bioelectrochemical systems : from extracellular electron

14
Bioelectrochemical Systems From Extracellular Electron Transfer to Biotechnological Application Edited by Korneel Rabaey, Largus Angenent, Uwe Schroder and Surg Keller & Publishing London New York TECHNISCHE INFORMATION SBIBLIOTHEK UNIVERSITATSBIBLIOTHEK HANNOVER

Upload: others

Post on 25-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioelectrochemical systems : from extracellular electron

Bioelectrochemical SystemsFrom Extracellular Electron Transfer to

Biotechnological Application

Edited byKorneel Rabaey, Largus Angenent,Uwe Schroder and Surg Keller

&PublishingLondon • New York

TECHNISCHE

INFORMATION SBIBLIOTHEK

UNIVERSITATSBIBLIOTHEK

HANNOVER

Page 2: Bioelectrochemical systems : from extracellular electron

Contents

Foreword xix

List of Contributors xxi

1 BIOELECTROCHEMICAL SYSTEMS: A NEW

APPROACH TOWARDS ENVIRONMENTAL AND

INDUSTRIAL BIOTECHNOLOGY 1

1.1 Fuel cells and bio-electricity 1

1.2 Underlying principles 5

1.2.1 Microorganisms and current 5

1.2.2 Microbial communities in BESs 6

1.2.3 From microbial metabolism to electrical current 7

1.3 Measuring and Defining performance 8

1.3.1 Measuring potentials 9

1.3.2 Rate based performance indicators 10

1.3.3 Efficiency based performance indicators 10

1.4 A plethora of applications 11

1.5 Acknowledgements 12

References 13

2 MICROBIAL ENERGY PRODUCTION FROM BIOMASS 17

2.1 Biomass: solar energy stored in organic material 17

2.2 The energy content of biomass 20

2.3 Bio-alcohol production from biomass 22

2.4 Anaerobic methanogenic digestion:waste stabilization plus renewable energy source 24

2.4.1 Process performance 24

Page 3: Bioelectrochemical systems : from extracellular electron

vi Bioelectrochemical Systems

2.4.2 The microbiology of methanogenesis 26

2.4.3 The importance of extracellular electron

transfer in AD 27

2.4.4 Application of anaerobic digestion 29

2.4.4.1 Anaerobic Digestion (AD) for

solid waste 29

2.4.4.2 AD for wastewater treatment 30

2.4.4.3 Overall benefits and constraints of

anaerobic digestion 32

2.5 Bio-hydrogen production from biomass 34

2.6 Future perspectives 35

References 36

3 ENZYMATIC FUEL CELLS AND THEIR

COMPLEMENTARITIES RELATIVE TO BES/MFC 39

3.1 Introduction 39

3.2 Similarities between types of microbial and

enzymatic biofuel cells 43

3.2.1 Bioreactor design 44

3.2.2 In-situ bioreactor style 44

3.2.3 Catalyst in anolyte solution 45

3.2.4 Immobilized catalyst and/or mediator 46

3.2.5 Direct electron transfer catalysts 46

3.3 Catalyst sources for MET and DET systems 47

3.4 Comparison of properties of microbial and

enzymatic fuel cells 48

3.5 Enzymes employed in enzymatic biofuel cells 49

3.6 Deep and/or complete oxidation of fuel 52

3.7 Conclusions 52

3.8 Acknowledgements 53

References 53

4 SHUTTLING VIA SOLUBLE COMPOUNDS 59

4.1 Introduction 59

4.2 Redox shuttles 61

4.3 Early experiments 62

4.4 Exogenous redox mediators 63

4.4.1 Artificial mediators 63

4.4.2 Natural redox mediators in the subsurface

environment 64

Page 4: Bioelectrochemical systems : from extracellular electron

Contents vii

4.5 Endogenous redox mediators 65

4.5.1 Known microbially produced redox mediators 67

4.5.1.1 Phenazines 67

4.5.1.2 Flavins 67

4.5.1.3 Quinones 68

4.5.1.4 Cytochromes and soluble enzymes 69

4.5.1.5 Melanin 69

4.5.1.6 Other mediators 69

4.5.2 Unidentified endogenous mediators 70

4.6 Methods for identification of soluble redox shuttles....

70

4.6.1 Potentiostat-controlled electrochemical cells 71

