1.16

4.1.

1.71

1.2.

1.16

5.1.

99.1

5.4.

99.2

4.3.

1.1

1.4.

1.2

1.4.

1.14

6.3.

5.4

1.6.

6.1

1.7.

99.4

1.7.

7.1

1.6.

6.4

1.18.6

.1

2.3.

1.37

1.10

.2.2

1.10

.2.2

γ

εδ

β

H++

33β

AT

P

AD

P

END

ERG

ON

ICR

EAC

TIO

N

1.6.5.3I

FMN

H2

FMN

I

1.6.

5.3

2Fe

-S

(5 C

luste

rs)

H+

H+

H+

H+AT

P

4H+

2H+

2H+or

H+

PHO

TO-

SYST

EM l

O2

3.6.

1.34

NA

DP

+

Gly

cera

ldeh

yde

Rib

ulos

e-1,

5-bi

s-P

8 8

H+

c

3 2

ε

a

3 2

α1α

ε

α

β2

1

3

α

αβ

3

α

β

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

Tran

sloc

ated

pro

tons

H+

H+

H+

H+

Pi

Ferre

doxi

n

4H+

PCPC

PC

PQ

H2 2P

QH

2

PQ

_ .

2PQ

_ . Fe-S

Cyt

.f

PQ

2PQ

Cyt

bf2e-

1e-

1e-

2e-

2e-

2e-

2e-

Cycli

cPh

otop

hosp

hory

latio

n

PQ

PH

OTO

-S

YS

TEM

I

I

Cyt

bc

Non-

cycl

icel

ectro

nflo

w

2e-

2e-

Mn

2e-

*

Prot

ons

from

Wat

er

H2O

H+

H+

2H+

2H+

γ

ATP

synt

hase

CO

2Fi

xatio

n

H+

AD

PP

i

H+ NA

DPH

+H+

eeeAT

PTH

YLA

KO

ID M

EM

BR

AN

E

CH

LOR

OP

LAS

T O

UTE

R M

EM

BR

AN

E

THY

LAK

OID

LU

ME

N

STR

OM

A

(ele

ctric

curre

nt)

P680

Chl

.a

QA

QB

Pheo

phyt

in

P700

Chl

.A0

A 1Fe-S

ATP

AD

P

ATP

1 / 2O

2 H2O

PQ

H2

To B

rain

-

A M I N O A C I D SP Y R I M I D I N E SP U R I N E SC A T E C H O L A M I N E SA R O M A T I C A M I N O A C I D S

hvVI

SIO

N

L I P I DP H O T O S Y N T H E S I S P O R P H Y R I N SS T E R O I D SI S O P R E N O I D SP H O S P H O L I P I D SD E G R A D A T I O NL I P I D B I O S Y N T H E S I SP E N T O S E SH E X O S E SP O L Y S A C C H A R I D E S

CO

CH

CH

(NH

)CO

O2

3+

FOLI

CAC

IDC

1PO

OL

VALI

NE

ATPAT

P

4.1.

1.4

1.1.

1.30

CH

CO

CH

33 CH

CO

CH

CO

O3

2

CH

CH

(OH

)CH

CO

O3

23-

OH

-But

yrat

eA

ceto

ne Ace

toac

etat

e

KET

ON

E B

OD

IES

HYA

LUR

ON

IC A

CID

DER

MAT

AN

BLO

OD

GR

OU

PSU

BST

AN

CES

PEPT

IDO

-G

LYC

AN

N-A

c-N

eura

min

ate

(Sia

late

)

UD

P-Id

uron

ate

UD

P-N

-Ac-

Gal

acto

sam

ine

UD

P-G

alac

turo

nateG

DP-

Fuco

se

TDP-

Rha

mno

se

AD

P-G

luco

se

UD

P-G

luco

se

TDP-

4-O

xo-

6-de

oxyg

luco

se

MA

NN

OSE

CH

ITIN

CH

ON

DR

OIT

INP

EC

TIN

ALG

INAT

ES

INU

LIN

CEL

LULO

SE

O-A

NTI

GEN

SST

AR

CH

GLY

CO

GEN

LAC

TOSE

GA

LAC

TOSE

O

OH

HO

OH

OH

CH

3O

OPP

TO

OH

OH

O

OHAC

NH

HO

OH

O

OH

HO

OP

PU

NH

AC

OH

OH

OH O

H

HO

OH

NH

CO

CH

OH

HOO

OP

PG

CH

OH

2

HO

P

UD

P-N

-Ac-

Glu

cosa

min

epy

ruva

teN

-Ac-

Man

nosa

min

e-6-P

UD

P-G

lucu

rona

te

GD

P-M

anno

se

N-A

c-M

anno

sam

ine

UD

P-N

-Ac-

Glu

cosa

min

eN

-Ac-

Glu

cosa

min

e-6-P

Sorb

itol

Fruc

tose

-1-P

Eryt

hros

e-4-P

3-D

ehyd

rogu

lona

te

L-Xy

lose

L-Ly

xose

D-X

ylul

ose

D-R

ibos

e

Rib

itol

L-A

rabi

tol

L-Xy

lulo

se

L-R

ibul

ose

L-R

ibul

ose-

5-P

L-Xy

lulo

se-5

-P

L-A

rabi

nose

Xylit

olD

-Xyl

ose

D-A

rabi

nose

D-R

ibul

ose

ASC

OR

BATE

2, 3

-Dio

xogu

lona

te

N-A

c-G

luco

sam

ine-

1-P

Inos

itol-P

Inos

itol

Glu

curo

nate

Gul

onat

e

Gul

onol

acto

ne2-

Oxo

gulo

nola

cton

e

Fruc

tose 6-P-

Glu

cona

te

D-R

ibul

ose-

5-P D

-Xyl

ulos

e-5-P

Man

nose

-1-P

GD

P-G

luco

se

TDP-

Glu

cose

UD

P-G

alac

tose

Gal

acto

se-P

Glu

cose

-1-P

Glu

cose

-6-P

Fruc

tose

-6-P

Fruc

tose

-1:

6-bi

s-P

OH

HH

HO

HO

CH

2C

CC

CC

O

OH

OH

HO

H

HH

O

HO

CH

2C

CC

CO

CO

OH

H

H OH

H

CCO

H

CO

P-R

ibos

ylam

ine

Gly

cera

te2,

3-D

ipho

spho

-gl

ycer

ate3-P-

Gly

cera

ldeh

yde

1:3-

bis-P-

Gly

cera

te

3-P-

Gly

cera

te

2-P-

Gly

cera

te

P-en

olpy

ruva

te

Inos

itol

CH

OH

2

CH

OH

2

HO

CH

CH

OH

2

CH

O 2

HO

CH

P

Gly

cero

l

UD

P-G

alac

tose

UD

P-Su

gars

CH

CH

OH

32

ETH

AN

OL

Dih

ydro

xy-

acet

one-P

(Gly

cero

ne-P

)

Glu

cosa

min

e-6-P

Phos

pho-

serin

e

Cha

in e

long

atio

nM

itoch

ondr

ial

Ser

ine

Ser

ine

Indo

le-3

-gly

cero

l-P

3-D

eoxy

-D-a

rabi

no-

hept

ulos

onat

e-7-P

Indo

leac

etat

e(A

uxin

)In

doxy

l Form

ylky

nure

nine

Kynu

reni

ne3-

Hyd

roxy

kynu

reni

ne3-

Hyd

roxy

anth

rani

late

2-A

min

o-3-

carb

oxy

muc

onat

e se

mia

ldeh

yde

NH

OH

Tryp

tam

ine

1-(o

-Car

boxy

phe

nyla

min

o)1-

deox

yrib

ulos

e-5-P

N-(5

-P-R

ibos

yl)

anth

rani

late

Ant

hran

ilate

Cat

echo

l

NH

Indo

le-

acet

alde

hyde

NH

CH

CH

O2

Indo

lepy

ruva

te

NHC

-CH

(OH

)CH

(OH

)CH

O 2P

CH

2-A

min

omuc

onat

e-6-

sem

iald

ehyd

e

CH

CH

NH

22

2

NH

1.2.

3.7

4.1.

1.43

3.5.

1.9

3.7.

1.3

4.2.

1.20

1.13

.11.

64.

1.1.

45

2.4.

2.18

4.6.

1.4

4.1.

1.48

1.14

.13.

9

4.6.

1.3

Deh

ydro

-qu

inat

e4.2.

1.10

1.1.

1.25

2.5.

1.19

Shik

imat

e-3-P

Shik

imat

e-5

enol

pyru

vate

3-P

Cho

rism

ate

PEP

2.7.

1.71

1.4.1.

19

Hom

ogen

tisat

ePh

enyl

pyru

vate

Cin

nam

ate

Cou

mar

ate

Prep

hena

te

2-A

min

om

ucon

ate

Fum

arat

eA

spar

tate

GLY

CIN

E

Sarc

osin

e

Hyd

roxy

-py

ruva

te

P-H

ydro

xy-

pyru

vateSE

RIN

E

Imid

azol

egl

ycer

ol-P

P-R

ibos

yl-A

TPP-

Rib

osyl

form

imin

o5-

amin

oim

idaz

ole-

carb

oxam

ide-

RP

Form

imin

ogl

utam

ate

Imid

azol

one

prop

iona

teU

roca

nate

Cys

tath

ioni

neH

omoc

yste

ine

Phos

phoa

deny

lyl-

sulp

hate

(PA

PS)

CH

(NH

)CO

OH

23

+

His

tidin

ol-P

His

tidin

olH

istid

inal

3.1.

3.15

2.6.

1.9

1.1.

1.23

3.6.

1.31

5.3.

1.16

2.4.

2.17

Asp

arag

ine

ALA

NIN

E

3-Su

lphi

nyl

pyru

vate

Oxo

buty

rate

2-A

ceto

-2-

hydr

oxy-

buty

rate

O-P

hosp

ho-

hom

oser

ineH

OS

CH

CH

NH

22

22

Hyp

otau

rine

HO

SC

HC

HN

H3

22

2

Taur

ine

Glu

tam

ate

γ-G

luta

myl

cyst

eine

Glu

tath

ione

Gly

cine

Cys

tein

e

ß-A

lani

ne

Cys

teat

eS-

Ade

nosy

lho

moc

yste

ine

4.2.

99.2

1.1.

1.86

4.2.

1.9

1.1.

1.86

4.2.

1.9

2.6.

1.32

4.1.

3.18

S-A

deno

syl

met

hion

ine

(SA

M)

2-M

ethy

lace

to-

acet

yl-C

oA

2-A

ceto

lact

ate

2-3-

Dih

ydro

xyis

oval

erat

e2-

Oxo

-is

oval

erat

e

3-H

ydro

xy-

isob

utyr

ate

3-H

ydro

xy-

Isob

utyr

yl-C

oAM

ethy

lac

ryly

l-CoA

2-M

ethy

l-3-

hydr

oxy-

buty

ryl-C

oA

Tigl

yl-C

oA2

Met

hylb

utyr

yl-

CoA

2:3-

Di-O

H-

3-m

ethy

lval

erat

e2-

Oxo

-3-m

ethy

lva

lera

te

Isob

utyr

yl-C

oA

Cys

tein

esu

lphi

nate

4.2.

99.9

2-Is

opro

pyl-

mal

ate

CH

CH

CO

CO

O3

2

+C

HC

H(N

H)C

OO

33

CH

CH

(OH

)CO

O3

HO

SC

HC

OC

OO

22

OC

HC

OC

OO

2P

OC

HC

H(N

H)C

OO

23

P

HO

CH

CO

CO

O2

HO

CH

CH

(NH

)CO

O2

3+

+

OH

CH

CO

CO

O2

CO

O OH

OH

O

CO

O OH

OH

HO

P

CO

O

OH

OH

O

CH

2

P

CO

O

O-C

-CO

OO

HO

OH

OO

CC

HC

OC

OO

2

NH

HO

C-C

H(O

H)C

H(O

H)C

H2O

PC

H

CO

O

NH

2

CO

O

OH

NH

2C

OO

CO

O

OC

H

OO

CC

HN

HC

H2

3

CH

(CH

)C

OS

-AC

P3

214

CH

(CH

)C

OS

CoA

32

14

CH

(CH

)C

H=C

HC

O-S

-AC

P3

22

CH

CH

=CH

CO

-S-A

CP

3C

HC

H(O

H)C

HC

OS

-AC

P3

2

CO

SC

oA

Lino

leat

e

Ole

oyl-C

oA

Stea

royl

-CoA

Deh

ydro

stea

royl

-CoA

OH

-Ste

aroy

l-CoA

Oxo

stea

royl

-CoA

Palm

itoyl

-AC

PPa

lmito

yl-C

oA

ACYL

-AC

P2,

3-E

noyl

-AC

P

3, 4

-Dec

enoy

l-AC

P

2, 3

-Dec

enoy

l-AC

P

3-O

H-A

cyl-A

CP

3-O

xoac

yl-A

CP

3-O

xo-D

ecan

oyl-A

CP

3-O

xo-H

exan

oyl-A

CP

3-O

H-H

exan

oyl-A

CP

2, 3

-Hex

enoy

l-AC

P

But

anoy

l-AC

PC

roto

noyl

-AC

P3-

OH

-But

anoy

l-AC

PA

ceto

acet

yl-A

CP

Hex

anoy

l-AC

P

3-O

H-D

ecan

oyl-A

CP

Dec

anoy

l-AC

P

Palm

itole

oyl-A

CP

γ-Li

nole

nate

Ara

chid

onat

eLe

ukot

riene

B4

CO

SC

oA

CO

-S-A

CP

Thro

mbo

xane

B2

HO

OC

CH

CO

-S-A

CP

2M

alon

yl-A

CP

HO

OC

CH

CO

-SC

oA2

Mal

onyl

-Co-

A

CH

CO

-S-A

CP

3

Ace

tyl-A

CP

CH

O-C

O-R

2

CH

OH

2

R’-C

O-O

CH

FATT

Y AC

IDAC

YL-C

oA(C

ytos

ol)

CH

O-C

O-R

2

CH

O 2

R’-C

O-O

CH

P

Car

diol

ipin

Phos

phat

idyl

glyc

erol

Ace

tylc

holin

eG

lyce

roph

osph

ocho

line

Lyso

leci

thin

Cho

line

plas

mal

ogen

CD

P-ch

olin

eC

holin

e-P

Mev

alda

te

CH

(CH

)C

H=C

HC

H(O

H)C

HC

HO

H3

212

2

Deh

ydro

sphi

ngan

inSp

hing

anin

4-Sp

hing

enin

Psyc

hosi

ne

Acy

l-CoA

Acy

l-CoA

Cer

ebro

side

Gal

acto

seC

H(C

H)

CH

=CH

CH

(OH

)CH

CH

O-

32

122

NH

CO

R

Isop

ente

nyl-PP

(C5)

Dim

ethy

lally

l-PP

(C5)

Ger

anyl

-ger

anyl

-PP

(C20

)

Farn

esyl

-PP

(C15

)

Squa

lene

(C30

)

Ger

anyl

-PP

(C10

)

Des

mos

tero

lZy

mos

tero

lLa

nost

erol

CH

C =

CH

CH

O3

2P

P

CH

3

Cer

amid

e

Gan

glio

side

sN

HC

OR

CH

O 2P

P

OP

PC

H2

CH

OLE

STER

OL

CH

C(O

H)C

HC

HO

H3

22

CH

CO

O2

CH

C(O

H)C

HC

HO

32

CH

CO

O2

NA

DP

+D

ehyd

roas

corb

ate

OH

HO

HO

CH

2C

CC

CC

O

OH

HO

H

OH

HO

HO

CH

2C

CC

OC

OC

O

H

NA

D+

Pi

AD

PA

DP

Phyt

oene

(C40

)Ly

cope

ne(C

40)

ß-C

AR

OTE

NE

(C40

)R

hodo

psin

Met

arho

dops

in

Ret

inoa

te

trans-

Ret

inal

11-cis

-Ret

inol

trans-

Ret

inol

(Vita

min

A)

Ret

inol

est

ers

Dar

k

Ligh

t

Ubi

quin

one

(Coe

nzym

e Q

)

Men

aqui

none

Plas

toqu

inon

e

Phyl

loqu

inon

e(V

itam

in K

)

Ops

inC

HO

CH

OH

2

CH

O

CH

OH

2

CH

3C

HO 3

CH

O 3n

O O

OO

Phyt

ol(C

20)

α-To

coph

erol

(Vita

min

E)

Qui

nolin

ate

Qui

nolin

ate-

nucl

eotid

eN

icot

inat

e-nu

cleo

tide

Des

amin

o-N

AD

5-H

ydro

xy-

tryp

toph

an5-

Hyd

roxy

tryp

tam

ine

(SER

OTO

NIN

)N-

Acet

yl-5

-O-m

ethy

l-ser

oton

in(M

ELAT

ON

IN)

NH

CH

CH

NH

CO

CH

22

3H

O

NH

CH

CH

NH

CO

CH

22

3C

HO 3

+N

AD

(P)

NIC

OTI

NAT

E

N-A

cety

l-ser

oton

in

2.4.

2.19

Dop

amin

eD

opa

Dop

aqui

none

THYR

OXI

NE

MEL

AN

IN

OH

OH

CH

OH

CH

NH

CH

23

OH

OH

CH

OH

CH

NH

22

4-O

H-3

-Met

hoxy

-ph

enyl

glyc

ol

CH

OH

CH

NH

22

OH

OC

H3

OC

H3

CH

OH

CH

OH

2

OH

OC

H3

4-O

H-3

-Met

hoxy

-D

-man

dela

te

Cyc

lic A

MP

ATP

Dep

hosp

ho-C

oenz

yme

A

4-P-

Pant

ethe

ine

4-P-

Pant

othe

nylc

yste

ine

4-P-

Pant

othe

nate

Pant

oate

6.3.

2.1

1.1.

1.16

9

3.5.

1.22

2.7.

1.33

NH

NH

O O

O O

CH

OH

2

OH

OC

H3

CH

(OH

)CO

O

H2 NH

3+

CH

-CO

OC

O O

CO

O

NR

ibos

e-P

N+

CO

O

NH

CH

CO

O2

O

OH

CH

O 2P

NH

CO

CH

NH

22

OH

Form

ylgl

ycin

amid

e-RP

Ure

a

Form

ylgl

ycin

amid

ine-

RP

Alla

ntoa

teA

llant

oin

UR

ATE

AD

P

Xant

hine

Hyp

oxan

thin

e

Inos

ine

Ade

nine

Ade

nylo

-su

ccin

ate

5-A

min

oim

idaz

ole-

RP

5-A

min

o-4-

imid

azol

eca

rbox

ylat

e-RP

5-A

min

o-4-

imid

azol

e(N

-suc

ciny

lcar

boxa

mid

e)-RP

5-A

min

oim

idaz

ole

carb

oxam

ide-

RP Fo

rmyl

amid

o-im

idaz

ole-

carb

oxam

ide-

RP

HN

CO

NH

22

HNH

C 2C

HO

NH

RP

NH

C

CCO

CC

OO

CN

H

NH

HN

HN

H

CCO

CC

HO

CN

H

N

N

HN

Car

bam

oyl

ß-al

anin

eD

ihyd

ro-

urac

ilU

raci

l

d-A

DP

d-AT

P

GTP

GD

P

XAN

THO

SIN

E-P

(XM

P)

TTP

TDP

ß-U

reid

ois

obut

yrat

eD

ihyd

roth

ymin

eTh

ymin

ed-

UM

Pd-

CM

Pd-

CD

P

CD

P

Car

bam

oyl

aspa

rtat

eD

ihyd

roor

otat

eO

rota

teO

rotid

ine-P

Urid

ine-P

(UM

P)U

DP

3-A

min

o-is

obut

yrat

eC

HCNH

2 CH

OC

NH

NC

HCO

CH

OC

NH

HN

CH

-CH

3CO

OC

NH

HN

CH

2

CH

2C

H2

CO

OC

NH

HNCO

CH

OC

NH

HN

CC

H3

Met

hylm

alon

ylse

mia

ldeh

yde

OH

CC

HC

OO

CH

3

CH

2CO

CH

-CO

OO

CN

H

HN

CH

CO

C-C

OO

OC

NH

HN

HN

CO

NH

CH

CH

CO

O2

22

CC

CC

H RP

HC

NH

NH

OO

C-C

H-C

HC

OO

2 N

N

N

CH

O

NH

RP

NH

OC

HC 2

2.7.

7.43

3.1.

3.29

1.1.

1.15

8

5.1.

3.13

2.7.

1.38

3.2.

1.23

3.1.

3.29

4.1.

3.20

2.7.

1.60

5.1.

3.14

5.1.

3.7

5.1.

3.1

2.7.

1.4

5.4.

2.3

3.1.

1.17

1.1.

1.49

1.1.

1.21

2.7.

7.23

3.1.

3.25

1.13

.99.

11.

1.1.

19

1.1.

3.8

5.3.

1.3

2.7.

1.53

1.1.

1.9

2.7.

1.15

2.7.

1.17

5.1.

3.4

5.1.

3.1

2.2.

1.2

4.1.

2.13

2.7.

1.11

2.7.

1.47

2.2.

1.1

1.2.

1.12

1.1.

1.29

1.1.

1.95

1.3.

1.35

1.14

.99.

25

2.3.

1.41

2.3.

1.41

2.3.

1.41

1.1.

1.10

0

5.3.

99.5

4.2.

1.60

5.3.

99.3

1.14

.99.

11.13

.11.

34

1.3.

1.10

1.3.

1.9

1.14

.99.

5

1.3.

1.9

4.2.

1.61

4.2.

1.60

4.2.

1.60

4.2.

1.59

4.2.

1.58

1.3.

1.9

1.3.

1.9

6.2.

1.3

3.1.

2.20

1.1.

1.10

0

5.3.

1.1

HO

OC

-CO

OH

Oxa

late

Gly

cola

te

HO

CH

CH

O2

Gly

col

alde

hyde

Etha

nola

min

e-P2.

7.1.

30

2.3.

1.7

3.7.

1.2

4.1.

3.5

2.7.

8.8

2.1.

1.17

2.1.

1.71

1.3.

1.35

2.7.

8.2

3.1.

4.3

3.1.

4.4

2.7.

7.15

3.1.

1.5

3.1.

4.2

2.7.

1.32

2.7.

1.82

1.2.

4.1

2.3.

1.12

1.8.

1.4

2.6.

1.2

1.4.

1.1

4.1.

1.1

2.3.

1.50

1.1.

1.10

2

3.1.

4.12

2.7.

8.3

2.4.

1.62

3.2.

1.46

5.2.

1.3

1.2.

1.36

2.3.

1.76

3.1.

1.21

5.2.

1.7

5.4.

99.7

1.14

.99.

7

4.3.

1.8

4.2.

1.75

4.1.

1.37

1.3.

3.3

1.3.

3.4

4.99

.1.1

2.5.

1.29

2.4.

1.47

4.1.

1.28

2.3.

1.5

2.1.

1.4

6.3.

5.1

6.3.

1.5

2.4.

2.11

2.7.

7.18

2.6.

1.5

1.2.

1.32

1.13

.11.

5

2.1.

1.28

2.1.

2.2

6.3.

3.1

3.5.

2.5

1.4.

1.10

1.7.

3.3

1.1.

1.20

41.

1.3.

221.

1.3.

22

4.1.

1.28

4.1.

1.21

2.1.

2.3

2.4.

2.1

1.5.

99.2

2.1.

1.5

2.6.

1.22

3.5.

2.3

2.6.

1.51

1.4.

1.7

3.1.

3.3

2.6.

1.52

2.1.

3.2

ACET

ATE

2.4.

2.4

2.1.

1.45

RP

CH

CO

CH

OC

N

HN

1.3.

1.14

2.4.

2.10

4.1.

1.23

2.7.

7.7

2.7.

7.7

2.7.

7.7

1.17

.4.1

2.7.

7.7

2.7.

4.14

4.4.

1.1

1.6.

4.1 1.

13.1

1.20

4.4.

1.8

4.2.

1.22

1.1.

1.27

4.1.

1.29

6.3.

2.3

6.3.

2.2

1.8.

1.3

LAC

TATE

Ace

tald

ehyd

e

2.7.

1.24

2.7.

7.3

4.1.

1.36

Bile

Aci

ds

CH

CH

CO

SC

oA3

2Pr

opan

oyl-C

oA

1.1.

1.31

2.1.

3.1

4.1.

1.41

5.1.

99.1

6.4.

1.3

6.3.

2.5

2.1.

1.14

2.1.

1.13

4.6.

1.1

CD

P-Et

hano

lam

ine

1.1.

1.35

4.2.

1.17

+H

OS

CH

CH

(NH

)CO

O2

23

3.5.

2.7

NH

HN

CH

OO

CC

HC

HC

HC

OO

22

CM

P-N

-Ace

tyl

neur

amin

ate

CD

P-di

acyl

glyc

erol

CH

OLI

NE

Etha

nola

min

e

Gly

oxyl

ate

HIS

TAM

INE

2.3.

1.46

Hom

oser

ine

Tyra

min

e

Plan

t Pig

men

tsTa

nnin

s

Mal

eyl

acet

oace

tate

Fum

aryl

acet

oace

tate

5.2.

1.2

CH

CO

O2

OH

OH

OHCH

CH

NH

22

2

OH

OH

CH

CH

NH

22

2Hyd

roxy

phen

ylpy

ruva

te

α-To

coph

erol

(Vita

min

E)

LIG

NIN

d-G

TP

OH

OH

OH O

HO

OH

P

OP

PT

CH

3H

O

OH

OH

O

NA

DPH

2.2.

1.1

2.7.

1.3

1.1.

1.45

1.1.

1.13

0

1.10

.3.3

1.10

.2.1

1.1.

1.10

ATP

CH

CH

NH

22

2

NH

HO

5.4.

99.5

1.14

.16.

12.

6.1.

51.

13.1

1.27

Indo

le

4.1.

99.1

1.13

.11.

11

OH O

OH

NH

CC

CH

CH

O 2P

HH

CO

O

NH

2

CO

O

6.3.

5.3

6.3.

2.6

4.3.

2.2 G

uani

neD

NA

6.3.

4.4

4.3.

2.2

CCO

CC

HH

CN

H

N

N

HN

CCO

CC

HH

CN

H

N

N

HN

3.5.

3.4

2.4.

2.1

2.7.

7.6

2.7.

7.6

2.7.

7.6

2.7.

7.6

2.7.

4.6

2.7.

4.3

2.7.

4.4

2.7.

4.6

2.4.

2.15

1.1.

1.20

5

6.3.

4.1

6.3.

5.2

2.7.

4.4

3.5.

4.3

3.2.

2.2

2.4.

2.1

3.1.

3.5

3.1.

4.6

6.3.

4.2

1.17

.4.1

1.17

.4.1

3.5.

4.12

2.7.

4.8

2.7.

4.9

2.7.

4.6 2.4.

2.4

1.3.

1.2

3.5.

2.2

3.5.

1.6

3.5.

1.6

3.5.

2.2

3.5.

4.1

Dip

hosp

ho-

mev

alon

ate

Mev

alon

ate

3-O

xope

ntan

oyl-C

oA

3-O

xoac

yl-C

oA3-

OH

-Acy

l-CoA

2, 3

-Eno

yl-C

oA

2, 3

-Hex

enoy

l-CoA

3-O

H-H

exan

oyl-C

oA

Ace

toac

etyl

-CoA

3-O

H-B

utan

oyl-C

oAC

roto

noyl

-CoA

Pent

anoy

l-CoA

3-O

H-P

enta

noyl

-CoA

1.1.

1.35

1.1.

1.35

1.1.

1.15

7

1.3.

99.3

1.3.

99.3

1.3.

99.2

1.1.

