biodegradable*polymers:* · pdf file• biodegradable#polymer# –...

55
BIODEGRADABLE POLYMERS: PROPERTIES AND BIOMEDICAL APPLICATIONS Laura Elomaa 17.9.2015 laura.elomaa@aalto.fi

Upload: nguyenminh

Post on 28-Feb-2018

222 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

BIODEGRADABLE  POLYMERS:  PROPERTIES  AND  BIOMEDICAL  

APPLICATIONS  Laura  Elomaa  17.9.2015  [email protected]  

Page 2: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Outline  

1.  Biodegradable  polymers:  definiLons  2.  Mechanism  of  biodegradaLon  3.  Origin  of  biodegradable  polymers  –  Natural  polymers  –  SyntheLc  polymers  

4.  Polymers  in  biomedical  applicaLons  –  Tissue  engineering  and  3D  prinLng  –  Controlled  drug  delivery  –  Injectable  materials  

5.  Take  home  messages  

Page 3: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

DefiniLons  

According  to  Vert  el  al.  (1992):  •  Biodegradable  polymer  

–  Breaks  down  enzymaLcally  or  non-­‐enzymaLcally  through  polymer  chain  cleavage  when  in  contact  with  body  fluids  or  water  

•  Bioresorbable  polymer  –  A\er  biodegradaLon,  resorbs  in  body  through  natural  pathways  

•  Bioabsorbable  polymer  –  Does  not  degrade  through  chain  cleavage  but  can  be  excreted  from  a  body  by  natural  pathways  in  their  intact  form  

 Vert  M,  Li  SM,  Spenlehauer  G,  Guerin  P.  Bioresorbability  and  biocompaLbility  of  aliphaLc  polyesters.  J.  Mater.  Sci:  Mater.  Med.  1992;  3:432-­‐446.  

Page 4: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Terms  in  this  lecture:  Polymer  matrix  consists  of  polymer  chains  

Page 5: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Biomedical  applicaLons  

•  Where  would  we  need  biodegradable  polymers?    •  What  kind  of  applicaLons  can  benefit  from  biodegradaLon?  

Page 6: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Biomedical  applicaLons  

•  Surgical  sutures,  orthopedic  devices  such  as  bone  cements,  screws,  and  plates,  dental  applicaLons,  scaffolds  for  Lssue  engineering,  drug  delivery  devices  

Page 7: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

•  What  kind  of  biodegradable  polymer  would  be    opLmal  for  biomedical  applicaLons?  

Ideal  biodegradable  polymer  in  biomedical  applicaLons  

Page 8: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Ideal  biodegradable  polymer  in  biomedical  applicaLons  

•  Nontoxic  (both  polymer  and  its  degradaLon  products)  •  BiocompaLble  •  Immunologically  inert  •  Does  not  cause  inflammatory  reacLon  •  In  Lssue  implants,  mechanical  properLes  should  match  the  

surrounding  Lssue  •  DegradaLon  rate  can  be  controlled  

Page 9: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

BiodegradaLon  

•  One  of  the  most  significant  properLes  in  biomedical  applicaLons  –  Ensures  that  the  material  gradually  disappears  from  the  body  a\er  fulfilling  its  funcLon  

–  No  addiLonal  removal  surgery  is  needed  •  Biodegradable  polymers  contain  hydrolyLcally  labile  chemical  

bonds,  including  ester,  anhydride,  carbonate,  or  pepLde  bonds  

•  Some  biodegradable  polymers  can  degrade  in  water  in  absence  of  enzymes  (polyesters,  polyanhydrides),  others  require  presence  of  enzymes  (polypepLdes)  

 

Page 10: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

HydrolyLcally  sensiLve  biodegradable  bonds  

R OR

R O R

RNH

R

RNH

OR

RO O

R

OR

RO O

R

O

O O

O

O

O ester

anhydride

amide

urethane

orthoester

carbonate

Page 11: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Hydrolysis  of  labile  bonds  