4.6.2 Environmental conditions 71

4.6.3 Batch experiments 71

4.6.4 Media formulation 71

4.6.5 Electrochemical methods 71

4.6.6 Medium change 72

4.6.7 Chemical structure of the mediator 72

4.7 Relevance of soluble redox mediators shuttle to

microbial metabolism 72

4.8 Soluble redox shuttles in bioelectrochemical

devices 74

4.8.1 Microbial fuel cells 74

4.8.1.1 Biosensors 74

4.8.1.2 Electrodes modified with redox

mediators 75

References 75

5 A SURVEY OF DIRECT ELECTRON TRANSFER FROM

MICROBES TO ELECTRONICALLY ACTIVE SURFACES 81

5.1 Introduction 81

5.2 Extracellular electron transfer - microbial

connections 82

5.2.1 Localized sites for membrane associated EET 83

5.2.1.1 Shewanella cytochromes 83

5.2.1.2 Geobacter cytochromes 85

5.2.2 Bacterial nanowires 87

5.2.2.1 Geobacter nanowires 88

5.2.2.2 Shewanella nanowires 88

5.2.2.3 Nanowires produced by other

microorganisms 90

Page 5: Bioelectrochemical systems : from extracellular electron

viii Bioelectrochemica! Systems

5.2.3 Nanowire characterization 90

5.2.3.1 Composition 91

5.2.3.2 Regulation 91

5.2.3.3 Conductivity 92

5.2.3.4 Function 93

5.2.3.5 Prevalence 93

5.3 Ecological significance of extracellular electron

transfer 93

References 95

6 GENETICALLY MODIFIED MICROORGANISMS FOR

BIOELECTROCHEMICAL SYSTEMS 101

6.1 Introduction 101

6.2 Extracellular respiration in Shewanella Oneidensis

and Geobacter Sulfurreducens 102

6.3 Scientific motivation for heterologous

gene expression 105

6.4 Methods and challenges for heterologous

gene expression in E. coli 107

6.5 Biotechnological applications - designing the

'super bug' 110

6.5.1 The 'super bug' for BES applications 110

6.5.2 The 'super bug' for bioremediation

applications 112

6.6 Closing remarks 113

6.7 Acknowledgements 113

References 113

7 ELECTROCHEMICAL LOSSES 119

7.1 Introduction 119

7.2 Individual electrochemical losses 120

7.2.1 Activation polarization 121

7.2.1.1 Means to decrease the activation

polarization 122

7.2.2 Ohmic polarization 122

7.2.2.1 Means to decrease the ohmic

polarization 124

7.2.3 Concentration polarization (Mass transfer and

reaction polarization) 125

Page 6: Bioelectrochemical systems : from extracellular electron

Contents ix

7.2.3.1 Means to decrease the concentration

polarization 127

7.2.4 Reactant crossover - 'internal currents' 127

7.2.4.1 Means to decrease internal current

losses 128

7.2.5 The pH splitting between anode and cathode 129

7.2.5.1 Means to prevent the pH splitting 129

7.3 Methods 129

7.3.1 Experimental strategies for the recording of

polarization plots 129

7.3.1.1 Current interrupt technique 130

7.4 Conclusions 131

References 132

8 ELECTROCHEMICAL TECHNIQUES FOR THE ANALYSIS

OF BIOELECTROCHEMICAL SYSTEMS 135

8.1 Cyclic voltammetry for the study of microbial

electron transfer at electrodes 137

8.1.1 Introduction 137

8.1.2 Turnover vs. non-turnover voltammetryexperiments 140

8.1.2.1 General considerations 140

8.1.2.2 Voltammetry in the presence of

substrates 141

8.1.2.3 Voltammetry in the absence of

substrates 145

8.1.2.4 Concluding remarks 148

References 148

8.2 Importance of Tafel plots in the investigationof bioelectrochemical systems 153

8.2.1 Introduction 153

8.2.2 Use of Tafel plots for performance evaluation

of microbial fuel cells 156

8.2.2.1 Tafel plots for monitoring the

electrocatalytic activity of anode

materials toward microbial consortia 157

8.2.2.2 Tafel plots for examining chargetransfer with microbial pure cultures 162

Page 7: Bioelectrochemical systems : from extracellular electron