1.35

Odd

C F

atty

aci

ds

Succ

inyl

hom

oser

ine

CO

2

2-O

XO A

CID

Glu

tam

yl-P

Glu

tam

ine

UR

EA

P-C

reat

ine

Cre

atin

eC

reat

inin

e

Gly

cine

CIT

RU

LLIN

E

Glu

tam

icse

mia

ldeh

yde

2-A

MIN

O A

CID

Pyrr

olin

e-5-

carb

oxyl

ate

Gly

oxyl

ate

Pyru

vate

4-H

ydro

xy-

2-ox

oglu

tara

te

4-H

ydro

xy-

glut

amat

e

3-H

ydro

xy-

pyrr

olin

e-5-

carb

oxyl

ate

Putr

esci

neH

NC

HC

HC

HC

HN

H2

22

22

2

Sper

mid

ine

Sper

min

e

N -T

rimet

hylly

sine

66

N -T

rimet

hyl-

3-O

H-ly

sine

Car

nitin

e

Glu

tary

l-CoA

Sacc

haro

pine

2-A

min

oadi

pate

sem

iald

ehyd

e2-

Amin

oadi

pate

2-O

xoad

ipat

e

Arg

inin

o-su

ccin

ate

Gua

nido

acet

ate

Met

hylm

alon

yl-C

oA

4.1.

2.12

Asp

arty

lSe

mia

ldeh

yde

2, 3

-Dih

ydro

-di

pico

linat

e

1.2.

1.11

4.2.

1.52

1.3.

1.26

Pipe

ridei

ne-

2, 6

-dic

arbo

xyla

teN

-Suc

ciny

l-2-

amin

o-6-

oxo-

pim

elat

e

2.6.

1.17

N-S

ucci

nyl-2

, 6di

amin

opim

elat

eD

iam

ino-

pim

elat

e3.

5.1.

18

3-M

ethy

l-gl

utac

onyl

-CoA

(CH

)C

HC

HC

OS

CoA

32

2(C

H)

CH

CH

CO

SC

oA3

22

3-M

ethy

l-cr

oton

yl-C

oAIs

oval

eryl

-CoA

Oxo

pant

oate

HC

HO

OO

CC

HC

= C

HC

OS

CoA

2CH

3

CH

CO

CH

CO

SC

oA3

CH

3C

HC

H=C

HC

OS

CoA

3

CH

3C

HC

H(O

H)C

HC

OS

CoA

3

CH

3

C(O

H)C

H(O

H)C

OO

CH

CH

32

CH

3

CH

= C

CO

SC

oA2

CH

3H

OC

HC

HC

OS

-CoA

-2C

H3

CH

CH

CO

-SC

oA3

CH

3

C (O

H)C

H(O

H)C

OO

CH

3

CH

3

CH

CH

CH

CO

SC

oA3

2CH

3

CH

C =

CH

CO

SC

oA3C

H3

ATP

4-A

min

obut

yrat

e(G

ABA

)

1.3.

99.7

1.5.

1.2

1.14

.11.

2

2.6.

1.39

1.2.

1.31

1.14

.11.

8

2.5.

1.16

2.5.

1.22

4.1.

3.16

2.6.

1.23

1.5.

99.8

1.5.

1.2

6.4.

1.4

1.3.

99.1

0

4.2.

1.33

2.6.

1.6

1.1.

1.85

Oxo

leuc

ine

CO

OH

(CH

)C

HC

HC

H(O

H)C

OO

32

S-A

deno

sylm

ethy

lth

iopr

opyl

amin

e(D

ecar

boxy

late

d SA

M)

PRO

LIN

E

Coe

nzym

e A

CH

C=

CH

CH

32

CH

3

OC

H

CH

3

3H

OC

H3

CH

3

CH

3

CH

C-C

HH

O3

22

CP

P

CH

2

CH

C=

CH

CH

O2

2P

P

CH

3

3-P-

Gly

cero

l

Phos

phat

idyl

etha

nola

min

eC

EPH

ALI

N

3.1.

4.12

2.7.

8.3

Prog

este

rone

1.5.

1.12

2.7.

3.2

4.2.

1.17

3.1.

2.4

2.6.

1.32

4.4.

1.15

Ace

tyls

erin

e2.

7.7.

42.

7.1.

251.

8.99

.1A

deny

lyls

ulph

ate

(APS

)

2.7.

1.39

4.4.

1.15

4.1.

1.29

4.2.

99.8

2.3.

1.30

P-R

ibos

yl-PP

1.1.

1.1

1.2.

1.4

Asp

arty

l-P

5.1.

1.7

2.7.

1.40

4.1.

3.18

4.1.

3.18

1.5.

1.9

1.14

.11.

1

CH

OLI

NE

2.1.

1.13

1.3.

1.2

NH

CH

CH

SH

22

N

HC

HC

HC

O2

2O

CH

C(C

H)

CH

(OH

)CO

23

2P

AD

P-

NH

CH

CH

SH

22

N

HC

HC

HC

O2

2O

CH

C(C

H)

CH

(OH

)CO

23

2

P-A

DP

-N

HC

HC

HS

H2

2

NH

CH

CH

CO

22

OC

H C

(CH

)C

H(O

H)C

O2

32

1.4.

1.8

1.3.

99.3

1.3.

99.3 1.

4.1.

9

4.2.

1.18

4.1.

1.20

1.3.

99.7

1.8.

99.2

+C

HC

O-O

CH

CH

(NH

)CO

O2

23

2.5.

1.6

2.1.

1.10

2.1.

1.20

1.1.

1.3

1.1.

1.3

4.2.

1.18

4.1.

2.5

4.3.

1.5

4.2.

1.20

2.1.

2.1

2.1.1.

20

Gly

oxyl

ate

2.1.

1.6

1.4.3.

41.

14.1

8.11.14

.16.

2

Hex

anoy

l-CoA

But

anoy

l-CoA

6.3.

4.16

6.3.

5.5

2.7.

2.11

2.1.

3.3

NO

1.14

.13.

39

3.5.

3.6

3.5.

3.1

4.3.

2.1

4.1.

1.17

2.7.

7.41

2.6.

1.4

1.1.

1.10

0

1.1.

1.8

2.3.

1.51

2.3.

1.15

2.7.

8.5

SO- 42

1.14

.16.

4

NH

2 O

OC

O

OC

4.1.

1.25

1.3.

1.13

1.3.

1.13

2.7.

4.6

CYT

IDIN

E-tr

ipho

spha

te(C

TP)

Cyt

osin

e

2.4.

2.9

4.1.

1.11

2.6.

1.18

4.3.

1.3

4.2.

1.49

3H

SO-

1.1.

1.10

5

2.3.

1.41N

AD

PH

1.1.

1.22

2.3.

1.4

5.5.

1.4

3.2.

1.26

3.2.

1.48 2.

6.1.

16

1.1.

1.14

2.7.

7.34

4.2.

1.47

2.4.

1.68

2.4.

1.69

2.4.

1.9

5.3.

1.8

2.4.

1.11

O

OP

PU

CH

OH

2

CH

OH

2

HO

OHO

H HO

2.4.

1.21

4.2.1.

521.

2.1.

18

4.2.

1.18

O

CH

C

CH

OC

N

HN

DP CH

CO

CH

OC

N

HN

RP

PP

OC

H2

H CCH O

HO

H

CH

NH

NC H

CP

H

O

OC

H2

CCH O

H

H OH

C

H CC

CNH

2 CC

HH

CN

RP

(PP

)

N

N

N+P

NH

2H

O

OC

H2

CCH O

H

H OH

C

H CC

OC

CC

HH

CN

RP

N

N

NH

P

H

OC

H2

CCH O

HO

H

CO

CH

2C

CO

NH

2 CC

HH

CN

RP

N

N

NH

P

+O

OC

CH

N(C

H)

23

3B

etai

ne

Bet

aine

alde

hyde

2.4.

1.16

5.1.

3.6

2.4.

1.33

2.7.

7.13

5.4.

2.8

5.3.

1.8

O

OH

CH

OH

2 HO

OP

HO

2.7.

1.28

2.7.

1.31

6.3.

4.13

5.3.

1.1

2.2.

1.1

4.1.

1.9

3.1.

2.11

ß-O

H-ß

-Met

hyl-

glut

aryl

-CoA

6.3.

4.5

5.3.

1.6

2.5.

1.21

2.1.

1.2

3.5.

2.10

6.3.

2.13

6.3.

2.7-

10

2.7.

7.27

2.7.

7.9

3.5.

4.10

CCO

CC

HO

CN

RP

N

NH

HN

CCO

CC

H

NN

N

HN

RP

HN 2

C

2.7.

4.6

1.17

.4.1

2.7.

4.6

2.6.

1.13

Car

bam

oyl-P

2.3.

1.9

Car

nitin

e

2.6.

1.4

2.6.

1.44

CH

C(O

H)C

HC

OS

CoA

32

CH

CO

O2

1.2.

3.5

1.1.

1.34

2.3.

1.16

4.1.

3.5

2.3.

1.16

4.1.

3.4

Men

aqui

none

4.1.1.

15

2.6.

1.19

4.2.

1.16

Car

nosi

ne

CH

CH

NH

22

2C N

HN

C

HC

H

4.1.

1.22

4.3.

1.3

Ubi

quin

one

Plas

toqu

inon

e

D-R

ibos

e-5-P

NH

CH

CH

(NH

)CO

O2

3H

O+

O

OH

OH

HO

OP

PU

CO

O-

O

OH

OH

HO

OP

PU

CO

O-

OH

HO

H

HO

CH

2C

CC

O

H

CO

CO

O-

OC

HO

HC

HO

HA

cNH

HO

OP

COC

O-

CH

OH

2

OC

HO

HC

HO

HA

cNH

HO

OHCO

OC

HO

H2

O

OH

OH

HO

HO

CH

O 2P

O

OHAC

NH

HO

OH

CH

O 2P

O

OO

HH

OH

OP

CH

OH

2

O

OH

OH

HO

HO

CH

OH

2

O

OH

HO

OH

3

CH

O 2P

O

OH

HO

O

NH

CO

CH

3

P

CH

OH

2C

HO

H2

CH

OH

2

O

OH

HO

OH

NH

2

CH

O 2P

O

OH

HO

OHO

PP

U

CH

OH

2

O

O

HO

OH

OH

HO

P

CH

OH

2

CH

OH

2O

OH

O

OH

OH

O

OH

OH

OH

CH

OH

2

O

OH

HO

OHO

H

CH

2C

HO

P2

OH

HH

HO

H

CC

CC

OH

OH

H

CO

O-

HO

CH

2

H OH

OH

OH

CC

CC

HO

HH

HO

CH

2

H OH

OH

H

CC

CC

HO

HO

H

HO

CH

2

OH

HO

HH

CC

CC

HO

HO

H

HO

CH

2

H OH

HO

H

CC

CC

HO

OH

H

HO

CH

2

OH

HH

OH

CC

CC

HO

OH

H

HO

CH

2

OH

HO

HO

H

CC

CC

HO

HH

HO

CH

2

H OH

HO

H

CC

CC

OH

HH O

HCO

O-

PO

CH

2

OH

HO

H

CC

CO

H

PO

CH

2C

HO

H2

H OH

H

CC

CO

OH

HO

CH

2C

HO

H2

CH

OH

2P

OC

H2

H OH

OH

CC

CO

H

CH

OH

2P

OC

H2

OH

HH

CC

CO

OH

CH

OH

2P

OC

H2

H OH

OH

CC

CO

H

HO

CH

2C

HO

H2

OH

HO

H

CC

CO

H

HO

CH

2C

HO

H2

OH

HH

CC

CO

OH

HO

CH

2C

HO

H2

H OH

OH

H

CC

CHO

H

HO

CH

2C

HO

H2

OH

HO

HO

H

CC

CHH

HO

CH

2C

HO

H2

H OH

HO

H

CC

CC

OH

HH O

HCH

OH

2H

OC

H2

H OH

OH

CC

CH

OH

POC

H2

H OH

HO

H

CC

CC

O

OH

H

HO

CH

2C

HO 2

P

H OH

OH

OH

CC

CHH

HO

CH

2C

HO

H2

H OH

OH

CC

C

H

CO

HHO

PO

CH

2C

HO

H2

P

H OH

OH

CC

C

H

CO

HHO

CH

O 2P

OC

H2

H OH

OH

CCH

CC

HO

OH

H

POC

H2

POC

H2

O

OH

NH

2

OH

CH

O 2P

C

HO

HC

HO

POC

H2

HO

CH

2CO

CH

2OP

O

OH

OO

PP

OH

CH

O 2P

CH

OH

CO

OP

POC

H2

C

HO

HP

OC

H 2C

OO

CO

O

OH

OH

OO

H

CO

O

CH

(CH

)C

H(O

H)C

HC

OS

-CoA

32

142

CH

(CH

)C

H(O

H)C

HC

OS

32

142

CH

(CH

)C

OC

HC

OS

-CoA

32

142

CH

(CH

)C

OC

HC

OS

-CoA

32

142

CH

(CH

)C

OS

-CoA

32

n+2

CH

(CH

)C

H=C

HC

OS

-CoA

32

14

CH

(CH

)3

2nC

H=C

HC

OS

-CoA

CH

(CH

)3

25

2C

H=C

HC

HC

OS

ACP

CH

(CH

)3

26C

H=C

HC

OS

ACP

CH

(CH

)3

26C

OC

HC

OS

ACP

2C

H(C

H)

32

62

2C

HC

HC

OS

ACP

CH

(CH

)3

22

22

CH

CH

CO

SAC

P

CH

CH

CH

CO

SAC

P3

22

CH

(CH

)3

26C

H(O

H)C

HC

OS

ACP

2

CH

CH

=CH

CO

.S-A

CP

3

CH

(CH

)3

22

2C

OC

HC

OS

ACP

CH

3CO

CH

CO

SAC

P2

CH

(CH

)3

2n

2C

OC

HC

OS

ACP

CH

(CH

)3

2n

2C

H(O

H)C

HC

OS

ACP

CH

(CH

)3

22

2C

H(O

H)C

HC

OS

ACP

AC

YL-

CoA

(Mito

chon

dria

)

CH

(CH

)C

HC

HC

OS

CoA

32

22

n

CH

(CH

)C

H=C

HC

OS

CoA

32

nC

H(C

HC

H(O

H)C

HC

OS

CoA

32

n

CH

(CH

)C

HC

HC

OS

CoA

32

22

2C

H(C

H)

CH

=CH

CO

SC

oA3

22

CH

(CH

)C

OC

HC

OS

CoA

32

2n

CH

CO

CH

CO

SC

oA3

2

CH

(CH

)C

H(O

H)C

HC

OS

CoA

32

22

CH

CH

(OH

)CH

CO

SC

oA3

2C

HC

H=C

HC

OS

CoA

3C

HC

HC

HC

OS

CoA

32

2

CH

CH

CH

CH

CO

SC

oA3

22

2Pe

nten

oyl-C

oAC

HC

HC

H=C

HC

OS

CoA

32

CH

CH

CH

(OH

)CH

CO

SC

oA3

22

CH

(CH

)C

OC

HC

OS

CoA

32

22

CH

CH

CO

CH

CO

SC

oA3

22

OH

OH

HO

OH

O O-

CH

O-P

O2

CH

CH

OH

CH

OH

22

O

CH

2

CH

2

R'-C

O-O

CH

O-C

O-R

O-P

OO-

HO

CH

CH

22N

H3

+P

OC

HC

H2

2NH

3+

CP

P-O

CH

CH

22N

H3

+

O

-

CH

O-C

O-R

2

CH

O P

2O

CH

CH

22N

H3

+

CH

CO

CH

CH

N(C

H)

32

23

3

HO

CH

CH

N(C

H)

22

33

+

CH

CH

2C

OO

(NH

) 3+

OH

OH

CH

CH

2C

OO

-(N

H) 3

+

CO

NH

2CH

CH

(NH

)CO

O2

3+

NH

OC

CO

NH

OC

N H

C H

HN 2

HC

CH

NN

CR

PH

N 2

CH

C

CH

OC

N

N

DP

NH

2

RP

PP

CH

C

CH

OC

N

N

NH

2

CC

CC

H RP

(P)

HC

NN

N

NN

H2

HN

CO

O2

P

(CH

)N

H2

32

HN

(CH

)N

H2

23

(CH

)N

H2

4 (CH

)N

H2

32

HN

(CH

)N

H2

24

CH

-SC

HC

HC

HN

H3

22

2

Ade

nosy

l

+

+C

H3

CH

3CH

CH

(NH

)CO

O3

++C N

HN

C

HC

H

CH

CH

(NH

)CH

OH

23

2+

C NH

NC

HC

H

CH

CH

(NH

)CH

OP

23

2C N

HN

C H

HC

CH

CO

CH

OP

22

+H

SC

HC

HC

H(N

H)C

OO

22

3

+

+S

CH

CH

CH

(NH

)CO

O2

23

CH

CH

(NH

)CO

O2

3

RP

CO

C-C

OO

OC

N

HN

CH

2.4.

1.23

CH

(CH

)C

H=C

HC

H(O

H)C

HC

HO

H3

212

2

NH

3+

CH

(CH

)C

H(O

H)C

HC

HO

H3

214

2

NH

3+

CH

(CH

)C

OC

HC

HO

H3

214

2

NH

3+

Gal

acto

seC

H(C

H)

CH

=CH

CH

(OH

)CH

CH

O-

32

122

NH

3+

4.1.

1.70

HN

CO

NH

22

OH

CC

HN

(CH

)2

33

+

C-C

H3

CO

CH

OC

ND

P

HN

DP

CP

P-O

CH

CH

N(C

H)

22

33

+O

CH

CH

N(C

H)

22

33

+

1.2.

1.41

UD

P-N

-Ac-

Mur

amat

e

O

OC

HC

H3 C

OO

-

NH

AC

HO

OPP

U

CH

OH

2 4.1.

3.20

O

OH

CH

3

HO

HO

OP

PG

2.7.

7.24

2.4.

1.22

2.7.

7.125.

1.3.

2

5.3.

1.4

Sedo

hept

ulos

e-PP

3.1.

1.28

4.2.

1.24

N

CH

2

CH

2

N

N N

CH

3 CH

3

CH

CH

CO

O

CH

CH

CH

2

HC 3 HC 3

HC 3H

C

CC HH Fe

CH

2C

H2

CO

O-

-

CH

3

CH

3

CH

2

CH

2CH

2

HC 3HC 3

N H NH

N H NH

CH

CH

HC 2

CCH2

H2

-

CH

2C

H2

CO

O

CH

2C

H2

CO

O-

HC 2

HC 2

CH

2

CH

2

OO

C

CO

O

HN 2

N H

-

-

CH

2

HC 2

HC 2

HC 2

H2

H2

CH

2C

H2

CH

2

CH

2

CH

2

CH

2 N H NH

N H NH

CO

O

CO

O

CO

OC

OO

CC

--

CH

2C

H2

CO

O

CH

2C

H2

CO

O-

-

--

OO

C- O

OC

-

CH

3

CH

3

HC 3

HC 3H

C 2

H2

H2

N H NH

N H NH

CH

2

CH

2

CH

2

CH

2

CH

2

CC

CO

O-

CH

2C

H2

CO

O

CH

2C

H2

CO

O-

-CO

O-

CO

O-

CH

C(O

H)C

HC

HO

32

2P

P

CH

CO

O2

OH

CC

OO

HO

CH

CO

O2

NH

2

HN

CN

HC

HC

OO

22

+N

H2

HN

CN

(CH

)CH

CO

O2

32

+N

H2

HN

CN

(CH

)CH

CO

O3

2P

-

+H

NC

NH

CO

NC

H2

CH

3

OO

CC

HC

HC

OO

2

HN

CN

HC

HC

HC

HC

H2

22

2

N(N

H) 3

+C

OO

CH

CO

OH

C

CH

2H

OC

H N

OO

CC

H(O

H)C

HC

H(N

H)C

OO

23

+

CH

CO

O

CH

2H

OC

H

HC 2

N H

NH

CH

CO

O

CH

2C

H2

CH

2

OO

CC

H(O

H)C

HC

OC

OO

2

NC

HC

OO

CH

2C

H2

CH

CH

CO

CO

O3

OH

CC

OO

+H

NC

ON

HC

HC

HC

HC

H2

22

2(N

H) 3C

OO

HN

OC

CH

CH

CH

22

2C

OO

(NH

) 3+

R-C

O-C

OO

+

CO

OR

-CH

(NH

) 3+

CO

OH

NO

CC

HC

H2

2(N

H3

+

OO

C-C

H-C

OS

CoA

CH

3

PO

OC

CH

CH

2C

OO

(NH

) 3+

OO

CC

HC

HC

HO

22

OH

CC

HC

H2

CO

O(N

H) 3

+

(CH

)N

CH

CH

(OH

)CH

CO

O3

32

2+

OH

CC

HC

HC

H2

2+

CO

O(N

H) 3

PO

OC

CH

CH

CH

22

+C

OO

(NH

) 3

OH

CC

HC

HC

HC

H2

22

CO

O(N

H) 3

+N

HC

HC

HC

HC

OO

22

CO

O

CH

CH

CH

CH

CH

22

22

CO

O(N

H) 3

+

HN

(CH

)2

42

CH

(NH

)CO

O3

CH

(NH

3++

(CH

)N

(CH

)3

32

3CH

CH

(NH

)CO

O2

3+

+

CH

2CH

OO

CC

N

HC

CH

-CO

OC

H2

CH2

CH

-CO

O O

OC

CN

HC 2

OO

CC

OC

HC

HC

HC

H-C

OO

22

2C

HC

H2

22

OO

CC

HC

HC

ON

H2

2O

OC

CH

CH

CH

CH

CH

-CO

O2

22

OO

CC

HC

HC

ON

H2

2C

H2

2

NH

3+

OO

CC

H-C

HC

HC

HC

HC

OO

22

2N

H3

+

NH

3+

(CH

)C

HC

(OH

)CH

32

2

CO

OH

CO

O(C

H)

CH

CH

CO

CO

O3

22

+(C

H)

CH

CH

32

2C

H(N

H)C

OO

3

HO

CH

CH

CO

O2C

H3

CH

CO

CO

OC

H3

CH

3C

HC

OC

(OH

)CH

33

CO

O

+P

OC

HC

HC

H(N

H)C

OO

22

3+

HO

CH

CH

CH

(NH

)CO

O2

23

+C

HC

HC

H(N

H)C

OO

22

3 O

OC

CH

CH

2CO

O2

+C

HS

H2

OO

CC

H(N

H)C

HC

HC

ON

HC

HC

ON

HC

HC

OO

32

22

HO

CH

C(C

H)

CO

CO

O2

32

HO

CH

C(C

H)

CH

(OH

)CO

O2

32

N

HC

HC

HC

OO

22

HO

CH

C(C

H)

CH

(OH

)CO

32)

23

2

N

HC

HC

HC

OO

22

OC

HC

(CH

)C

H(O

H)C

O2

32

P

CH

CH

32

CH

3 CH

+C

H(N

H)C

OO

3

CH

CO

C(O

H)C

HC

H3

23

CO

OC

HC

OC

OO

CH

CH

32

CH

3

NH

CH

CH

SH

2

CO

O

NH

CH

CH

CO

22

OC

H C

(CH

)C

H(O

H)C

O2

32

P

+C

HS

H2

OO

CC

H(N

H)C

HC

HC

ON

HC

HC

OO

32

2

+A

deno

syl

SC

HC

HC

H(N

H)C

OO

22

3

+S

CH

CH

CH

(NH

)CO

O2

23

+H

OS

CH

CH

(NH

)CO

O3

23

+ +S

-CH

CH

(NH

)CO

O2

3

S-C

HC

H(N

H)C

OO

23

+H

SC

HC

H(N

H)C

OO

23

1.1.

1.23

H

C NH

NC

HC

CH

CH

CO

O2 N

HC

OC

HC

HN

H2

22

+

H

C NH

NC

HC

CH

CH

(NH

)CO

O2

3

CH

CH

CH

CO

O2

2

NH

NC

H

OC

CC

HC

HC

OO

NH

NC

H

CH

CH

CO

O3

N H

OO

C

CH

-CO

OO

CNH

2C

H2

HN

CH

CH

CO

O2

22

HN

CH

22C

H3

CH

CO

OH

NC

ON

HC

HC

HC

OO

22

CH

3

CCO

CH RP

HC

NN

N

HN

CCCO

CH

HC

ONN

NR

P

CC

H

NNH

N 2

HC

CCO

CH

NNC

CC

H

NN

RP

HN 2 H

N 2C

O O

OP~

~ PO

O OOP

O

O

CH

2

N

N

N

N

O

OH

OHNH

2

HC

CH

N

N

N

N O

O PO

O

O

CH

2

OH

NH

2

HC

CH

CO

OC

O

NH

OC

N HC H

HN 2

NH

2

OO

C-C

H-C

HC

OO

2

HN

CO

CC

HNN

CR

PR

PH

N 2

OO

CC

CH

NR

P

N

CH

N 2

CH

=CH

CO

O

OH

CH

=CH

CO

OCH

CO

CO

O2

CH

2

P

CO

O

OH

O

O

O CO

O

O

CH

CO

O2

O CH

CO

O2

-OO

C

OC

H2

CH

2

OH

HC

P HO

CH

HC

OH

OC

CO

O

CO

OH

O

OH

OH

O

NH

2C

OO

OC

H

NH

CH

CO

CO

O2

NH

CH

O

CO

NH

2O

H

CH

CH

(NH

)CO

O2

3+

N

CO

OC

OO

N+C

OO

CO

OR

P

O

OH

OH

HO

OP

PU

CO

O

O

OH

NH

CO

CH

3

HO

OP

PU

CO

OC

HO

H2

O

OC

CH 2

NH

AC

HO

OP

PU

CO

OCH

OH

2

O

OH

HO

OH

OH

CO

O

OO

CC

HN

(CH

)2

32

Dim

ethy

lgly

cine

1.1.

99.1

1.2.

1.8

CO

OH

OH

OC

OO

O

HO

OH

CO

O

CH

(O)

PP

OC

H 2C

OO

CH

(OH

)H

OC

H 2C

OO

CO

O

C

H(O

)P

HO

CH 2

CO

O

CH

=C(O

)2

PC

OO

CO

NH

2

Rib

ose

-O -

P - O

- P

- O- A

deno

sine

(P)

+ NO O

O O

+

CO

O

NR

ibos

e - O

- P

- O -

P - O

-A

deno

sine

O O

O O

II

II

OHOCH

CH

2C

OO

(NH

) 3+

Epin

ephr

ine

(Adr

enal

ine)

Nor

epin

ephr

ine

(Nor

adre

nalin

e)

Nor

met

epin

ephr

ine

(Nor

met

adre

nalin

e)

HO

CH

CH

N(C

H)

22

33

+

Ade

nosy

l+

+SC

HC

HC

H(N

H)C

OO

22

3C

H3

(CH

)N

(CH

)3

32

3CH

CH

(NH

)CO

O2

3+

+O

H

OO

CC

HC

HC

HC

OS

CoA

22

2

OO

CC

HC

HC

HN

H2

22

2

OO

CC

HC

HC

HC

OC

OO

22

2 O

OC

CH

CH

CH

CH

22

2C

OO

CO

O(N

H) 3

++

HO

H

HO

H

HH

OH

HO

H

Pros

tagl

andi

n PG

E2

OH

HO

CH

2C

CC

OC

CO

O

OH

H OH

HH

-

CO

O

OR'

-CO

-OCHC

HO

-CO

-R2

CH

O P

OC

MP

2O

CH

CH

N(C

H)

22

3+

OH

OC

H

CH

OP

O2

CH

OH

2

O-

CH

OP

O2

OC

HO

CH

=CH

R2

CH

CH

N(C

H)

22

33

+

O-

CH

OP

O2

OR

'-CO

-OC

HC

HO

-CO

-R2

3.1.