•  Bonds  with  carbonyl  group  and  a  heteroatom  are  parLcularly  labile  •  Nucleophilic  water  or  hydroxyl  ion  afacks  the  electron-­‐

withdrawing  carbonyl  group  à  Breaks  the  bond  through  nucleophilic  subsLtuLon  

•  Enzymes  catalyze  hydrolysis  (esterases,  proteases,  etc.):  bring  specific  polymer  and  water  together  and  lower  acLvaLon  energy  

•  Cleavage  of  the  polymer  chain  decreases  the  polymer  molecular  weight    

•  Short  oligomer  or  monomer  chains  are  metabolized  in  a  body  

R1 XR2

O H2O

R1 OH

O

XH R2+

X = O, N, S

Page 12: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

BiodegradaLon  

Example:  PoylacLde  

Citric acid cycle

H2O

Eliminationfrom body

O O OO

O

O

OO

O OH OO

O

O

OOHO

OHO

HO

H2O+

Polymer

extracellular

polymer cleavage

oligomer, monomer

intracellular

metabolism

H2O(enzymes)

CO2 + H2O

Page 13: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

ProperLes  affecLng  biodegradaLon  

•  Chemical  structure  of  the  polymer:  –  Type  and  amount  of  labile  chemical  bonds  –  Hydrophobicity  à  Wegng  properLes  – Molecular  weight  –  Crystallinity  –  Presence  of  ionic  groups  –  Size  and  surface  area  of  the  polymer  matrix  

•  Environment:  –  pH  –  Temperature  –  Presence  of  enzymes    

Page 14: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Methods  for  studying  biodegradaLon  

•  Weight  measurements  •  Molecular  weight:  gel  permeaLon  chromatography  (GPC),  

mass  spectroscopy  •  Thermal  behavior  and  crystallinity  changes:  differenLal  

scanning  calorimetry  (DSC)  •  Changes  in  chemistry  (new  end  groups):  nuclear  magneLc  

resonance  (NMR),  infrared  (IR)  spectroscopy  •  Morphological  changes:  swelling,  deformaLon,  

disappearance,  soluLon  viscosity  

Page 15: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Material  erosion  

•  DegradaLon  of  the  polymer  chains  results  in  mass  loss  of  the  polymer  matrix  

•  Mechanism  depends  on  the  rate  of  water  diffusion  into  a  polymer  matrix:  

 

a)  Surface  erosion  –  Water  diffusion  into  the  polymer  matrix  is  slower  than  polymer  chain  degradaLon    

à Polymer  matrix  undergoes  surface  erosion    –  Mass  loss  happens  on  the  matrix  surface  

b)  Bulk  erosion  –  Water  diffusion  into  the  polymer  matrix  is  faster  than  polymer  chain  degradaLon    

à Polymer  matrix  undergoes  bulk  erosion  –  Mass  loss  happens  throughout  the  matrix  

Page 16: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Surface  vs.  bulk  erosion  

Page 17: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Change  of  polymer  properLes  in  bulk  degradaLon  

•  In  ideal  surface  erosion,  properLes  change  only  on  the  surface  and  remain  intact  inside  the  polymer  matrix    

•  In  bulk  erosion,  properLes            change  through  the            polymer  matrix  

Page 18: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

ORIGIN  OF  BIODEGRABLE  POLYMERS  

Page 19: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

I)  Natural  biopolymers    

•  Are  extracted  from  natural  resources  1.  Plant  origin:  

Polysaccharides:  Cellulose,  starch,  alginate  

2.  Animal  origin:  Polysaccharides:  ChiLn,  hyaluronate          Proteins:  Collagen,  gelaLn,  albumin  

3.  Microbe  origin    Polyesters:  Poly(3-­‐hydroxyalkanoate)    Polysaccharides:  Hyaluronate  

Page 20: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Natural  biopolymers  

Benefits:  •  Inherently  biodegradable  •  Abundant  natural  resources  •  Great  diversity  in  chemistry  •  Typically  have  good  cell  afachment  properLes;  BioacLvity  •  Hydrophilic  à  Suitable  for  water-­‐absorbing  hydrogels    

