bioconversion of plant residues into...

28
Bibliography

Upload: vutu

Post on 06-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Bibliography

Bibliography

248

BIBLIOGRAPHY

Abbi, M., Kuhad, R.C. and Singh, A. (1996a). Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): Fermentation

behavior. Process Biochemistry 31: 555-560.

Abbi, M., Kuhad, R.C. and Singh, A. (1996b). Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. Journal of Industrial Microbiology. 17: 20-23.

Abdenifar, S., Karimi, K. and Khanahmadi, M. (2009). Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation.

Biomass and Bioenergy doi.10.1016/j.biombioe.2009.01.003.

Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B.,

Montague, L., Slayton, A., Lukas, J. (2002). Lignocellulosic biomass to ethanol

process design and economics utilizing co-current dilute acid prehydrolysis and

enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory Technical

Report. NREL/TP-510-32438.

Aden A. (2008). Biochemical Production of Ethanol from Corn Stover: 2007 State of

Technology Model National Renewable Energy Laboratory (NREL), NREL Report TP-510-

43205.

Aden, A. and Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose. 16:

535–545.

Adsul, M.G., Ghule, J.E., Shaikh, H. et al. (2005). Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydrate Polymers. 62: 6–10.

Agbogbo, F. A., Coward-Kelly, G., Torry-Smith, M. and Wenger, K. S. (2006). Fermentation of glucose/xylose mixtures using. Pichia stipitis Process Biochemistry. 41:

2333–2336.

Agbogbo, F.A. and Wenger, K. S. (2007). Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. Journal of Industrial Microbiology and Biotechnology 34: 723–727.

Agbogbo, F.K. Haagensen, F.D. Milam, D. and Wenger, K.S. (2008). Fermentation of acid-pretreatd corn stover to ethanol without detoxification using Pichia stipitis, Applied Biochemistry and Biotechnology. 145:53-58.

Aguilera, F., Peinado, R.A., Millan, C., Ortega, J.M. and Mauricio, M. (2006).

Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. International Journal of Food

Microbiology. 110: 34-42.

Alder, E. (1977). Lignin chemistry: Past, present and future. Wood Science and Technology. 11: 169–218.

Alfani, A., Gallifuoco, F., Saporosi, A. and Cantarella, M. (2000). Comparison of SHF and SSF process for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology. 25: 84–192.

Almeida, E.L.F. and Silva, C.M.S. (2006). Formação de um mercado internacional de

etanol e suas inter-relações com os mercados de petróleo e açúcar. XI Congresso Brasileiro de Energia, Rio de Janeiro, Brazil.

Alper., H. and Stephanopoulos., G. (2009). Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nature Reviews Microbiology. 7:

715-723.

Bibliography

249

Alriksson, B., Sjode, A., Nilvebrant, N.-O. and Jonsson, L.J. (2006). Optimal condition for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology. 129-132: 599-611.

Alterthum, F. and Ingram, L.O. (1989) Efficient ethanol-production from glucose, lactose, and xylose by recombinant Escherichia coli. Applied and Environmental Microbiology. 55: 1943-1948.

Alves, A.M.C.R., Record, E., Lomascolo, A., Scholtmeijer, K., Asther, M., Wessels,

J.G.H. and Wosten, H.A.B. (2004). Highly efficient production of laccase by basidomycete Pycnoporus cinnabarinus. Applied and Environmental Microbiology. 70:

6379–6384.

Alvira, P., Tomás-Pejó, E., Ballesteros, M. and Negro, M.J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology. 101: 4851–4861.

Alvira, P., Negro, M.J. and Ballesteros, M. (2011) Effect of endoxylanase and α-L-

arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology. 102: 4552-4558.

ANFAVEA (2005). Associação Nacional dos Fabricantes de Veículos Automotores. Anuário estatístico. (http://www.anfavea.com.brN).

Annaluru, N., Watanabe, S., Pack, S.P., Saleh, A.A., Kodaki, T. and Makino, K. (2007). Thermo-stabilization of Pichia stipitis xylitol dehydrogenase by mutation of

structural zinc-binding loop. Journal of Biotechnology. 129: 717-722.

Antizar-Ladisiao, B. and Turrion-Gomez, J.L. (2008). Second-generation biofuels and local bioenergy systems. Biofuels Bioproduction and Biorefinery 2:455-469.

Antoni, D., Zverlov, V.V. and Schwarz, W.H. (2007). Biofuels from microbes. Applied Microbiology and Biotechnology. 77: 23–35.

Aon, J. and Cortassa, S. (2001). Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Metabolic Engineering 3:250-264.

Asli, M.S. (2010). A study on some efficient parameters in batch fermentation of ethanol using Saccharomyces cerevesiae SC1 extracted from fermented siahe sardasht pomace.

African Journal of Biotechnology. 9: 2906-2912.

Attfield, P.V. and Bell, P.J. (2006). Use of population genetics to derive nonreconminant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Research.. 6: 862-868.

Azzam, A.M. (1989). Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. Journal of Environmental Science and Health. B. 24: 421–433.

Bai, F.W., Anderson, W.A. and Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances. 26:.89-105.

Bajpai, P. and Margaritis, A. (1987). The effect of temperature and ph on ethanol production by free and immobilized cells of Khyveromyces marxianus grown on

Jerusalem artichoke extract. Biotechnology and Bioengineering. 30: 306-313

Bajwa, P.K. Pinel, D. Martin, V.J.J., Trevors, J.T. and Lee, H. (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. Journal of Microbiological Methods. 81: 179–186.

Baker, J.O., McCarley, J.R., Lovettt, R., Yu, C.H., Adney, W.S., Rignall, T.R.,

Vinzant, T.B., Decker, S.R., Sakon, J. and Himmel, M.E. (2005). Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Applied Biochemistry and Biotechnology. 121: 129–148.

Bibliography

250

Balan, V., Souca, L.D.C., Chundawat, S.S,, Vismeh, R., Jones, A.D. and Dale, B.E.

(2008). Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. Journal of Industrial Microbiology and Biotechnology. 35: 293–301.

Ballesteros, I., Ballesteros, M., Cabañas, A., Carrasco, J., Martin, C., Negro, J.M., et al. (1991). Selection of thermotolerant yeasts for simultaneous saccharification and fermentation process (SSF) of cellulose to ethanol. Applied Biochemistry and Biotechnology. 28–29: 307–15.

Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P. and Ballesteros, I. (2004).

Ethanol from lignocellulosic materials by a simultaneous saccharificationand fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochemistry. 39: 1843-1848.

Ballesteros, I., Ballesteros, M., Manzanares, P., Negro, M.J., Oliva, J.M. and Saez,

F. (2008). Dilute sulfuric acid pretreatment of cardoon for ethanol production. Biochemical Engineering Journal. 42: 84-91

Banat, I.M., Nigam, P., Singh, D., Marchant, P. and McHale, A.P. (1998). Ethanol

production at elevated temperatures and alcohol concentrations. Part I: Yeasts in general. World Journal of Microbiology and Biotechnology. 14: 809–821.

Bastawde, K.B. (1992). Xylan structure, microbial xylanases and their mode of action, World Jouranl of Microbiology and Biotechnology. 8: 353-368.

Beall, D.S., Ohta, K. and Ingram, L.O. (1991). Parametric studies of ethanol-production from xylose and other sugars by recombinant. Escherichia coli Biotechnology and Bioengineering. 38:.296–303.

Beery, K.E. and Ladisch, M.R. (2001). Adsorption of water from liquid-phase ethanol-water mixtures at room temperature using starch-based adsorbents. Industrial Engineering and Chemical Research. 40: 2112–2115.

Beguin, P. and Aubert, J.P. (1994). The biological degradation of cellulose. FEMS

Microbiology Review. 13: 25–58.

Belkacemi, K., Tureotte, G., Savoic, P. and Chornet, E. (1997) Ethanol production

from enzymatic hydrolysate of cellulosic fines and hemicellulosic-rich liquors derived from aqueous/steam fractionation of forages. Industrial Engineering and Chemical Research. 36: 4572-4580.

Belloch, C., Orlic, S., Barrio, E. and Querol, A. (2008). Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. International Journal of Food Microbiology. 122: 188-195.

Berrocal, M., Ball, A.S., Huerta, S., Barrasa, J.M., Herna´ndez, M., Pe´rez-Leblic,

M.I. and Arias, M.E. (2000). Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus. Applied Microbiology and Biotechnology. 54:

764–771.

Biofuel digest (2009). The Hot 100 – the 100 Hottest Companies in Bioenergy for 2009-10. 2009. (http://www.biofuelsdigest.com/blog/2009/12/02/the-hot-100-the-100-

hottest-companies- in-bioenergy-for-2009-10)

Biofuels Platform. (2010) ENERS Energy Concept. Production of biofuels in the world.

(http://www.biofuels-platform.ch/en/infos/production.php? id=bio-ethanolN).

Bisaria, V.S. (1991) Bioprocessing of Agro-residues to glucose and chemicals In: Bioconversion of Waste Materials to Industrial Products. edited by A.M Martin. London,

Elsevier. pp 210–213.

Bjerre, A.B., Olesen, A.B. and Fernqvist, T. (1996). Pretreatment of wheat straw using

combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering. 49: 568–577.

Bibliography

251

Bollók, M., Réczey, K. and Zacchi, G. (2000). Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Applied Biochemistry and Biotechnology. 84–86: 69–80.

Boluda-Aguilar, M., García-Vidal, L., González-Castañeda, F.D.P, and López-Gómez, A. (2010). Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresource Technology. 101: 3506-3513.

Boraston, A.B., Bolam, D.N., Gilbert, H.J. and Davies, G.J. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemistry Journal. 382:

769–781.

Borjesson, J., Peterson, R. and Tjerneld, F. (2007). Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme and Microbial Technology. 40: 754-762.

Bothast, R.J., Saha, B.C., Flosenzier, V.A. and Ingram, L.O. (1994). Fermentation of L-arabinose, D-xylose, and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnology Letters. 16: 401–406.