1.32

CH

CH

N(C

H)

22

33

+

O-

OH

OC

H

CH

OP

O2

CH

O-C

O-R

2

CH

CH

N(C

H)

22

33

+

O-

CH

CH

(NH

)CO

O2

3+

+C N

HN

C

HC

H

CH

CH

(NH

)CH

O2

3

HS

11-cis

-Ret

inal

Pi

AD

P

NA

DP

+

GD

P-M

annu

rona

te

Man

nose

-6-P

Deh

ydro

-sh

ikim

ate

Shik

imat

e

RN

A

d-G

DP

d-C

TP

GUA

NO

SIN

E-P

(GM

P)

ß-A

lani

ne

P-R

ibos

yl-A

MP

P-R

ibul

osyl

form

imin

o5-

amin

oim

idaz

ole-

carb

oxam

ide-

RP

Imid

azol

eac

etol

-P

HS

HSO

-

PAN

TOTH

ENAT

E

3-Is

opro

pyl-

mal

ate

Succ

inic

sem

iald

ehyd

e

2.4.

1.17

Dia

cyl

glyc

erol

2.3.

1.6

1.14

.12.

1

1.4.

4.2

CH

CH

O3

3.5.

4.19

4.2.

1.19

3.3.

1.1

4.1.

1.12

4.1.

2.5

CO

O-

2O

HC

CH

2.1.

4.1

2.4.

99.7

5.1.

3.12

1.1.

1.13

2

4.2.

1.46

2.7.

1.7

2.4.

1.29

2.4.

1.21

2.4.

1.13

2.4.

1.1

etc.

5.4.

2.2

2.7.

1.6

2.7.

7.10

3.1.

1.18

4.1.

1.34

2.7.

1.47

2.7.

1.16

3.1.

3.9

AD

P

P-G

luco

nola

cton

e

1.1.

1.44

O

OO

HH

O

OH

CH

O 2P

PHEN

YLA

LAN

INE

TYR

OSI

NE

TRYP

TOPH

AN

INO

SIN

E-P

(IMP)

THYM

IDIN

E-P

HIS

TID

INE

UR

IDIN

E-tr

ipho

spha

te(U

TP)

CYS

TIN

EC

YSTE

INE

ISO

LEU

CIN

E

LEU

CIN

E

LYSI

NE

OR

NIT

HIN

E

AR

GIN

INE

HYD

RO

XYPR

OLI

NE

PH

OS

PH

ATID

YL

SE

RIN

EPh

osph

atid

ylin

osito

l

LEC

ITH

IN

SPH

ING

OM

YELI

N

STER

OID

S

Preg

neno

lone

2.7.

6.1

2.4.

2.14

6.3.

4.7

5.3.

1.9

3.1.

3.11

1.2.

1.13

2.7.

2.3

H OH

OH

CC

C

H

CO

OH

CH

HOH

PO

CH

2C

HO 2

P

5.4.

2.1

AD

P4.2.

1.11

Endo

plas

mic

Ret

icul

um

1.1.

1.10

0

3.1.

1.3

Phos

phat

idat

e

2.3.

1.39

4.2.

1.17

4.2.

1.17

4.2.

1.55

1.1.

1.79

1.2.

1.21

1.4.

3.8

1.1.

1.32

2.7.

1.36

2.7.

4.2

4.1.

1.33

2.5.

1.1

2.5.

1.10

2.7.

8.5

2.7.

8.1

4.1.

1.65

2.7.

7.14

1.3.

99.7

PO

OC

H(C

H)

CH

=CH

CH

(OH

)CH

CH

O3

212

2

NH

Acy

l

CH

CH

N(C

H)

22

33

+

O-

3.5.

1.23

1.13

.11.

21

2.5.

1.32

1.1.

1.10

5

2.4.

2.19

1.2.

1.32

MET

HIO

NIN

E

4.1.

3.27

4.2.

1.51

1.14

.17.

1

1.14

.18.

1

1.14

.13.

11

Gly

cina

mid

e-rib

osyl

-P

4.2.

1.22

3-O

xohe

xano

yl-C

oA

THR

EON

INE

1.2.

1.25

1.2.

1.25

1.2.

1.25

1.5.

1.7

- 10

GLU

TAM

ATE

2.3.

1.38

ATP

NA

DH

SUC

RO

SE

AD

ENO

SIN

E-P

(AM

P)

Tria

cylg

lyce

rol

FAT

RN

A

CH

3

CH

2

OC

-CO

OO

H

CO

O

CH

CH

2C

OO

(NH

) 3+

GLY

CO

PRO

TEIN

SG

AN

GLI

OSI

DES

MU

CIN

S

4.1.

2.-

2.6.

1.-

GLU

CO

SE

O-A

cyl-c

arni

tine

O-A

cyl-c

arni

tine

OH

O-

-

R-CO

-OCH

R'-C

O-O

CH

R'-C

O-O

CH

OH

CO

-CO

-R

C

HC

H(O

H)C

HO

-P-O

CH

22

2

CH

O-C

O-R

’2

OR'

-CO

-OCH

O-

CH

O-C

O-R

2

CH

O-P

O2

O-

2.7.

8.11

HN

CH

CH

CH

CH

22

22

CO

O(N

H) 3

+

2.3.

1.20

3.1.

3.4

2.7.

1.10

7

NH

2+

+H

NC

NH

CH

CH

CH

CH

22

22

CO

O(N

H) 3

H OH

HO

H

CC

CC

O

OH

H

HO

CH

2C

HO

H2

R-C

H2C

OO

CH

O-C

O-R

2

CH

O-C

O-R

"2

R’-C

O-O

CH

OH

O

C

HC

HN

H2

3+

OR'

-CO

-OCH

O-

CH

O-C

O-R

2

CH

O P

O2

CO

O

OO

CC

HC

HC

H2

2C

OO

(NH

) 3

+C

HC

H(O

H)C

H(N

H)C

OO

33

O

OH

HO

OH

OH

CH

OH

2C

HO

H2

NH

CH

O-C

O-R

2

1.3.

1.13

4.1.

1.28

Mal

onic

sem

i-al

dehy

de

2.7.

2.4

2.1.

3.3

3.5.

1.2

6.3.

1.2

6.3.5.

5

Car

bohy

drat

esB

iosy

nthe

sis

Deg

rada

tion

Am

ino

Aci

dsB

iosy

nthe

sis

Deg

rada

tion

Lipi

ds Bio

synt

hesi

sD

egra

datio

n

Purin

es &

Pyrim

idin

esB

iosy

nthe

sis

Deg

rada

tion

Bio

synt

hesi

sD

egra

datio

nVi

tam

ins

Co-

enzy

mes

& H

orm

ones

Pent

ose

Phos

phat

e Pa

thw

ay

Phot

osyn

thes

is D

ark

Rea

ctio

ns

CO

MPA

RTM

ENTA

TIO

NTh

e "B

ackb

one"

of m

etab

olis

m in

volv

esG

LYC

OLY

SIS

in th

e C

YTO

PLA

SM

,th

eTC

A C

YC

LE (m

ainl

y) in

the

Mito

chon

dria

l mat

rixan

d AT

P F

OR

MAT

ION

spa

nnin

g th

eM

ITO

CH

ON

DR

IAL

INN

ER

ME

MB

RA

NE

An

elec

tron

flow

(an

elec

tric

curr

ent)

gene

rate

d fro

mN

AD

H a

nd U

QH

2dr

ives

the

trans

loca

tion

of p

roto

nsfro

m th

e m

atrix

to th

e in

term

embr

ane

spac

e.Th

ere

trolo

catio

n of

thes

e pr

oton

s th

roug

h th

e F0

sub

units

ofAT

P sy

ntha

se to

the

mat

rix th

en s

uppl

ies

the

ener

gyne

eded

to fo

rm A

TP fr

om A

DP

and

phos

phat

e

Ele

ctro

n Fl

owP

roto

n Fl

ow

Sm

all N

umbe

rs (

eg. 2

.4.6

.7) r

efer

to th

e IU

BM

BE

nzym

eC

omm

issi

on (E

C) R

efer

ence

Num

bers

of E

nzym

es

LEG

END

Hum

an M

etab

olis

m is

iden

tifie

d as

far p

ossi

ble

by b

lack

arr

ows

Bio

synt

hesi

sD

egra

datio

n

HEM

OG

LOB

INC

HLO

RO

PHYL

L

ATP

TRANSLOCATED

PRO

TON

S

2.7.

1.1AT

P2.

7.1.

2

Met

abol

ic O

rigin

s of

Fuel

Page 7: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

7

© 2

003

Inte

rnat

iona

l Uni

on o

f Bio

chem

istry

and

M

olec

ular

Bio

logy

w

ww

.iubm

b.or

g22

nd E

ditio

n D

esig

ned

by D

onal

d E.

Nic

holso

n, D

.Sc.

, Th

e U

nive

rsity

of L

eeds

, Eng

land

– a

nd S

igm

a-Al

dric

h C

at. N

o. M

3782

2H+

H+

OX

ALO

AC

ETA

TE

PYR

UVA

TE

SU

CC

INY

L-C

oA

GLU

TAR

ATE

CIT

RAT

E

MA

LATE

2-O

XO-

ASP

AR

TATE

NO

2-

NO

3- N2

NH

4

CH

3CO

SC

oA

AC

ETYL

- CoAHO

H

CO

2

NA

D

TRANSAMINAT

ION

2H+

2H+

+

CO

2

5-A

min

o-le

vulin

ate

Gly

cine

H+

H+H+

H+

H+H+

c

H+

H+

a

F0

F1

F1

β 2

β

α

γ

10c-

sub-

units

A D

P+

Pi

aaH

+

3.6.

1.34

H+-tra

nspo

rting

ATP

synt

hase

α

δF 6

oscp

ATP

ADP

+Pi

FUM

AR

ATE

UQ

H2

UQ

UQ

H2

NA

DH

+H+

CH

2CO

O-

C(O

H)C

OO

-C

H2C

OO

-

CH

(OH

)CO

O-

CH

CO

O-

CH

2CO

O-

- OO

CC

OC

H2C

H2C

OO

-

- OO

CC

H2C

H2C

O.S

CoA

- OO

CC

OC

H2C

OO

-

CH

3CH

(OH

)CH

2CO

.SC

oA

- OO

CC

H=C

HC

OO

-

CCCCC

Gly

oxyl

ate

C

ycle

-OO

CC

HO

GTP

GD

PAT

P

+

HEM

EPr

otop

orph

yrin

ogen

Cop

ropo

rphy

rinog

enU

ropo

rphy

rinog

enPo

rpho

bilin

ogen

5-A

min

o-le

vulin

ate

CO

O-

CH

2C

H2

H2N

CH

2C=O

FAD

H2 FA

DC

yt.bFe-S

SU

CC

INAT

EII

CH

3CO

CO

O-

PYR

UVA

TE

P i

XY

Cyt.c

1

Fe-S

2e-

2e-

1e- 1e

-

III

2UQ

UQ

UQ

H2

2UQ

H2

2UQ

._

UQ

._

Cyt

.bL

Cyt

.bH

Cyt.c

IV

Cu A

CuB

Cu A 1.9.

3.1

2e-

Hem

e a

Hem

e a 3

2H+

2H+

4H+

4H+

2H+

NAD

+

NA

DH

+H+

NA

D+

1.1.

1.39

1.2.

4.1

2.3.

1.12

3.1.

3.43

4.1.

1.32

4.1.

3.7

4.2.

1.3

1.1.

1.41

1.2.

4.2

2.3.

1.61

6.2.

1.4

- OO

CC

H2C

H2C

OO

-

1.3.

5.1

4.2.

1.2

1.1.

1.37

6.4.

1.1

4.1.

3.8

4.1.

3.1

4.1.

3.2

ISO

CIT

RAT

E

2.6.

1.1

2.3.

1.16

4.1.

1.71

1.2.

1.16

5.1.

99.1

5.4.

99.2

4.3.

1.1

1.4.

1.2

1.4.

1.14

6.3.

5.4

1.6.

6.1

1.7.

99.4

1.7.

7.1

1.6.

6.4

1.18.6

.1

2.3.

1.37

1.10

.2.2

1.10

.2.2

γ

εδ

β

H++

33β

AT

P

AD

P

END

ERG

ON

ICR

EAC

TIO

N1.6.5.3I

FMN

H2

FMN

I

1.6.

5.3

2Fe

-S

(5 C

luste

rs)

H+

H+

H+

H+AT

P

4H+

2H+

2H+or

H+

PHO

TO-

SYST

EM l

O2

3.6.

1.34

NA

DP

+

Gly

cera

ldeh

yde

Rib

ulos

e-1,

5-bi

s-P

8 8

H+

c

3 2

ε

a

3 2

α1α

ε

α

β2

1

3

α

αβ

3

α

β

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

H+

Tran

sloc

ated

pro

tons

H+

H+

H+

H+

Pi

Ferre

doxi

n

4H+

PCPC

PC

PQ

H2 2P

QH

2

PQ

_ .

2PQ

_ . Fe-S

Cyt

.f

PQ

2PQ

Cyt

bf2e-

1e-

1e-

2e-

2e-

2e-

2e-

Cycli

cPh

otop

hosp

hory

latio

n

PQ

PH

OTO

-S

YS

TEM

I

I

Cyt

bc

Non-

cycl

icel

ectro

nflo

w

2e-

2e-

Mn

2e-

*

Prot

ons

from

Wat

er

H2O

H+

H+

2H+

2H+

γ

ATP

synt

hase

CO

2Fi

xatio

n

H+

AD

PP

i

H+ NA

DPH

+H+

eeeAT

PTH

YLA

KO

ID M

EM

BR

AN

E

CH

LOR

OP

LAS

T O

UTE

R M

EM

BR

AN

E

THY

LAK

OID

LU

ME

N

STR

OM

A

(ele

ctric

curre

nt)

P680

Chl

.a

QA

QB

Pheo

phyt

in

P700

Chl

.A0

A 1Fe-S

ATP

AD

P

ATP

1 / 2O

2 H2O

PQ

H2

To B

rain

-

A M I N O A C I D SP Y R I M I D I N E SP U R I N E SC A T E C H O L A M I N E SA R O M A T I C A M I N O A C I D S

hvVI

SIO

N

L I P I DP H O T O S Y N T H E S I S P O R P H Y R I N SS T E R O I D SI S O P R E N O I D SP H O S P H O L I P I D SD E G R A D A T I O NL I P I D B I O S Y N T H E S I SP E N T O S E SH E X O S E SP O L Y S A C C H A R I D E S

CO

CH

CH

(NH

)CO

O2

3+

FOLI

CAC

IDC

1PO

OL

VALI

NE

ATPAT

P

4.1.

1.4

1.1.

1.30

CH

CO

CH

33 CH

CO

CH

CO

O3

2

CH

CH

(OH

)CH

CO

O3

23-

OH

-But

yrat

eA

ceto

ne Ace

toac

etat

e

KET

ON

E B

OD

IES

HYA

LUR

ON

IC A

CID

DER

MAT

AN

BLO

OD

GR

OU

PSU

BST

AN

CES

PEPT

IDO

-G

LYC

AN

N-A

c-N

eura

min

ate

(Sia

late

)

UD

P-Id

uron

ate

UD

P-N

-Ac-

Gal

acto

sam

ine

UD

P-G

alac

turo

nateG

DP-

Fuco

se

TDP-

Rha

mno

se

AD

P-G

luco

se

UD

P-G

luco

se

TDP-

4-O

xo-

6-de

oxyg

luco

se

MA

NN

OSE

CH

ITIN

CH

ON

DR

OIT

INP

EC

TIN

ALG

INAT

ES

INU

LIN

CEL

LULO

SE

O-A

NTI

GEN

SST

AR

CH

GLY

CO

GEN

LAC

TOSE

GA

LAC

TOSE

O

OH

HO

OH

OH

CH

3O

OPP

TO

OH

OH

O

OHAC

NH

HO

OH

O

OH

HO

OP

PU

NH

AC

OH

OH

OH O

H

HO

OH

NH

CO

CH

OH

HOO

OP

PG

CH

OH

2

HO

P

UD

P-N

-Ac-

Glu

cosa

min

epy

ruva

teN

-Ac-

Man

nosa

min

e-6-P

UD

P-G

lucu

rona

te

GD

P-M

anno

se

N-A

c-M

anno

sam

ine

UD

P-N

-Ac-

Glu

cosa

min

eN

-Ac-

Glu

cosa

min

e-6-P

Sorb

itol

Fruc

tose

-1-P

Eryt

hros

e-4-P

3-D

ehyd

rogu

lona

te

L-Xy

lose

L-Ly

xose

D-X

ylul

ose

D-R

ibos

e

Rib

itol

L-A

rabi

tol

L-Xy

lulo

se

L-R

ibul

ose

L-R

ibul

ose-

5-P

L-Xy

lulo

se-5

-P

L-A

rabi

nose

Xylit

olD

-Xyl

ose

D-A

rabi

nose

D-R

ibul

ose

ASC

OR

BATE

2, 3

-Dio

xogu

lona

te

N-A

c-G

luco

sam

ine-

1-P

Inos

itol-P

Inos

itol

Glu

curo

nate

Gul

onat

e

Gul

onol

acto

ne2-

Oxo

gulo

nola

cton

e

Fruc

tose 6-P-

Glu

cona

te

D-R

ibul

ose-

5-P D

-Xyl

ulos

e-5-P

Man

nose

-1-P

GD

P-G

luco

se

TDP-

Glu

cose

UD

P-G

alac

tose

Gal

acto

se-P

Glu

cose

-1-P

Glu

cose

-6-P

Fruc

tose

-6-P

Fruc

tose

-1:

6-bi

s-P

OH

HH

HO

HO

CH

2C

CC

CC

O

OH

OH

HO

H

HH

O

HO

CH

2C

CC

CO

CO

OH

H

H OH

H

CCO

H

CO

P-R

ibos

ylam

ine

Gly

cera

te2,

3-D

ipho

spho

-gl

ycer

ate3-P-

Gly

cera

ldeh

yde

1:3-

bis-P-

Gly

cera

te

3-P-

Gly

cera

te

2-P-

Gly

cera

te

P-en

olpy

ruva

te

Inos

itol

CH

OH

2

CH

OH

2

HO

CH

CH

OH

2

CH

O 2

HO

CH

P

Gly

cero

l

UD

P-G

alac

tose

UD

P-Su

gars

CH

CH

OH

32

ETH

AN

OL

Dih

ydro

xy-

acet

one-P

(Gly

cero

ne-P

)

Glu

cosa

min

e-6-P

Phos

pho-

serin

e

Cha

in e

long

atio

nM

itoch

ondr

ial

Ser

ine

Ser

ine

Indo

le-3

-gly

cero

l-P

3-D

eoxy

-D-a

rabi

no-

hept

ulos

onat

e-7-P

Indo

leac

etat

e(A

uxin

)In

doxy

l Form

ylky

nure

nine

Kynu

reni

ne3-

Hyd

roxy

kynu

reni

ne3-

Hyd

roxy

anth

rani

late

2-A

min

o-3-

carb

oxy

muc

onat

e se

mia

ldeh

yde

NH

OH

Tryp

tam

ine

1-(o

-Car

boxy

phe

nyla

min

o)1-

deox

yrib

ulos

e-5-P

N-(5

-P-R

ibos

yl)

anth

rani

late

Ant

hran

ilate

Cat

echo

l

NH

Indo

le-

acet

alde

hyde

NH

CH

CH

O2

Indo

lepy

ruva

te

NHC

-CH

(OH

)CH

(OH

)CH

O 2P

CH

2-A

min

omuc

onat

e-6-

sem

iald

ehyd

e

CH

CH

NH

22

2

NH

1.2.

3.7

4.1.

1.43

3.5.

1.9

3.7.

1.3

4.2.

1.20

1.13

.11.

64.

1.1.

45

2.4.

2.18

4.6.

1.4

4.1.

1.48

1.14

.13.

9

4.6.

1.3

Deh

ydro

-qu

inat

e4.2.

1.10

1.1.

1.25

2.5.

1.19

Shik

imat

e-3-P

Shik

imat

e-5

enol

pyru

vate

3-P

Cho

rism

ate

PEP

2.7.

1.71

1.4.1.

19

Hom

ogen

tisat

ePh

enyl

pyru

vate

Cin

nam

ate

Cou

mar

ate

Prep

hena

te

2-A

min

om

ucon

ate

Fum

arat

eA

spar

tate

GLY

CIN

E

Sarc

osin

e

Hyd

roxy

-py

ruva

te

P-H

ydro

xy-

pyru

vateSE

RIN

E

Imid

azol

egl

ycer

ol-P

P-R

ibos

yl-A

TPP-

Rib

osyl

form

imin

o5-

amin

oim

idaz

ole-

carb

oxam

ide-

RP

Form

imin

ogl

utam

ate

Imid

azol

one

prop

iona

teU

roca

nate

Cys

tath

ioni

neH

omoc

yste

ine

Phos

phoa

deny

lyl-

sulp

hate

(PA

PS)

CH

(NH

)CO

OH

23

+

His

tidin

ol-P

His

tidin

olH

istid

inal

3.1.

3.15

2.6.

1.9

1.1.

1.23

3.6.

1.31

5.3.

1.16

2.4.

2.17

Asp

arag

ine

ALA

NIN

E

3-Su

lphi

nyl

pyru

vate

Oxo

buty

rate

2-A

ceto

-2-

hydr

oxy-

buty

rate

O-P

hosp

ho-

hom

oser

ineH

OS

CH

CH

NH

22

22

Hyp

otau

rine

HO

SC

HC

HN

H3

22

2

Taur

ine

Glu

tam

ate

γ-G

luta

myl

cyst

eine

Glu

tath

ione

Gly

cine

Cys

tein

e

ß-A

lani

ne

Cys

teat

eS-

Ade

nosy

lho

moc

yste

ine

4.2.

99.2

1.1.

1.86

4.2.

1.9

1.1.

1.86

4.2.

1.9

2.6.

1.32

4.1.

3.18

S-A

deno

syl

met

hion

ine

(SA

M)

2-M

ethy

lace

to-

acet

yl-C

oA

2-A

ceto

lact

ate

2-3-

Dih

ydro

xyis

oval

erat

e2-

Oxo

-is

oval

erat

e

3-H

ydro

xy-

isob

utyr

ate

3-H

ydro

xy-

Isob

utyr

yl-C

oAM

ethy

lac

ryly

l-CoA

2-M

ethy

l-3-

hydr

oxy-

buty

ryl-C

oA

Tigl

yl-C

oA2

Met

hylb

utyr

yl-

CoA

2:3-

Di-O

H-

3-m

ethy

lval

erat

e2-

Oxo

-3-m

ethy

lva

lera

te

Isob

utyr

yl-C

oA

Cys

tein

esu

lphi

nate

4.2.

99.9

2-Is

opro

pyl-

mal

ate

CH

CH

CO

CO

O3

2

+C

HC

H(N

H)C

OO

33

CH

CH

(OH

)CO

O3

HO

SC

HC

OC

OO

22

OC

HC

OC

OO

2P

OC

HC

H(N

H)C

OO

23

P

HO

CH

CO

CO

O2

HO

CH

CH

(NH

)CO

O2

3+

+

OH

CH

CO

CO

O2

CO

O OH

OH

O

CO

O OH

OH

HO

P

CO

O

OH

OH

O

CH

2

P

CO

O

O-C

-CO

OO

HO

OH

OO

CC

HC

OC

OO

2

NH

HO

C-C

H(O

H)C

H(O

H)C

H2O

PC

H

CO

O

NH

2

CO

O

OH

NH

2C

OO

CO

O

OC

H

OO

CC

HN

HC

H2

3

CH

(CH

)C

OS

-AC

P3

214

CH

(CH

)C

OS

CoA

32

14

CH

(CH

)C

H=C

HC

O-S

-AC

P3

22

CH

CH

=CH

CO

-S-A

CP

3C

HC

H(O

H)C

HC

OS

-AC

P3

2

CO

SC

oA

Lino

leat

e

Ole

oyl-C

oA

Stea

royl

-CoA

Deh

ydro

stea

royl

-CoA

OH

-Ste

aroy

l-CoA

Oxo

stea

royl

-CoA

Palm

itoyl

-AC

PPa

lmito

yl-C

oA

ACYL

-AC

P2,

3-E

noyl

-AC

P

3, 4

-Dec

enoy

l-AC

P

2, 3

-Dec

enoy

l-AC

P

3-O

H-A

cyl-A

CP

3-O

xoac

yl-A

CP

3-O

xo-D

ecan

oyl-A

CP

3-O

xo-H

exan

oyl-A

CP

3-O

H-H

exan

oyl-A

CP

2, 3

-Hex

enoy

l-AC

P

But

anoy

l-AC

PC

roto

noyl

-AC

P3-

OH

-But

anoy

l-AC

PA

ceto

acet

yl-A

CP

Hex

anoy

l-AC

P

3-O

H-D

ecan

oyl-A

CP

Dec

anoy

l-AC

P

Palm

itole

oyl-A

CP

γ-Li

nole

nate

Ara

chid

onat

eLe

ukot

riene

B4

CO

SC

oA

CO

-S-A

CP

Thro

mbo

xane

B2

HO

OC

CH

CO

-S-A

CP

2M

alon

yl-A

CP

HO

OC

CH

CO

-SC

oA2

Mal

onyl

-Co-

A

CH

CO

-S-A

CP

3

Ace

tyl-A

CP

CH

O-C

O-R

2

CH

OH

2

R’-C

O-O

CH

FATT

Y AC

IDAC

YL-C

oA(C

ytos

ol)

CH

O-C

O-R

2

CH

O 2

R’-C

O-O

CH

P

Car

diol

ipin

Phos

phat

idyl

glyc

erol

Ace

tylc

holin

eG

lyce

roph

osph

ocho

line

Lyso

leci

thin

Cho

line

plas

mal

ogen

CD

P-ch

olin

eC

holin

e-P

Mev

alda

te

CH

(CH

)C

H=C

HC

H(O

H)C

HC

HO

H3

212

2

Deh

ydro

sphi

ngan

inSp

hing

anin

4-Sp

hing

enin

Psyc

hosi

ne

Acy

l-CoA

Acy

l-CoA

Cer

ebro

side

Gal

acto

seC

H(C

H)

CH

=CH

CH

(OH

)CH

CH

O-

32

122

NH

CO

R

Isop

ente

nyl-PP

(C5)

Dim

ethy

lally

l-PP

(C5)

Ger

anyl

-ger

anyl

-PP

(C20

)

Farn

esyl

-PP

(C15

)

Squa

lene

(C30

)

Ger

anyl

-PP

(C10

)

Des

mos

tero

lZy

mos

tero

lLa

nost

erol

CH

C =

CH

CH

O3

2P

P

CH

3

Cer

amid

e

Gan

glio

side

sN

HC

OR

CH

O 2P

P

OP

PC

H2

CH

OLE

STER

OL

CH

C(O

H)C

HC

HO

H3

22

CH

CO

O2

CH

C(O

H)C

HC

HO

32

CH

CO

O2

NA

DP

+D

ehyd

roas

corb

ate

OH

HO

HO

CH

2C

CC

CC

O

OH

HO

H

OH

HO

HO

CH

2C

CC

OC

OC

O

H

NA

D+

Pi

AD

PA

DP

Phyt

oene

(C40

)Ly

cope

ne(C

40)

ß-C

AR

OTE

NE

(C40

)R

hodo

psin

Met

arho

dops

in

Ret

inoa

te

trans-

Ret

inal

11-cis

-Ret

inol

trans-

Ret

inol

(Vita

min

A)

Ret

inol

est

ers

Dar

k

Ligh

t

Ubi

quin

one

(Coe

nzym

e Q

)

Men

aqui

none

Plas

toqu

inon

e

Phyl

loqu

inon

e(V

itam

in K

)

Ops

inC

HO

CH

OH

2

CH

O

CH

OH

2

CH

3C

HO 3

CH

O 3n

O O

OO

Phyt

ol(C

20)

α-To

coph

erol

(Vita

min

E)

Qui

nolin

ate

Qui

nolin

ate-

nucl

eotid

eN

icot

inat

e-nu

cleo

tide

Des

amin

o-N

AD

5-H

ydro

xy-

tryp

toph

an5-

Hyd

roxy

tryp

tam

ine

(SER

OTO

NIN

)N-

Acet

yl-5

-O-m

ethy

l-ser

oton

in(M

ELAT

ON

IN)

NH

CH

CH

NH

CO

CH

22

3H

O

NH

CH

CH

NH

CO

CH

22

3C

HO 3

+N

AD

(P)

NIC

OTI

NAT

E

N-A

cety

l-ser

oton

in

2.4.