Drawbacks:  •  Complex  chemical  structure  à  Poor  lot-­‐to-­‐lot  uniformity  •  Chemical  modificaLon  can  be  difficult  without  changing  bioacLvity  •  PurificaLon  can  be  difficult  and  expensive  •  Typically  temperature  sensiLve  à  Challenging  processing  

properLes  

 

 

Page 21: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Examples  of  natural  biopolymers  

•  Collagen:  Long  polypepLde  composed  of  various  amino  acids  

•  Chitosan:    PosiLvely  charged  polysaccharide    à  AnLmicrobial,  good  blood  coagulant  and  wound  healer  

Page 22: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Examples  of  natural  polymer  applicaLons  

•  Apligra\®:    –  ArLficial  skin  for  treatment  of  ulcers  –  Contains  collagen  type  1  from  bovine  and  

human  fibroblasts  and  keraLnocytes    à Together  accelerate  the  wound  healing  –  First  living  cell-­‐based  Lssue  regeneraLon  

product  with  FDA  approval  

•  KytoCel®  (AspenMedical)    •  Chitosan  derived  from  shellfish  •  Wound  healer:  Biodegradable  chitosan  fibers  

bond  with  wound  exudate  to  form  a  water-­‐absorbing  gel  à  Accelerates  wound  healing  

•  Absorbs  pathogens  

Page 23: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

II)  SyntheLc  biodegradable  polymers  

•  Polyesters,  polyamides,  polyanhydrides,  poly(ortho  ester)s,  polyphosphates  

Benefits:  •  ProperLes  can  be  readily  modified  by  changing  its  monomer,  

molecular  weight,  or  funcLonal  groups  •  Straighlorward  synthesis  à  Great  lot-­‐to-­‐lot  uniformity  •  No  concerns  of  immunogenicity  •  Befer  mechanical  strength  Drawbacks:  •  Low  bioacLvity  à  Poor  cell  afachment  if  not  funcLonalized  •  Most  of  them  are  highly  hydrophobic  à  Poor  wegng  

 

Page 24: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Commonly  used  syntheLc  biodegradable  polyesters  

OO

OO

O

O

O

O

O

O

OO

O

O

OO

O

O

H OOH

O

HO OH

O

n

n

HO

OH

O

n

HO

O

nO

OH

O m

glycolide

lactide

poly(clycolic acid) or polyglycolide (PGA)

poly(lactic acid) orpolylactide (PLA)

glycolic acid

lactic acid

glycolide lactide

caprolactone polycaprolactone (PCL)

OHHO

O

OHHO

O

or

or

poly(lactide-co-glycolide) (PLGA)

+

•  PolycondensaLon  of  acid  monomers  gives  lower  molecular  weight  than  ring-­‐opening  polymerizaLon  of  cyclic  monomers  

Page 25: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Ring-­‐opening  polymerizaLon:  Polycaprolactone  

Page 26: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Commonly  used  syntheLc  biodegradable  polyesters  

1.  Polyglycolide  (PGA)    

•  High  crystallinity  à  Not  soluble  in  most  organic  solvents  •  High  melLng  point:  around  225-­‐230  °C  •  More  hydrophilic  than  PLA  of  CL  and  degrades  faster;  degradaLon  Lme  6-­‐12  

months  •  In  body,  degrades  into  glycolic  acid  à  Can  be  excreted  in  the  urine  or  

converted  into  carbon  dioxide  and  water  via  citric  acid  cycle  •  High  modulus  and  tensile  strength  à  Suitable  for  load-­‐bearing  applicaLons  

OO

O

O

HO OH

O

n

glycolidepoly(clycolic acid) or polyglycolide (PGA)glycolic acid

OHHO

Oor

Page 27: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Commonly  used  syntheLc  biodegradable  polyesters  

2.  PolylacLde  (PLA)    

•  Three  isomeric  forms:  poly(L-­‐lacLde)  (PLLA),  poly(D-­‐lacLde)  (PDLA),  and  poly(D,L-­‐lacLde)  (PDLLA)    