Brandberg, T., Sanandaji, N., Gustafsson, L. and Franzen, C.J. (2005). Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Biotechnology Progress. 21:1093–1101.

Brandberg, T., Karimi, K., Taherzadeh, M.J., Franzen, C.J. and Grustafsson, L. (2007). Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention. Biotechnology and Bioengineering. 98: 80–90.

Bro, C., Regenberg, B., Förster, J. and Nielsen, J. (2006). In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering. 8:102–111

Bruinenberg, P.M., de Bot, P.H.M., van Dijken, J.P. and Scheffers, W.A. (1984).

NADH-linked aldose reductase: a key to anaerobic alcoholic fermentation of xylose by yeasts. Applied Microbiology and Biotechnology. 19: 256-260.

Buaban, B., Inoue, H., Yano, S., Tanapongpipat, S., Ruanglek, V., Champreda, V.,

Pichyangkura, R., Rengpipat, S. and Eurwilaichitr, L. (2010). Bioethanol production

from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Journal of Bioscience and Bioengineering. 110: 18-25.

Bustamente, P., Ramos, J., Zun˜iga, V., Sabharwal, H.S. and Young, R.A. (1999). Biomechanical pulping of bagasse with the white rot fungi Ceriporiopsis subvermispora and Pleurotus ostreatus. TAPPI Journal. 82: 123–128.

Campbell, C.J. and Laherrere, J.H. (1998). The end of cheap oil. Science. 3: 78-83.

Cara, C., Ruiz, E., Oliva, J.M., Sáez, F. and Castro, E. (2008). Conversion of olive tree

biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology. 99: 1869-1876.

Carrillo, F., Lis, M.J., Colom, X., Lo’pez-Mesas, M. and Valldeperas, J. (2005). Effect of alkali pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Process Biochemistry. 40: 3360-3364.

Casey, E., Sedlak, M., Nancy, W.Y. Ho, N.W.Y. and Nathan S. Mosier N.S. (2010). Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae FEMS Yeast Research. 10:

385–393.

Chaillou, S., Pouwels, P.H. and Postma, P.W. (1999). Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: Evidence for a

mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system. Journal of Bacteriology. 181: 4768-4773.

Bibliography

252

Chandel, A. K., Kapoor, R.K., Singh, A. and Kuhad, R.C. (2007a) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM

3501. Bioresource Technology. 98: 1947-1950.

Chandel, A.K., Kapoor, R.K., Singh, A., Narasu, M.L., Viswadewan, V., Kumaran, S.G.S., Rudravaram, R., Rao, L.V., Tripathi, K.K., Lal, B. and Kuhad, R.C. (2007b).

Economic evaluation and environmental benefits of biofuels: an Indian perspective. International Journal of Global Energy Issues. 28: 357-381.

Chandel, A.K., Singh, O.V., Narasu, M.L. and Rao, L.V. (2011a). Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by

mono-co-cultures of Pichia stipitis NCIM 3498 and thermotolerant Saccharomyces cerevisiae-VS3. doi:10.1016/j.nbt.2010.12.002.

Chandel, A.K., Singh, O.V., Rao, L.V., Chandrasekhar, G. and Narasu, M.L. (2011b). Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol

by Pichia stipitis NCIM3498. Bioresource Technology. 102: 1709-1714.

Chandra, R.P., Au-Yeung, K., Chanis, C., Roos, A.A., Mabee, W., Chung, P.A.,

Ghatora, S. and Saddler, J.N. (2011). The influence of pretreatment and enzyme

loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnology Progress. 27:77–85.

Chapple, C., Ladisch, M. and Meilan, R. (2007). Loosening lignin’s grip on biofuel production. Nature Biotechnology. 25: 746-748.

Chen, M., Xia, L. and Xue, P. (2007). Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration and Biodegradation. 59: 85-89.

Chen, M., Zhao, J., and Xia, L. (2009). Comparison of four different chemical

pretreatments of corn stover for enhancing enzymatic digestibility. Biomass and Bioenergy, doi:10.1016/j.biombioe.2009.05.025

Cheng, K-K., Cai, B-Y., Zhang, J-A., Ling, H-Z., Zhou, Y-J., Ge, J-P. and Xu, J-M.

(2008). Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochemical Engineering Journal. 38: 105-109.

Chinedu, S.N., Nwinyi, C.O. and Okochi, V.I.(2008). Properties of endoglucanase of Penicllium chrysogenum PCL501. Australian Journal of Basic and Applied Sciences. 2:

738-746

Chou, Y-C., Zhang, M., Mohagheghi, A., Evans, K. and Finkelstein, M. (1997). Construction and evaluation of a xylose/arabinose fermenting strain of Zymomonas mobilis. Abstracts in 19th Symposium on Biotechnology for Fuels and Chemicals,

Colorado, Springs, May 4-8.

Clomburg, J.M. and Gonzalez, R. (2010). Biofuel production in Escherichia coli: the

role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology. 86: 419–434.

Collins, T., Gerday, C, and Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29: 3–23.

Converti, A., Domniguez, J.M., Parago, P., Silva, S.S. and Zilli, M. (2000). Wood hydrolysis and hydrolysates detoxification for subsequent xylitol production. Chemical Engineering and Technology. 23:1013-1020.

De Bari, I., Cuna, D., Nanna, F. and Braccio, G. (2004). Ethanol production in

immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Applied Biochemistry and Biotechnology. 113–116: 539–557.

Deanda, K., Zhang, M., Eddy, C. and Picataggio, S. (1996). Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering.

Applied and Environmental Microbiology. 62: 4465-4470.

Bibliography

253

Demirbas, A. (2005). Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy sources. 37: 327-337.

Deshpande, V., Keskar, S., Mishra, C. and Rao, M. (1986). Direct conversion of cellulose/hemicellulose to ethanol by Nuerospora crassa. Enzyme and Micorbial Technology. 8:149-152.

Dhawan, S. and Kuhad, R.C. (2003). Ethidium bromide stimulated hyper laccase production from bird’s nest fungus Cyathus bulleri. Letters in Applied Microbiology. 36:

1–3

Dien B S, Nichols N N, O'Bryan P J and Bothast R J. (2000). Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass.

Applied Biochemistry and Biotechnology. 84:181–196.

Dien, B.S., Cotta, M.A. and Jeffries, T.W. (2003). Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology. 63: 258-266.

Din, N., Damude, H.G., Gilkes, N.R., Miller, R.C., Warren, R.A.J. and Kilburn, D.G. (1994). C-1-C-X revisited – Intramolecular synergism in a cellulase. Proceedings in National Academy of Science. 91: 11383–11387.

Divne, C., Stahlberg, J., Teeri, T.T. and Jones, T.A. (1998). High-resolution crystal

structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. Journal of Molecular Biology. 275: 309–325.

Dourado, F., Bastos, M., Mota, M. and Gama, F.M. (2002) Studies on the properties of celluclast/Eudragit L-100 conzugate. Journal of Biotechnology. 99:121-131.

Dubey, V., Pandey, L.K. and Saxena, C. (2005). Pervaporative separation of

ethanol/water azeotrope using a novel chitosan-impregnated bacterial cellulose

membrane and chitosan–poly(vinyl alcohol) blends. Journal of Membrane Science. 251:

131–136

Duff, S.J.B. and Murray, W. D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology. 55: 1–33.

duPreez, J.C., Bosch, M. and Prior, B.A. (1986). The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Applied Microbiology and Biotechnology 23:228-233.

duPreez, J.C. (1994). Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzyme and Microbial Techno1ogy. 16: 944-956.

EIA. (2008). Annual energy outlook 2008. Energy information administration, office of

integrated analysis and forecasting. US Department of Energy, Washington, USA.

El Kanouni, A., Zerdani, I., Zaafa, S., Znassni, M., Loutfi, M. and Boudouma, M. (1998). The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. World Journal of Microbiology and Biotechnology. 14: 431-425.

Eliasson, A., Christensson, C., Wahlbom, C.F. and Hahn-Hägerdal, B. (2000). Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Applied and Environmental Microbiology. 66: 3381–3386.

Energy Information Administration (EIA). (2008). How Dependent are we on Foreign

Oil? (http://tonto.eia.doe.gov/energy_in_brief/ foreign_oil_dependence.cfmN).

Eriksson, K.L., Blanchette, R.A, and Ander, P. (1990). Microbial and enzymatic

degradation of wood and wood components. Springer, Berlin Heidelberg New York.

Eriksson, K-E.L. (1993). Lignin biodegradation and practical utilization. Journal Biotechnology. 30:149-158.

Eriksson, T., Borjesson, J. and Tjerneld, F. (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology. 31:353-364.

Bibliography

254

Esteghlalian, A., Hashimoto, A.G., Fenske, J.J. and Penner, M.H. (1997). Modeling

and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchhgrass. Bioresource Technology. 59: 129–136.

Fair, J.R. (2001). Distillation. Kirk-Othmer Encyclopedia of Chemical Technology 8: 739–

785.

Fan, L.T., Lee, Y.H. and Gharpuray, M.M. (1982). The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering. 23:

158-187.

Fan, L.T., Gharpuray, M.M, and Lee, Y-H. (1987). Cellulose Hydrolysis Biotechnology

Monographs Berlin, Springer.

Fang, X., Shen, Y., Zhao, J., Bao, X. and Qu, Y. (2010). Status and prospects of lignocellulosic bioethanol production in china. Bioresource Technology. 101: 4814-4819.

Feldmann, S.D. Sahm, H. and Sprenger, G.A. (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Applied Microbiology and Biotechnology. 38: 354-361.

Fenske, J.J., Hashimoto, A. and Penner, M.H. (1998). Relative fermentability of lignocellulosic dilute-acid prehydrolysates—application of a Pichia stipitis-based toxicity assay. Applied Biochemistry and Biotechnology. 73: 145–157.