2.19

Dop

amin

eD

opa

Dop

aqui

none

THYR

OXI

NE

MEL

AN

IN

OH

OH

CH

OH

CH

NH

CH

23

OH

OH

CH

OH

CH

NH

22

4-O

H-3

-Met

hoxy

-ph

enyl

glyc

ol

CH

OH

CH

NH

22

OH

OC

H3

OC

H3

CH

OH

CH

OH

2

OH

OC

H3

4-O

H-3

-Met

hoxy

-D

-man

dela

te

Cyc

lic A

MP

ATP

Dep

hosp

ho-C

oenz

yme

A

4-P-

Pant

ethe

ine

4-P-

Pant

othe

nylc

yste

ine

4-P-

Pant

othe

nate

Pant

oate

6.3.

2.1

1.1.

1.16

9

3.5.

1.22

2.7.

1.33

NH

NH

O O

O O

CH

OH

2

OH

OC

H3

CH

(OH

)CO

O

H2 NH

3+

CH

-CO

OC

O O

CO

O

NR

ibos

e-P

N+

CO

O

NH

CH

CO

O2

O

OH

CH

O 2P

NH

CO

CH

NH

22

OH

Form

ylgl

ycin

amid

e-RP

Ure

a

Form

ylgl

ycin

amid

ine-

RP

Alla

ntoa

teA

llant

oin

UR

ATE

AD

P

Xant

hine

Hyp

oxan

thin

e

Inos

ine

Ade

nine

Ade

nylo

-su

ccin

ate

5-A

min

oim

idaz

ole-

RP

5-A

min

o-4-

imid

azol

eca

rbox

ylat

e-RP

5-A

min

o-4-

imid

azol

e(N

-suc

ciny

lcar

boxa

mid

e)-RP

5-A

min

oim

idaz

ole

carb

oxam

ide-

RP Fo

rmyl

amid

o-im

idaz

ole-

carb

oxam

ide-

RP

HN

CO

NH

22

HNH

C 2C

HO

NH

RP

NH

C

CCO

CC

OO

CN

H

NH

HN

HN

H

CCO

CC

HO

CN

H

N

N

HN

Car

bam

oyl

ß-al

anin

eD

ihyd

ro-

urac

ilU

raci

l

d-A

DP

d-AT

P

GTP

GD

P

XAN

THO

SIN

E-P

(XM

P)

TTP

TDP

ß-U

reid

ois

obut

yrat

eD

ihyd

roth

ymin

eTh

ymin

ed-

UM

Pd-

CM

Pd-

CD

P

CD

P

Car

bam

oyl

aspa

rtat

eD

ihyd

roor

otat

eO

rota

teO

rotid

ine-P

Urid

ine-P

(UM

P)U

DP

3-A

min

o-is

obut

yrat

eC

HCNH

2 CH

OC

NH

NC

HCO

CH

OC

NH

HN

CH

-CH

3CO

OC

NH

HN

CH

2

CH

2C

H2

CO

OC

NH

HNCO

CH

OC

NH

HN

CC

H3

Met

hylm

alon

ylse

mia

ldeh

yde

OH

CC

HC

OO

CH

3

CH

2CO

CH

-CO

OO

CN

H

HN

CH

CO

C-C

OO

OC

NH

HN

HN

CO

NH

CH

CH

CO

O2

22

CC

CC

H RP

HC

NH

NH

OO

C-C

H-C

HC

OO

2 N

N

N

CH

O

NH

RP

NH

OC

HC 2

2.7.

7.43

3.1.

3.29

1.1.

1.15

8

5.1.

3.13

2.7.

1.38

3.2.

1.23

3.1.

3.29

4.1.

3.20

2.7.

1.60

5.1.

3.14

5.1.

3.7

5.1.

3.1

2.7.

1.4

5.4.

2.3

3.1.

1.17

1.1.

1.49

1.1.

1.21

2.7.

7.23

3.1.

3.25

1.13

.99.

11.

1.1.

19

1.1.

3.8

5.3.

1.3

2.7.

1.53

1.1.

1.9

2.7.

1.15

2.7.

1.17

5.1.

3.4

5.1.

3.1

2.2.

1.2

4.1.

2.13

2.7.

1.11

2.7.

1.47

2.2.

1.1

1.2.

1.12

1.1.

1.29

1.1.

1.95

1.3.

1.35

1.14

.99.

25

2.3.

1.41

2.3.

1.41

2.3.

1.41

1.1.

1.10

0

5.3.

99.5

4.2.

1.60

5.3.

99.3

1.14

.99.

11.13

.11.

34

1.3.

1.10

1.3.

1.9

1.14

.99.

5

1.3.

1.9

4.2.

1.61

4.2.

1.60

4.2.

1.60

4.2.

1.59

4.2.

1.58

1.3.

1.9

1.3.

1.9

6.2.

1.3

3.1.

2.20

1.1.

1.10

0

5.3.

1.1

HO

OC

-CO

OH

Oxa

late

Gly

cola

te

HO

CH

CH

O2

Gly

col

alde

hyde

Etha

nola

min

e-P2.

7.1.

30

2.3.

1.7

3.7.

1.2

4.1.

3.5

2.7.

8.8

2.1.

1.17

2.1.

1.71

1.3.

1.35

2.7.

8.2

3.1.

4.3

3.1.

4.4

2.7.

7.15

3.1.

1.5

3.1.

4.2

2.7.

1.32

2.7.

1.82

1.2.

4.1

2.3.

1.12

1.8.

1.4

2.6.

1.2

1.4.

1.1

4.1.

1.1

2.3.

1.50

1.1.

1.10

2

3.1.

4.12

2.7.

8.3

2.4.

1.62

3.2.

1.46

5.2.

1.3

1.2.

1.36

2.3.

1.76

3.1.

1.21

5.2.

1.7

5.4.

99.7

1.14

.99.

7

4.3.

1.8

4.2.

1.75

4.1.

1.37

1.3.

3.3

1.3.

3.4

4.99

.1.1

2.5.

1.29

2.4.

1.47

4.1.

1.28

2.3.

1.5

2.1.

1.4

6.3.

5.1

6.3.

1.5

2.4.

2.11

2.7.

7.18

2.6.

1.5

1.2.

1.32

1.13

.11.

5

2.1.

1.28

2.1.

2.2

6.3.

3.1

3.5.

2.5

1.4.

1.10

1.7.

3.3

1.1.

1.20

41.

1.3.

221.

1.3.

22

4.1.

1.28

4.1.

1.21

2.1.

2.3

2.4.

2.1

1.5.

99.2

2.1.

1.5

2.6.

1.22

3.5.

2.3

2.6.

1.51

1.4.

1.7

3.1.

3.3

2.6.

1.52

2.1.

3.2

ACET

ATE

2.4.

2.4

2.1.

1.45

RP

CH

CO

CH

OC

N

HN

1.3.

1.14

2.4.

2.10

4.1.

1.23

2.7.

7.7

2.7.

7.7

2.7.

7.7

1.17

.4.1

2.7.

7.7

2.7.

4.14

4.4.

1.1

1.6.

4.1 1.

13.1

1.20

4.4.

1.8

4.2.

1.22

1.1.

1.27

4.1.

1.29

6.3.

2.3

6.3.

2.2

1.8.

1.3

LAC

TATE

Ace

tald

ehyd

e

2.7.

1.24

2.7.

7.3

4.1.

1.36

Bile

Aci

ds

CH

CH

CO

SC

oA3

2Pr

opan

oyl-C

oA

1.1.

1.31

2.1.

3.1

4.1.

1.41

5.1.

99.1

6.4.

1.3

6.3.

2.5

2.1.

1.14

2.1.

1.13

4.6.

1.1

CD

P-Et

hano

lam

ine

1.1.

1.35

4.2.

1.17

+H

OS

CH

CH

(NH

)CO

O2

23

3.5.

2.7

NH

HN

CH

OO

CC

HC

HC

HC

OO

22

CM

P-N

-Ace

tyl

neur

amin

ate

CD

P-di

acyl

glyc

erol

CH

OLI

NE

Etha

nola

min

e

Gly

oxyl

ate

HIS

TAM

INE

2.3.

1.46

Hom

oser

ine

Tyra

min

e

Plan

t Pig

men

tsTa

nnin

s

Mal

eyl

acet

oace

tate

Fum

aryl

acet

oace

tate

5.2.

1.2

CH

CO

O2

OH

OH

OHCH

CH

NH

22

2

OH

OH

CH

CH

NH

22

2Hyd

roxy

phen

ylpy

ruva

te

α-To

coph

erol

(Vita

min

E)

LIG

NIN

d-G

TP

OH

OH

OH O

HO

OH

P

OP

PT

CH

3H

O

OH

OH

O

NA

DPH

2.2.

1.1

2.7.

1.3

1.1.

1.45

1.1.

1.13

0

1.10

.3.3

1.10

.2.1

1.1.

1.10

ATP

CH

CH

NH

22

2

NH

HO

5.4.

99.5

1.14

.16.

12.

6.1.

51.

13.1

1.27

Indo

le

4.1.

99.1

1.13

.11.

11

OH O

OH

NH

CC

CH

CH

O 2P

HH

CO

O

NH

2

CO

O

6.3.

5.3

6.3.

2.6

4.3.

2.2 G

uani

neD

NA

6.3.

4.4

4.3.

2.2

CCO

CC

HH

CN

H

N

N

HN

CCO

CC

HH

CN

H

N

N

HN

3.5.

3.4

2.4.

2.1

2.7.

7.6

2.7.

7.6

2.7.

7.6

2.7.

7.6

2.7.

4.6

2.7.

4.3

2.7.

4.4

2.7.

4.6

2.4.

2.15

1.1.

1.20

5

6.3.

4.1

6.3.

5.2

2.7.

4.4

3.5.

4.3

3.2.

2.2

2.4.

2.1

3.1.

3.5

3.1.

4.6

6.3.

4.2

1.17

.4.1

1.17

.4.1

3.5.

4.12

2.7.

4.8

2.7.

4.9

2.7.

4.6 2.4.

2.4

1.3.

1.2

3.5.

2.2

3.5.

1.6

3.5.

1.6

3.5.

2.2

3.5.

4.1

Dip

hosp

ho-

mev

alon

ate

Mev

alon

ate

3-O

xope

ntan

oyl-C

oA

3-O

xoac

yl-C

oA3-

OH

-Acy

l-CoA

2, 3

-Eno

yl-C

oA

2, 3

-Hex

enoy

l-CoA

3-O

H-H

exan

oyl-C

oA

Ace

toac

etyl

-CoA

3-O

H-B

utan

oyl-C

oAC

roto

noyl

-CoA

Pent

anoy

l-CoA

3-O

H-P

enta

noyl

-CoA

1.1.

1.35

1.1.

1.35

1.1.

1.15

7

1.3.

99.3

1.3.

99.3

1.3.

99.2

1.1.

1.35

Odd

C F

atty

aci

ds

Succ

inyl

hom

oser

ine

CO

2

2-O

XO A

CID

Glu

tam

yl-P

Glu

tam

ine

UR

EA

P-C

reat

ine

Cre

atin

eC

reat

inin

e

Gly

cine

CIT

RU

LLIN

E

Glu

tam

icse

mia

ldeh

yde

2-A

MIN

O A

CID

Pyrr

olin

e-5-

carb

oxyl

ate

Gly

oxyl

ate

Pyru

vate

4-H

ydro

xy-

2-ox

oglu

tara

te

4-H

ydro

xy-

glut

amat

e

3-H

ydro

xy-

pyrr

olin

e-5-

carb

oxyl

ate

Putr

esci

neH

NC

HC

HC

HC

HN

H2

22

22

2

Sper

mid

ine

Sper

min

e

N -T

rimet

hylly

sine

66

N -T

rimet

hyl-

3-O

H-ly

sine

Car

nitin

e

Glu

tary

l-CoA

Sacc

haro

pine

2-A

min

oadi

pate

sem

iald

ehyd

e2-

Amin

oadi

pate

2-O

xoad

ipat

e

Arg

inin

o-su

ccin

ate

Gua

nido

acet

ate

Met

hylm

alon

yl-C

oA

4.1.

2.12

Asp

arty

lSe

mia

ldeh

yde

2, 3

-Dih

ydro

-di

pico

linat

e

1.2.

1.11

4.2.

1.52

1.3.

1.26

Pipe

ridei

ne-

2, 6

-dic

arbo

xyla

teN

-Suc

ciny

l-2-

amin

o-6-

oxo-

pim

elat

e

2.6.

1.17

N-S

ucci

nyl-2

, 6di

amin

opim

elat

eD

iam

ino-

pim

elat

e3.

5.1.

18

3-M

ethy

l-gl

utac

onyl

-CoA

(CH

)C

HC

HC

OS

CoA

32

2(C

H)

CH

CH

CO

SC

oA3

22

3-M

ethy

l-cr

oton

yl-C

oAIs

oval

eryl

-CoA

Oxo

pant

oate

HC

HO

OO

CC

HC

= C

HC

OS

CoA

2CH

3

CH

CO

CH

CO

SC

oA3

CH

3C

HC

H=C

HC

OS

CoA

3

CH

3C

HC

H(O

H)C

HC

OS

CoA

3

CH

3

C(O

H)C

H(O

H)C

OO

CH

CH

32

CH

3

CH

= C

CO

SC

oA2

CH

3H

OC

HC

HC

OS

-CoA

-2C

H3

CH

CH

CO

-SC

oA3

CH

3

C (O

H)C

H(O

H)C

OO

CH

3

CH

3

CH

CH

CH

CO

SC

oA3

2CH

3

CH

C =

CH

CO

SC

oA3C

H3

ATP

4-A

min

obut

yrat

e(G

ABA

)

1.3.

99.7

1.5.

1.2

1.14

.11.

2

2.6.

1.39

1.2.

1.31

1.14

.11.

8

2.5.

1.16

2.5.

1.22

4.1.

3.16

2.6.

1.23

1.5.

99.8

1.5.

1.2

6.4.

1.4

1.3.

99.1

0

4.2.

1.33

2.6.

1.6

1.1.

1.85

Oxo

leuc

ine

CO

OH

(CH

)C

HC

HC

H(O

H)C

OO

32

S-A

deno

sylm

ethy

lth

iopr

opyl

amin

e(D

ecar

boxy

late

d SA

M)

PRO

LIN

E

Coe

nzym

e A

CH

C=

CH

CH

32

CH

3

OC

H

CH

3

3H

OC

H3

CH

3

CH

3

CH

C-C

HH

O3

22

CP

P

CH

2

CH

C=

CH

CH

O2

2P

P

CH

3

3-P-

Gly

cero

l

Phos

phat

idyl

etha

nola

min

eC

EPH

ALI

N

3.1.

4.12

2.7.

8.3

Prog

este

rone

1.5.

1.12

2.7.

3.2

4.2.

1.17

3.1.

2.4

2.6.

1.32

4.4.

1.15

Ace

tyls

erin

e2.

7.7.

42.

7.1.

251.

8.99

.1A

deny

lyls

ulph

ate

(APS

)

2.7.

1.39

4.4.

1.15

4.1.

1.29

4.2.

99.8

2.3.

1.30

P-R

ibos

yl-PP

1.1.

1.1

1.2.

1.4

Asp

arty

l-P

5.1.

1.7

2.7.

1.40

4.1.

3.18

4.1.

3.18

1.5.

1.9

1.14

.11.

1

CH

OLI

NE

2.1.

1.13

1.3.

1.2

NH

CH

CH

SH

22

N

HC

HC

HC

O2

2O

CH

C(C

H)

CH

(OH

)CO

23

2P

AD

P-

NH

CH

CH

SH

22

N

HC

HC

HC

O2

2O

CH

C(C

H)

CH

(OH

)CO

23

2

P-A

DP

-N

HC

HC

HS

H2

2

NH

CH

CH

CO

22

OC

H C

(CH

)C

H(O

H)C

O2

32

1.4.

1.8

1.3.

99.3

1.3.

99.3 1.

4.1.

9

4.2.

1.18

4.1.

1.20

1.3.

99.7

1.8.

99.2

+C

HC

O-O

CH

CH

(NH

)CO

O2

23

2.5.

1.6

2.1.

1.10

2.1.

1.20

1.1.

1.3

1.1.

1.3

4.2.

1.18

4.1.

2.5

4.3.

1.5

4.2.

1.20

2.1.

2.1

2.1.1.

20

Gly

oxyl

ate

2.1.

1.6

1.4.3.

41.

14.1

8.11.14

.16.

2

Hex

anoy

l-CoA

But

anoy

l-CoA

6.3.

4.16

6.3.

5.5

2.7.

2.11

2.1.

3.3

NO

1.14

.13.

39

3.5.

3.6

3.5.

3.1

4.3.

2.1

4.1.

1.17

2.7.

7.41

2.6.

1.4

1.1.

1.10

0

1.1.

1.8

2.3.

1.51

2.3.

1.15

2.7.

8.5

SO- 42

1.14

.16.

4

NH

2 O

OC

O

OC

4.1.

1.25

1.3.

1.13

1.3.

1.13

2.7.

4.6

CYT

IDIN

E-tr

ipho

spha

te(C

TP)

Cyt

osin

e

2.4.

2.9

4.1.

1.11

2.6.

1.18

4.3.

1.3

4.2.

1.49

3H

SO-

1.1.

1.10

5

2.3.

1.41N

AD

PH

1.1.

1.22

2.3.

1.4

5.5.

1.4

3.2.

1.26

3.2.

1.48 2.

6.1.

16

1.1.

1.14

2.7.

7.34

4.2.

1.47

2.4.

1.68

2.4.

1.69

2.4.

1.9

5.3.

1.8

2.4.

1.11

O

OP

PU

CH

OH

2

CH

OH

2

HO

OHO

H HO

2.4.

1.21

4.2.1.

521.

2.1.

18

4.2.

1.18

O

CH

C

CH

OC

N

HN

DP CH

CO

CH

OC

N

HN

RP

PP

OC

H2

H CCH O

HO

H

CH

NH

NC H

CP

H

O

OC

H2

CCH O

H

H OH

C

H CC

CNH

2 CC

HH

CN

RP

(PP

)

N

N

N+P

NH

2H

O

OC

H2

CCH O

H

H OH

C

H CC

OC

CC

HH

CN

RP

N

N

NH

P

H

OC

H2

CCH O

HO

H

CO

CH

2C

CO

NH

2 CC

HH

CN

RP

N

N

NH

P

+O

OC

CH

N(C

H)

23

3B

etai

ne

Bet

aine

alde

hyde

2.4.

1.16

5.1.

3.6

2.4.

1.33

2.7.

7.13

5.4.

2.8

5.3.

1.8

O

OH

CH

OH

2 HO

OP

HO

2.7.

1.28

2.7.

1.31

6.3.

4.13

5.3.

1.1

2.2.

1.1

4.1.

1.9

3.1.

2.11

ß-O

H-ß

-Met

hyl-

glut

aryl

-CoA

6.3.

4.5

5.3.

1.6

2.5.

1.21

2.1.

1.2

3.5.

2.10

6.3.

2.13

6.3.

2.7-

10

2.7.

7.27

2.7.

7.9

3.5.

4.10

CCO

CC

HO

CN

RP

N

NH

HN

CCO

CC

H

NN

N

HN

RP

HN 2

C

2.7.

4.6

1.17

.4.1

2.7.

4.6

2.6.

1.13

Car

bam

oyl-P

2.3.

1.9

Car

nitin

e

2.6.

1.4

2.6.

1.44

CH

C(O

H)C

HC

OS

CoA

32

CH

CO

O2

1.2.

3.5

1.1.

1.34

2.3.

1.16

4.1.

3.5

2.3.

1.16

4.1.

3.4

Men

aqui

none

4.1.1.

15

2.6.

1.19

4.2.

1.16

Car

nosi

ne

CH

CH

NH

22

2C N

HN

C

HC

H

4.1.

1.22

4.3.

1.3

Ubi

quin

one

Plas

toqu

inon

e

D-R

ibos

e-5-P

NH

CH

CH

(NH

)CO

O2

3H

O+

O

OH

OH

HO

OP

PU

CO

O-

O

OH

OH

HO

OP

PU

CO

O-

OH

HO

H

HO

CH

2C

CC

O

H

CO

CO

O-

OC

HO

HC

HO

HA

cNH

HO

OP

COC

O-

CH

OH

2

OC

HO

HC

HO

HA

cNH

HO

OHCO

OC

HO

H2

O

OH

OH

HO

HO

CH

O 2P

O

OHAC

NH

HO

OH

CH

O 2P

O

OO

HH

OH

OP

CH

OH

2

O

OH

OH

HO

HO

CH

OH

2

O

OH

HO

OH

3

CH

O 2P

O

OH

HO

O

NH

CO

CH

3

P

CH

OH

2C

HO

H2

CH

OH

2

O

OH

HO

OH

NH

2

CH

O 2P

O

OH

HO

OHO

PP

U

CH

OH

2

O

O

HO

OH

OH

HO

P

CH

OH

2

CH

OH

2O

OH

O

OH

OH

O

OH

OH

OH

CH

OH

2

O

OH

HO

OHO

H

CH

2C

HO

P2

OH

HH

HO

H

CC

CC

OH

OH

H

CO

O-

HO

CH

2

H OH

OH

OH

CC

CC

HO

HH

HO

CH

2

H OH

OH

H

CC

CC

HO

HO

H

HO

CH

2

OH

HO

HH

CC

CC

HO

HO

H

HO

CH

2

H OH

HO

H

CC

CC

HO

OH

H

HO

CH

2

OH

HH

OH

CC

CC

HO

OH

H

HO

CH

2

OH

HO

HO

H

CC

CC

HO

HH

HO

CH

2

H OH

HO

H

CC

CC

OH

HH O

HCO

O-

PO

CH

2

OH

HO

H

CC

CO

H

PO

CH

2C

HO

H2

H OH

H

CC

CO

OH

HO

CH

2C

HO

H2

CH

OH

2P

OC

H2

H OH

OH

CC

CO

H

CH

OH

2P

OC

H2

OH

HH

CC

CO

OH

CH

OH

2P

OC

H2

H OH

OH

CC

CO

H

HO

CH

2C

HO

H2

OH

HO

H

CC

CO

H

HO

CH

2C

HO

H2

OH

HH

CC

CO

OH

HO

CH

2C

HO

H2

H OH

OH

H

CC

CHO

H

HO

CH

2C

HO

H2

OH

HO

HO

H

CC

CHH

HO

CH

2C

HO

H2

H OH

HO

H

CC

CC

OH

HH O

HCH

OH

2H

OC

H2

H OH

OH

CC

CH

OH

POC

H2

H OH

HO

H

CC

CC

O

OH

H

HO

CH

2C

HO 2

P

H OH

OH

OH

CC

CHH

HO

CH

2C

HO

H2

H OH

OH

CC

C

H

CO

HHO

PO

CH

2C

HO

H2

P

H OH

OH

CC

C

H

CO

HHO

CH

O 2P

OC

H2

H OH

OH

CCH

CC

HO

OH

H

POC

H2

POC

H2

O

OH

NH

2

OH

CH

O 2P

C

HO

HC

HO

POC

H2

HO

CH

2CO

CH

2OP

O

OH

OO

PP

OH

CH

O 2P

CH

OH

CO

OP

POC

H2

C

HO

HP

OC

H 2C

OO

CO

O

OH

OH

OO

H

CO

O

CH

(CH

)C

H(O

H)C

HC

OS

-CoA

32

142

CH

(CH

)C

H(O

H)C

HC

OS

32

142

CH

(CH

)C

OC

HC

OS

-CoA

32

142

CH

(CH

)C

OC

HC

OS

-CoA

32

142

CH

(CH

)C

OS

-CoA

32

n+2

CH

(CH

)C

H=C

HC

OS

-CoA

32

14

CH

(CH

)3

2nC

H=C

HC

OS

-CoA

CH

(CH

)3

25

2C

H=C

HC

HC

OS

ACP

CH

(CH

)3

26C

H=C

HC

OS

ACP

CH

(CH

)3

26C

OC

HC

OS

ACP

2C

H(C

H)

32

62

2C

HC

HC

OS

ACP

CH

(CH

)3

22

22

CH

CH

CO

SAC

P

CH

CH

CH

CO

SAC

P3

22

CH

(CH

)3

26C

H(O

H)C

HC

OS

ACP

2

CH

CH

=CH

CO

.S-A

CP

3

CH

(CH

)3

22

2C

OC

HC

OS

ACP

CH

3CO

CH

CO

SAC

P2

CH

(CH

)3

2n

2C

OC

HC

OS

ACP

CH

(CH

)3

2n

2C

H(O

H)C

HC

OS

ACP

CH

(CH

)3

22

2C

H(O

H)C

HC

OS

ACP

AC

YL-

CoA

(Mito

chon

dria

)

CH

(CH

)C

HC

HC

OS

CoA

32

22

n

CH

(CH

)C

H=C

HC

OS

CoA

32

nC

H(C

HC

H(O

H)C

HC

OS

CoA

32

n

CH

(CH

)C

HC

HC

OS

CoA

32

22

2C

H(C

H)

CH

=CH

CO

SC

oA3

22

CH

(CH

)C

OC

HC

OS

CoA

32

2n

CH

CO

CH

CO

SC

oA3

2

CH

(CH

)C

H(O

H)C

HC

OS

CoA

32

22

CH

CH

(OH

)CH

CO

SC

oA3

2C

HC

H=C

HC

OS

CoA

3C

HC

HC

HC

OS

CoA

32

2

CH

CH

CH

CH

CO

SC

oA3

22

2Pe

nten

oyl-C

oAC

HC

HC

H=C

HC

OS

CoA

32

CH

CH

CH

(OH

)CH

CO

SC

oA3

22

CH

(CH

)C

OC

HC

OS

CoA

32

22

CH

CH

CO

CH

CO

SC

oA3

22

OH

OH

HO

OH

O O-

CH

O-P

O2

CH

CH

OH

CH

OH

22

O

CH

2

CH

2

R'-C

O-O

CH

O-C

O-R

O-P

OO-

HO

CH

CH

22N

H3

+P

OC

HC

H2

2NH

3+

CP

P-O

CH

CH

22N

H3

+

O

-

CH

O-C

O-R

2

CH

O P

2O

CH

CH

22N

H3

+

CH

CO

CH

CH

N(C

H)

32

23

3

HO

CH

CH

N(C

H)

22

33

+

CH

CH

2C

OO

(NH

) 3+

OH

OH

CH

CH

2C

OO

-(N

H) 3

+

CO

NH

2CH

CH

(NH

)CO

O2

3+

NH

OC

CO

NH

OC

N H

C H

HN 2

HC

CH

NN

CR

PH

N 2

CH

C

CH

OC

N

N

DP

NH

2

RP

PP

CH

C

CH

OC

N

N

NH

2

CC

CC

H RP

(P)

HC

NN

N

NN

H2

HN

CO

O2

P

(CH

)N

H2

32

HN

(CH

)N

H2

23

(CH

)N

H2

4 (CH

)N

H2

32

HN

(CH

)N

H2

24

CH

-SC

HC

HC

HN

H3

22

2

Ade

nosy

l

+

+C

H3

CH

3CH

CH

(NH

)CO

O3

++C N

HN

C

HC

H

CH

CH

(NH

)CH

OH

23

2+

C NH

NC

HC

H

CH

CH

(NH

)CH

OP

23

2C N

HN

C H

HC

CH

CO

CH

OP

22

+H

SC

HC

HC

H(N

H)C

OO

22

3

+

+S

CH

CH

CH

(NH

)CO

O2

23

CH

CH

(NH

)CO

O2

3

RP

CO

C-C

OO

OC

N

HN

CH

2.4.