•  Tm  =  170  °C  (PLLA)  •  High  molecular  weight  PLLA  is  semi-­‐crystalline  and  degrades  in  2  years  •  PDLLA  is  amorphous;  degrades  in  12-­‐16  months  •  DegradaLon  product  lacLc  acid  à  is  metabolized  via  citric  acid  cycle  •  PLLA  is  typically  used  in  load-­‐bearing  applicaLons  and  PDLLA  in  low  

strength  implants  and  drug  release  applicaLons  

OO

O

O

HO

OH

O

n

lactide poly(lactic acid) orpolylactide (PLA)

lactic acid

OHHO

Oor

Bio-­‐based  monomer  

Page 28: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Commonly  used  syntheLc  biodegradable  polyesters  

3.  Poly(ε-­‐caprolactone)  (PCL)    

•  Semi-­‐crystalline  polymer  •  Tm  =  50-­‐60  °C  •  Due  to  its  hydrophobicity,  has  longer  biodegradaLon  Lme  than  PGA  or  

PLA,  around  2-­‐3  years  •  DegradaLon  product  6-­‐hydroxyicaproic  acid  à  is  metabolized  in  a  body  •  Modulus  is  low  à  Typically  used  in  long-­‐term  implantable  drug  delivery  

systems  and  low  strength  applicaLons  

O

O

H OOH

O

n

caprolactone polycaprolactone (PCL)

Petroleum-­‐based  monomer  

Page 29: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

SyntheLc  biodegradable  polymers  in  applicaLons  

•  Capronor®    –  Long-­‐term  subdermal  contracepLve  for  hormone  release  –  Made  of  slowly  degradable  polycaprolactone  –  Releases  hormone  for  over  a  year;  polymer  remains  intact  during  the  first  year  of  use    

–  Biodegrades  during  the  second  year  –  Clinically  tested  (already  in  1983);  However,  has  not  made  its  way  to  the  market  

 

•  Arthrex  Bio-­‐InterferenceTM  screws    –  FixaLon  of  bone  and  so\  Lssue  gra\s  –  Made  of  PLLA  à  Allows  for  controlled              degradaLon  over  Lme  

Page 30: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

BIOMEDICAL  APPLICATION  FIELDS  OF  BIODEGRADABLE  POLYMERS    

Page 31: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

I)  Tissue  engineering  (TE)  

•  More  than  120,000  people  in  a  waiLng  list  for  an  organ  donor  in  the  US  (2013);  only  29,000  received  a  transplant  –  The  gap  is  growing  due  to  the  shortage  of  suitable  organ  donors  

•  Use  of  animal  tests  is  being  restricted  by  laws  à  Need  for  alternaLve  methods  for  tesLng  drugs  

•  TE  aims  to  provide  paLents  with  temporary  biological  subsLtutes  that  mimic  naLve  Lssue    –  ArLficial  Lssue  constructs  can  be  used  for  restoring  or  improving  natural  Lssue  funcLon  

•  TE  strategy  supports  cells  that  are  naLvely  found  in  the  body  to  induce  natural  healing  of  Lssues  and  organs  

•  Tissue  constructs  grown  in  a  lab  can  be  used  for  efficient  pharmaceuLcal  research  

 

Page 32: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Tissue  engineering  

A)  In  vitro  TE  approach  1.  Culturing  and  mulLplying  of  cells  2.  FabricaLon  of  a  TE  scaffold  3.  Cell  seeding  on  the  scaffold  4.  ProliferaLon  and  differenLaLon              of  cells  within  the  scaffold  in  vitro  5.      ImplantaLon  into  a  body  

B)  In  vivo  TE  approach  1.  Culturing  and  mulLplying  of  cells  2.  FabricaLon  of  a  TE  scaffold  3.  Cell  seeding  on  the  scaffold  4.  ImplantaLon  into  a  body  5.  ProliferaLon  and  differenLaLon              of  cells  within  the  scaffold  in  vivo  

Page 33: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Extracellular  matrix  (ECM)  

•  Highly  porous  3D  structure  à  Provides  Lssue  with  structural  integrity  and  directs  cell  behavior  through  biomechanical  interacLons  and  mechanical  cues  

•  Composed  of  interlocked  fibrous  proteins  and  polysaccharides  secreted  by  cells    