Ferreira, S., Duarte, A.P., Ribeiro, M.H.L., Queiroz, J.A. and Domingues, F.C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and

Cystisus striatus for bioethanol production. Biochemical Engineering Journal. 45: 192-

200.

Frazer FR, McCaskey TA (1989). Wood hydrolyzate treatments for improved fermentation of wood sugars to 2,3-butanediol. Biomass. 18: 31-42.

Fu, N., Peiris, P., Markham, J. and Bavor, J. (2009). A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose

mixtures. Enzyme and Microbial Technology. 45: 210-217.

Fujita, Y., Katahira, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Fukuda, H.

and Kondo, A. (2002). Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. Journal of Molecuar Catalysis B: Enzymatic. 17: 189-195.

Galazka, J.M., Tian, C., Beeson, W.T., Martinez, B., Glass, N.L. and Cate, J.H.D. (2010) Cellodextrin transport in yeast for improved biofuel production. Science. 330: 84-

86.

Galbe, M., Lidén, G. and Zacchi, G. (2005). Production of ethanol from biomass – research in Sweden. Journal of Scientific and Industrial Research. 64: 905–919.

Galbe, M. and Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production. Advance Biochemical Engineerin/ biotechnology. 108: 41-65.

Galbe, M., Sassner, P., Wingren, A. and Zacchi, G. (2007) Process engineering economics of bioethanol production. Advances in Biochemical Engineering/Biotechnology. 108: 303–327.

García-Cubero, M.T., González-Benito, G., Indacoechea, I., Coca, M. and Bolado, S.

(2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology. 100: 1608–1613.

GBEP. (2008). A Review of the Current State of Bioenergy Development in G8 +5

Countries. Global Bioenergy Partnership (GBEP).

Ghose, T.K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry.

59: 257-268.

Gnansounou, E. (2010). Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresource Technology. 101: 4842–50.

Bibliography

255

Gnansounou, E. and Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology. 101: 4980–91.

Goldemberg, J. (2007). Ethanol for a sustainable energy future. Science. 315: 808-810.

Gonzalez, R., Tao, H., Shanmugam, K.T., York, S.W. and Ingram, L.O. (2002). Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnology Progress.

18: 6-20.

Goring, D.A.I. and Timell, T.E. (1962). Molecular weight of native celluloses. Tappi. 45:

454–460.

Gregg, D.J., Boussaid, A. and Saddler, J.N. (1998). Techno-economic evaluations of a

generic wood to ethanol process: Effect of increased cellulose yields and enzyme recycle. Bioresource Technology. 63: 7-12.

Griend, V. and Lee, D. Ethanol Distillation Process. US Patent 7,297,236, 20 November

2007.

Grootjen, D.R.J., Jansen, M.L., Vanderlans, R. and Luyben, K. (1991). Reactors in series for the complete conversion of glucose xylose mixtures by Pichia stipitis and

Saccharomyces cerevisiae. Enzyme and Microbial Technology. 13: 828–833.

Guebel, D.V., Cordenons, A., Cascone O, Giulietti AM and Nudel C (1992). Influence of nitrogen source on growth and ethanol production by Pichia stipitis NRRL Y-7124. Biotechnology Letters. 14: 1193-1198.

Gupta, R., Sharma, K.K. and Kuhad, R.C. (2009). Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of

cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.

Bioresource Technology. 100: 1214-1220.

Gupta, R., Khasa, Y.P. and Kuhad, R.C. (2011a). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate polymers. 84: 1103-1109.

Gupta, R., Mehta, G., Khasa, Y.P. and Kuhad, R.C. (2011b). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation.

22:797-804.

Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I and Gorwa-Grauslund M F. (2007). Towards industrial pentose fermenting yeast strains. Applied Microbiology and Biotechnology. 74: 937–953.

Hamelinck, C.N. (2004). Outlook for Advanced Biofuels. Ph.D. Thesis, Department of

Science, Technology and Society and the Copernicus Institute for Sustainable

Development and Innovation of Utrecht University.

Hamelinck, C.N., van, Hooijdonk, G. and Faaij, A.O.C. (2005). Ethanol from

lignocellulosic biomass: techno-economic performance in short-, middle-, and long-term. Biomass and Bioenergy. 28: 384-410.

Harikrishna, S., Reddy, J.T. and Chowdary, G.V. (2001). Simultaneous

saccharification and fermentation of lignocellulosic wastes to ethanol using thermotolerant yeast. Bioresource Technology. 77: 193–196.

Hatakka, A.I. (1983). Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Applied Microbiology and Biotechnology. 18: 350–357.

Hatzis, C., Riley, I.C. and Philippidis, G.P. (1996). Detailed material balance and ethanol yield calculations for the biomass-to-ethanol conversion process. Applied Biochemistry and Biotechnology. 57/58: 443-459.

Hayes, D.J. (2009). An examination of biorefining processes, catalysts and challenges. Catalysis Today. 145: 138–151.

Bibliography

256

Heipieper, H.J., Weber, F.J., Sikkema, J., Keweloh, H. and DeBont, J.A.M. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology. 12:409-415.

Heluane, H., Spencer, J.F.T., Spencer, D., de Figueroa, L. and Callieri, D.A.S. (1993). Characterization of hybrids obtained by protoplast fusion between Pachysolen tannophilus and Saccharomyces cerevisiae, Applied Microbiology and Biotechnology. 40:

98-100.

Hemmatinejad, N., Vahabzadeh, F. and Koredestani, S.S. (2002). Effect of surfactant on enzymatic hydrolysis of cellulosic fabric. Iranian Polymer Journal. 11: 333–338.

Hendriks, A.T.W.M. and Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology. 100: 10–18.

Herrero, A. and Gomez, R.F. (1980). Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Applied and Environmental Microbiology. 40:

571–577.

Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W.

and Foust, T.D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science. 315: 804-807.

Ho, N.W.Y., Chen, Z. and Brainard, A.P. (1998). Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Applied and Environmental Microbiology. 64: 1852-1859.

Hodge, M.H. and Hildebrandt, M.F. (1954). Alcoholic fermentation of molasses. In:

Underkofler A.L, Hickey J.R (eds) Industrial fermentation. Chemical publishing Co. New

York.

Hodge, D.B., Andersson, C., Berglund, K.A. and Rova, U. (2009a) Detoxification

requirements for bioconversion of softwood dilute acid hydrolysates to succinic acid. Enzyme and Microbial Technology. 44: 309-316.

Hodge D.B., Karim M.N., Schell D.J. and McMillan J.D., (2009b). Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Applied Biochemistry and Biotechnology. 152: 88-107.

Hou, J., Vemuri, G.N., Bao, X. and Olsson, L. (2009). Impact of overexpressing NADH

kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 82: 909–919.

Hu, C.K., Bai, F.W. and An, L.J. (2005). Effect of flocculence of a self flocculating yeast on its tolerance to ethanol and the mechanism. Chinese Journal of Biotechnology. 21:

123-128.

Hu, Z. and Wen, Z. (2008). Enhancing enzymatic digestibility of switch grass by microwave assisted alkali pretreatment. Biochemical Engineering Journal. 38: 369-378.

Hu, Z., Wang, Y. and Wen, Z. (2008). Alakli (NaOH) pretreatment of switchgrass by radiofrequency bound dielectric heating. Applied Biochemistry and Biotechnology. 148:

71-81.

Huang, C-F., Lin, T-H., Guo, G-L. and Hwang, W-S. (2009). Enhanced ethanol

production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technology. 100: 3914-3920.

Humbird, D. and Aden, A. (2009). Biochemical Production of Ethanol from Corn Stover:

2008 State of Technology Model National Renewable Energy Laboratory (NREL), NREL Report TP-510-46214.

IEA. (2008) World Energy Outlook 2008. OECD/IEA.

IEA. (2009). Energy Balance of OECD Countries. 2009 Edition. OECD/IEA.

Bibliography

257

Ingesson, H., Zacchi, G., Yang, B., Esteghlalian, A.R. and Saddler, J.N. (2001). The

effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. Journal of Biotechnology. 88: 177–182.

Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W. and Preston, J.F. (1987). Genetic engineering of ethanol production in Escherichia coli. Applied and Environmental Microbiology. 53: 2420–2425.

Ingram, L.O., Aldrich, H.C., Borges, A.C., Causey, T.B., Martinez, A., Morales, F.,

Saleh, A., Underwood, S.A., Yomano, I.P., York, S.W., Zaldivar, J. and Zhou, S. (1999). Enteric bacterial catalysts for fuel ethanol production. Biotechnology Progress.

15: 855-866.

Itoh, H., Wada, M., Honda, Y., Kuwahara, M. and Watanabe, T. (2003). Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. Journal of Biotechnology. 103: 273–280.

Jeffries, T.W. and Schartman, R. (1999). Bioconversion of secondary fiber fines to ethanol using counter-current enzymatic saccharification and co-fermentation. Applied Biochemistry and Biotechnology. 77-79: 435-444.

Jeffries, T.W. and Jin, Y-S. (2004). Ethanol and thermo-tolerance in the bioconversion of xylose by yeasts .Advances in Applied Microbiology. 47: 221-266.

Jeffries, T.W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology. 17: 320-326

Jeon, E., Hyeon, J., Suh, D.J., Suh, Y.-W., Kim, S.W., Song, K.H. and Han, S.O. (2009). Production of cellulosics ethanol in Saccharomyces cerevisiae heterologous

expressing Clostridium thermocellum Endoglucanase and Saccharomycopsis fibuligera β-

glucosidase. Molecule Cell.. 28: 369-373.

Jeppsson, M., Johansson, B., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2002).

Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Applied and Environmental Microbiology. 68: 1604–1609.

Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B. and Gorwa-Grauslund,

M.F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research 3: 167–175.

Jeppsson, M., Bengtsson, O., Franke, K., Lee, H., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2006). The expression of a Pichia stipitis xylose reductase mutant with

higher Km for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering. 93: 665–673.