1.23

CH

(CH

)C

H=C

HC

H(O

H)C

HC

HO

H3

212

2

NH

3+

CH

(CH

)C

H(O

H)C

HC

HO

H3

214

2

NH

3+

CH

(CH

)C

OC

HC

HO

H3

214

2

NH

3+

Gal

acto

seC

H(C

H)

CH

=CH

CH

(OH

)CH

CH

O-

32

122

NH

3+

4.1.

1.70

HN

CO

NH

22

OH

CC

HN

(CH

)2

33

+

C-C

H3

CO

CH

OC

ND

P

HN

DP

CP

P-O

CH

CH

N(C

H)

22

33

+O

CH

CH

N(C

H)

22

33

+

1.2.

1.41

UD

P-N

-Ac-

Mur

amat

e

O

OC

HC

H3 C

OO

-

NH

AC

HO

OPP

U

CH

OH

2 4.1.

3.20

O

OH

CH

3

HO

HO

OP

PG

2.7.

7.24

2.4.

1.22

2.7.

7.125.

1.3.

2

5.3.

1.4

Sedo

hept

ulos

e-PP

3.1.

1.28

4.2.

1.24

N

CH

2

CH

2

N

N N

CH

3 CH

3

CH

CH

CO

O

CH

CH

CH

2

HC 3 HC 3

HC 3H

C

CC HH Fe

CH

2C

H2

CO

O-

-

CH

3

CH

3

CH

2

CH

2CH

2

HC 3HC 3

N H NH

N H NH

CH

CH

HC 2

CCH2

H2

-

CH

2C

H2

CO

O

CH

2C

H2

CO

O-

HC 2

HC 2

CH

2

CH

2

OO

C

CO

O

HN 2

N H

-

-

CH

2

HC 2

HC 2

HC 2

H2

H2

CH

2C

H2

CH

2

CH

2

CH

2

CH

2 N H NH

N H NH

CO

O

CO

O

CO

OC

OO

CC

--

CH

2C

H2

CO

O

CH

2C

H2

CO

O-

-

--

OO

C- O

OC

-

CH

3

CH

3

HC 3

HC 3H

C 2

H2

H2

N H NH

N H NH

CH

2

CH

2

CH

2

CH

2

CH

2

CC

CO

O-

CH

2C

H2

CO

O

CH

2C

H2

CO

O-

-CO

O-

CO

O-

CH

C(O

H)C

HC

HO

32

2P

P

CH

CO

O2

OH

CC

OO

HO

CH

CO

O2

NH

2

HN

CN

HC

HC

OO

22

+N

H2

HN

CN

(CH

)CH

CO

O2

32

+N

H2

HN

CN

(CH

)CH

CO

O3

2P

-

+H

NC

NH

CO

NC

H2

CH

3

OO

CC

HC

HC

OO

2

HN

CN

HC

HC

HC

HC

H2

22

2

N(N

H) 3

+C

OO

CH

CO

OH

C

CH

2H

OC

H N

OO

CC

H(O

H)C

HC

H(N

H)C

OO

23

+

CH

CO

O

CH

2H

OC

H

HC 2

N H

NH

CH

CO

O

CH

2C

H2

CH

2

OO

CC

H(O

H)C

HC

OC

OO

2

NC

HC

OO

CH

2C

H2

CH

CH

CO

CO

O3

OH

CC

OO

+H

NC

ON

HC

HC

HC

HC

H2

22

2(N

H) 3C

OO

HN

OC

CH

CH

CH

22

2C

OO

(NH

) 3+

R-C

O-C

OO

+

CO

OR

-CH

(NH

) 3+

CO

OH

NO

CC

HC

H2

2(N

H3

+

OO

C-C

H-C

OS

CoA

CH

3

PO

OC

CH

CH

2C

OO

(NH

) 3+

OO

CC

HC

HC

HO

22

OH

CC

HC

H2

CO

O(N

H) 3

+

(CH

)N

CH

CH

(OH

)CH

CO

O3

32

2+

OH

CC

HC

HC

H2

2+

CO

O(N

H) 3

PO

OC

CH

CH

CH

22

+C

OO

(NH

) 3

OH

CC

HC

HC

HC

H2

22

CO

O(N

H) 3

+N

HC

HC

HC

HC

OO

22

CO

O

CH

CH

CH

CH

CH

22

22

CO

O(N

H) 3

+

HN

(CH

)2

42

CH

(NH

)CO

O3

CH

(NH

3++

(CH

)N

(CH

)3

32

3CH

CH

(NH

)CO

O2

3+

+

CH

2CH

OO

CC

N

HC

CH

-CO

OC

H2

CH2

CH

-CO

O O

OC

CN

HC 2

OO

CC

OC

HC

HC

HC

H-C

OO

22

2C

HC

H2

22

OO

CC

HC

HC

ON

H2

2O

OC

CH

CH

CH

CH

CH

-CO

O2

22

OO

CC

HC

HC

ON

H2

2C

H2

2

NH

3+

OO

CC

H-C

HC

HC

HC

HC

OO

22

2N

H3

+

NH

3+

(CH

)C

HC

(OH

)CH

32

2

CO

OH

CO

O(C

H)

CH

CH

CO

CO

O3

22

+(C

H)

CH

CH

32

2C

H(N

H)C

OO

3

HO

CH

CH

CO

O2C

H3

CH

CO

CO

OC

H3

CH

3C

HC

OC

(OH

)CH

33

CO

O

+P

OC

HC

HC

H(N

H)C

OO

22

3+

HO

CH

CH

CH

(NH

)CO

O2

23

+C

HC

HC

H(N

H)C

OO

22

3 O

OC

CH

CH

2CO

O2

+C

HS

H2

OO

CC

H(N

H)C

HC

HC

ON

HC

HC

ON

HC

HC

OO

32

22

HO

CH

C(C

H)

CO

CO

O2

32

HO

CH

C(C

H)

CH

(OH

)CO

O2

32

N

HC

HC

HC

OO

22

HO

CH

C(C

H)

CH

(OH

)CO

32)

23

2

N

HC

HC

HC

OO

22

OC

HC

(CH

)C

H(O

H)C

O2

32

P

CH

CH

32

CH

3 CH

+C

H(N

H)C

OO

3

CH

CO

C(O

H)C

HC

H3

23

CO

OC

HC

OC

OO

CH

CH

32

CH

3

NH

CH

CH

SH

2

CO

O

NH

CH

CH

CO

22

OC

H C

(CH

)C

H(O

H)C

O2

32

P

+C

HS

H2

OO

CC

H(N

H)C

HC

HC

ON

HC

HC

OO

32

2

+A

deno

syl

SC

HC

HC

H(N

H)C

OO

22

3

+S

CH

CH

CH

(NH

)CO

O2

23

+H

OS

CH

CH

(NH

)CO

O3

23

+ +S

-CH

CH

(NH

)CO

O2

3

S-C

HC

H(N

H)C

OO

23

+H

SC

HC

H(N

H)C

OO

23

1.1.

1.23

H

C NH

NC

HC

CH

CH

CO

O2 N

HC

OC

HC

HN

H2

22

+

H

C NH

NC

HC

CH

CH

(NH

)CO

O2

3

CH

CH

CH

CO

O2

2

NH

NC

H

OC

CC

HC

HC

OO

NH

NC

H

CH

CH

CO

O3

N H

OO

C

CH

-CO

OO

CNH

2C

H2

HN

CH

CH

CO

O2

22

HN

CH

22C

H3

CH

CO

OH

NC

ON

HC

HC

HC

OO

22

CH

3

CCO

CH RP

HC

NN

N

HN

CCCO

CH

HC

ONN

NR

P

CC

H

NNH

N 2

HC

CCO

CH

NNC

CC

H

NN

RP

HN 2 H

N 2C

O O

OP~

~ PO

O OOP

O

O

CH

2

N

N

N

N

O

OH

OHNH

2

HC

CH

N

N

N

N O

O PO

O

O

CH

2

OH

NH

2

HC

CH

CO

OC

O

NH

OC

N HC H

HN 2

NH

2

OO

C-C

H-C

HC

OO

2

HN

CO

CC

HNN

CR

PR

PH

N 2

OO

CC

CH

NR

P

N

CH

N 2

CH

=CH

CO

O

OH

CH

=CH

CO

OCH

CO

CO

O2

CH

2

P

CO

O

OH

O

O

O CO

O

O

CH

CO

O2

O CH

CO

O2

-OO

C

OC

H2

CH

2

OH

HC

P HO

CH

HC

OH

OC

CO

O

CO

OH

O

OH

OH

O

NH

2C

OO

OC

H

NH

CH

CO

CO

O2

NH

CH

O

CO

NH

2O

H

CH

CH

(NH

)CO

O2

3+

N

CO

OC

OO

N+C

OO

CO

OR

P

O

OH

OH

HO

OP

PU

CO

O

O

OH

NH

CO

CH

3

HO

OP

PU

CO

OC

HO

H2

O

OC

CH 2

NH

AC

HO

OP

PU

CO

OCH

OH

2

O

OH

HO

OH

OH

CO

O

OO

CC

HN

(CH

)2

32

Dim

ethy

lgly

cine

1.1.

99.1

1.2.

1.8

CO

OH

OH

OC

OO

O

HO

OH

CO

O

CH

(O)

PP

OC

H 2C

OO

CH

(OH

)H

OC

H 2C

OO

CO

O

C

H(O

)P

HO

CH 2

CO

O

CH

=C(O

)2

PC

OO

CO

NH

2

Rib

ose

-O -

P - O

- P

- O- A

deno

sine

(P)

+ NO O

O O

+

CO

O

NR

ibos

e - O

- P

- O -

P - O

-A

deno

sine

O O

O O

II

II

OHOCH

CH

2C

OO

(NH

) 3+

Epin

ephr

ine

(Adr

enal

ine)

Nor

epin

ephr

ine

(Nor

adre

nalin

e)

Nor

met

epin

ephr

ine

(Nor

met

adre

nalin

e)

HO

CH

CH

N(C

H)

22

33

+

Ade

nosy

l+

+SC

HC

HC

H(N

H)C

OO

22

3C

H3

(CH

)N

(CH

)3

32

3CH

CH

(NH

)CO

O2

3+

+O

H

OO

CC

HC

HC

HC

OS

CoA

22

2

OO

CC

HC

HC

HN

H2

22

2

OO

CC

HC

HC

HC

OC

OO

22

2 O

OC

CH

CH

CH

CH

22

2C

OO

CO

O(N

H) 3

++

HO

H

HO

H

HH

OH

HO

H

Pros

tagl

andi

n PG

E2

OH

HO

CH

2C

CC

OC

CO

O

OH

H OH

HH

-

CO

O

OR'

-CO

-OCHC

HO

-CO

-R2

CH

O P

OC

MP

2O

CH

CH

N(C

H)

22

3+

OH

OC

H

CH

OP

O2

CH

OH

2

O-

CH

OP

O2

OC

HO

CH

=CH

R2

CH

CH

N(C

H)

22

33

+

O-

CH

OP

O2

OR

'-CO

-OC

HC

HO

-CO

-R2

3.1.

1.32

CH

CH

N(C

H)

22

33

+

O-

OH

OC

H

CH

OP

O2

CH

O-C

O-R

2

CH

CH

N(C

H)

22

33

+

O-

CH

CH

(NH

)CO

O2

3+

+C N

HN

C

HC

H

CH

CH

(NH

)CH

O2

3

HS

11-cis

-Ret

inal

Pi

AD

P

NA

DP

+

GD

P-M

annu

rona

te

Man

nose

-6-P

Deh

ydro

-sh

ikim

ate

Shik

imat

e

RN

A

d-G

DP

d-C

TP

GUA

NO

SIN

E-P

(GM

P)

ß-A

lani

ne

P-R

ibos

yl-A

MP

P-R

ibul

osyl

form

imin

o5-

amin

oim

idaz

ole-

carb

oxam

ide-

RP

Imid

azol

eac

etol

-P

HS

HSO

-

PAN

TOTH

ENAT

E

3-Is

opro

pyl-

mal

ate

Succ

inic

sem

iald

ehyd

e

2.4.

1.17

Dia

cyl

glyc

erol

2.3.

1.6

1.14

.12.

1

1.4.

4.2

CH

CH

O3

3.5.

4.19

4.2.

1.19

3.3.

1.1

4.1.

1.12

4.1.

2.5

CO

O-

2O

HC

CH

2.1.

4.1

2.4.

99.7

5.1.

3.12

1.1.

1.13

2

4.2.

1.46

2.7.

1.7

2.4.

1.29

2.4.

1.21

2.4.

1.13

2.4.

1.1

etc.

5.4.

2.2

2.7.

1.6

2.7.

7.10

3.1.

1.18

4.1.

1.34

2.7.

1.47

2.7.

1.16

3.1.

3.9

AD

P

P-G

luco

nola

cton

e

1.1.

1.44

O

OO

HH

O

OH

CH

O 2P

PHEN

YLA

LAN

INE

TYR

OSI

NE

TRYP

TOPH

AN

INO

SIN

E-P

(IMP)

THYM

IDIN

E-P

HIS

TID

INE

UR

IDIN

E-tr

ipho

spha

te(U

TP)

CYS

TIN

EC

YSTE

INE

ISO

LEU

CIN

E

LEU

CIN

E

LYSI

NE

OR

NIT

HIN

E

AR

GIN

INE

HYD

RO

XYPR

OLI

NE

PH

OS

PH

ATID

YL

SE

RIN

EPh

osph

atid

ylin

osito

l

LEC

ITH

IN

SPH

ING

OM

YELI

N

STER

OID

S

Preg

neno

lone

2.7.

6.1

2.4.

2.14

6.3.

4.7

5.3.

1.9

3.1.

3.11

1.2.

1.13

2.7.

2.3

H OH

OH

CC

C

H

CO

OH

CH

HOH

PO

CH

2C

HO 2

P

5.4.

2.1

AD

P4.2.

1.11

Endo

plas

mic

Ret

icul

um

1.1.

1.10

0

3.1.

1.3

Phos

phat

idat

e

2.3.

1.39

4.2.

1.17

4.2.

1.17

4.2.

1.55

1.1.

1.79

1.2.

1.21

1.4.

3.8

1.1.

1.32

2.7.

1.36

2.7.

4.2

4.1.

1.33

2.5.

1.1

2.5.

1.10

2.7.

8.5

2.7.

8.1

4.1.

1.65

2.7.

7.14

1.3.

99.7

PO

OC

H(C

H)

CH

=CH

CH

(OH

)CH

CH

O3

212

2

NH

Acy

l

CH

CH

N(C

H)

22

33

+

O-

3.5.

1.23

1.13

.11.

21

2.5.

1.32

1.1.

1.10

5

2.4.

2.19

1.2.

1.32

MET

HIO

NIN

E

4.1.

3.27

4.2.

1.51

1.14

.17.

1

1.14

.18.

1

1.14

.13.

11

Gly

cina

mid

e-rib

osyl

-P

4.2.

1.22

3-O

xohe

xano

yl-C

oA

THR

EON

INE

1.2.

1.25

1.2.

1.25

1.2.

1.25

1.5.

1.7

- 10

GLU

TAM

ATE

2.3.

1.38

ATP

NA

DH

SUC

RO

SE

AD

ENO

SIN

E-P

(AM

P)

Tria

cylg

lyce

rol

FAT

RN

A

CH

3

CH

2

OC

-CO

OO

H

CO

O

CH

CH

2C

OO

(NH

) 3+

GLY

CO

PRO

TEIN

SG

AN

GLI

OSI

DES

MU

CIN

S

4.1.

2.-

2.6.

1.-

GLU

CO

SE

O-A

cyl-c

arni

tine

O-A

cyl-c

arni

tine

OH

O-

-

R-CO

-OCH

R'-C

O-O

CH

R'-C

O-O

CH

OH

CO

-CO

-R

C

HC

H(O

H)C

HO

-P-O

CH

22

2

CH

O-C

O-R

’2

OR'

-CO

-OCH

O-

CH

O-C

O-R

2

CH

O-P

O2

O-

2.7.

8.11

HN

CH

CH

CH

CH

22

22

CO

O(N

H) 3

+

2.3.

1.20

3.1.

3.4

2.7.

1.10

7

NH

2+

+H

NC

NH

CH

CH

CH

CH

22

22

CO

O(N

H) 3

H OH

HO

H

CC

CC

O

OH

H

HO

CH

2C

HO

H2

R-C

H2C

OO

CH

O-C

O-R

2

CH

O-C

O-R

"2

R’-C

O-O

CH

OH

O

C

HC

HN

H2

3+

OR'

-CO

-OCH

O-

CH

O-C

O-R

2

CH

O P

O2

CO

O

OO

CC

HC

HC

H2

2C

OO

(NH

) 3

+C

HC

H(O

H)C

H(N

H)C

OO

33

O

OH

HO

OH

OH

CH

OH

2C

HO

H2

NH

CH

O-C

O-R

2

1.3.

1.13

4.1.

1.28

Mal

onic

sem

i-al

dehy

de

2.7.

2.4

2.1.

3.3

3.5.

1.2

6.3.

1.2

6.3.5.

5

Car

bohy

drat

esB

iosy

nthe

sis

Deg

rada

tion

Am

ino

Aci

dsB

iosy

nthe

sis

Deg

rada

tion

Lipi

ds Bio

synt

hesi

sD

egra

datio

n

Purin

es &

Pyrim

idin

esB

iosy

nthe

sis

Deg

rada

tion

Bio

synt

hesi

sD

egra

datio

nVi

tam

ins

Co-

enzy

mes

& H

orm

ones

Pent

ose

Phos

phat

e Pa

thw

ay

Phot

osyn

thes

is D

ark

Rea

ctio

ns

CO

MPA

RTM

ENTA

TIO

NTh

e "B

ackb

one"

of m

etab

olis

m in

volv

esG

LYC

OLY

SIS

in th

e C

YTO

PLA

SM

,th

eTC

A C

YC

LE (m

ainl

y) in

the

Mito

chon

dria

l mat

rixan

d AT

P F

OR

MAT

ION

spa

nnin

g th

eM

ITO

CH

ON

DR

IAL

INN

ER

ME

MB

RA

NE

An

elec

tron

flow

(an

elec

tric

curr

ent)

gene

rate

d fro

mN

AD

H a

nd U

QH

2dr

ives

the

trans

loca

tion

of p

roto

nsfro

m th

e m

atrix

to th

e in

term

embr

ane

spac

e.Th

ere

trolo

catio

n of

thes

e pr

oton

s th

roug

h th

e F0

sub

units

ofAT

P sy

ntha

se to

the

mat

rix th

en s

uppl

ies

the

ener

gyne

eded

to fo

rm A

TP fr

om A

DP

and

phos

phat

e

Ele

ctro

n Fl

owP

roto

n Fl

ow

Sm

all N

umbe

rs (

eg. 2

.4.6

.7) r

efer

to th

e IU

BM

BE

nzym

eC

omm

issi

on (E

C) R

efer

ence

Num

bers

of E

nzym

es

LEG

END

Hum

an M

etab

olis

m is

iden

tifie

d as

far p

ossi

ble

by b

lack

arr

ows

Bio

synt

hesi

sD

egra

datio

n

HEM

OG

LOB

INC

HLO

RO

PHYL

L

ATP

TRANSLOCATED

PRO

TON

S

2.7.

1.1AT

P2.

7.1.

2

Page 8: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

8

Advancements in Enzyme-Based Fuel Cell Batteries, Sensors and Emissions Reduction Strategies

In addition to synthetic polymer supports, Dr. Minteer and her collaborator, Dr. Michael Cooney of the University of Hawaii, have immobilized dehydrogenases on macroporous chitosan scaffolds. The scaffolds were fabricated from solutions of native and hydrophobically modified chitosan polymers through the process of thermally induced phase separation. The hydrophobically modified chitosan is proposed to possess amphiphilic micelles into which the enzyme can be encapsulated and retained.

One of Dr. Minteer’s basic biofuel cell batteries employs an ethanol/alcohol dehydrogenase system to generate a proton gradient across the conductive membrane. They have also refined these dehydrogenase systems by replacing traditional NAD(H) cofactor-dependent dehydrogenases with pyrroloquinoline quinone(PQQ)-dependent dehydrogenases to improve efficiency. Other multienzyme coupled systems use classical glycolytic and Krebs cycle enzyme systems and corresponding metabolic substrates to generate power.

Dr. Minteer’s lab has also utilized mitochondria to generate current by metabolism of classic cellular energy sources. The resulting electrons are shuffled through the electron transport chain where they reduce oxygen at cytochrome c oxidase and combine with the protons from oxidation to form water. During this metabolic process it is possible for cytochrome c to undergo direct electron transfer to a carbon electrode and complete oxygen reduction at a platinum cathode.

Taking advantage of the fact that nitroaromatics can decouple the inhibition of pyruvate metabolism, mitochondria-modified electrodes have also been used to electrochemically sense the presence of nitroaromatic explosive compounds. These oligomycin inhibited mitochondria-modified electrodes were employed as the bioanode in a pyruvate/air biofuel cell. This concept could be used as a traditional electrochemical sensor or as a self-powered sensor.

Dr. Minteer's Nafion-based immobilization technology is also addressing the reduction of fluegas emissions from coal-fired power plants using carbonic anhydrase to sequester CO

2.

Advancements in Enzyme-Based Fuel Cell Batteries, Sensors and Emissions Reduction StrategiesDr. Shelley Minteer, Ph. D.

Sigma® Life Science and Aldrich Materials Science merge to help researchers completely rethink tomorrow’s immobilized enzyme technologies.

Today’s fuel cells and batteries lack the ability to produce electrical power for the long periods of time we desire and commonly incorporate toxic or precious metals to produce and store their energy.

Enzyme-based fuel cells have potentially higher energy density than traditional batteries using much more environmentally compatible materials. While the idea of enzyme-based biofuel cells is not a new concept, recent developments have captured the interests of the research community. Dr. Shelley Minteer at Saint Louis University Department of Chemistry is one of the pioneers in this area. Dr. Minteer and her team have developed a new enzyme immobilization technology that has begun to revolutionize the way we think about using enzymes for long-term catalytic applications.

Dr. Minteer’s enzyme immobilization strategy encapsulates and stabilizes Sigma enzymes in modified Nafion® polymer matrices from Aldrich. The efficacy of Dr. Minteer’s immobilized enzymes can be measured in years compared to days for other biofuel cell technologies. Dr. Minteer has successfully demonstrated the use of several metabolic fuels such as glycerol, fatty acids, ethanol and other alcohols, pyruvate and glucose to provide the fuel source, while a wide variety of enzymes and coupled multienzyme systems provide the catalytic power to convert the fuel to electrical current.

Enzymes immobilized in Nafion® membrane are encapsulated in the polymer resulting in increased stability while retaining active site availability and optimized orientation.

Page 9: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 9

(10) A.E. Blackwell, M.J. Moehlenbrock, J.R. Worsham, and S.D. Minteer, “Comparison of Electropolymerized Thiazine Dyes as an Electrocatalyst in Enzymatic Biofuel Cells and Self Powered Sensors,” Journal of Nanoscience and Nanotechnology, 2009, 9, 1719–1726.

(11) M. Cooney, V. Svoboda, C. Lau, G. Martin, and S.D. Mint-eer, “Enzymatic Biofuel Cells,” Energy and Environmental Science, 2008, 1, 320–337.

(12) M.J. Cooney, J. Petermann, C. Lau, S.D. Minteer, “Charac-terization and Evaluation of Hydrophobically Modified Chitosan Scaffolds: towards design of enzyme immo-bilized flow-through electrodes,” Carbohydrate Polymers, 2009, 75, 428–435.

(13) G. Martin, S. Minteer, and M.J. Cooney, “Spatial distribu-tion of malate dehydrogenase in amphiphilic chitosan scaffolds,” Applied Materials and Interfaces, 2009, 1(2) 367–372.

(14) C. Hettige, S.D. Minteer, and S. Calabrese Barton, “Simula-tion of Multi-Step Enzyme Electrodes,” ECS Transactions, 2008, 13/21, 99–109.

(15) K. Sjoholm, M.J. Cooney, and S.D. Minteer, “Effects of Degree of Deacetylation on Enzyme Immobilization in Hydrophobically Modified Chitosan,” Carbohydrate Polymers, 2009, 77, 420–424.

(16) G. Martin, S.D. Minteer, and M.J. Cooney, “Fluorescence characterization of chemical microenvironments in hy-drophobically modified chitosan,” Carbohydrate Polymers, 2009, 77, 695–702.

(17) D. Sokic-Lazic and S.D. Minteer, “Pyruvate/air enzymatic biofuel cell capable of complete oxidation,” Electrochemi-cal and Solid-State Letters, 2009, 12(9), F26–F28.

(18) M.C. Beilke, T.L. Klotzbach, B.L. Treu, D. Sokic-Lazic, J. Wildrick, E.R. Amend, L.M. Gebhart, R.L. Arechederra, M.N. Germain, M.J. Moehlenbrock, Sudhanshu, and S.D. Mint-eer, “Enzymatic Biofuel Cells,” in Micro-Fuel Cells: Principles and Applications, Elsevier, 2009, 179–241.

Acetyl CoA

Pyruvate Deh.

Citrate Synthase

Aconitase

Isocitrate Deh.

α-Ketoglutarate Deh.

Succinyl-CoA SynthetaseSuccinate Dehydrogenase

Fumarase

Malate Dehydrogenase

Oxa

loac

etat

e Isocitrate

α-Ketoglutarate

Succinyl-CoA

Succinate

Fumarate

Malate

Citrate

GDP

GTP

FAD

FADH

NADH

NAD+

NADH

NAD+

NADPH

NADP+

NADPH

NADP+

2CO

2CO

2

p

Mo

dified

Nafio

n® M

emb

rane an

d En

zymes

Poly(m

ethylen

e green

)

Carb

on

Paper

Platinum

Potentiostat

FuelSolution

Pyru

vate

Anode NRE 212Nafion®

Cathode

O2

H2O

An an example of one of Dr Minteer’s fuel cells; utilizing pyruvate as the initial fuel source, this fuel cell incorporates a multi-enzyme coupled system that generates a proton gradient source of energy analogous to that produced in vivo in the Kreb’s Cycle.

References(1) S.D. Minteer, B.Y. Liaw, and M.J. Cooney, “Enzyme-based

biofuel cells,” Current Opinions in Biotechnology, 2007, 18, 228–234.

(2) C.M. Moore, N.L. Akers, and S.D. Minteer, “Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion with Tetraalkylammonium Bro-mides,” Biomacromolecules, 5, 2004, 1241–1247.

(3) M.J. Cooney, M. Windmeisser, B.Y. Liaw, C. Lau, T. Klotz-bach, and S.D. Minteer, “Design of Chitosan Gel Pore Structure: Towards Enzyme Catalyzed Flow-Through Electrodes,” Journal of Materials Chemistry, 2008, 18, 667–674.

(4) P. Atanassov, C. Apblett, S. Banta, S. Brozik, S. Calabrese Barton, M. Cooney, B.Y. Liaw, S. Mukerjee, and S.D. Minteer, “Enzymatic Biofuel Cells,” Electrochemical Society Interface, 16, 2007, 28–31.

(5) T.L. Klotzbach, M. Watt, Y. Ansari, and S.D. Minteer, “Improving the microenvironment for enzyme immo-bilization at electrodes by hydrophobically modifying chitosan and Nafion polymers,” Journal of Membrane Science, 2008, 311, 81–88.

(6) V. Svoboda, M. Cooney, B.Y. Liaw, S. Minteer, E. Piles, D. Lehnert, S.C. Barton, R. Rincon, and P. Atanassov, “Stan-dardized characterization of biocatalytic electrodes,” Electroanalysis, 2008, 20, 1099–1109.

(7) B.L. Treu, R. Arechederra, and S.D. Minteer, “Bioelectroca-talysis of Ethanol via PQQ-Dependent Dehydrogenases Utilizing Carbon Nanomaterial Supports,” Journal of Nanoscience and Nanotechnology, 2009, 9, 2374–2380.