•  Major  ECM  proteins  are  elasLn,  collagen,  fibronecLn,  and  laminin  –  ElasLn  is  responsible  for  the  elasLc  properLes  of  many  Lssues  like  

arteries  –  Collagen  gives  tensile  strength  to  Lssues  like  bone  and  skin  –  FibronecLn  contains  important  collagen-­‐,  heparin-­‐,  and  cell-­‐binding  

domains  –  Crosslinked  laminin  is  the  main  component  of  basement  membranes  

 à  ECM  is  a  highly  organized  3D  construct  of  natural  biopolymers  

Page 34: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Biodegradable  TE  scaffold  

•  Porous  3D  structure  fabricated  of  biodegradable  polymers  •  ArLficial  subsLtute  for  ECM  à  Provides  cells  with  a  local  

environment  that  enhances  and  regulates  cell  proliferaLon  •  Key  funcLon  is  to  guide  proliferaLon  and  growth  of  cells  to  form  

healthy  new  Lssue  •  Mechanically  supports  regeneraLng  Lssue  and  can  deliver  

therapeuLc  agents  to  enhance  Lssue  growth  or  to  treat  diseases  

Page 35: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Biodegradable  TE  scaffold  

 •  What  properLes  are  needed  for  an  opLmal  TE  scaffold  that  mimics  natural  ECM?  

Page 36: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Requirements  for  scaffold  polymer  

•  Biodegradable:  Scaffold  degrades  when  cells  no  longer  need  addiLonal  support  

•  Should  encourage  cell  afachment  and  proliferaLon  •  Polymer  and  degradaLon  products  need  to  be  biocompaLble  à  No  

cytotoxicity  allowed  •  Scaffold  needs  to  be  sterilizable  and  reproducible  

–  Polymer  should  endure  heat  or  radiaLon  •  Mechanical  properLes  should  ideally  match  the  properLes  of  the  

target  Lssue:    –  Load-­‐bearing  bone  Lssue  à  Strong  polymer  like  PLA  –  So\  Lssue  à  Hydrogel-­‐forming  polymers  like  gelaLn  

•  Should  allow  for  processing  into  a  highly  porous  scaffold  

Page 37: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

AddiLve  manufacturing  (3D  prinLng)  

•  Allows  for  fabricaLon  of  defined  pore  architecture  designs  à  Highly  interconnected  pores  ensure  free  nutrient  flow  within  the  scaffold  

•  Free-­‐form  parts  are  defined  in  CAD  models  à    Liquid,  powder,  or  sheet  polymers  are  joined  in  a  layer-­‐by-­‐layer  manner  to  form  a  desired  3D  structure  

•  CAD  file  can  be  obtained  by  using  3D  modeling  so\ware  or  by  using  clinical  imaging  techniques  such  as  CT,  MRI,    or  ultrasound  imaging  

•  Since  no  molds  are  used,  shape  of  the  scaffold  is  not  limited              à  Scaffold  can  be  customized  to  each  paLent  individually  =          

 personalized  medicine  •  Allows  for  fabricaLon  of  mechanically  graded  scaffolds  à  Fulfills  

the  requirements  of  various  cell  and  Lssue  types  within  the  same  scaffold  

Page 38: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

AddiLve  manufacturing  and  TE  

Page 39: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

A)  Fused  deposiLon  modeling  (FDM)  

•  Nozzle-­‐based  AMT  system:  deposits  thin  polymer  filaments  through  an  extrusion  head    

•  ThermoplasLc  polymer  is  heated  in  the  temperature-­‐controlled  extrusion  head  à    Melt  polymer  is  extruded  onto  a  plalorm  following  a  computer-­‐generated  model  

•  Extrusion  nozzle  operates  in  x-­‐  and  y-­‐  axis;  build  plalorm  moves  in  z-­‐axis  for  each  new  layer  

•  Polymer  solidifies  onto  the  plalorm  à  Adjacent  rods  form  a  scaffold  layer  

•  Allows  for  change  of  direcLon  of  every  second  layer  à  Scaffold  has  a  woven  type  pafern  

•  A  support  material  can  be  used  to  improve  the  quality  of  resulLng  scaffold    

Page 40: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Fused  deposiLon  modeling  (FDM)  

!