Joachimsthal, E.L. and Rogers, P.L. (2000). Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose

mixtures. Applied Biochemistry and Biotechnology. 84-86: 343-356.

Johansson, B., Christensson, C., Hobley, T. and Hahn-Hägerdal, B. (2001). Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing

xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Applied and Environmental Microbiology. 67: 4249–4255.

Johnsson, L.J., Palmqvist, E., Nilverbrant, N.O. and Hahn-Hagerdal, B. (1998).

Detoxification of wood hydrolysates with laccase and peroxidase from white rot fungus Trametes versicolor. Applied Microbiology and Biotechnology. 49: 691-697.

Jurado, M., Prieto, A., Martínez-Alcalá, Á., Martínez, Á.T. and Martínez, M.J. (2009). Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresource Technology. 100: 6378-6384.

Kaar, W.E. and Holtzapple, M. (1998). Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnology and Bioengineering. 59: 419–427.

Bibliography

258

Kadam, K.L. and Newman, M.M. (1997). Development of a low-cost fermentation medium for ethanol production from biomass. Applied Microbiology and Biotechnology.

47: 625-629.

Kapoor, M.K. (2007). Alkalothermostable endo-β-1-4-xylanase from Bacillus pumilus

strain MK001 and its application in bleaching of paper pulp. Thesis. University of Delhi.

Kapoor, R.K., Chandel, A.K., Kuhar, S., Gupta, R. and Kuhad, R.C. (2007).

Bioethanol from crop residues, Production forecasting and Economics: An Indian

Perspective In: Lignocellulose Biotechnology: Future prospects. (edited by) Kuhad R.C.

and Singh A. I K International publication, New Delhi.

Kapoor, M., Nair, L.M. and Kuhad, R.C. (2008). Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in

saccharification of Prosopis juliflora. Biochemical Engineering Journal. 38: 88-97.

Karhumaa, K., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast. 22: 359–368

Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F.

(2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 73: 1039–1046.

Karunanithy, C., Muthukumarappan, K. and Julson, J. L. (2008). Influence of high

shear bioreactor parameters on carbohydrate release from different biomasses American

Society of Agricultural and Biological Engineers Annual International Meeting. ASABE

084114.

Kashyap, P., Sabu, A., Pandey, A., Szakacs, G., 2002. Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid state fermentation. Process Biochemistry. 38: 307–312.

Katahira, S., Mizuike, A., Fukuda, H. and Kondo, A. (2006). Ethanol fermentation

from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Applied Microbiology Biotechnology. 72:1136–1143.

Keller, F.A., Hamillton, T.E. and Nguyon, Q.A. (2003). Microbial pretreatment of biomass potential for reducing severity of thermo-chemical biomass pretreatment. Applied Biochemistry and Biotechnology. 105:27-41.

Kim, J.-S., Park, S.-C., Kim, J.-W., Park, J.C, Park, S.-M., Lee, J.-S. (2010).

Production of bioethanol from lignocellulose: Status and perspectives in Korea. Bioresource Technology. 101: 4801–4805.

Kim, K. and Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology. 77: 139–144.

Kim, S. and Dale, E.B. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy. 26: 361–375.

Kim, S. and Holtzapple, M.T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology. 96: 1994-2006.

Kim, S. and Holtzapple, M.T. (2006). Effect of structural features on enzyme digestibility of corn stover. Bioresource Technology. 97: 583-591

Kim, Y., Ingram, I.O. and Shanmugam, K.T. (2007). Construction of an Escherichia coli k-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology. 73: 1766–1771.

Klinke, H.B., Olsson, L., Thomsen, A.B. and Ahring, B.K. (2003). Potential inhibitors

from wet oxidation of wehat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnology and Bioengineering. 81: 738-747

Bibliography

259

Klinke, H.B., Thomsen, A.B. and Ahring, B.K. (2004). Inhibition of ethanol producing

yeast and bacteria by degradation products produced during pretreatment of biomass. Applied Microbiology and Biotechnology. 66: 10-26.

KMKE. (2008). Korea Ministry of Knowledge Economy.

Koopman, F., Wiercks, N., Dewinde, J.H. and Ruyjssenaars, H.J. (2010).

Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings in National Academy of Sciences. 107: 4919-4924.

Kootstra, A.M.J, Beeftink, H.H., Scott, E.L. and Sanders, J.P.M. (2009). Comparison

of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal. 46: 126–131.

Kotter, P. and Ciriacy, M. (1993). Xylose fermentation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 38:776-783.

Kresge, C.T. and Dhingra, S.S. (2004). Molecular Sieves Kirk-Othmer. Encyclopedia of Chemical Technology. 16: 811–853.

Kristensen, J.B,, Borjesson, J., Bruun, M.H., Tjerneld, F. and Jorgensen, H. (2007).

Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology. 40:888-895.

Kuhad, R.C. and Singh, A. (1993). Lignocellulose Biotechnology: Current and future prospects. Current reviews in Biotechnology. 13: 151-172.

Kuhad, R.C., Singh, A. and Eriksson, K-E.L. (1997). Microorganisms and enzymes involved in the degradation of plant fiber cell wall. Advances in Biochemical Engineering and biotechnology. 57: 47-125.

Kuhad, R.C., Manchanda, M. and Singh, A. (1999). Hydrolytic potential of celluloytic enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Engineering. 20: 133-

135.

Kuhad, R.C., Kuhar, S., Kapoor, M., Sharma, K.K. and Singh, A. (2007).

Lignocellulolytic microorganisms, their enzymes and possible biotechnologies based on

lignocellulolytic microorganisms and their enzymes pp 3-32 In: Lignocellulose

Biotechnology: Future prospects (edited by) R C Kuhad and A Singh. IK International,

New Delhi.

Kuhad, R.C. (2010a). Process development for the production of ethanol from

lignocellulosic biomass. A Technical report for Department of Biotechnology,

Government of India.

Kuhad, R.C., Gupta, R., Khasa, Y.P. and Singh, A. (2010b). Bioethanol production

from Lantana camara (Red sage): Pretreatment, Saccharification and Fermentation. Bioresource Technology. 101: 8348-8354.

Kuhad, R.C., Mehta, G., Gupta, R. and Sharma, K.K. (2010c). Fed batch enzymatic

saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy. 34: 1189-1194.

Kuhad, R.C., Gupta, R. and Khasa, Y.P. (2011a). Bioethanol production from lignocellulosics: an overview. In: Wealth from waste. 3rd Edition. Banwari Lal and

Priyangshu M. Sharma (Editors). TERI Press, New Delhi, India.

Kuhad R.C., Gupta R., Khasa Y.P. and Singh A. (2011b). Bioconversion of pentose sugars to ethanol: Current and Future prospects. Renewable and Sustainable Energy Reviews. 15:4950-4962

Kuhar, S., Nair, L.M. and Kuhad, R.C. (2008). Pretreatment of lignocellulosic material

with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Canadian Journal of Microbiology. 54: 305-13.

Bibliography

260

Kuijvenhoven, J. (2006). Process design for an integrated lignocellulose to bioethanol

production plant Presentation at Netherlands Process Technology Symposium, October

25, 2006.

Kumar, D. and Murthy, G.S. (2011). Impact of pretreatment and downstream

processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for Biofuels. 4: 27.

Kumar, P., Barrett, D.M., Delwiche, M.J. and Stroeve, P. (2009). Methods for

pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemical Research. 48: 3713–3729.

Kuyper, M., Hartog, M.M., Toirkens, M.J., Almering, M.J., Winkler, A.A. and Dijken, J.P.V. (2005). Metabolic engineering of a xylose–isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research. 5: 399–409.

Kuyper, M., Winkler, A.A., Dijken, J.P.V. and Pronk, J.T. (2004). Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a

proof of principle. FEMS Yeast Research. 4: 655–664.

Ladisch, M.R. and Dyck, K. (1979). Dehydration of ethanol – New approach gives positive energy-balance. Science. 205: 898–900.

Larsen, J., Petersen, M.O., Thirup, L., Li, H.W. and Iversen, F.K. (2008). The IBUS process – lignocellulosic bioethanol close to a commercial reality. Chemical Engineering and Technology. 31:765–72.

Larsson, S., Reimann, A., Nilverbrant, N. and Jonsson, L.J. (1999). Comparison of detoxification of ligncoelllose hydrolysate of spruce. Applied Biochemistry and Biotechnology. 77-79: 91-103.

Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J. and Lynd, L.R. (2002). A comparison of liquid hot water and steam pretreatments of sugarcane baggase for conversion to ethanol. Bioresource Technology. 81: 33–44.

Lau, M.W., Dale, M.E. and Balan, V. (2008). Ethanolic fermentation of hydrolysates

from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnology and Bioengineering.

99: 529-539.

Lau, M.W. and Dale, M.E. (2009). Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proceedings in National Academy of Science. 106: 1368-1373.

Lawford, H.G. and Rousseau, J.D. (1999). Loss of ethanologenicity in Escherichia coli recombinants pLOI297 and KO11 during growth in the absence of antibiotics.

Biotechnology Letters. 17: 751-756.

Lawford, H.G., Rousseau, J.D., Mohagheghi, A. and McMillan, J.D. (1999).

Fermentation performance characteristics of a prehydrolyzate adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentation. Applied Biochemistry and Biotechnology. 77: 191-204.

Lawford, H.G. and Rousseau, J.D. (2002). Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose and Arabinose. Applied Biochemistry and Biotechnology. 98–100: 429–448.

Leandro, M.J., Spencer-Martins, I. and Gonçalves, P. (2008). The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is

affected by the presence of a glucose/xylose facilitator. Microbiology. 154: 1646–1655.

Lebeau, T., Jouenne, T. and Junter, G.-A. (2007). Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with

Saccharomyces cereivisae. Microbiological Research.. 162: 211-218.

Bibliography

261

Lee, D., Yu, A.H.C. and Saddler, J.N. (1995). Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering. 45: 328-336.

Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology. 56: 1– 24.