X Bioelectrochemical Systems

8.2.2.3 Estimating the maximum power

production from Tafel plots 163

References 165

8.3 The use of electrochemical impedance spectroscopy

(EIS) for the evaluation of the electrochemical

properties of bioelectrochemical systems 169

8.3.1 Introduction 169

8.3.2 Instrumentation and experimental approach 170

8.3.3 Display and analysis of EIS data 172

8.3.4 Determination of key electrochemical

parameters from impedance spectra 175

8.3.5 Applications of electrochemical impedance

spectroscopy in the study of MFCs 176

8.3.5.1 Electrochemical characterization of

anode and cathode properties 176

8.3.5.2 Determination and analysis of the

internal resistance Rm 179

8.3.6 Conclusions 181

References 181

9 MATERIALS FOR BES 185

9.1 Introduction 185

9.1.1 Electrode specific surface areas and

material costs 187

9.2 Electrode materials for MFCs 187

9.2.1 Anode 187

9.2.2 Cathode 189

9.2.3 Membranes 193

9.3 Other materials 197

9.3.1 Current collectors 197

9.3.2 Wires, resistors and loads 197

9.4 Materials for microbial electrolysis cells 198

9.5 Conclusions and outlook 200

References 201

10 TECHNOLOGICAL FACTORS AFFECTING BES

PERFORMANCE AND BOTTLENECKS TOWARDS

SCALE UP 205

10.1 Introduction 205

Page 8: Bioelectrochemical systems : from extracellular electron

Contents xi

10.2 Design constraints as determined bywastewater application 207

10.2.1 Footprint and energetic efficiency 207

10.2.2 Effect of conductivity 210

10.2.3 Effect of buffer capacity 212

10.2.4 Membrane separator or not 212

10.3 Design constraints as determined by scale up 213

10.3.1 Scale up and voltage losses 213

10.3.2 Hydrodynamics and mechanics 215

10.4 Costs and choice of materials 215

10.4.1 Material properties and costs 215

10.4.2 Anode 216

10.4.3 Cathode 217

10.4.4 Membranes 217

10.5 Overcoming design constraints 218

10.5.1 Constraints and solutions 218

References 220

11 ORGANICS OXIDATION 225

11.1 Introduction 225

11.2 Respiratory oxidation to carbon dioxide 228

11.3 Fermentation at microbial fuel cell anodes 231

11.4 Syntrophy between fermenters and anodophiles 234

11.5 Methanogens compete for fermentation products 236

11.6 Electrocatalytic oxidation of fermentation products ...237

11.7 Summary 238

References 239

12 CONVERSION OF SULFUR SPECIES IN

BIOELECTROCHEMICAL SYSTEMS 243

12.1 Introduction 243

12.2 Properties of sulfur species 244

12.2.1 Elemental sulfur 244

12.2.2 Sulfide and polysulfides 244

12.2.3 Sulfate and other oxyanions 245

12.2.4 Relationship of electrochemical potentialand pH for sulfur species in aqueous systems ...

245

12.3 Existing sulfide and sulfate removal technologies 247

12.3.1 Sulfide removal technologies 247

Page 9: Bioelectrochemical systems : from extracellular electron

Bioelectrochemical Systems

12.3.1.1 Physicochemical processes 248

12.3.1.2 Biological technologies 248

12.3.2 Sulfate removal technologies 249

12.3.3 Evaluation of existing technologies 249

12.4 Abiotic electrochemical removal of aqueous

sulfide 250

12.4.1 Introduction 250

12.4.2 Spontaneous sulfide oxidation and electricity

generation 252

12.4.3 Final product of sulfide oxidation 252

12.4.4 Properties of electrodeposited sulfur 254

12.5 Removal of aqueous sulfide in BES 256

12.5.1 Introduction 256

12.5.2 Sulfide oxidation in a biotic cell 257

12.6 Outlook 258

References 259

CHEMICALLY CATALYZED CATHODES IN

BIOELECTROCHEMICAL SYSTEMS 263

13.1 Introduction 263

13.2 Oxygen Reduction Reaction (ORR) 265

13.2.1 Introduction 265