!

Page 41: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Polymers  in  FDM  

•  Before  FDM,  polymer  is  processed  into  homogenous  long  filaments  à  ThermoplasLc  polymer  is  needed  

•  MelLng  and  cooling  properLes  have  to  be  well  controlled  •  Polymer  is  heated  in  the  syringe  à  Doesn’t  allow  for  incorporaLon  

of  living  cells  or  acLve  proteins  into  the  material  •  Cooling  process  has  to  be  fast  to  achieve  a  high  resoluLon  •  High-­‐molecular  weight  polymers  typically  used  à  High  mechanical  

strength  •  Polymers  are  thermoplasLcs:  Scaffold  can  be  melted  or  dissolved  

and  polymer  used  again  

Page 42: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

B)  Stereolithography  (SLA)  

•  Photocrosslinking-­‐based  AMT  •  3D  structure  is  built  using  UV  or  visible  light  exposure  in  a  layer-­‐by-­‐

layer  manner  

•  Computer-­‐controlled  laser  beam  or  a  digital  light  projector  is  directed  into  liquid  polymer  resin  à  Photocrosslinks  the  desired  pafern  

•  A\er  photocrosslinking  one  layer,  a  build  plalorm  moves  in  z-­‐direcLon  à  Photocrosslinking  is  repeated  layer-­‐by-­‐layer  to  form  a  3D  structure    

•  Scaffold  fabricaLon  at  room  temperature  à  Allows  for  encapsulaLon  of  living  cells  or  heat-­‐sensiLve  pepLdes  into  the  scaffold  

•  Great  spaLal  and  temporal  control  à  High  resoluLon    

Page 43: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Stereolithography  

!

!

Page 44: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Polymers  in  SLA  

•  Requires  polymer  with  double  bond  end  groups  –  MethacrylaLon  is  typically  used:  

   

•  Polymer  has  to  be  liquid  before  crosslinking  –  Solvents  or  heaLng  can  be  used  

•  Low  molecular  weight  polymers  are  typically  used  –  Can  be  liquid  and  highly  reacLve  at  RT;  However,  mechanical  strength  is  limited  

•  Polymer  needs  to  crosslink  fast  under  exposure  to  UV  or  visible  light  à  ReacLve  mulL-­‐arm  polymers  typically  used  

•  Thermosegng  polymers:  Scaffold  cannot  be  melted  or  dissolved  a\er  fabricaLon  

H

OO

O+R

R

R

OO

nR

R

R

OO

n

O

Page 45: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Photocrosslinking  in  SLA  

•  PhotoiniLator  molecule  splits  into  radicals  under  exposure  to  UV  or  visible  light    à  Starts  polymerizaLon  by  opening  double  bonds  à  Forms  covalent  bonds  between  two  polymer  chains  à  Crosslinking  

Page 46: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

C)  Bioplogng  

•  For  fabricaLon  of  so\  Lssue  hydrogels  with  encapsulated  cells  •  Viscous  plogng  material  is  dispensed  through  a  pressure-­‐

controlled  syringe  into  a  liquid  medium  •  The  scaffold  is  built  layer  by  layer  à  Polymer  solidifies  into  a  woven  

type  3D  structure  •  Wide  variety  of  different  materials  

–  Polymer  melts,  swollen  polymers,  thermoset  resins,  polymer  soluLons,  sensiLve  natural  biopolymers  

•  Especially  for  fabricaLon  of  cell-­‐laden  hydrogels  with  complex  architectures    

Page 47: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Bioplogng  

!