Lee, J-W., Houtman C.J., Kim H-Y., Choi I-G. and Jeffries, T.W. (2011). Scale-up

study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol. Bioresource Technology. 102: 7451–7456.

Lee, W.G., Lee, J.S., Shin, C.S., Park, S.C., Chang, H.N. and Chang, Y.K. (1999).

Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Applied Biochemistry and Biotechnology. 78: 547-559.

Lee, S.H., Doherty, T.V., Linhardt, R.J. and Dordick, J.S. (2009). Ionic liquid-

mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering. 102: 1368–1376.

Lee, J.M., Shi, J., Venditti, R.A. and Jameel, H. (2009). Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis. Bioresource Technology. 100:

6434–6441.

Lee, J.M., Jameel, H. and Venditti, R.A. (2010). A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology. 101: 5449–5458.

Lee, S., Oh, Y., Kim, D., Kwon, D., Lee, C. and Lee, J. (2011). Converting

carbohydrates extract ed from amrine algae into ethanol using various ethanolic Escherichia coli strains. Applied Biochemistry and Biotechnology Doi 10.1007/s12010-

011-9181-7.

Leonard, R.H. and Hajny, G.J. (1945). Fermentation of wood sugars to ethyl alcohol. Industrial Engineering and Chemistry. 37: 390–395.

Li, J. Zhao, X. Liu, C. Li, F. Ren, J. and Bai, F. (2008). Construction of yeast strains for efficient ethanol fermentation from xylose by protoplast fusion. Abstracts V4-P-043, Journal of Biotechnology. 136:402–459.

Li, Q., He, Y.C., Xian, M., Jun, G., Xu, X., Yang, J.M. and Li, L.Z. (2009). Improving

enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology. 100: 3570–3575.

Li, S.Z. and Chan-Halbrendt, C. (2009). Ethanol production in China: potential and technologies. Applied Energy. 4: 4–9.

Licht, F.O. (2005). World Ethanol and Biofuels Report. 3, 15.

Lin, C. Hsieh, P. Mau, J. and Teng, D. (2005). Construction of an intergeneric fusion from Schizosaccharomyces pombe and Lentinula edodes for xylan degradation and polyol

production. Enzyme and Microbial Technology. 36: 107-117.

Lindsay, S.E. Bothast, R.J. and Ingram, L.O. (1995). Improved strains of recombinant Escherichia coli for production of ethanol from sugar mixtures. Applied Microbiology and Biotechnology. 43: 70-75.

Lissens, G., Klinke, H., Verstraete, W., Ahring, B. and Thomsen, A.B. (2004). Wet

oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol. Environmental Technology.

25: 647-655.

Liu, Z.L., Slininger, P.J., Dien, B.S., Berhow, M.A., Kurtzman, C.P. and Gorsich,

S.W. (2004). Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. Journal of Industrial Microbiology and Biotechnology. 31: 345–352.

Bibliography

262

Liu, R. and Shen, F. (2008). Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308).

Bioresource Technology. 99: 847-854.

Liu, E. and Hu, Y. (2010). Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochemical Engineering Journal. 48: 204-210.

Londo, H.M., Lensink, S.M., Deurwaarder, E.P., Wakker, A., de, Wit, M.P.,

Junginger, H.M., Könighofer, K. and Jungmeier, G. (2008). Biofuels Development in

the EU27+ until 2030: Full-chain Cost Assessment and Implications of Policy Options

REFUEL Project, WP4 Final Report.

Lu, Y. and Mosier, N.S. (2008). Current technologies for fuel ethanol production from lignocellulosic plant biomass. In: Genetic improvement of Bioenergy crops (edited by) W.

Vermerris Springer Science+Buisness Media, LLC. pp. 161-182.

Lynd, L.R., Cushman, J.H, Nichols, R.J. and Wyman, C.E. (1991). Fuel ethanol from cellulosic biomass. Science. 251: 1318-1323.

Mabee, W.E. and Saddler, J.N. (2010). Bioethanol from lignocellulosics: Status and perspectives in Canada. Bioresource Technology. 101: 4806–4813.

Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A.,

Fukuda, H., Bisaria, V.S. and Kondo, A. (2009). Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology.

82: 1067–1078.

Madson, P.W. (2003). Ethanol distillation: the fundamentals. In: The Alcohol. England

Nottingham University Press, University of Nottingham. pp 446.

Mamma, D., Christakopoulos, P., Koullas, D., Kekos, D., Macris, B.J. and Koukios,

E. (1995). An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy. 8: 99-103.

Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R. and Monot, F. (2009). New improvements for lignocellulosic ethanol . Current Opinion in Biotechnology. 20: 372–

380.

Marques, S., Alves, L., Roseiro, J.C. and Gírio, F.M. (2008). Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass and Bioenergy.

32: 400-406.

Martín, C., Thomsen, M.H., Hauggaard, H. and Thomsem, A.B. (2008). Wet oxidation

pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover-ryegrass mixtures. Bioresource Technology. 99: 8777–8782.

Martinez, A., Rodriguez, M.E., York, S.W., Perston, J.F. and Ingram, L.O. (2000). Effects of Ca(OH)2 treatments (―overliming‖) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering. 69:526-536.

Martinez, A., Rodriguez, M.E., Wells, M.L., York, S.W., Preston, J.F. and Ingram,

L.O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress. 17: 287–293.

Matsumoto, N., Sano, D. and Elder, M. (2009). Biofuel initiatives in Japan: Strategies, policies, and future potential. Applied Energy. 86: 569–576

Matsushika, A. and Sawayama, S. (2008). Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and

oderate xylulokinase activity. Journal of Bioscience and Bioengineering. 106: 306–309.

Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K. and Sawayama, S. (2008). Bioethanol production from xylose by recombinant Saccharomyces cerevisiae

expressing xylose reductase, NADP+-dependent xylitol dehydrogenase and xylulokinase. Journal of Bioscience and Bioengineering. 105: 296-299.

Bibliography

263

Matsushika, A., Inoue, H., Murakami, K., Takimura, O. and Sawayama, S. (2009a)

Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresource Technology. 100:

2392–2398.

Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K. and Sawayama, S. (2009b) Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene.

Applied and Environmental Microbiology. 75: 3818–3822.

McCarthy, J.E., and Tiemen, M. (1998). CRS report for congress MTBE in gasoline

clean air and drinking water. http://www.epa.gov/otaq/consumer/

fuels/mtbeMTBE.pdf.

McIntosh, S., and Vancov, T. (2010). Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresource Technology.

doi:10.1016/j.biortech.2010.03.116.

McMillan, J.D. (1994). Pretreatment of lignocellulosic biomass. ACS Symposium Series.

566: 292–324.

McMillan, J.D. (1997). Bioethanol production: status and prospects. Renewable Energy. 10: 295–302.

McMillan, J.D., Newman, M.M., Templeton, D.W. and Mohagheghi, A. (1999).

Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose fermenting Zymomonas mobilis. Applied Biochemistry and Biotechnology. 77-79: 649–655.

Meza, J.C., Sigoillot, J.C., Lomascolo, A., Navarro, D. and Auria, R. (2006). New

process for fungal delignification of sugarcane bagasse and simultaneous production of laccase in a vapor phase bioreactor. Journal of Agricultural and Food Chemistry. 54:

3852–3858.

Millati, R., Niklasson, C. and Taherzadeh, M.J. (2002). Effect of pH, time and

temperature of overliming on detoxification of dilute-acid hydrolysates for fermentation by Saccharomyces cerevisiae. Process Biochemistry. 38: 515-522.

Millati, R., Edebo, L. and Taherzadeh, M.J. (2005). Performance of Rhizopus, Rhizomucor and Mucor in ethanol production from glucose, xylose and wood

hydrolysates. Enzyme and Microbial Technology. 36: 294-300.

Miller, G.L. (1959) Dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry. 31: 426–428

Miyafuji, H., Danner, H., Neureiter, M., Thomasser, C., Bvochora, J., Szolar, O. and

Braun, R. (2003). Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme and Microbial Technology. 32: 396-400.

Modig, T., Liden, G. and Taherzadeh, M.J. (2002). Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Journal of Biochemistry. 363: 701-708.

Mohagheghi, A., Evans, K., Chou, Y.C. and Zhang, M. (2002). Cofermentation of

glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochemistry and Biotechnology. 98–100:

885–898.

Mok, W.S.L. and Antal, M.J. (1992). Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Industrial and Engineering Chemical Research. 31: 1157–1161.

Moniruzzaman, M. (1995). Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis World. Journal of Microbiology and Biotechnology. 11: 646-

646.

Bibliography

264

Moniruzzaman, M., Dien, B.S., Skory, C.D., Chen, Z.D., Hespell, R.B. and Ho, N.W.Y. (1997). Fermentation of corn fibre sugars by an engineered xylose utilizing

Saccharomyces yeast strain. World Journal of Microbiology and Biotechnology. 13: 341–

346.

Morris, D. (1953). Ethanol: A 150 Year Struggle Toward a Renewable Future.

(Washington: Institute for Local Self-Reliance).

Mosier, N.S., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and

Ladisch, M.R. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology. 96: 673–686.

Mountfort, D.O. and Rhodes, L.L. (1991). Anaerobic Growth And Fermentation Characteristics Of Paecilomyces lilacinus isolated from Mullet gut. Applied and Environmental Microbiology. 57: 1963–1968.

Moxley, G. and Zhang, Y.-H.P. (2007). More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuel.

21: 3684–3688.

Mussatto, S.I. (2002). Influência do Tratamento do Hidrolisado Hemicelulósico de Palha de Arroz na Produção de Xilitol por Candida guilliermondii. M.Sc. thesis, Faculdade de

Engenharia Química de Lorena, Brasil.

Mussatto, S.I., Dragone, G., Guimarães, P.M.R., Silva, J.P.A., Carneiro, L.M.,

Roberto, I.C., Vicente, A., Domingues, L. and Teixeira, J.A. (2010). Technological trends, global market, and challenges of bio-ethanol production-R1. Biotechnology Advances. 28: 817-30.