(8) B.L. Treu and S.D. Minteer, “Isolation and Purification of PQQ-dependent Lactate Dehydrogenase from Gluconobacter and Use for Direct Electron Transfer at Carbon and Gold Electrodes,” Bioelectrochemistry, 2008, 74, 71–77.

(9) D. Sokic-Lazic and S.D. Minteer, “Citric acid cycle biomim-ic on a carbon electrode,” Biosensors and Bioelectronics, 2008, 24, 945–950.

(19) M. J. Moehlenbrock, R. L. Arechederra, K. H. Sjoholm, and S.D. Minteer, “Analytical Techniques for Character-izing Enzymatic Biofuel Cells,” Analytical Chemistry, 2009, 81(23), 9538–9545.

(20) P. Addo, R. Arechederra, and S. D. Minteer, “Evaluating En-zyme Cascades for Methanol/Air Biofuel Cells Based on NAD-dependent Enzymes,” Electroanalysis, 2010, 22(7-8), 807–812.

(21) R. Rincoln, M. Germain, K. Artyushkova, M. Mojica, M. Germaine, P. Atanassov, and S.D. Minteer, “Structure and Electrochemical Properties of Electrocatalysts for NADH Oxidation,” Electroanalysis, 2010, 22(7–8), 799–806.

(22) W. Gellett, M. Kesmez, J. Schumacher, N. Akers, and S.D. Minteer, “Biofuel Cells for Portable Power,” Electroanalysis, 2010, 22(7–8), 727–731.

(23) D. Sokic-Lazic, R.L. Arechederra, B.L. Treu, and S.D. Minteer, “Oxidation of Biofuels: Fuel Diversity and Ef-fectiveness of Fuel Oxidation through Multiple Enzyme Cascades,” Electroanalysis, 2010, 22(7–8), 757–764.

(24) C. Lau, G. Martin, S.D. Minteer, and M.J. Cooney, “Devel-opment of a Chitosan Scaffold Electrode for Fuel Cell Applications,” Electroanalysis, 2010, 22(7–8), 793–798.

(25) R. Arechederra, B.L. Treu, and S.D. Minteer, “Develop-ment of Glycerol/Oxygen Biofuel Cells,” Journal of Power Sources, 173, 2007, 156–161.

(26) R. Arechederra and S.D. Minteer, “Organelle-Based Bio-fuel Cells: Immobilized Mitochondria at Carbon Paper Electrodes,” Electrochimica Acta, 2008, 53, 6698–6703.

(27) M. Germain, R. Arechederra, and S.D. Minteer, “Nitroaro-matic Actuation of Mitochondrial Bioelectrocatalysis for Self Powered Explosive Sensors,” Journal of the American Chemical Society, 2008, 130(46), 15272–15273.

(28) R. Arechederra, K. Boehm, and S.D. Minteer, “ Mitochon-drial Bioelectrocatalysis for Biofuel Cell Applications,” Electrochimica Acta, 2009, 54, 7268–7273.

Page 10: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

10

Selected Enzymes for Biofuel Cell ResearchEnzyme-based biofuel cells are incorporating a wide variety of enzymes. Sigma-Aldrich manufactures hundreds of enzymes, many of which may have potential applications in biofuel cells. For a complete list of enzymes, data sheets, assay protocols, and other enzyme-related technical resources visit the web-based Sigma Enzyme Explorer at sigma-aldrich.com/enzymeexplorer. The Enzyme Explorer also features the IUBMB on-line metabolic pathway chart with over 500 links to enzymes, substrates and cofactors.

The following products are only a small sample of the enzymes available from Sigma-Aldrich of potential use in biofuel cell research.

▼ Alcohol Dehydrogenase

ADHAlcohol Dehydro genase fromParvibaculum lavamentivorans

recombinant, expressed in Escherichia coli, activity: ≥40.0 units/mg

One unit corresponds to the amount of enzyme which reduces 1 μmole ethyl acetate per minute at pH 7.0 and 30 °C.75449-1ML 1 mL75449-5ML 5 mL

Alcohol Dehydro genase fromSaccharomyces cerevisiaeAlcohol:NAD+ oxidoreductase; Alcohol Dehydro-genase from yeast [9031-72-5]A 141 kDa tetramer containing 4 equal subunits. The active site of each subunit contains a zinc atom. Each active site also contains 2 reactive sulfhydryl groups and a histidine residue.

Isoelectric point: 5.4–5.8

Optimal pH: 8.6–9.0

Substrates: Yeast ADH is most active with ethanol and its activity decreases as the size of the alcohol increases or decreases. Branched chain alcohols and secondary alcohols also have very low activity.

KM (ethanol) = 2.1 × 10-3 M

KM (methanol = 1.3 × 10-1 M

KM (isopropanol) = 1.4 × 10-1 M

Selected Enzymes for Biofuel Cell Research

Inhibitors: Compounds that react with free sulfhydryls, including N-alkylmaleimides and iodoacetamide.

Zinc chelator inhibitors, including 1,10-phenanthroline, 8-hydroxyquinoline, 2,2’-dipyridyl, and thiourea.

Substrate analogue inhibitors, including β-NAD analogs, purine and pyrimidine derivatives, chloroethanol, and fluoroethanol.

Extinction Coefficient: E1% = 14.6 (water, 280 nm)

One unit will convert 1.0 μmole of ethanol to acetaldehyde per min at pH 8.8 at 25 °C.

�lyophilized powder (contains buffer salts), activity: ≥300 units/mg protein

Solids containing ≤ 2% citrate buffer salts suitable for conventional determination of β-NAD, β-NADH, ethanol and acetaldehyde

Contains bound β-NAD and β-NADH and is not suitable for the recycling microassay of β-NAD and β-NADH. If you require ADH for this purpose, see Cat. No. A3263.

A7011-7.5KU 7500 unitsA7011-15KU 15000 unitsA7011-30KU 30000 unitsA7011-75KU 75000 unitsA7011-150KU 150000 unitsA7011-300KU 300000 units

activity: ≥300 units/mg proteinSolids containing <2% citrate buffer salts suitable for recycling micro-assay of β-NAD and β-NADH

A3263-7.5KU 7500 unitsA3263-15KU 15000 unitsA3263-30KU 30000 unitsA3263-75KU 75000 unitsA3263-150KU 150000 units

Alcohol Dehydro genase, Deinococcusradiodurans, recombinant from E. coliADH[9031-72-5]

activity: ≥10000 units/mLOne unit corresponds to the amount of enzyme which reduces 1 μmole ethyl-2-oxo-4-phenylbutyrate per minute at pH 7.0 and 37 °C

16892-1ML 1 mL16892-5ML 5 mL

Alcohol Dehydro genase, NADP+

dependent from ThermoanaerobiumbrockiiAlcohol:NADP+ oxidoreductase; TBADH[9028-12-0]An extremely thermostable enzyme with broad substrate specificity for alcohols, ketones and acetaldehyde.

One unit will oxidize 1.0 μmole of 2-propanol to acetone per min at pH 7.8 at 40 °C in the presence of NADP+.

lyophilized powder, activity: 5–15 units/mg protein

Contains phosphate buffer salts and dithioerythritolA8435-100UN 100 unitsA8435-250UN 250 units

lyophilized powder, activity: 30–90 units/mg protein

Purified

Contains sodium citrate and dithioerythritol.A9287-100UN 100 units

Alcohol Dehydrogenase ▲

Bilirubin Oxi dase from MyrotheciumverrucariaBilirubin:oxygen oxidoreductase [80619-01-8]

lyophilized powder, activity: 15–65 units/mg protein

One unit will oxidize 1.0 μmole of bilirubin per min at pH 8.4 at 37 °C.

B0390-25UN 25 unitsB0390-100UN 100 units

Page 11: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 11

Cyto chrome c Oxi dase from bovine heartFerro cyto chrome-c:oxygen oxidoreductase, Com plex IV; EC 1.9.3.1[9001-16-5]Cytochrome c oxidase is the principal terminal oxidase of high oxygen affinity in the aerobic metabolism of all animals, plants, yeasts and some bacteria.

Supplied as a solution in 25 mM Tris-HCl buffer, pH 7.8, 5 mM EDTA, and 39 mM sodium dodecyl maltoside.

activity: ≥20 units/mg protein

One unit of cytochrome c oxidase will oxidize 1.0 μmole of ferrocytochrome c per min. at 25 °C at pH 6.0.C5499-250UG 250 μg

d-Fructose Dehydro genase fromGluconobacter industriusd-Fructose:(acceptor) 5-oxidoreductase[37250-85-4]

lyophilized powder, activity: 400–1,200 units/mg protein

Lyophilized powder containing citrate-phosphate buffer salts, TRITON® X-100, and stabilizer

One unit will convert 1.0 μmole d-fructose to 5-ketofructose per min at pH 4.5 at 37 °C.F5152-250UN 250 units

Glucose Dehydro genase from calf liverβ-d-Glucose: NAD[P]+ 1-oxidoreductase[9028-53-9]

activity: ~15 units/g solidCrude powder

One unit will oxidize 1.0 μmole of β-d-glucose to d-glucono-δ-lactone per min at pH 7.6 at 25 °C.G5625 Inquire

Glucose Dehydro genase fromPseudomonas sp.[9028-53-9]

powder, activity: ≥200 units/mgOne unit corresponds to the amount of enzyme which will oxidizes 1 μmole β-D-glucose to D-glucono-δ-lactone per minute at pH 8.0 and 37 °C19359-10MG-F 10 mg

Glucose Dehydro genase fromThermoplasma acidophilumβ-D-Glucose:NAD[P]+ 1-oxidoreductase[9028-53-9]

recombinant, expressed in Escherichia coli, ammonium sulfate suspension, activity: ≥100 units/mg protein (glucose substrate), activity: ≥50 units/mg protein (galactose substrate)

A thermostable enzyme with resistance to organic solvents. Enzyme also shows substantial activity with d-galactose as substrate.

Suspension in 2.8 M (NH4)2SO4, 50 mM phosphate buffer, pH 7.0

One unit will oxidize 1.0 μmole of d-glucose to d-glucono-δ-lactone per min at pH 7.0 at 37 °C in the presence of NADP+.G5909-100UN 100 unitsG5909-500UN 500 units

Glucose Oxi dase from Aspergillus nigerG.Od.; GOx; β-d-Glucose:oxygen 1-oxidoreductase [9001-37-0]Molecular Weight: 160 kDa (gel filtration)pI: 4.2

Extinction coefficient: E1% = 16.7 (280 nm)

Glucose oxidase from Aspergillus niger is a dimer consisting of 2 equal subunits with a molecular mass of 80 kDa each. Each subunit contains one flavin adenine dinulceotide moiety and one iron. The enzyme is a glycoprotein containing ~16% neutral sugar and 2% amino sugars. The enzyme also contains 3 cysteine residues and 8 potential sites for N-linked glycosylation.

Glucose oxidase is capable of oxidizing d-aldohexoses, monodeoxy-d-glucoses, and methyl-d-glucoses at varying rates.

The pH optimum for glucose oxidase is 5.5, while it has a broad activity range of pH 4–7. Glucose oxidase is specific for β-d-glucose with a KM of 33–110 mM.

Glucose oxidase does not require any activators, but it is inhibited by Ag+, Hg2+, Cu2+, phenylmercuric acetate, and p-chloromercuribenzoate. It is not inhibited by the nonmetallic SH reagents: N-ethylmaleimide, iodoacetate, and iodoacetamide.

Glucose oxidase can be utilized in the enzymatic determination of d-glucose in solution. As glucose oxidase oxidizes β-d-glucose to d-gluconolactate and hydrogen peroxide, horseradish peroxidase is often used as the coupling enzyme for glucose determination. Although glucose oxidase is specific for β-d-glucose, solutions of d-glucose can be quantified as α-d-glucose will mutorotate to β-d-glucose as the β-d-glucose is consumed by the enzymatic reaction.

One unit will oxidize 1.0 μmole of β-d-glucose to d-gluconolactone and H2O2 per min at pH 5.1 at 35 °C, equivalent to an O2 uptake of 22.4 μl per min. If the reaction mixture is saturated with oxygen, the activity may increase by up to 100%.

lyophilized powder, activity: 100,000–250,000 units/g solid (without added oxygen)

May contain traces of amylase, maltase, glycogenase, invertase, and galactose oxidase.

Protein determined by biuret

G7141-10KU 10000 unitsG7141-50KU 50000 unitsG7141-250KU 250000 unitsG7141-1MU 1000000 unitsG7141-2.5MU 2500000 units

▼ Laccase[80498-15-3]

Laccase from Rhus verniciferaBen zene diol:oxygen oxidoreductase

crude acetone powder, activity: ≥50 units/mg solid

One unit will produce a ΔA530 of 0.001 per min at pH 6.5 at 30 °C in a 3 mL reaction volume using syringaldazine as substrate.L2157-10KU 10000 units

Laccase from Trametes versicolor

former nomenclature: Coriolus versicolor

powder, activity: >20 units/mgOne unit corresponds to the amount of enzyme which converts 1 μmole of catechol per minute at pH 4.5 and 25 °C53739-100MG-F 100 mg53739-1G-F 1 g

powder, activity: ≥0.5 units/mgOne unit corresponds to the amount of enzyme which converts 1 μmole of catechol per minute at pH 6.0 and 25 °C38429-1G 1 g38429-10G 10 g

Laccase ▲

Page 12: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

12

Enzymes and Reagents for Ethanol Research

Enzymes and Reagents for Ethanol ResearchEnzymes for Lignocellulosic Ethanol Research

Middle Lamella

Pectin

Plant Cell Wall

Hemicellulose

Cellulose Microfibril

Cell Wall

Plasma Membrane

Visit the Enzyme Explorer Assay Library

Features over 600 detailed procedures for measuring enzyme activity and related metabolites. The Library is the result of over ten years of in-house work on

analytical procedures developed by Sigma-Aldrich® scientists.

Visit sigma.com/enzymeexplorer

Enzymes for Lignocellulosic Ethanol ResearchSigma-Aldrich is committed to helping unlock today's challenge of releasing the energy of glucose that nature has cleverly locked into lignocellulosic biomass. To the untrained eye, starch and cellulose structures appear almost identical. Yet the barriers between cellulosic biomass hydrolysis and ethanol production appear have proven to be orders of magnitude more challenging than with starch derived biomass.

Although many of the biochemical aspects of these challenges are well understood, they remain an enigma of nature. The two main, and closely related hindrances to the enzymatic hydrolysis of cellulosic polymers are:

How do we physically dismantle biomass on a molecular level to yield cellulosic polymers available to hydrolysis by cellulase and other glycolytic enzymes? How do we

penetrate the barrier posed by the closely integrated network of lignins surrounding cellulose microfibrils?

Page 13: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 13

O

OCH2OH

OH

OHO

CH2OH

OH

OH

OH

O

OCH2OH

OH

OH

O

OCH2OH

OH

OH

O

OCH2OH

OH

OHO

OH

CH2OH

OH

OH

O

endo-1,4-β-D-Glucanase

Cellobiosidase II

Cellobiosidase I

b-Glucosidase

O

O

OCH2OH

OH

OHO

CH2OH

OH

OH

O

O

CH2OH

OH

OH

O OCH2OH

OHOH

O

O

OH

OH

O

Cellulase

CellulaseLaminaranase

Cellulase

b-(1-4)-D-glucose

b-(1-4)-D-glucose

b-(1-4)-D-glucose b-(1-3)-D-glucose

CH2OH

O

O

OH

OHO

OH OH

O

O

OH

OHO

OH

OH

O

O

OXylanase

Cellulase catalyzes the endohydrolysis of β−(1→4)-d-glucosidic linkages in cellulose, lichenin and cereal β-d-glucans

Most cellulase preparations contain various classes of cellulases and related activities.

The endo-β-(1• →4)-d-glucanases (EGs) cleave cellulose in its internal non-terminal regions, yielding oligosaccharides.

The two forms of cellobiohydrolases (CBH) are •considered exo-β-(1→4)-d-glucanases, releasing cellobiose disaccharides from the cellulose chain reducing end (CBHI), and non-reducing end (CBHII).

β-Glucosidase is an exohydrolase that yields glucose •monosaccharides from soluble oligosaccharaides such as cellobiose.

Other activities that can be found in cellulase preparations include xylanase, hemicellulase, and laminarinase.

Cereal β-Glucan is a polymer of β-(1→4)- d-glycopyranosyl units occupying as predominantly cellotriose and cellotetraose separated by single β-(1→3)-d-glycopyranosyl units. Crosslinking can occur within the consecutive cellotriose regions.

Hemicelluloses are a group of plant-derived heteropoly-saccharides associated with cellulose and lignin. The most common hemicelluloses are xylan, glucuronoxylan, arabinoxylan, glucomannan and xyloglucan. In angio-sperms, the principal hemicellulose component, xylan, is a polymer of β−(1→4)-d-xylopyranose. In arabinoxylan, branching occurs at the C2 & C3 postions with a-L-arab-inofunaose. Glucuronoxylan, also found in angiosperms, has the xylan backbone with 4-0 methylglucuronic acid branching. In addition, arabinose branching as well as acetylation may be present. Gymnosperms contain glucomannans comprised primarily of d-mannosyl and d-glucosyl residues..

Hemicellulase preparations are typically a mixture of •glycolytic enzymes containing xylanase, mananase and other activities.

Xylanase catalyzes the endohydrolysis of β−(1• →4)- d-xylosidic linkages in xylans yielding various β−(1→4)-d-xylooligosaccharides.

Cellulases and Related Enzyme Activities

Page 14: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

14

Cellobiase from Aspergillus niger

Cellobiase enzyme preparation obtained by submerged fermentation of an Aspergillus niger microorganism. The cellobiase hydrolyzes cellobiose to glucose.

Novozyme 188 liquid, activity: ≥250 units/g

A product of Novozyme Corp.C6105-50ML 50 mLC6105-250ML 250 mL

▼ Cellulase

[9012-54-8]

Cellulase from Aspergillus sp.Carezyme 1000L®

activity: ≥1000 units/g

produced by submerged fermentation of a genetically modified Aspergillus microorganism

A product of Novozyme Corp.C2605-50ML 50 mLC2605-250ML 250 mL

Cellulase from Trichodermalongibrachiatum

powder, activity: ≥1.0 unit/mg solidAn acid cellulase with xylanase, pectinase, mannanase, xyloglucanase, laminarase, β-glucosidase, β-xylosidase, α-L-arabinofuranosidase, amylase, and protease activities

One unit will liberate 1.0 μmole of glucose from cellulose in one hour at pH 5.0 at 37 °C (2 hr incubation time).

C9748-100G 100 g

Cellulase from Trichoderma reeseiATCC 269211,4-(1,3:1,4)-β-D-Glucan 4-glucano-hydrol ase

lyophilized powder, activity: ≥1 unit/mg solid

One unit will liberate 1.0 μmole of glucose from cellulose in one hr at pH 5.0 at 37 °C (2 hr incubation time).C8546-2.5KU 2500 unitsC8546-5KU 5000 unitsC8546-10KU 10000 units

Celluclast® 1.5L aqueous solution, activity: ≥700 units/g

Produced by submerged fermentation of a selected strain of the fungus Trichoderma reesei and catalyzes the breakdown of cellulose into glucose, cellobiose, and higher glucose polymers.

A product of Novozyme Corp.

C2730-50ML 50 mL

Cellulase from Trichoderma viride1,4-(1,3:1,4)-β-D-Glucan 4-glucano-hydrol aseOne unit will liberate 1.0 μmole of glucose from cellulose in one hour at pH 5.0 at 37 °C (2 hr incubation time).

crude powder, activity: 3–10 units/mg solid

C9422-5KU 5000 unitsC9422-10KU 10000 units

Onozuka RS powder, activity: ≥5,000 units/g solid

Manufactured by YakultC0615-1G 1 g

Cellulase ▲

Driselase® from Basidiomycetes sp.[85186-71-6]Crude powder containing laminarinase, xylanase and cellulase.

powder

D9515-1G 1 gD9515-5G 5 gD9515-25G 25 g

▼ β-Glucanase

β-Glucanase from Aspergillus niger[9074-98-0]

powder, activity: ~1 units/mgOne unit corresponds to the amount of enzyme which will release 1 μmole of reducing sugar equivalents (expressed as glucose) per minute at pH 5.0 and 55 °C, using β-d-glucan (Cat. No. 49102) as substrate49101-100MG 100 mg49101-500MG 500 mg

β-Glucanase from Bacillus subtilis[9074-98-0]

powder, activity: ~1 units/mgOne unit corresponds to the amount of enzyme which will release 1 μmol of reducing sugar equivalents (expressed as glucose) per minute of pH 6.0 and 55 °C, using β-d-glucan (Cat. No. 49102) as substrate49106-100MG 100 mg

β-Glucanase from Trichodermalongibrachiatum

A mixture composed mainly of β-1→3 / 1→4-glucanase, xylanase, and cellulase activities. β-glucosidase, β-xylosidase, α-L-arabinofuranosidase,

amylase, and protease activities are also present.

activity: ≥1.0 units/mg solid

One unit will liberate 1.0 μmole of glucose from cellulose in one hr at pH 5.0 at 37 °C (2 hr incubation time).G4423-100G 100 g

β-Glucanase ▲

β-(1→3)-d-Glucanase from Helix pomatia

[9044-93-3]

powder, activity: 0.5–1.5 units/mgOne unit corresponds to the amount of enzyme which liberates 1 μmole of glucose from laminarin (Cat. No. 61340) per minute at pH 5.0 and 37 °C

Improved filterability of wines by enzymic decomposition of carbohydrate-containing colloids1; Induction of hydrolases as a defense reaction against pathogens, review2

Lit cited: 1. Wucherpfennig, K., and Dietrich, H. , Wein-wirtschaft 118, 598 (1982); 2. Boller, T. , UCLA Symp. Mol. Cell Biol., New Ser. 22, 247 (1985)

49103-10MG 10 mg49103-50MG 50 mg

β-Gluco sidase from almondsβ-d-Gluco side gluco hydrol ase [9001-22-3]

lyophilized powder, activity: ≥2 units/mg solidCrude

One unit will liberate 1.0 μmole of glucose from salicin per min at pH 5.0 at 37 °C.G0395-2.5KU 2500 unitsG0395-5KU 5000 unitsG0395-50KU 50000 units

lyophilized powder, activity: 20–40 units/mg solidChromatographically purified

One unit will liberate 1.0 μmole of glucose from salicin per min at pH 5.0 at 37 °C.G4511-100UN 100 unitsG4511-250UN 250 unitsG4511-1KU 1000 units

Hemicellulase from Aspergillus niger[9025-56-3]

powder, activity: 0.3–3.0 unit/mg solid (using a β-galactose dehydrogenase system and locust bean gum as substrate)

An undefined mixture of glycolytic enzymes usually containing xylanase, mannanase and other activities.

One unit will produce a relative fluidity change of 1 per 5 minutes using locust bean gum as substrate at pH 4.5 at 40 °C

H2125-150KU 150000 units

Page 15: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 15

Online Metabolomics Resource Use the IUBMB–Sigma-Aldrich Interactive Metabolic Pathway Chart to find the Metabolite Standards you need.

http://www.sigma-aldrich.com/ProductLookup.html?ProdNo=C7352&Brand=SIGMA

The Metabolic Pathways Map contains over 500 hyperlinks to Sigma product listings. Just click on the metabolite name or the enzyme’s E.C. number to access product information.

You can access the chart at

sigma-aldrich.com/metpath

▼ Laminarinase

Endo-1,3(4)-β-glucanase[62213-14-3]

Laminarinase from Penicillium sp.1,3-(1,3:1,4)-β-d-Glucan 3(4)-glucano hydrol ase

lyophilized powder, activity: 5–10 units/mg protein

Lyophilized powder containing acetate buffer salts

One unit will liberate 1.0 mg of reducing sugar (measured as glucose) from laminarin per min at pH 5.0 at 37 °C.L9259-25UN 25 units

Laminarinase from Trichoderma sp.

1,3-[1,3;1,4]-β-d-Glucan 3(4)-glucano hydrol ase

View more information on enzymes for complex carbohydrate analysis at sigma-aldrich.com/enzymeexplorer

powder, activity: 100–400 units/g solidContains chitinase activity.

One unit will liberate 1.0 mg of reducing sugar (measured as glucose) from laminarin per min at pH 5.0 at 37 °C.

L5272-5UN 5 unitsL5272-25UN 25 units

Laminarinase ▲

▼ XylanaseView more information on enzymes for complex carbohydrate analysis at sigma-aldrich.com/enzymeexplorer

Xylanase from Thermomyces lanuginosus[37278-89-0]Purified endo-β−(1→4)-xylanase from Thermomyces lanuginosus produced by submerged fermentation of a genetically modified Aspergillus oryzae microorganism

Pentopan Mono BG® powder, activity: ≥2500 units/g, recombinant, expressed in Aspergillus oryzae

A product of Novozyme Corp.

X2753-10G 10 gX2753-50G 50 g

Xylanase from Trichoderma virideendo-1,4-β-Xylanase; 1,4-β-d-Xylanxylano hydrol ase [9025-57-4]

lyophilized powder, activity: 100–300 units/mg protein

Contains sorbitol and sodium acetate buffer salts

One unit will liberate 1 μmole of reducing sugar measured as xylose equivalents from xylan (Cat. No. X0627) per min at pH 4.5 at 30 °C.

X3876-250UN 250 unitsX3876-1KU 1000 units

Xylanase ▲

endo-1,4-β-Xylanase from Trichodermalongibrachiatum

1,4-β-d-Xylanxylano hydrol ase

Primary activity is an acid-neutral endo-1,4-β-d-xylanase, additional activities include β-glucanase, cellulase, pectinase, mannanase, xyloglucanase, laminarase, β-glucosidase, β-xylosidase, α-L-arabinofuranosidase, amylase, and protease.

activity: ≥1.0 units/mg solid

One unit will liberate 1 μmole of reducing sugar measured as xylose equivalents from xylan (Cat. No. X0627) per min at pH 4.5 at 30 °C.

X2629-100G 100 g

Page 16: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

16

Enzymes for Pectin HydroylsisPectins are complex-branched heteropolysaccharides primarily containing an α-(1→4) polygalacturonic acid backbone which can be randomly acetylated and methylated. Three different pectins have been isolated from plant cell walls.

COOHO

COCH 3

OH

OH

O

O

OH

OOCH3

O

OCOOH

OH

OH

O

O

COCH 3

OH

OH

O

Pectinase Pectinase

Endo-pectin Lyase Pectinesterase

Homogalacturonan is a composed of a poly-α−(1→4)-galacturonic acid backbone with random partial methylation and acetylation.

O

CH 3

OH

OH

O

HOCH2OHCH2OH CH2OH

O

OH

CH2OH

CH2OHO

OHO

O

O

OH

O

O

CH 3

OH

OH

O

OCOCH 3

OH

OH

O

O

CH 3

OH

O

OO

COCH 3

OH

OH

O

O

CH 3

OHO

COOH

OH

OH

OO

CH2OH

O

OH

OH

O OO

OH

OH

O

OH

OH

O

HO

Oligo-a-(1-3)-D-arabinose branching

Oligo-b-(1-4)-D-galactose branching

b-Galactosidase

a-(1-2)-L-rhamnose

α-(1-4)-D-galacturonic acid

Rhamnogalacturonan I is composed of alternating α−(1→2)-l-rhamnosyl-α−(1→4)-d-galacturonosyl backbone with two types of branching composed of a ribofuranose or galactose oligomers.