Page 48: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Polymers  in  bioplogng  

•  Cells  are  encapsulated  in  the  hydrogel  while  prinLng  à  Polymer  has  to  be  sterile  in  the  fabricaLon  process    

•  Cells  and  proteins  are  sensiLve:  No  strong  organic  solvents  or  heaLng  is  allowed  

•  Hydrophilic  polymer  is  needed  to  obtain  a  water-­‐absorbing  hydrogel  

Page 49: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

II)  Controlled  drug  delivery  

•  In  tradiLonal  drug  delivery  (tablets),  drug  concentraLon  varies  from  high  to  ineffecLve  level;  drug  molecules  spread  everywhere  in  body  

•  Controlled  drug  delivery:  Biodegradable  polymer  is  used  as  an  implanted  or  injected  drug  delivery  vehicle  

•  Drug  level  remains  in  a  therapeuLc  range  and  can  be  localized  in  a  body  à  Safer  and  more  convenient  to  the  paLent  

•  Drug  release  is  controlled  by  tuning  the  degradaLon  of  polymer  

Page 50: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

DegradaLon-­‐controlled  drug  release    (w/o  diffusion)  

•  Bulk  erosion  vs.  surface  erosion  A.  Bulk  erosion:  

–  Drug  release  non-­‐linear  –  Burst  of  drug  is  possible  

 

B.  Surface  erosion:  –  Linear  release  kineLcs    –  Constant  drug  release  rate            

•  Especially  for  large  proteins  that  cannot  diffuse  out  of  the  polymer  matrix  

 

Page 51: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Surface  erosion  and  zero-­‐order  pepLde  release  

Hakala  R.  et  al.  Biomacromolecules  2011,  12,  2806–2814.      

Page 52: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Bulk  erosion  and  non-­‐linear  drug  release  

   Schmif  EA.  et  al.  J.  Pharm.  Sci.,  1993,  82,  326–329.    

Page 53: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

III)  In  situ  solidifying  injectable  biodegradable  polymers  

•  InjecLon  of  liquid  polymer  into  Lssue    •  Polymer  solidifies  due  to  changes  in  environment  (pH,  T,  chemicals)  

or  sLmulus  from  outside  (light,  magneLc  field)  •  No  need  for  surgery  •  Photorosslinking  allows  for  solidifying  the  polymer  transdermally  

–  Light  penetraLon  limited  à  Material  has  to  be  close  to  the  skin  surface  

Page 54: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Summary  

•  Biodegradable  polymers  degrade  in  contact  with  body  fluids  or  water  with  or  without  enzymes  

•  Cleavage  of  hydrolyLcally  labile  bonds,  such  as  ester,  anhydride,  or  pepLde  bonds,  causes  decrease  in  molecular  weight  à  Results  in  mass  erosion  

•  Polymer  matrix  can  lose  mass  on  the  surface  or  throughout  the  bulk  

•  Both  natural  and  syntheLc  biodegradable  polymers  are  used  in  biomedical  applicaLons  

•  Tissue  engineering  and  controlled  drug  delivery  are  important  applicaLon  fields  of  biodegradable  polymers  

Page 55: BIODEGRADABLE*POLYMERS:* · PDF file• Biodegradable#polymer# – Breaks*down*enzymacally*or*nonZenzymacally*through* ... • A\er*photocrosslinking*one*layer,*abuild*plaorm*moves*in*z

Further  reading  in  case  you’re  interested  

•  Nair,  L.S.;  Laurencina,  C.T.  Biodegradable  polymers  as  biomaterials.  Prog.  Polym.  Sci.  32  (2007)  762–798  

•  Ulery,  B.D.;  Nair,  L.S.;  Laurencin,  C.T.  Biomedical  applicaLons  of  biodegradable  polymers.  J.  Polym.  Sci.  B  Polym.  Phys.  49    (2011)  832-­‐864.  

•  Vroman,  I.;  Tighzert,  L.  Biodegradable  polymers.  Materials  2  (2009)  307-­‐344.  

•  GunaLllake,  P.A.;  Adhikari,  R.  Biodegradable  syntheLc  polymers  for  Lssue  engineering.  Eur.  Cells  Mater.  5  (2003)  1-­‐16.  

•  Uhrich,  K.E.;  Cannizzaro,  S.M.;  Langer,  R.S.;  Shakesheff,  M.  Polymeric  systems  for  controlled  drug  release.  Chem.  Rev.  99  (1999)  3181-­‐3198.