Narendranath, M.V. and Power, R. (2005). Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Applied and Environmental Microbiology.

71: 2239-2243

Neelakandan, T. and Usharani, G. (2009). Optimization and production of bioethanol from cashew apple juice using immobilized yeast cells by Saccharomyces cerevisiae. American-Eurasian Journal of Scientific Research. 4: 85-88.

Nielsen, M.K. and Arneborg, N. (2007). The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Food Microbiology. 24: 101-105.

Nigam, J.N. (2001a). Development of xylose-fermenting yeast Pichia stipitis for ethanol

production through adaptation on hardwood hemicellulose acid prehydrolysate. Journal of Applied Microbiology. 90: 208–215.

Nigam, J.N. (2001b). Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. Journal of Industrial Microbiology and Biotechnology. 26:

145-150.

Nigam, J.N. (2001c). Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. Journal of Biotechnology. 87: 17–27.

O’Dwyer, J.P., Zhu, L., Granda, C.B. and Holtzapple, M.T. (2007). Enzymatic

hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: Inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. Bioresource Technology. 98: 2969-2977.

Ohgren, K., Bura, R., Lesnicki, G., Saddler, J. and Zacchi, G. (2007). A comparison

between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry. 42:834–839.

Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T. and Ingram, L.O. (1991). Genetic

improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase

II. Applied and Environmental Microbiology. 57:893-900.

Bibliography

265

Okur, M. and Saraçog,˘lu. N. (2008). Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresource Technology. 99: 2162–2169.

Olofsson, K. Bertilsson, M. and Liden, G. (2008). A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels. doi:10.1186/1754-6834-1-7.

Orellana, C. and Bonalume, Neto, R. (2006). Brazil and Japan give fuel to ethanol market. Nature Biotechnology. 24: 232.

Palmqvist, E. (1998). Fermentation of lignocellulosic hydrolysates: inhibition and

detoxification. Ph.D. thesis, Lund University, Sweden.

Palmqvist, E. and Hahn-Hägerdal, B. (2000a). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology. 74: 17–24.

Palmqvist, E. and Hahn-Hägerdal, B. (2000b). Fermentation of lignocellulosic hydrolysates. II: inhibition and detoxification. Bioresource Technology. 74: 25–33.

Palmqvist, E., Hahn-Hagerdal, B., Szengyel, Z., Zacchi, G. and Reczey, K. (1997).

Simultaneous detoxification and enzyme production of hemicellulosic hydrolysates obtained after steam treatment. Enzyme and Microbial Technology. 20: 286-293.

Parajo, J.C., Domniguez, H. and Domniguez, J.M. (1998). Biotechnological production of xylitol. Part III: operation in culture medium made from lignocellulose hydrolysates. Bioresource Technology. 66: 25-40.

Park, J., Shiroma, R., Al-Haq, M.I., Zhang, Y., Ike, M., Arai-Sanoh, Y., Ida, A.,

Kondo, M. and Ken, T. (2010). A novel lime pretreatment for subsequent bioethanol

production from rice straw – Calcium capturing by carbonation (CaCCO) process. Bioresource Technology doi:10.1016/j.biortech.2010.03.098.

Pasha, C., Kuhad, R.C. and Rao, L.V. (2007). Strain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates.

Journal of Applied Microbiology. 103: 1480-1489.

Patel, G.B. (1984). Ethanol production during o-xylose, L-arabinose, and D-ribose fermentation by Bacteroides polypragmatus. Applied Microbiology Biotechnology. 20:

111-117.

Pereira, H. Graça, J. and Rodrigues, J.C. (2003) Wood chemistry in relation to quality,

in: J.R. Barnett, G. Jeronimidis (Eds.), Wood Quality and Its Biological Basis, Blackwell Publishing, Oxford, pp. 53–86.

Pérez, J.A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M.J. and Manzanares,

P. (2008). Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel. 87: 3640–3647.

Petrova, P. and Ivanova, V. (2010). Perspectives for the production of bioethanol from lignocellulosic materials. Biotechnology and Bioengineering. 24: 529-546.

Planning Commission. (2003). Report of the Committee on Development of Biofuels.

Planning Commission, Government of India.

(http://planningcommission.nic.in/reports/ genrep/cmtt_bio.pdf).

Polizeli, M.L.T.M, Rizzatti, A.C.S, Monti, R., Terenzi, H.F., Jorge, J.A. and

Amorim, D.S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology. 67: 577–591.

Prasad, S., Singh, A. and Joshi, H.C. (2007). Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources Conservation and Recycling. 50:

1-39.

Prieur-Vernat, A. and His, S. (2006). Biofuels in Europe. Panorame. Paris: IFP.

Purwadi, R., Niklasson, C. and Taherzadeh, M.J. (2004). Kinetic study of detoxification of dilute-acid hydrolysates by Ca(OH)2. Journal of Biotechnology. 114:

187-198.

Bibliography

266

Purwadi, R., Brandberg T. and Taherzadeh, M.J. (2007). A possible industrial solution

to ferment lignocellulosic hydrolyzate to ethanol: continuous cultivation with flocculating yeast. Internaltional Journal of Molecular Science. 8: 920-932.

Purwadi, R. and Taherzadeh, M.J. (2008). The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells. Bioresource Technology. 99: 2226-2233.

Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert,

C.A., Frederick Jr, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R.,

Murphy, R., Templer R. and Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science. 311: 484-489.

Rakin M, Mojovic L, Nikolic S, Vukasinovic M and Nedovic V. (2009). Bioethanol production by immobilized Sacharomyces cerevisiae var. ellipsoideus cells. African Journal of Biotechnology. 8: 464-471.

Raman,

N. and Pothiraj, C. (2008). Screening of Zymomonas mobilis and Saccharomyces cerevisiae strains for ethanol production from cassava waste. Rasayan. Journal of Chemistry. 1: 537-541.

Ramon-Portugal, F., Pingaud, H. and Strehaiano, P. (2004). Metabolic transition step from ethanol consumption to sugar/ethanol. Biotechnology Letters. 26:1671–1674.

Ramos, L.P., Beruil, C. and Saddler, J.N. (1993). The use of enzyme recycling and the influence of sugar accumulation on the cellulose hydrolysis by Trichoderma cellulases. Enzyme and Microbial Technology. 15: 19-25.

Ranjan, R., Thust, S., Gounaris, C.E., Woo, M., Floudas, C.A., Keitz, M.V., Valents,

K.J., Wei, J. and Tsapatsis, M. (2009). Adsorption of fermentation inhibitors from

lignocellulosic hydrolysates for improving bioethanol yield and value added product recovery. Microporous and Mesoporous Materials. 122: 143-148.

RFA. (2010). Renewable Fuels Association. (bhttp://www.ethanolrfa.org/

industry/statisticsN).

RFA. (2012). Renewable Fuels Association, 2012. A report.

Roberto, I.C., Felipe, M.G.A., Lacis, L.C., Silva, S.S. and Mancilha, I.M. (1991). Utilization of sugar cane bagasse hemicellulosic hydrolysate by Candida guilliermondii for xylitol production. Bioresource Technology. 36:271–275.

Roca, C. and Olsson, L. (2003). Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 60: 550-563.

Rocha, M.V.P., Rodrigues, T.H., de Macedo, G.R, and Gonçalves, L.R. (2009).

Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production. Applied Biochemistry and Biotechnology. 155: 407–417.

Roche, C.M., Dibble, C.J. and Stickel, J.J. (2009). Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnology for Biofuels 2.

Rodmui, A., Kongkiattikajorn, J. and Dandusitapun, Y. (2008). Optimization of agitation conditions for maximum ethanol production by coculture. Kasetsart Journal (Natural Science) 42:285–293.

Roukas, T. and Kotzekidou, P. (1998). Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fed-batch culture. Enzyme and Microbial Technology 22: 199-204.

Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S. and Tshabalala, M.A. (2005). Cell

wall chemistry in: handbook of wood chemistry and wood composites (edited by) R

M.Rowell. Florida 33431, CRC Press LLC pp 35-62.

Bibliography

267

Ruiz, E., Romero, I., Moya, M., Sánchez, S., Bravo, V. and Castro, E. (2007). Sugar fermentation by Fusarium oxysporum to produce ethanol. World Journal of Microbiology and Biotechnology. 23: 259-267.

Runquist, D., Hahn-Hägerdal, B. and Bettiga, M. (2009). Increased expression of the oxidative pentose phosphate pathway and gluconegenesis in anaerobically growing xylose-utilizing Sacharomyces cerevisiae. Microbial Cell Factories doi:10.1186/1475-

2859-8-49.

Saha, B.C., Iten, L.B., Cotta, M.A. and Wu, Y.V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry. 40: 3693–3700.

Saha, B.C. and Cotta, M.A. (2007). Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme and Microbial Technology.

41:528-532.

Saka, S. and Doi, M. (1998). Removal of toxic substances of chloroform and benzene by carbonized woody materials. Material Science Research Institute. 4: 249-253.

Sakakibara, A. (1991). Chemistry of lignin In: Wood and Cellulosic Chemistry (edited

by) Hon, D.N.-S. and Shiraishi, N. New York, Marcel Dekker Incorporation pp 113–175.

Samaniuk, J.R., Scott, C.T., Root, T.W. and Klingenberg, D.J. (2011). The effect of

high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions. Bioresource Technology. 102: 4489–4494.

Sanchez, O.J. and Cardona, C.A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology. 99: 5270-5295.

Sanchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances. 27: 185–194.

Saraçog˘lu, N. and Arslan, Y. (2000). Comparison of different pretreatments in ethanol fermentation using corn stover hemicellulosic hydrolyzate with Pichia stipitis and Candida shehatae. Biotechnology Letters. 22: 855–858.

Sarkanen, K.V. and Ludwig, C.H. (1971). Lignins: Occurrence, formation, structure

and reactions. Wiley-Interscience, New York.