COOH

O

COOCH 3

OH O

O

O

OH

O

O

COOH

OOCCH3

OH

O

O

COOCH 3

OH

OH

O

COOH

O

COOCH 3O

OH

OO

OOCCH3

O

O

O

COOH

OH

OOCCH3

O

O

COOCH 3

OH

O

O

OH

α-3-deoxy-D-manno-2-octulosonic acid (Kdo)

α-Rhamnoseβ-Arabinose

β-3-deoxy-D-lyxo-2-heptulosonic acid (Dha)

β-D-Apiose

3−β-L-Rhamnose2−α-L-Aceric(O-acetyl)β-D-Galactose

2 α-L-Arabinopyra nose2 α-L-Rhamnose

β-L-Arabinofuranose

α-D-fucose

(2-O-methyl, 3-O-acetyl-)

3'

5 5

4

2

β-D-Apiose3'

2−β-L-Rhamnose 4 α-L-fucose

β-D-Glucuronic Acid

α-D-Xylose(2-O-methyl)

β-D-Galactose

α-D-Galactose3

α-D-Galactose

2

4

3

Pectinesterase

Pectinase

Rhamnogalacturonan II is composed of poly-α−(1→4)-d-galacturonic acid backbone with random partial methylation, acetylation and four types of branching.

Page 17: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 17

▼ Pectinase

Pectinase from Aspergillus aculeatus

Pectinex® Ultra SPL aqueous solution, activity: ≥9,500 units/mL

Highly active pectolytic enzyme preparation produced by a selected strain of Aspergillus aculeatus

A product of Novozyme Corp.P2611-50ML 50 mLP2611-250ML 250 mL

Pectinase from Aspergillus nigerPoly galacturonase solution from Aspergillus niger; Poly-(1,4-α-d-galacturonide) glycano hydrol ase[9032-75-1]Used in plant protoplast preparation to digest cell wall prior to organelle isolation.

aqueous glycerol solution, activity: ≥5 units/mg protein (Lowry)

Solution in 40% glycerol

One unit will liberate 1.0 μmole of galacturonic acid from polygalacturonic acid per min at pH 4.0 at 25 °C.P4716-5KU 5000 unitsP4716-10KU 10000 unitsP4716-25KU 25000 unitsP4716-100KU 100000 units

Pectinase from Aspergillus niger Pectinex 3XL® aqueous solutionPectolytic enzyme preparation produced from a selected strain of Aspergillus niger: contains mainly pectintranseliminase, polygalacturonase, and pectinesterase and small amounts of hemicellulases and cellulases.

A product of Novozyme Corp.P2736-50ML 50 mLP2736-250ML 250 mL

Pectinase from Rhizopus sp.Poly-(1,4-α-d-galacturonide) glycano hydrol ase; Poly-galacturonase[9032-75-1]Used in plant protoplast preparation to digest cell wall prior to organelle isolation.

Macerozyme R-10 powder, activity: 400–800 units/g solid

A source of pectinase activity, also containing cellulase and hemicellulase activities.

One unit will liberate 1.0 μmole of galacturonic acid from polygalacturonic acid per min at pH 4.0 at 25 °C.

P2401-500UN 500 unitsP2401-1KU 1000 unitsP2401-5KU 5000 units

Pectinase ▲

Pectolyase from Aspergillus japonicus

Reported to contain two types of pectinase, endopolygalacturonase (EC3.2.1.15), endopectin lyase (EC4.2.2.10) and a maceration stimulating factor.

Used in plant protoplast preparation to digest cell wall prior to organelle isolation.

Check out the Sigma-Aldrich Renewable & Alternative Energy Web Portal: sigma-aldrich.com/renewable

Materials for Renewable and Alternative Energy Solutions

Solar Energy Conversion (Organic, Crystalline •and Thin Film Photovoltaics)

Hydrogen Economy •Supercapacitors/Advanced Batteries•Alternative Fuels•

sigma-aldrich.com

Aldrich Materials Science — We focus on materials so you can focus on results.

Feeling the Heat? Then Capture It!

lyophilized powder, activity: ≥0.3 units/mg solidOne unit will liberate 1.0 μmole of galacturonic acid from polygalacturonic acid per min at pH 5.5 at 25 °C.P3026-100MG 100 mgP3026-250MG 250 mgP3026-1G 1 g

Page 18: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

18

Enzymes for Lignin DepolymerizationTo some, lignin appears to be a foreign substance resembling a randomly modified polystyrene polymer, not resembling any of the more familiar biopolymers composed of carbohydrates, amino acids or nucleotides. However, next to cellulose, it is the second most abundant biopolymer on earth comprising as much as 30% of the dry mass of wood. Unlike other biopolymers, enzymatic degradation is oxidative versus hydrolytic and is limited to a select group of fungi and bacteria. Lignins appear to be heterogeneous and random with regards to degree of polymerization, branching, and monomer composition and sequence.

HO

OH

HO

CH3OOH

HO

CH3OOH

OCH3

p-Coumaryl alcohol Coniferyl alcohol Sinapyl alcohol

Lignin Monomers

O

OH

OH

O

O

H

O

O CH3O

HO

O

CH3O

OH

OH

H

HO

CH3O

O

CH3O

CH 3O

HO OHO

O CH3O CH3O

O

CH3OHO

HOHO

O

O

CH3O

CH3OO

O O

OH

O

CH3O

OCH3

HO

O

OCH3

HO

HO

HO

HO

HO

O

OO

OH

OH

O

O

O

H

OH

OH

OH CH 3O

CH3O

CH3O

O

HO

CH3O

Lignin

Page 19: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 19

▼ Laccase

[80498-15-3]

Laccase from Rhus verniciferaBen zene diol:oxygen oxidoreductase crude acetone powder, activity: ≥50 units/mg

solidOne unit will produce a ΔA530 of 0.001 per min at pH 6.5 at 30 °C in a 3 mL reaction volume using syringaldazine as substrate.

L2157-10KU 10000 units

Laccase from Trametes versicolor

former nomenclature: Coriolus versicolor powder, activity: >20 units/mgOne unit corresponds to the amount of enzyme which converts 1 μmole of catechol per minute at pH 4.5 and 25 °C

53739-100MG-F 100 mg53739-1G-F 1 g

HO OH

O

CH3O

CH3O

O

OHHO

CH3O

O

O H

O

CH3O

H2O2 H2O

Lignin Peroxidase

Lignin peroxidase catalyzes the oxidative cleavage of carbon-carbon and ether bonds in lignin-related compounds.

2 Mn(II) + 2 H+ + H2O2 2 Mn(III) + 2 H2O

Manganese Peroxidase

Manganese peroxidase is a hemoprotein involved in the oxidative degradation of lignin in white rot basidiomycetes.

powder, activity: ≥0.5 units/mgOne unit corresponds to the amount of enzyme which converts 1 μmole of catechol per minute at pH 6.0 and 25 °C38429-1G 1 g38429-10G 10 g

Laccase, Coriolus versicolor, CLEA

Laccase, Coriolus versicolor, cross-linked enzyme aggregate activity: ≥0.3 units/mg

One unit corresponds to the amount of enzyme which oxidizes 1 μmol ABTS per minute at pH 4.5 and 25°C38837-100MG 100 mg

Laccase ▲

Lignin Peroxi daseLiP; Peroxi dase, lignin; Ligninase[42613-30-9]

powder, activity: >0.1 units/mgOne unit corresponds to the amount of enzyme, which oxidizes 1 μmole 3.4-dimethoxybenzyl alcohol per minute at pH 3.0 and 30 °C 42603-10MG-F 10 mg

Manganese Peroxi dase fromNematoloma frowardii[114995-15-2]

41563 Inquire

Manganese peroxi dase from white-rot fungus (Phanerochaete chrysosporium)MnP; Peroxi dase, manganese; Manganese-dependent lignin peroxi dase[114995-15-2]

powder, activity: ≥20 U/gonly partially soluble in water or buffer

One unit corresponds to the amount of enzyme, which oxidizes 1 μmole Mn2+ per minute to Mn3+ at pH 4.5 and 25 °C

This product is supplied as a mixture of isozymes, mol. mass (40–65 kDa).93014-10MG-F 10 mg

Page 20: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

20

Enzymatic hydrolysis of starch-based biomass to yield monomeric glucose is often a multi-enzyme process and can involve α-amylase, β-amylase, amyloglucosidase, isoamylase and α-glucosidase.

α-Amylase catalyzes the endohydrolysis •of α−(1→4)-d-glucosidic linkages in polysaccharides containing three or more α−(1→4)-linked d-glucose units.

β-Amylase catalyzes the exohydrolysis •of α−(1→4)-d-glucosidic linkages in polysaccharides resulting in the successive liberation of maltose units from the non-reducing ends of the chains.

Amyloglucosidase (glucoamylase) catalyzes •the hydrolysis of terminal α−(1→4)-d-glucose residues successively from the non-reducing ends of maltooligo- and polysaccharides with release of β-d-glucose. Most forms of the enzyme can rapidly hydrolyze α−(1→6)-d-glucosidic bonds when the next bond in the sequence is

α-Amylase n

OCH2OH

OH

OH

OCH2OH

OH

OHOO

OCH2OH

OH

OH

O

O

CH2

OH

OHO

OCH2OH

OH

OH

O

OCH2OH

OH

OHO O

Ox

n

OCH2OH

OH

OH

OCH2OH

OH

OHOO

OCH2OH

OH

OH

O

OCH2

OH

OHO

OCH2OH

OH

OH

O

OCH2OH

OH

OHO

O

OCH2OH

OH

OHOOH

X

n

X

OCH2OH

OH

OH

OCH2OH

OH

OHOO

OCH2OH

OH

OH

O

OCH2

OH

OHO

O

HO

n

OH

OCH2OH

OH

OH

OCH2OH

OH

OH

O

OCH2

OH

OHO

O

HO

Amyloglucosidasea-Glucosidase

b-Amylase

Isoamylase

Amyloglucosidase& a-Glucosidase(terminal (1–6) residues)

Amylopectin is a polymer of α-(1→4)-d-glycopyranosyl units with approximately 4% α-(1→6)-d-glycopyranosyl branching.

OCH2OH

OH

OH

O

OCH2OH

OH

OHO

OCH2O

OH

OH

O

OCH2OH

OH

OHO O

n

OCH2OH

OH

OH

O

OCH2OH

OH

OHO

OCH2OH

OH

OH

OOH

n

OCH2OH

OH

OH

O

OCH2OH

OH

OHOOH

Amyloglucosidasea-Glucosidase

b-Amylase

a-Amylase Amylose is a polymer of

α-(1→4)-glucopyranosyl units.

1→4- and some preparations of this enzyme hydrolyze 1→6- and 1→3-α-d-glucosidic bonds in other polysaccharides.

Isoamylase catalyzes the hydrolysis of •α−(1→6)-d-glucosidic branch linkages in amylopectin and β-limit dextrins.

α-Glucosidase catalyzes the hydrolysis of •terminal 1→4-linked α-d-glucose residues successively from the non-reducing ends of maltooligo- and to a lesser extent polysaccharides with release of β-d-glucose. Most forms of the enzyme can slowly hydrolyze α−(1→6)-d-glucosidic bonds.

Enzymes for Starch Hydrolysis

Page 21: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 21

▼ α-Amylase

α-Amyl ase from Aspergillus oryzae1,4-α-d-Glucan-glucano hydrol ase[9001-19-8]

lyophilized powder, activity: 150–250 units/mg protein (biuret)

Crude

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.

A6211 Inquire

Fung amyl® 800 L aqueous solution, activity: ≥800 FAU/g

A product of Novozyme Corp.

A8220-50ML 50 mLA8220-250ML 250 mL

Taka-Diastase from Aspergillus oryzae; Taka-Amyl-ase A powder, activity: ~1.5 units/mg (~0.2 U acc. to Willstätter)

One unit corresponds to the amount of enzyme which liberates 1 μmol maltose per minute at pH 6.0 and 25 °C (starch acc. to Zulkowsky, Fluka No. 85642, as substrate).

Molecular weight1; Product distribution in the hydrolysis of amylose2; Application in (selective) hydrolysis/condensation of glycosidic bonds3; Suitable for use in thiamine determination4.

Lit cited: 1. T. Takagi, J. Biochem. 89, 363 (1981); 2. H. Kondo et al., J. Biochem. 87, 1053 (1980); 3. K. Fujita et al., Bull. Chem. Soc. Jpn. 62, 3150 (1989); 4. P.W. Defibaugh, J. Assoc. Off. Anal. Chem. 70, 514 (1987)

86250-100G 100 g86250-500G 500 g

spray-dried (powder), activity: ≥150 units/mg protein (biuret)

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.

A9857-250KU 250000 unitsA9857-1MU 1000000 unitsA9857-5MU 5000000 units

α-Amylase from Bacillus sp.

ammonium sulfate suspension, activity: 40–90 units/mL packed gel

Suspension in 2.0 M (NH4)2SO4, pH 7.0

One unit will liberate 1.0 μmole of maltose from starch per min at pH 6.9 at 30 °C. (Each unit is equivalent to 0.7 of mg maltose liberated per 3 min. at 20 °C)

A0909 Inquire

α-Amyl ase from Bacillus amyloliquefaciens1,4-α-d-Glucan Glucano-hydrol ase[9000-85-5]An endoamylase that randomly hydrolyzes α-(1→4)-glycosidic linkages in amylose and amylopectin. The breakdown products are oligosaccharides and dextrins of varying chain length. This enzyme is active at high temperatures (70−90 °C).

One unit is the amount of enzyme which dextrinizes 5.26 g of dry starch per hour under standard conditions.

BAN™ 240L liquid, activity: ≥250 units/gA product of Novozyme Corp.A7595-50ML 50 mLA7595-250ML 250 mL

α-Amyl ase from Bacillus licheniformis1,4-α-d-Glucan-glucano hydrol ase[9000-85-5]One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.

Term amyl® 120 saline solution, activity: 500–1,000 units/mg protein (biuret)

Aqueous solution containing approx. 15% sodium chloride and 25% sucrose.

Reported to be heat stable at temperatures as high as ~90 °C.

A product of Novozyme Corp.

A3403-500KU 500000 unitsA3403-1MU 1000000 unitsA3403-5MU 5000000 units

lyophilized powder, activity: 500–1,500 units/mg protein

Heat-stable formulation

Lyophilized powder containing potassium phosphate

A4551-100MG 100 mgA4551-1G 1 g

α-Amyl ase from Bacillus subtilis[9000-90-2]

powder, activity: ~380 units/mgOne unit is the amount of enzyme which liberates 1 μmole of maltose per minute at pH 6.9 and 25 °C (using Cat. No. 85642 as substrate)

Heat stability of bacterial α-amylases1; Action pattern on sweet potato starch, amylose and amylopectin2; Action on native wheat starch.3

Lit cited: 1. J.E. Anderson et al., J. Food Sci. 48, 1622 (1983); 2. P.L. Chang Rupp, S.J. Schwartz, J. Food Biochem. 12, 191 (1988); 3. P. Colonna et al., Biotechnol. Bioeng. 31, 895 (1988).

10069-250MG 250 mg10069-1G 1 g

powder, activity: ~50 units/mgOne unit corresponds to the amount of enzyme which liberates 1 μmole maltose per minute at pH 6.9 at 25 °C (starch acc. to Zulkowsky, Cat. No. 85642, as substrate).

Applications in (selective) hydrolysis/condensations of glycosidic bonds.1,2

Lit cited: 1. Y. Takasaki, Agric. Biol. Chem. 49, 1091 (1985); 2. C.S. Su, C.P. Yang, J. Chem. Technol. Biotechnol. 48, 313 (1990)

10070-10G 10 g10070-50G 50 g

α-Amyl ase from barley malt1,4-α-d-Glucan-glucano hydrol ase[9000-90-2]

powderβ-amylase activity: ≥1 unit/mg solid

α-amylase activity: ≥1 unit/mg solid

Package size based on α-amylase activity

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.

A2771 Inquire

α-Amyl ase from human pancreas[9000-90-2]

lyophilized powder, activity: ≥100 units/mg protein

Lyophilized from Tris buffer containing NaCl and CaCl2.

Prepared by modified method of Levitzki et al.

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.A9972-100UG 100 μg

α-Amyl ase from human saliva1,4-α-d-Glucan-glucano hydrol ase[9000-90-2]

lyophilized powder, activity: 300–1,500 units/mg protein

Lyophilized powder containing (NH4)2SO4 and sodium citrate.

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.A1031-1KU 1000 unitsA1031-5KU 5000 units

lyophilized powder, activity: 1,000–3,000 units/mg protein

Lyophilized powder containing (NH4)2SO4 and sodium citrate

Chromatographically purified

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.A0521-100UN 100 unitsA0521-500UN 500 unitsA0521-2.5KU 2500 units

Page 22: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

22

α-Amyl ase from porcine pancreas

Molecular mass: 51–54 kDa.

α-Amylase isolated from porcine pancreas is a glycoprotein. It is a single polypeptide chain of ~475 residues containing two SH groups and four disulfide bridges and a tightly bound Ca2+ necessary for stability. Chloride ions are necessary for activity and stability. The pH range for activity is 5.5 to 8.0, with the pH optimum at 7.

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C.

activity: ≥10 units/mg solidContains lactose

Package size based on α-amylase activityA3176-500KU 500000 unitsA3176-1MU 1000000 unitsA3176-2.5MU 2500000 unitsA3176-5MU 5000000 unitsA3176-10MU 10000000 units

DFP Treated, saline suspension, activity: 700–1400 units/mg protein (E 1%/280)

Suspension in 2.9 M NaCl solution containing 3 mM CaCl2DFP treated. 2× crystallized

View more information on enzymes for complex carbohydrate analysis at sigma-aldrich.com/enzymeexplorer

A6255-10MG 10 mgA6255-25MG 25 mgA6255-100MG 100 mg

DFP treated, ammonium sulfate suspension, activity: ≥500 units/mg protein (E 1%/280)

Suspension in 3.2 M (NH4)2SO4, pH 6.1

A2643 Inquire

PMSF treated, saline suspension, activity: 700–1400 units/mg protein (E 1%/280)

Suspension in 2.9 M NaCl solution containing 3 mM CaCl2.

2× crystallized

A4268-25MG 25 mgA4268-100MG 100 mg

α-Amylase ▲

▼ β-Amylase

1,4-α-d-Glucan malto hydrol ase[9000-91-3]

β-Amyl ase from barley

activity: 20–80 units/mg protein (biuret)Crude

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 4.8 at 20 °C.A7130-10KU 10000 unitsA7130-50KU 50000 unitsA7130-250KU 250000 units

β-Amyl ase from sweet potato

ammonium sulfate suspension, activity: ≥750 units/mg protein (E 1%/280)

Crystalline suspension in 2.3 M (NH4)2SO4

One unit will liberate 1.0 mg of maltose from starch in 3 min at pH 4.8 at 20 °C.

View more information on enzymes for complex carbohydrate analysis at sigma-aldrich.com/enzymeexplorer

A7005-10KU 10000 unitsA7005-25KU 25000 unitsA7005-50KU 50000 unitsA7005-100KU 100000 units

β-Amylase ▲

α-Amyl ase, heat-stableα-Amyl ase from Bacillus licheniformis; 1,4-α-D-Glucan-glucano hydrol ase[9000-85-5]

solution, for use in Total Dietary Fiber Assay, TDF-100A

A3306-10ML 10 mL

Amyl ase, Malto genic from Bacillus sp.Malto genic Amyl ase; Glucan 1,4-α-malto hydrol ase Nov amyl 1000BG

A2986-10G 10 g

▼ AmyloglucosidaseExo-1,4-α-gluco sidase; 1,4-α-d-Glucan gluco hydrol ase; Gluco amyl ase[9032-08-0]

Amylo gluco sidase from Aspergillus niger

lyophilized, powder, activity: ~70 units/mgFor glycogen determination in whole yeast cells; Synthesis of hetero-oligosaccharides by glucoamylase in reverse.

One unit corresponds to the amount of enzyme which liberates 1 μmole of glucose per minute at pH 4.8 and 60 °C (starch acc. to Zulkowsky, Cat. No. 85642, as substrate).10115-1G-F 1 g10115-5G-F 5 g

lyophilized powder, activity: 30–60 units/mg protein (biuret)

Lyophilized powder containing less than 0.02% glucose

One unit will liberate 1.0 mg of glucose from starch in 3 min at pH 4.5 at 55 °C.A7420-5MG 5 mgA7420-25MG 25 mgA7420-100MG 100 mg

powder, activity: ~120 units/mgOne unit corresponds to the amount of enzyme which liberates 1 μmol glucose per minute at pH 4.8 and 60 °C (starch, Fluka No. 85642, as substrate).

Synthesis of hetero-oligosaccharides by glucoamylase in reverse1.

Lit cited: 1. R.A. Rastall et al., Biotechnol. Lett. 13, 501 (1991)

10113-1G 1 g10113-5G 5 g

Amylo gluco sidase from Rhizopus sp.

activity: ≥5,000 units/g solidOne unit will liberate 1.0 mg of glucose from starch in 3 min at pH 4.5 at 55 °C.

Using soluble starch, almost theoretical yields of glucose are obtained.

A7255 Inquire

Amyloglucosidase ▲

▼ α-Glucosidaseα-d-Gluco side gluco hydrol ase[9001-42-7]Protein determined by biuret.

α-Gluco sidase from BacillusstearothermophilusMaltase

Maltase lyophilized powder, activity: ≥50 units/mg protein

Lyophilized powder containing potassium phosphate buffer salt

One unit will liberate 1.0 μmole of d-glucose from p-nitrophenyl α-d-glucoside per min at pH 6.8 at 37 °C.

Activity using maltose as substrate at pH 6.0 at 25 deg C is ~2X greater than that obtained using p-nitrophenyl-α-d-glucoside as substrate at pH 6.8 at 37 °C.G3651-250UN 250 units

α-Gluco sidase from rice

Maltase

ammonium sulfate suspension, activity: 40–80 units/mg protein

Suspension in 2.8 M (NH4)2SO4 solution

One unit will convert 1.0 μmole of maltose to 2.0 μmoles of d-glucose per min at pH 4.0 at 37 °C.

G9259-100UN 100 units

Page 23: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 23

α-Gluco sidase from Saccharomycescerevisiae

α-d-Gluco sidase; Maltase from yeast Hydrolysis of terminal, non-reducing 1→4-linked d-glucose residues with release of d-glucose.

For the determination of α-amylase and the synthesis of various 1’-O-sucrose and 1-O-fructose esters

recombinant, expressed in unspecified host, lyophilized powder, activity: ≥125 units/mg protein

Lyophilized powder containing potassium phosphate buffer salt pH 7.15 and approx. 70% lactose

One unit will liberate 1.0 μmole of d-glucose from p-nitrophenyl α-d-glucoside per min at pH 6.8 at 37 °C.G0660-750UN 750 units

lyophilized powder, activity: ≥10 units/mg protein (using p-nitrophenyl α-d-glucoside as substrate.)Sold on basis of p-nitrophenyl α-d-glucoside units.

One unit will liberate 1.0 μmole of d-glucose from p-nitrophenyl α-d-glucoside per min at pH 6.8 at 37 °C.

View more information on enzymes for complex carbohydrate analysis at sigma-aldrich.com/enzymeexplorer

G5003-100UN 100 unitsG5003-1KU 1000 units

α-Glucosidase ▲

Ethanol Analysis Reagents

ASTM™ D5501 Denatured Fuel EthanolStandards Kit

Use this quantitative calibration standard kit to determine if ethanol and gasoline fuel blends comply with federal and state laws. A certificate of analysis accompanies each kit.

suitable for D5501 per ASTM

ComponentsSol.#1 Ethanol:Heptane: Methanol (92%, 7.40%, 0.60%) Sol.#2 Ethanol:Heptane: Methanol (93%, 6.50%, 0.50%) Sol.#3 Ethanol:Heptane: Methanol (94%, 5.60%, 0.40%) Sol.#4 Ethanol:Heptane: Methanol (95%, 4.70%, 0.30%) Sol.#5 Ethanol:Heptane: Methanol (96%, 3.80%, 0.20%) Sol.#6 Ethanol:Heptane: Methanol (97%, 2.90%, 0.10%) Sol.#7 Ethanol:Heptane: Methanol (98%, 1.95%, 0.05%)

40361-U 1 pkg

Fuel Ethanol Residual Saccharides Mix

Quantitative standard for monitoring unfermented sugars present during the process of transforming corn feedstock into ethanol. ComponentsGlycerol 1 % (w/v)D-(+)-Glucose 2 % (w/v)Maltotriose (DP3) 1 % (w/v)Maltose monohydrate 2 % (w/v)L-(+)-Lactic acid .3 % (w/v)Acetic acid .3 % (w/v)Dextrin 3.25 % (w/v)Ethanol 12 % (w/v)

48468-U 10 × 2 mL

Ethanol standard s 10% (v/v)

Ethanol solution; Ethyl alcohol[64-17-5] C2H5OH FW 46.07

CH3CH2OH

aqueous solutionFlame-sealed flint ampuleE2385-10AMP 10 amp

sigma-aldrich.com

Sigma-Aldrich and GeneGo have integrated Sigma-Aldrich product listings into the MetaCore™ and MetaDrug™ software suites.

This partnership associates Sigma-Aldrich products to over 700 Interactive maps of Canonical pathways located in MetaCore and MetaDrug.

Users of MetaCore and MetaDrug are able to link to Sigma-Aldrich products from molecules displayed in

the Drug Detail Pages. This functionality will accelerate productivity for researchers by showing molecule availability during the information gathering process of experiments.

Learn more about GeneGo and their MetaCore and MetaDrug software suites by visiting www.genego.com

Sigma-Aldrich® and GeneGo

MetaCore and MetaDrug are trademarks of GeneGo, Inc. Patent Chemistry Database: Copyright © 2007-2008, Elsevier Inc., licensed to Elsevier Information Systems GmbH. PharmaPendium: Copyright © 2007-2008, Elsevier Inc., licensed to Elsevier Information Systems GmbH.

Page 24: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

24

Lipases for TransesterificationAmano Lipase PS (immobilized on diatomite)

708011-10G 10 g

Amano Lipase PS, fromBurkholderia cepacia activity: ≥30,000 U/g, pH 7.0, 50 °C (Optimum pH

and temperature)

534641-10G 10 g534641-50G 50 g

Amano Lipase PS-C II (immobilizedon ceramic)One unit will produce 1.0 micromole of 1-Phenethyl alcohol to 1-Phenethyl acetate per min. at 25 °C in the presence of vinyl acetate

534889 Inquire

Amano lipase PS-IM (immobilized ondiatomaceous earth)

709603-10G 10 g

Amano Lipase PS-C I (immobilized onceramic)

One unit will produce 1.0 micromole of 1-Phenethyl alcohol to 1-Phenethyl acetate per min. at 25 °C in the presence of vinyl acetate534897 Inquire

Lipase from Candida sp. Novozymes® CALB L recombinant, expressed in

Aspergillus nigeraqueous solution

Minimum 5,000 LU/G of liquidL3170-50ML 50 mL

Lipase acrylic resin from CandidaantarcticaNovozym® 435[9001-62-1]Immobilized preparation of a thermostable lipase, particularly useful in the synthesis of esters and amides, and has a broad substrate specificity.

Lipase from (B lipase) Candida antarctica produced by submerged fermentation of a genetically modified Aspergillus oryzae microorganism and adsorbed on a macroporous resin.

Enzymes and Reagents for BioDiesel Research

Enzymes and Reagents for BioDiesel ResearchLipases for Transesterification

activity: ≥10,000 U/g, recombinant, expressed in Aspergillus niger

A product of Novozyme Corp.L4777-3G 3 gL4777-10G 10 g

Phospholipase C for Degumming Oils▼ Phospholipase C

Phos pha tidyl choline choline phos pho hydrol ase; Lecithinase C; Lipo phos pho di ester ase I; PC-PLC [9001-86-9]Hydrolyzes the phosphate bond on phosphatidylcholine and other glycerophospholipids yielding diacylglycerol; this enzyme will also hydrolyze the phosphate bonds of sphingomyelin, cardiolipin, choline plasmalogen and ceramide phospholipids.