13.2.2 Oxygen reduction catalysts 267

13.2.2.1 Platinum 267

13.2.2.2 Transition metal macrocycle based

catalysts 268

13.2.2.3 Metal oxides 268

13.2.2.4 Enzymes 269

13.2.3 MFC cathode configurations 269

13.2.3.1 Aqueous cathodes 269

13.2.3.2 Air cathodes 269

13.3 Hydrogen Evolution Reaction (HER) 270

13.3.1 Introduction 270

13.3.2 Hydrogen evolution catalysts 274

13.3.2.1 Platinum 274

13.3.2.2 Nickel 276

13.3.2.3 Tungsten carbide 276

13.3.2.4 Enzymes 277

13.3.3 MEC cathode configurations 277

Page 10: Bioelectrochemical systems : from extracellular electron

Contents xiii

13.3.3.1 Aqueous cathodes 277

13.3.3.2 Gas diffusion cathodes 278

13.4 Future possibilities 279

References 280

14 BIOELECTROCHEMICAL REDUCTIONS IN REACTOR

SYSTEMS 285

14.1 Introduction 285

14.2 Aerobic biocathodes 286

14.3 Anoxic and anaerobic biocathodes 289

14.4 Electron transfer in biocathodes 294

14.5 Limiting factors 297

14.6 Outlook 298

14.7 Acknowledgements 299

References 299

15 BIOELECTROCHEMICAL SYSTEMS (BES) FOR

SUBSURFACE REMEDIATION 305

15.1 Bioremediation of contaminated soils

and aquifers 305

15.2 Chemical vs. electrochemical strategies of

electron delivery 306

15.2.1 Chlorinated hydrocarbons 309

15.2.2 Inorganic pollutants 315

15.3 Outlooks, perspectives, and challenges towards

field applications 319

References 322

16 FUNDAMENTALS OF BENTHIC MICROBIAL FUEL CELLS:

THEORY, DEVELOPMENT AND APPLICATION 327

16.1 Introduction 327

16.2 Fundamental principles of sediment

reduction-oxidation chemistry 328

16.3 Principles of design and approaches to testingBenthic Microbial Fuel Cells (BMFCs) 329

16.4 Anode material and design 330

16.5 Cathode materials and design 332

16.6 Performance and practical considerations of

BMFC designs 333

Page 11: Bioelectrochemical systems : from extracellular electron

xiv Bioelectrochemical Systems

16.7 Microbial ecology of BMFCs 335

16.8 Factors governing power output 338

16.9 Scaling and environmental variability in BMFCs 340

16.10 Commercial viability of BMFCs 341

References 343

17 MICROBIAL FUEL CELLS AS BIOCHEMICAL OXYGEN

DEMAND (BOD) AND TOXICITY SENSORS 347

17.1 Introduction 347

17.1.1 Dissolved oxygen probe-based BOD sensors 348

17.1.2 Photometric BOD sensors 348

17.1.3 Titration and respirometric sensors 349

17.1.4 Electrochemical BOD sensors with mediators 349

17.2 The mediator-less microbial fuel cell 351

17.2.1 Electrochemically-active bacteria 351

17.2.2 Enrichment of an electrochemically-activebacterial community 352

17.2.3 Microbiology of a mediator-less MFC 353

17.2.4 Optimization of MFC performance 353

17.3 Design and performance of an MFC used as

BOD sensor 355

17.3.1 MFC to measure BOD values higher than

10 mg/L 356

17.3.1.1 MFC design 356

17.3.1.2 Enrichment and operation 357

17.3.1.3 Performance 358

17.3.2 MFC to measure BOD values lower than

10 mg/l 359

17.3.2.1 Background 359

17.3.2.2 Oligotrophic sensor design and

performance 359

17.3.3 BOD determination of samples containingoxygen and nitrate 360

17.3.3.1 Oxygen and nitrate reduce current

and coulombic efficiency 360

17.3.3.2 Use of respiratory inhibitors 360

17.4 MFC as a toxicity sensor 361

17.5 Conclusions 361

17.6 Acknowledgements 361

References 362

Page 12: Bioelectrochemical systems : from extracellular electron

Contents xv

18 FEEDSTOCKS FOR BES CONVERSIONS 369

18.1 Introduction 369

18.2 Defined substrates utilized by BES 372

18.2.1 Volatile fatty acids and other fermentation

end products 372

18.2.2 Soluble carbohydrates, amino acids