Sassners, P., Galbe, M. and Zacchi, G. (2008). Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy. 32: 422–430.

Schacht, C., Zetzl, C. and Brunner, G. (2008). From plant materials to ethanol by means of supercritical fluid technology. Journal of Supercritical Fluids. 46: 299–321.

Schneider, H., Wang, P.Y., Chan, Y.K. and Maleszka, R. (1981). Conversion of n-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnology Letters. 3: 89-92.

Schneider, H. (1996). Selective removal of acetic acid from hardwood spent sulfite liquor using a mutant yeast. Enzyme and Microbial technology. 19: 94-98.

Schut, M., Slingerland, M. and Locke, A. (2010). Biofuel developments in Mozambique. Update and analysis of policy, potential and reality. Energy Policy. 38:

5151–65.

Shafizadeh, F. and Bradbury, A.G.W. (1979). Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science 23: 1431–1442.

Shallom, D. and Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology. 6: 219–228.

Sharma, S.K., Kalra, K.L. and Kocher, G.S. (2004).Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale up. Biomass and Bioenergy. 27: 399-402.

Bibliography

268

Shi, N.Q., Davis, B., Sherman, F., Cruz, J. and Jeffries, T.W. (1999). Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol

production. Yeast. 15:1021–1030.

Shi, N.Q., Cruz, J., Sherman, F. and Jeffries, T.W. (2002). SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast. 19:1203–1220.

Shupe, A.M. and Liu, SS. (2011). Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis. Applied Biochemistry and Biotechnology. DOI 10.1007/s12010-011-9285-0.

Silalertruksa, T. and Gheewala, S.H. (2009). Environmental sustainability of bio-ethanol production in Thailand. Energy. 34: 1933-1946.

Silva, C.J.S.M. and Roberto, I.C. (2001). Improvement of xylitol production by Candida gulliermondii FTI 2037, previously adapted to rice straw hemicellulosic hydrolysates. Letters in Applied Microbiology. 32: 248-252.

Silva, J.P.A., Mussatto, S.I., Roberto, I.C. and Teixeira, J.A. (2011). Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor.

Brazilian Journal of Chemical Engineering. 28:151-156.

Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J.

(2007). A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology. 98: 3000-3011.

Singh, A., Kumar, P.K.R. and Schugerl, K. (1991). Adsorption and reuse of cellulase during saccharification of cellulosic materials. Journal of Biotechnology. 19: 205-212.

Singh, A. and Mishra, P. (1993). Microbial production of ethanol in: microbial pentose utilization: current application in biotechnology. Progress in Industrial Microbiology. 33:

147-196.

Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M. (1999). Analysis of total

phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299:152–178.

Sivers, M.V. and Zacchi, G. (1995). A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology. 51: 43–52.

Slininger, P.J., Bothast, R.J., Ladisch, M.R. and Okos, M.R. (1990). Optimum pH and temperature conditions for xylose fermentation by Pichia stipitis. Biotechnology and Bioengineering. 35: 727-731.

Slininger, P.J., Dien, B.S., Gorsich, S.W. and Lin, Z.L. (2006). Nitrogen'source and mineral optimization enhance D-xylose conversion to ethanol by the yeast Pichia stipitis NRRLY-7124. Applied Microbiology and Biotechnology. 72: 1285-1296.

Slininger, P.J., Gorsich, S.W. and Liu, Z.L. (2008). Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124. Biotechnology and Bioengineering 102: 778-790.

Soccol, C.R., de Souza Vandenberghe, L.P., Medeiros, A.B.P., Karp, S.G.,

Buckeridge, M., Ramos, L.P., Pitarelo, A.P., Ferreira-Leitão, V., Gottschalk, L.M.F.,

Ferrara, M.A., da Silva Bon, E.P., de Moraes, L.M.P., de Amorim Araújo, J. and Torres, F.A.G. (2010). Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource Technology. 101: 4820–4825.

Soderstrom, J., Galbe, M. and Zacchi, G. (2005). Separate versus simultaneous

saccharification and fermentation of two-step steam pretreated softwood for ethanol production. Journal of Wood Chemistry and Technology. 25: 187–202.

Solomon, B.D., Barnes, J.R. and Halvorsen, K.E. (2007). Grain and cellulosic ethanol: history, economics, and energy policy. Biomass and Bioenergy. 31: 416–425.

Sonderegger, M., Jeppsson, M., Hahn-Hägerdal, B. and Sauer, U. (2004). Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global

Bibliography

269

gene expression and metabolic flux analysis. Applied and Environmental Microbiology.

70: 2307–2317.

Souza, R.R. (2006). Panorama, oportunidades e desafios para o mercado mundial de

álcool automotivo. MSc Dissertation, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil.

Sreenath, H.K., Koegel, R.G., Moldes, A.B., Jeffries, T.W. and Straub, R.J. (1999). Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment. Process Biochemistry. 35: 33-41.

Sreenath, H.K. and Jeffreis, T.W. (2000) Production of ethanol from wood hydrolysate by yeasts. Bioresource Technology. 72: 253-260.

Standing, C.N., Fredrickson, A.G. and Tsuchia, H.M. (1972). Batch and continuous transient for two substrate system. Applied Microbiology. 23: 354-359.

Sternberg, D. (1976). Production of cellulase by Trichoderma. Biotechnology and

Bioengineering Symposium. 35-53.

Sticklen, M.B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics. 9:433-443.

Stoutenberg, R.M., Perrotta, J.A., Amidon, T.E. and Nakas, J.P. (2008). Ethanol

production from a membrane purified hemicellulosic hydrolysate derived from Sugar maple by Pichia stipitis NRRL Y-7124. Bioresources. 3: 1349-1358.

Sukumaran, R.K. and Pandey, A. (2009). India Country report. In: Eisentraut A.

editors. Potential for Sustainable Production of 2nd Generation Biofuels. pp. 26.

Sukumaran, R.K., Surender, V.J., Sindhu, R., Binod, P., Janu, K.U., Sajna, K.V.,

Rajasree, K.P. and Pandey, A. (2010). Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology. 101:4826–4833.

Sun, R.C. and Tomkinson, R.C. (2002). Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydrate Polymers. 50: 263–271.

Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review . Bioresource Technology. 83: 1–11.

Suryawati, L., Wilkins, M.R., Bellmer, D.D., Huhnke, R.L., Maness, N.O. and Banat,

I. M. (2008). Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnology and Bioengineering. 101:894–902.

Swain, R.L.B. (2003). Development and operation of the molecular sieve: an industry

standard In: The Alcohol University of Nottingham Nottingham, England, Nottingham

University Press. pp 446.

Szczdodrak, J. and Targonski, Z. (1988). Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnology and Bioengineering. 31:300–303.

Taherzadeh, M.J., Gustafsson, L., Niklasson, C. and Liden, G. (1998). Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering. 87:169-174.

Taherzadeh, M.J., Millati, R. and Niklasson, C. (2001). Continuous cultivation of dilute-acid hydrolyzates to ethanol by immobilized Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology. 95:45–57.

Taherzadeh, M.J. and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences. 9: 1621–1651.

Bibliography

270

Tahir A and Sarwar S. (2012). Effect of cultural condition on production of ethanol from rotten apple waste by Saccharomyces cerevisiae straining. Canadian Journal of Applied Sciences. 2:187-195.

Talebnia, F. and Taherzadeh, M.J. (2006). In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated Saccharomyces cerevisiae. Journal of Biotechnology. 125:377–384.

Talebnia, F., Pourbafrani, M., Lundin, M. and Taherzadeh, M.J. (2008). Optimization study of citrus wastes saccharification by dilute acid hydrolysis. BioResources. 3: 108-

122.

Tan, K.T. and Lee, K.T. (2008). Mohamed AR. Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol. Energy Policy. 36: 3360–65.

Tang, Y., An, M., Liu, K., Nagai, S., Shigematsu, T., Morimura, S. and Kida, K.

(2006). Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Process Biochemistry. 41: 909–

914.

Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K. and Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of

rice straw. Journal of Bioscience and Bioengineering. 100:637-643.

Tantirungkij, M., Nakashima, N., Seki, T. and Yoshida, T. (1993). Construction of xylose-assimilating Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering. 75:83–88.

TAPPI. (1992). Technical Association of Pulp and Paper Industry, Atlanta, Georgia, USA.

Teeri, T.T. (1997). Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends in Biotechnology. 15: 160–167.

Teeri, T.T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C. and Jones, T.A. (1998). Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochemical Society Transactions. 26: 173–178

Teli-Okur, M. and Saracoglu, N.E. (2006). Ethanol production from sunflower seed hull hydrolysate by Pichia stipitis under uncontrolled ph conditions in a bioreactor. Turkish Journal of Engineering and Environmental Science. 30: 317-322.

Terada, H. (1990). Uncouplers of oxidative phosphorylation. Environmental Health perspectives. 87: 213-218.

Teymouri, F., Laureano-Perez, L., Alizadeh, H. and Dale, B.E. (2005). Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technology. 96: 2014–2018.

Thuesombat, P., Thanonkeo, P., Laopaiboon, L., Laopaiboon, P., Yunchalard, S.,

Kaewkannetra, P. and Thanonkeo, S. (2007). The batch ethanol fermentation of Jerusalem Artichoke using Saccharomyces cerevisiae. KMITL Scientific Technology

Journal. 7: 93-96.

Tian, S., Luo, X.L., Yang, X.S, Zhu, J.Y. (2010). Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. Bioresource Technology. 101: 8678–8685.

Torget, R.W., Kim, J.S. and Lee, Y.Y. (2000). Fundamental aspects of dilute acid

hydrolysis/fractionation kinetics of hardwood carbohydrates I. Cellulose hydrolysis. Industrial Engineering and Chemical Research. 39: 2817-2825.

Träff-Bjerre, K.L., Jeppsson, M., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F.

(2004). Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast.

21: 141–150.