Phos pho lipase C from Bacillus cereus

activity: ≥200 units/mg proteinLyophilized powder containing approx. 10% protein. Remainder: trehalose, zinc sulfate, and potassium phosphate

One unit will liberate 1.0 μmole of water soluble organic phosphorus from L-α-phosphatidylcholine per min at pH 7.3 at 37 °C.P6621-250UN 250 units

Phos pho lipase C from Clostridiumperfringens (C. welchii)

One unit will liberate 1.0 μmole of water soluble organic phosphorus from egg yolk l-α-phosphatidylcholine per min at pH 7.3 at 37 °C.

lyophilized powder, activity: 10–50 units/mg protein

P7633-25UN 25 unitsP7633-125UN 125 unitsP7633-500UN 500 units

lyophilized powder, activity: ≥150 units/mg protein

Lyophilized powder in buffered salts

Chromatographically purified

P4039-125UN 125 unitsP4039-500UN 500 units

Phospholipase C ▲

++

HC

HC

CH

R

R

R

O

O

O

O

O

HC

HC

CH

H

H

H

O

3 ROH O

O

O

O

O

O

O

O

O

Lipase

Transesterification of triglycerides utilizing commercial lipase preparations is currently under investigation as a low energy input alternative to current “chemical” methods.

N

CH3

CH3

H3C

HC

HC

CH2

O

O

O

O

P

OH

O

O

N

CH3

CH3

H3C

HC

H

H

C

CH2

O

O

O

O

H2O O

P

OH

OH

O

O

+

+

Phospholipase C

Degumming of feedstock oils by hydrolyisis of phospholipids can be catalyzed by phospholipase C. Treatment of phosphatidylethanol, phosphatidylcholine and phosphatidylinositol with phospholipase C enables the hydrolysis and phase separation of the hydrophilic phosphate-containing contaminants.

Page 25: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 25

BioDiesel AnalysisGC Columns for BioDiesel Analysis

MET-Biodiesel

This rugged metal column was designed specifically for the determination of free and total glycerin in B100 biodiesel samples. Features and benefits of this column include:

Metal is used as the column material, •virtually eliminating accidental column breakage during handling

Metal columns do not require a coating •to provide strength (NOTE: the protective polyimide coating on the outside of fused silica columns slowly burns off at 380 °C, exposing bare fused silica which is fragile and susceptible to breakage)

Includes a guard that both protects the •analytical column from excess reagent and non-volatile compounds, extending column life, and acts as a retention gap, minimizing peak broadening

The guard is an integrated guard, thereby •providing protection with a leak-free connection (the guard and analytical column are one continuous piece of tubing; there is no union between the guard and analytical column)

Low bleed characteristic, even at 380 °C•Provides good peak shape and resolution •for all glyceride impurities of interest

Able to separate glycerin in addition to •mono-/diglycerides (as methyl esters) plus triglycerides from the FAMEs

A maximum temperature of 380 °C •(isothermal) and 430 °C (programmed) exceeds the temperature limitations specified in biodiesel methods such as ASTM D6584 and EN 14105

GC capillary columns

Temp. Limits:

•–60°Cto380°C(isothermal)

•–60°Cto430°C(programmable)

0 10 20Min

1

2

4

3 56

1. Glycerin2. Butanetriol (I.S.)3. Monoolein4. Tricaprin (I.S.)5. Diolein6. Triolein

28668-U 1 ea

Derivatization

N-Methyl-N-(tri methyl silyl)tri fluoro acet -amide

MSTFA; N-Tri methyl silyl-N-methyl tri-fluoro acet amide[24589-78-4] CF3CON(CH3)Si(CH3)3 FW 199.25

SiCH3

NCH3

CH3F3C

O

H3C

Silylating agent used to form volatile derivatives for GC-MS analysis.2

Improved silylation procedure for simultaneous detection of steroid hormones 17-α-ethynylestradiol and estrone.1

Lit cited: 1. J. Chromatogr. 1108, 121 (2006); 2. Phosphorus, Sulfur Silicon Relat. Elem. 88, 53 (1994).

394866-10X1ML 10 × 1 mL394866-5ML 5 mL394866-25ML 25 mL

BioDiesel Calibration Standards

Supelco glycerin impurities in biodiesel reference solutions meet the specifications called out in ASTM D6584 and DIN EN 14105. Our reference solutions have been carefully formulated to save 4–6 hours in prep time, minimize the possibility of human error, and eliminate the need to prepare pyridine dilutions. Our standards offer:

Raw materials tested for identity and purity •Stock solutions for preparing your own •multi-component solutions

Multilevel, multi-component solutions •ready for derivatization

Monoglyceride commercial mixture for •EN14105

Internal standard solutions •Certificate of composition shipped with •each standard

Instructions for derivatization with each kit •Our standards are manufactured under the Quality Management System which is registered under ISO 9001:2000.

Page 26: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

26

Name Suitability Composition Cat. No.

ASTM® D6584 Individual Standard Solution and Internal Standards Kit

D6584 ASTM ASTM® D6584 Standard Solution 1 (Supelco 44899-U), 1 mLASTM® D6584 Standard Solution 2 (Supelco 44914-U), 1 mLASTM® D6584 Standard Solution 3 (Supelco 44915-U), 1 mLASTM® D6584 Standard Solution 4 (Supelco 44916-U), 1 mLASTM® D6584 Standard Solution 5 (Supelco 44917-U), 1 mLASTM D6584 1,2,4-Butanetriol Solution, Internal Standard #1 (Supelco 44896-U), 5 mLASTM D6584 Tricaprin Solution, Internal Standard #2 (Supelco 44897-U), 5 mL

44918-U

ASTM® D6584 Standard Solution 1 D6584 ASTM 1,3-Diolein, 50 μg/mLGlycerol, 5 μg/mLMonoolein, 100 μg/mLGlyceryl trioleate, 50 μg/mL

44899-U

ASTM® D6584 Standard Solution 2 D6584 ASTM 1,3-Diolein, 100 μg/mLGlycerol, 15 μg/mLMonoolein, 250 μg/mLGlyceryl trioleate, 100 μg/mL

44914-U

ASTM® D6584 Standard Solution 3 D6584 ASTM 1,3-Diolein, 200 μg/mLGlycerol, 25 μg/mLMonoolein, 500 μg/mLGlyceryl trioleate, 200 μg/mL

44915-U

ASTM® D6584 Standard Solution 4 D6584 ASTM 1,3-Diolein, 350 μg/mLGlycerol, 35 μg/mLMonoolein, 750 μg/mLGlyceryl trioleate, 350 μg/mL

44916-U

ASTM® D6584 Standard Solution 5 D6584 ASTM 1,3-Diolein, 500 μg/mLGlycerol, 50 μg/mLMonoolein, 1000 μg/mLGlyceryl trioleate, 500 μg/mL

44917-U

EN 14105:2003 Monoglyceride Stock Solution EN 14105 DIN MonooleinMonopalmitinMonostearin

49446-U

EN 14105:2003 Standard Solution 1 EN 14105 DIN Butanetriol, 80 μg/mL1,3-Diolein, 50 μg/mLGlycerol, 5 μg/mLMonoolein, 250 μg/mLTricaprin, 800 μg/mLTriolein, 50 μg/mL

49441-U

EN 14105:2003 Standard Solution 2 EN 14105 DIN Butanetriol, 80 μg/mLDiolein, 200 μg/mLGlycerol, 20 μg/mLMonoolein, 600 μg/mLTricaprin, 800 μg/mLTriolein, 150 μg/mL

49442-U

EN 14105:2003 Standard Solution 3 EN 14105 DIN Butanetriol, 80 μg/mLDiolein, 350 μg/mLGlycerol, 35 μg/mLMonoolein, 950 μg/mLTricaprin, 800 μg/mLTriolein, 300 μg/mL

49443-U

EN 14105:2003 Standard Solution 4 EN 14105 DIN Butanetriol, 80 μg/mLDiolein, 500 μg/mLGlycerol, 50 μg/mLMonoolein, 1250 μg/mLTricaprin, 800 μg/mLTriolein, 400 μg/mL

49444-U

EN 14105:2003 Standard Solution Kit EN 14105 DIN EN 14105:2003 Standard Solution 1 (Supelco 49441-U), 1 mLEN 14105:2003 Standard Solution 2 (Supelco 49442-U), 1 mLEN 14105:2003 Standard Solution 3 (Supelco 49443-U), 1 mLEN 14105:2003 Standard Solution 4 (Supelco 49444-U), 1 mL

49445-U

Biodiesel Calibration Standards

Page 27: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 27

Name Grade Cat. No.

HYDRANAL®-Composite 1 one-component reagent for volumetric Karl Fischer titration 34827-500ML-R34827-6X500ML-R34827-1L-R34827-6X1L-R

HYDRANAL®-Composite 2 one-component reagent for volumetric Karl Fischer titration 34806-500ML34806-6X500ML34806-1L34806-6X1L34806-2.5L34806-4X2.5L

HYDRANAL®-Composite 5 one-component reagent for volumetric Karl Fischer titration 34805-500ML-R34805-6X500ML-R34805-1L-R34805-6X1L-R34805-2.5L-R34805-4X2.5L-R

HYDRANAL®-Composite 5 K one-component reagent for volumetric Karl Fischer titration in ketones and aldehydes 34816-500ML-R34816-6X500ML-R34816-1L-R34816-6X1L-R34816-2.5L-R34816-4X2.5L-R

HYDRANAL®-CompoSolver E – 34734-1L-R34734-6X1L-R34734-2.5L-R34734-4X2.5L-R

HYDRANAL®-KetoSolver – 34738-500ML-R34738-6X500ML-R34738-1L-R34738-6X1L-R

HYDRANAL®-LipoSolver CM – 37855-1L37855-6X1L

HYDRANAL®-LipoSolver MH – 37856-1L37856-6X1L

HYDRANAL®-Medium K – 34698-1L-R34698-6X1L-R

HYDRANAL®-Methanol dry – 34741-1L-R34741-6X1L-R34741-2.5L-R34741-4X2.5L-R

HYDRANAL®-Methanol Rapid – 37817-1L-R37817-6X1L-R37817-2.5L-R37817-4X2.5L-R

HYDRANAL®-Solver (Crude) oil – 34697-1L-R34697-6X1L-R34697-2.5L-R34697-4X2.5L-R

HYDRANAL®-Working Medium K – 34817-1L34817-6X1L

Karl-Fischer reagent for titrimetric determination of water with one solution 36115-1L36115-6X1L

Karl Fischer Titration—HYDRANAL® Reagents for the Determination of Water in Biodiesel

The presence of water in biodiesel poses problems for a number of reasons. Some of the water is residual from processing while some comes from condensation in

the storage tanks. Water content can be determined accurately and reproducibly by Karl Fischer Titration (volumetric, coulometric, and KF-oven methods) using reliable, superior, and proven HYDRANAL reagents (EN 14214).

One-Component Volumetric Reagents

Biodiesel contains components of different chain lengths. Therefore, a solubilizer is often required to dissolve or disperse it in order to extract the moisture. A number of HYDRANAL media are available for effective dispersion of biodiesel. HYDRANAL-Composite 2 is used as the titration agent.

One Component Reagents

Page 28: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

28

Two-Component Volumetric Reagents

Name Grade Cat. No.

HYDRANAL®-Solvent – 34800-1L-R34800-6X1L-R34800-2.5L-R34800-4X2.5L-R

HYDRANAL®-Solvent E – 34730-500ML-R34730-6X500ML-R34730-1L-R34730-6X1L-R34730-2.5L-R34730-4X2.5L-R

HYDRANAL®-Solvent CM – 34812-1L34812-6X1L34812-2.5L34812-4X2.5L

HYDRANAL®-Solvent Oil – 34749-1L34749-6X1L

HYDRANAL®-Titrant 2 – 34811-500ML34811-6X500ML34811-1L34811-6X1L

HYDRANAL®-Titrant 5 – 34801-500ML34801-6X500ML34801-1L34801-6X1L34801-2.5L34801-4X2.5L

HYDRANAL®-Titrant 2 E – 34723-1L-R34723-6X1L-R

HYDRANAL®-Titrant 5 E – 34732-100ML-R34732-500ML-R34732-6X500ML-R34732-1L-R34732-6X1L-R34732-2.5L-R34732-4X2.5L-R

Karl-Fischer reagent for titrimetric determination of water with two separate solutions 36116-1L36116-6X1L

Karl-Fischer reagent for titrimetric determination of water with two separate solutions 36117-1L36117-6X1L

Page 29: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Order sigma.com/order Technical service sigma.com/techinfo sigma.com/lifescience 29

Coulometric Titration Reagents

The coulometric procedure is more sensitive than the volumetric titration method. Determination of water is carried out in a coulometric cell (with or without diaphragm). The precision of the coulometric cell and the sample manipulation can be tested by means of HYDRANAL Water Standard 0.10.

Name Grade Cat. No.

HYDRANAL®-Coulomat A anolyte for coulometric Karl Fischer titration (for cells with diaphragm) 34807-500ML34807-6X500ML

HYDRANAL®-Coulomat E – 34726-500ML-R34726-6X500ML-R

HYDRANAL®-Coulomat AD reagent for coulometric Karl Fischer titration for cells without diaphragm 34810-500ML-R34810-6X500ML-R

HYDRANAL®-Coulomat AF 7 anolyte for coulometric Karl Fischer titration (suitable for coulometer AF7) 34829-1L-R34829-6X1L-R

HYDRANAL®-Coulomat AG anolyte for coulometric Karl Fischer titration. Suitable for cells with and without diaphragm 34836-500ML-R34836-6X500ML-R34836-1L-R34836-6X1L-R

HYDRANAL®-Coulomat AG-H anolyte for coulometric Karl Fischer titration in long-chained hydrocarbons (free of halogenated hydrocarbons)

34843-500ML34843-6X500ML

HYDRANAL®-Coulomat AG-Oven – 34739-500ML-R34739-6X500ML-R

HYDRANAL®-Coulomat AK anolyte for coulometric Karl Fischer titration in ketones (for cells with and without diaphragm) 34820-500ML-R34820-6X500ML-R

HYDRANAL®-Coulomat CG catholyte for coulometric Karl Fischer titration. Free of halogenated hydrocarbons 34840-50ML-R34840-6X50ML-R

HYDRANAL®-Coulomat CG-K – 34821-50ML-R34821-6X50ML-R

HYDRANAL®-Coulomat Oil – 34868-100ML-R34868-6X100ML-R34868-500ML-R34868-6X500ML-R

Karl Fischer Oven products

This method is suitable for samples that release water at a higher temperature. In this method, HYDRANAL-Coulomat CG is placed in the cathode chamber and HYDRANAL Coulomat AG Oven is added to the anode chamber of a coulometric cell with diaphragm. A cell without a diaphragm requires only the Coulomat AG Oven. HYDRANAL Coulomat AG-H or HYDRANAL Coulomat AD may be used as a replacement for HYDRANAL Coulomat AG Oven. HYDRANAL Molecular Sieve 0.3 mm is a drying medium for the carrier gas.

Name Grade Cat. No.

HYDRANAL®-Coulomat AG-Oven – 34739-500ML-R34739-6X500ML-R

HYDRANAL®-Coulomat CG catholyte for coulometric Karl Fischer titration. Free of halogenated hydrocarbons 34840-50ML-R34840-6X50ML-R

HYDRANAL®-Molecular sieve 0.3 nm – 34241-250G-R34241-1KG-R

HYDRANAL®-Water Standard KF-Oven, 140–160 °C

– 34693-10G-R

HYDRANAL®-Water Standard KF-Oven 220 °C–230 °C

– 34748-10G-R34748-6X10G-R

Page 30: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

30

Metabolite Standards for Mevalonate and Isoprenoid Pathway Analysis

Metabolite Standards for Mevalonate and Isoprenoid Pathway Analysis

ETHANOL ISOPENTANOL PROPANOL BUTANOL

Acetaldehyde Valeryl-CoA Propionyl-CoA Butyryl-CoA

Acetyl-CoA Acetoacetyl-CoAPyruvatePEPG3P

1-Deoxy-D-xylulose-5-phosphate

2-C-Methyl-D-erythritol-4-phosphate

TCA-Cycle

3-Hydroxy-3-methyl-glutaryl-CoA

Mevalonate

Mevalonate-5-phosphate

Mevalonate-5-pyrophosphate

Isopentenyl-pyrophosphateDimethylallyl-pyrophosphate

Geranyl-pyrophosphate

(E,E)-Farnesyl-pyrophosphate

Geranylgeranyl-pyrophosphate

Isopentenol

Isopentanol

Even-numberedfatty acid

Odd-numberedfatty acid

Even-numberedalkane

Odd-numberedfatty alcohol

Even-numberedfatty alcohol

Odd- numberedalkane

Esters

Esters

GeraniolMonoterpene

Sesquiterpene Farnesol

Diterpene Geranylgeraniol

Alternatives to the classical glycolysis and fermentation pathways are also being studied as sources of common biofuels as well as potential sources of new biofuels such as isoprenoids. The mevalonate-isoprenoid pathway may prove to be a rich source of a variety of hydrocar-bon-based biofuels.

Sigma-Aldrich’s comprehensive and unique range of metabolites enables new approaches towards molecular understanding of the relevant mevalonate pathway (center) and the DXP pathway (left) towards the isoprenoid compounds (bottom), the fatty-acid or fatty acyl-CoA pathways (top and right) towards the different alcohols, esters and alkanes.

Name Cat. No.Acetoacetyl coenzyme A sodium salt hydrate A1625-5MG

A1625-10MGA1625-25MG

Acetyl coenzyme A sodium salt, powder A2056-1MGA2056-5MGA2056-10MG

Acetyl coenzyme A trilithium salt A2181-1MGA2181-5MGA2181-10MG

Butyryl coenzyme A lithium salt hydrate B1508-5MGB1508-10MGB1508-25MG

1-Deoxy-d-xylulose-5-phosphate sodium salt 13368-1MG13368-5MG

γ,γ-Dimethylallyl pyrophosphate triammonium salt D4287-1VLD4287-5VL

Farnesyl monophosphate ammonium salt solution, methanol:ammonia solution

F1803-5VL

Farnesyl pyrophosphate ammonium salt solution, methanol:ammonia solution

F6892-1VLF6892-5VL

Geranylgeranyl monophosphate ammonium salt solution, methanol:ammonia solution

G2543-5VL

Geranylgeranyl pyrophosphate ammonium salt solution methanol:ammonia solution

G6025-1VLG6025-5VL

Geranyl monophosphate ammonium salt solution, methanol:ammonia solution

G2293-1VLG2293-5VL

Geranyl pyrophosphate ammonium salt G6772-1VLG6772-5VL

dl-Glyceraldehyde 3-phosphate solution G5251-25MGG5251-100MG

dl-3-Hydroxy-3-methylglutaryl coenzyme A sodium salt H6132-5MGH6132-10MG

Isopentenyl monophosphate ammonium salt solution I1157Isopentenyl pyrophosphate triammonium salt solution I0503-1VL

I0503-5VL(R)-Mevalonic acid sodium salt 41288(±)-Mevalonic acid 5-phosphate trilithium salt hydrate 79849-10MG

79849-50MG(R)-Mevalonic acid 5-pyrophosphate tetralithium salt 77631(±)-Mevalonic acid 5-pyrophosphate tetralithium salt 94259-10MG

94259-50MG(R)-(−)-Mevalonolactone 68519-100MG(±)-Mevalonolactone M4667-1GPhospho(enol)pyruvic acid monopotassium salt P7127-100MGPhospho(enol)pyruvic acid monosodium salt hydrate P0564-100MGPhospho(enol)pyruvic acid trisodium salt hydrate P7002-100MGn-Propionyl coenzyme A lithium salt P5397-5MGPyruvic acid 107360-25GSodium pyruvate 15990-25G

Page 31: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

Renewable and Alternative Energy Web Portal

Have you seen these Material MattersTM issues on Alternative Energy?

Get your complimentary subscription today: sigma-aldrich.com/mm

The Portal offers a comprehensive set of links about environmentally benign production, storage and conversion of energy.

Solar Energy•Hydrogen Economy•Batteries•Supercapacitors•Alternative Fuels•Relevant events and conferences are also highlighted.•

We focus on materials, so you can focus on results. For more information, visit sigma-aldrich.com/renewable

sigma-aldrich.com

Alternative EnergyPhotovoltaics, Ionic Liquids, and MOFs

Solar light is energy for everyone

Effi cient Dye-Sensitized Solar Cells for Direct Conversion of Sunlight to Electricity

Organic Dyes for Effi cient and Stable Dye-Sensitized Solar Cells

The Relentless Rise of Disruptive PhotovoltaicsIonic Liquids for Energy Storage Applications

Selected Applications of Metal-Organic Frameworks in Sustainable Energy Technologies

TM

Vol. 4, No. 4

Page 32: BioFiles v5 n5 - Enzymes and Reagents for Alternative Energy · BioDiesel Ethanol H 3C–CH 2 OH O OH ... Stephanopoulos, De Novo Metabolic Engineering and the Promise of Synthetic

MPC73457-510295

1050

Order/Customer Service (800) 325-3010 • Fax (800) 325-5052 Technical Service (800) 325-5832 • sigma-aldrich.com/techservice Development/Custom Manufacturing Inquiries (800) 244-1173 Safety-related Information sigma-aldrich.com/safetycenter

Sigma-Aldrich® Worldwide Offices

©2010 Sigma-Aldrich Co. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, FLUKA, and SUPELCO are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology, L.P. Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip. ASTM is a registered trademark of American Society for Testing and Materials, Biomek is a registered trademark of Beckman Instruments, Inc., HypoThermosol is a registered trademark of BioLife Solutions, Inc., CryoStor is a trademark of BioLife Solutions, Inc., CellBIND, Corning and HYPER Flask are registered trademarks of Corning, Inc., TWEEN is a registered trademark of Croda International PLC, Triton is a registered trademark of Dow Chemical Co., Nafion is a registered trademark of E.I. du Pont de Nemours &amp; Co., Inc., Eppendorf is a registered trademark of Eppendorf-Netheler-Hinz GmbH, Cy and Sepharose are registered trademarks of GE Healthcare, nanoHA, Select-HA are trademarks of Hyalose LLC, Coomassie is a registered trademark of Imperial Chemical Industries Ltd., Legato is a trademark of KDScientific, Driselase is a registered trademark of Kyowa Hakko Kogyo Co. Ltd., Alexa, SYBR amd Texas Red are registered trademarks of Molecular Probes, Inc., Nanomiser is a trademark of nGimat, Carezyme, Celluclast, Fungamyl, Novozym, Pectinex, Pentopan and Termamyl are registered trademarks of Novozymes Corp., BAN is a trademark of Novozymes Corp., Shimadzu is a registered trademark of Shimadzu Corporation, Aldrich, HYDRANAL and Prestige Antibodies are registered trademarks of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co., and Ampliflu, EZBlue, GlycoProfile, HumanKine, Material Matters, ProteoMass, ProteoSilver and Sigma are trademarks of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co.

World Headquarters 3050 Spruce St.

St. Louis, MO 63103 (314) 771-5765

sigma-aldrich.com

Accelerating Customers’ Success through Innovation and Leadership in Life Science, High Technology and Service

ArgentinaFree Tel: 0810 888 7446 Tel: (+54) 11 4556 1472 Fax: (+54) 11 4552 1698

AustraliaFree Tel: 1800 800 097 Free Fax: 1800 800 096 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

AustriaTel: (+43) 1 605 81 10 Fax: (+43) 1 605 81 20

BelgiumFree Tel: 0800 14747 Free Fax: 0800 14745 Tel: (+32) 3 899 13 01 Fax: (+32) 3 899 13 11

BrazilFree Tel: 0800 701 7425 Tel: (+55) 11 3732 3100 Fax: (+55) 11 5522 9895

CanadaFree Tel: 1800 565 1400 Free Fax: 1800 265 3858 Tel: (+1) 905 829 9500 Fax: (+1) 905 829 9292

ChileTel: (+56) 2 495 7395 Fax: (+56) 2 495 7396

ChinaFree Tel: 800 819 3336 Tel: (+86) 21 6141 5566 Fax: (+86) 21 6141 5567

Czech RepublicTel: (+420) 246 003 200 Fax: (+420) 246 003 291

DenmarkTel: (+45) 43 56 59 00 Fax: (+45) 43 56 59 05

FinlandTel: (+358) 9 350 9250 Fax: (+358) 9 350 92555

FranceFree Tel: 0800 211 408 Free Fax: 0800 031 052 Tel: (+33) 474 82 28 88 Fax: (+33) 474 95 68 08

GermanyFree Tel: 0800 51 55 000 Free Fax: 0800 64 90 000 Tel: (+49) 89 6513 0 Fax: (+49) 89 6513 1160

HungaryIngyenes telefonszám: 06 80 355 355 Ingyenes fax szám: 06 80 344 344 Tel: (+36) 1 235 9063 Fax: (+36) 1 269 6470

IndiaTelephone Bangalore: (+91) 80 6621 9400 New Delhi: (+91) 11 4358 8000 Mumbai: (+91) 22 2570 2364 Hyderabad: (+91) 40 4015 5488 Kolkata: (+91) 33 4013 8003 Fax Bangalore: (+91) 80 6621 9550 New Delhi: (+91) 11 4358 8001 Mumbai: (+91) 22 4087 2364 Hyderabad: (+91) 40 4015 5488 Kolkata: (+91) 33 4013 8000

IrelandFree Tel: 1800 200 888 Free Fax: 1800 600 222 Tel: (+353) 402 20370 Fax: (+ 353) 402 20375

IsraelFree Tel: 1 800 70 2222 Tel: (+972) 8 948 4100 Fax: (+972) 8 948 4200

ItalyFree Tel: 800 827 018 Tel: (+39) 02 3341 7310 Fax: (+39) 02 3801 0737

JapanTel: (+81) 3 5796 7300 Fax: (+81) 3 5796 7315

Korea Free Tel: (+82) 80 023 7111 Free Fax: (+82) 80 023 8111 Tel: (+82) 31 329 9000 Fax: (+82) 31 329 9090

MalaysiaTel: (+60) 3 5635 3321 Fax: (+60) 3 5635 4116

MexicoFree Tel: 01 800 007 5300 Free Fax: 01 800 712 9920 Tel: (+52) 722 276 1600 Fax: (+52) 722 276 1601

The NetherlandsFree Tel: 0800 022 9088 Free Fax: 0800 022 9089 Tel: (+31) 78 620 5411 Fax: (+31) 78 620 5421

New ZealandFree Tel: 0800 936 666 Free Fax: 0800 937 777 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

NorwayTel: (+47) 23 17 60 00 Fax: (+47) 23 17 60 10

PolandTel: (+48) 61 829 01 00 Fax: (+48) 61 829 01 20

PortugalFree Tel: 800 202 180 Free Fax: 800 202 178 Tel: (+351) 21 924 2555 Fax: (+351) 21 924 2610

RussiaTel: (+7) 495 621 5828 Fax: (+7) 495 621 6037

SingaporeTel: (+65) 6779 1200 Fax: (+65) 6779 1822

SlovakiaTel: (+421) 255 571 562 Fax: (+421) 255 571 564

South AfricaFree Tel: 0800 1100 75 Free Fax: 0800 1100 79 Tel: (+27) 11 979 1188 Fax: (+27) 11 979 1119

SpainFree Tel: 900 101 376 Free Fax: 900 102 028 Tel: (+34) 91 661 99 77 Fax: (+34) 91 661 96 42

SwedenTel: (+46) 8 742 4200 Fax: (+46) 8 742 4243

SwitzerlandFree Tel: 0800 80 00 80 Free Fax: 0800 80 00 81 Tel: (+41) 81 755 2828 Fax: (+41) 81 755 2815

United KingdomFree Tel: 0800 717 181 Free Fax: 0800 378 785 Tel: (+44) 1747 833 000 Fax: (+44) 1747 833 313

United StatesToll-Free: 800 325 3010 Toll-Free Fax: 800 325 5052 Tel: (+1) 314 771 5765 Fax: (+1) 314 771 5757

VietnamTel: (+84) 3516 2810 Fax: (+84) 6258 4238

Internet sigma-aldrich.com