and xenobiotics 376

18.3 Complex substrates and wastewaters utilized

by BES 377

18.3.1 Cellulosic feedstocks 378

18.3.2 Chitin 379

18.3.3 Domestic wastewater 379

18.3.4 Simulated and actual industrial wastewaters 379

18.4 Other aspects of feedstock composition 381

18.5 Feedstocks and BES integration in wastewater

treatment processes 383

18.6 Conclusions 387

18.7 Acknowledgements 388

References 388

19 INTEGRATING BES IN THE WASTEWATER AND SLUDGE

TREATMENT LINE 393

19.1 Introduction 393

19.2 BES as the single biological treatment unit (A)or followed by an activated sludge system as a

polishing step (B) 396

19.3 Preacidification of organic wastewater before

BES (C) 398

19.4 Anaerobic digesters for sludge stabilization

followed by BES (D) 399

19.5 Generating caustic in the cathode of BES to

control anaerobic digester pH (E) 401

19.6 Denitrificaton in the cathode of BES to remove

nutrients from water (F) 402

19.7 Generating chemical reagents at cathodes

for treatment purposes (G) 403

19.8 Outlook 404

19.9 Acknowledgements 405

References 405

Page 13: Bioelectrochemical systems : from extracellular electron

xvi Bioeleclrochemical Systems

20 PERIPHERALS OF BES - SMALL SCALE YET FEASIBLE

(DEMONSTRATED) APPLICATIONS 409

20.1 Introduction 409

20.2 Artificial symbiosis 410

20.3 Microbial fuel cells and their configurations 411

20.3.1 Definition of peripherals 411

20.3.2 Bridging the power divide 412

20.3.3 Minimal peripheral requirements for continuous

and autonomous operation 415

20.3.4 Complexity in stacks 416

20.3.5 Microbial Electrolysis Cells (MECs) that

transform organic feedstocks into other typesof energy (hydrogen or methane) but require

input of electrical power in the process 419

20.3.6 Microbial Electrolysis Cells (MECs) that consume

electrical power to drive useful reactions

(e.g. denitrification) 420

References 420

21 TOWARDS A MATHEMATICAL DESCRIPTION OF

BIOELECTROCHEMICAL SYSTEMS 423

21.1 Introduction 423

21.2 Mathematical modelling 424

21.2.1 Model characteristics 425

21.2.1.1 Mechanistics vs. empirism 425

21.2.1.2 Dynamic vs. stationary models 426

21.2.1.3 Level of segregation/aggregation 426

21.2.2 How do model characteristics affect the

model user? 427

21.3 BESs modelling objectives 427

21.4 Key elements for BESs modelling 429

21.5 Existing BESs models 429

21.6 Current challenges in BESs modelling 436

21.6.1 Bioelectrode kinetics 437

21.6.2 Electron transfer mechanisms 439

21.6.3 Microbial activity: bioenergetics and kinetics 440

21.6.4 Mass transport - convection, diffusion and

migration 443

21.6.5 Biofilm and spatial modelling 444

Page 14: Bioelectrochemical systems : from extracellular electron

Contents xvii

21.7 BESs modelling perspectives 445

21.8 Acknowledgements 446

References 446

22 OUTLOOK: RESEARCH DIRECTIONS AND

NEW APPLICATIONS FOR BES 449

22.1 BES research - focus on the application 449

22.2 Fundamental research directions 450

22.2.1 Understanding bioelectrochemical processfundamentals 450

22.2.2 Practically inspired fundamental research

areas 452

22.3 Applied research opportunities 453

22.3.1 Contributions and limitations of current

research activities 453

22.3.2 BESs for wastewater treatment? 455

22.3.3 Is power the best product from BESs? 456

22.4 Potential new BES applications 457

22.4.1 Novel options for cathodic reductions 457

22.4.2 Novel options for anodic oxidations 459

22.5 BES Integration into practical applications 459

22.6 Concluding thoughts on the future of BES 461

References 462

Index 467