Bibliography

271

Trinh, C.T. Unrean, P. and Srienc, F. (2008). Minimal Escherichia coli Cell for the most

efficient production of ethanol from hexoses and pentoses. Applied and Environmental Microbiology. 74: 3634–3643.

Trinh, C.T. Srienc, F. (2009). Metabolic engineering of escherichia coli for efficient

conversion of glycerol to ethanol. Applied and Environmental Microbiology. 75: 6696–

6705.

Tsai, S.-L., Oh, J., Singh, S., Chen, R. and Chen, W. (2009) Functional assembly of minicellulosomes of Saccharomyces cerevisiae cell surface for cellulose hydrolysis and

ethanol production. Applied and Environmental Microbiology. 75: 6087-6093.

Tu, M.B., Chandra, R.P. and Saddler, J.N. (2007).Evaluating the distribution of

cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress. 23: 398-406.

US DOE. (2005). Multi-Year Program Plan 2007–2012. Biomass and Biorefinery System

R&D. Biomass Program, Energy Efficiency and Renewable Energy US Department of

Energy.

US DOE. (2007). Biomass multi-year program plan. Office of the biomass program,

energy efficiency and renewable energy US Department of Energy.

US DOE. (2009). Biomass multi-year program plan (MYPP). Office of the biomass program, energy efficiency and renewable energy US Department of Energy.

Van Zyl, C., Prior, B.A. and du Preez, J.C. (1998). Production of ethanol from sugar cane bagasse hemicellulose hydrolysate by Pichia stipitis. Applied Biochemistry and Biotechnology. 17: 357–369.

Vandeska, E., Amartey, S., Kuzmanova, S. and Jeffries, T.W. (1996). Fed-batch culture for xylitol production by Candida boidinii. Process Biochemistry. 31: 265-270.

Varga, E., Scengyel, Z. and Recaey, K. (2002). Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Applied Biochemistry and Biotechnology. 98-100:

73-87.

Vásquez, M.P., da Silva, J.N.C., de Souza, M.B. and Pereira, N. (2007). Enzymatic

hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology. 137-140: 141-153.

Vasudevan, T.G., Isak, S.P. and Ricardo, R.C.O. (2007). Molecular cloning and functional expression of a novel Neurospora crassa xylose reductase in Saccharomyces

cerevisiae in the development of a xylose fermenting strain. Annals in Microbiology. 57:

223-231.

Verho, R., Londesborough, J., Penttila, M. and Richard, P. (2003). Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Applied and Environmental Microbiology. 69: 5892–5897.

Vidal, P.F. and Molinier, J. (1988). Ozonolysis of lignin – improvement of in vitro digestibility of poplar sawdust. Biomass. 16: 1–17.

Vleet, J.H.V. and Jeffries, T.W. (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology. 20: 300-306.

Wahlbom, F., Otero, R.R.C., van Zyl, W.H., Hahn-Hägerdal, B. and Jonsson, L.J. (2003). Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability

to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Applied and Environmental Microbiology. 69: 740–746.

Walker, G.M. (1998). Yeast Physiology and Biotechnology, John Wiley & Sons, England

Wang, D., Xu, Y. and Zhao, G. (2004). Fermentation kinetics of different sugars by apple wine yeast Saccharomyces cerevisiae. Journal of Institute of Brewing. 110: 340-

346.

Bibliography

272

Wang, L.S., Zhang, Y.Z., Gao, P.J., Shi, D.X., Liu, H.W. and Gao, H.J. (2006).

Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnology and Bioengineering. 93: 443–456.

Wang, F. and Lin, H. (2010). Fuzzy optimization of continuous fermentations with cell recycling for ethanol production. Industrial Engineering and Chemical Research. 49:

2306–2311.

Wang, W., Kang, L., Wei, H., Arora, R. and Lee, Y.Y. (2011). Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Applied Biochemistry and Biotechnology. Doi:10.1007/sI 2010-011-9200-8.

Wankat, P.C. (1988). Equilibrium staged separations In: Separations in chemical

engineering New York, Elsevier. pp 707.

Watanabe, S. Kodaki, T. and Makino, K. (2005) Complete reversal of coenzyme

specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. Journal of Biological Chemistry. 280: 10340-10349.

Watanabe, I., Nakamura, T., and Shima, J. (2010). Strategy for simultaneous saccharification and fermentation using a respiratory-deficient mutant of Candida glabrata for bioethanol production. Journal of Bioscience and Bioengineering

doi:10.1016/j.jbiosc.2010.02.003.

Weierstall, T., Hollenberg, C.P. and Boles E. (1999) Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis. Molecular Microbiology. 31: 871–883.

Weil, J., Westgate, P., Kohlmann, K. and Ladisch, M.R. (1994). Cellulose pretreatments of lignocellulosic substrates. Enzyme and Microbial Technology. 16: 1002–

1004.

Weil, J.R., Sarikaya, A., Rau, S.L., Goetz, J., Ladisch, C.M., Brewer., M.,

Hendrickson, R. and Ladisch, M. R. (1998). Pretreatment of corn fiber by pressure cooking in water. Applied Biochemistry and Biotechnology 73: 1–17.

Weil, J.R., Dien, B., Bothast, R., Hendrikson, R., Mosier, N.S. and Ladisch, M.R.

(2002). Removal of fermentation inhibitors form during pretreatment of biomass by polymeric adsorbents. Industrial Engineering and Chemical Research. 41: 6132-6138.

Wi, S.G., Kim, H.J., Mahadevan, S.A., Yang, D.-J. and Bae, H.-J. (2009). The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresource Technology. 100: 6658–6660.

Wickaramasinghe, S.R. and Grzenia, D.L. (2008). Adsorptive membrane and resins for acetic acid removal from biomass hydrolysates. Desalination. 234: 144-151.

Wilkins MR, Widmer WW, Grohmann K. (2007). Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol.

Process Biochemistry. 42: 1614–1619.

Wingren, A., Galbe, M. and Zacchi, G. (2003). Techno-economic evaluation of

producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress. 19: 1109–1117.

Wisselink, H.W., Toirkens, M.J., Wu, Q., Pronk, J.T. and van Maris, A.J. (2009) A

novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology. 75: 907–914.

Withers, S.G. (2001). Mechanisms of glycosyl transferases and hydrolases. Carbohydrate Polymers. 44: 325–337.

Wright, M.M. and Brown, R.C. (2007). Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels Bioproduction and Biorefinery. 1: 49-56.

Bibliography

273

Wyman, C.E. (1994). Ethanol from lignocellulosic biomass: technology, economics and opportunities. Bioresource Technology. 50: 3–16.

Wyman, C.E. (2003). Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals and power. Biotechnology progress. 19: 254-262.

Xu, F., Sun, J.X., Liu, C.F. and Sun, R.C. (2003). Comparative study of alkali- and

acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydrate Research. 341: 253-261.

Xue, Y., Jameel, H. and Park, S. (2012). Strategies to recycle enzymes and their impact on enzymatic hydrolysis for bioethanol production. Bioresources. 7: 607-615.

Yachmenev, V., Condon, B., Klasson, T. and Lambert, A. (2009). Acceleration of the

enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy. 3: 25–31.

Yang, B. and Wyman, C.E. (2004). Effect of xylan and lignin removal by batch and

flow-through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering. 86: 88–95.

Yang, S., Tschaplinski, T. J., Engle, N. L., Carroll, S. L., Martin, S. L., Davison, B.

H., Palumbo1, A. V., Jr. M. R. and Brown, S. D. (2009). Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic

fermentations. BioMed Central Genomics. doi:10.1186/1471-2164-10-34.

Yang, Y., Boots, K. and Zhang, D. (2012). A sustainable ethanol distillation system. Sustainability. 4: 92-105.

Yeon, J.-H., Lee, S.-E., Choi, W.Y., Choi, W.-S., Kim, I.-C., Lee, H.-Y. and Jung, K.-

H. (2011). Bioethanol production from the hydrolysate of rape stem in a surface aerated fermentor. Journal of Microbiology and Biotechnology. 21:109-114

Yomano, L.P., York, S.W. and Ingram, L.O. (1998). Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology and Biotechnology. 20: 132-138.

Yue, G., Yu, J., Zhang, X. and Tan T. (2012). The influence of nitrogen sources on ethanol production by yeast from concentrated sweet sorghum juice. Biomass and Bioenergy. 39: 48–52

Zaldivar, J., Borges, A., Johansson, B., Smits, H.P., Villas-Boas, S.G., Nielsen, J.

and Olsson, L. (2002). Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 59: 436–442.

Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 267: 240-243.

Zhang Y-H. P., Himmel, M.E. and Mielenz, J.R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances. 24: 452-481.

Zhang, Y-H.P. (2008). Reviving the carbohydrate economy via multi-product biorefineries. Journal of Industrial Microbiology and Biotechnology. 35: 367-375.

Zhang, X.-Z. and Zhang, Y.-H.P. (2010). One-step production of biocommodities from ligno-cellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and

challenges. Engineering in Life Sciences.10: 398–406.

Zhao, J. and Xia, L. (2010). Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochemical Engineering Journal.

49: 28-32.

Zhao, X., Zhang, L. and Liu, D. (2008). Comparative study on chemical pretreatment methods for improving enzymatic digestibility of Crofton weed stem. Bioresource Technology. 99: 3729–3736.

Bibliography

274

Zhao, X., Cheng, K. and Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology. 82: 815–827.

Zhao, X.Q. and Bai, F.W. (2009) Yeast flocculation: New story in fuel ethanol production. Biotechology Advances. 27: 849-856.

Zheng, Y.Z., Lin, H.M. and Tsao, G.T. (1998). Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress. 14: 890– 896.

Zheng, Y., Pan, Z., Zhang, R., Wang, D. and Jenkins, B. (2008). Non-ionic surfactants

and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Applied Biochemistry and Biotechnology. 146: 231-248.

Zheng, Y., Zhongli, P., Zhang, R. and Wang, D. (2009). Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. Applied Energy. 86: 2459-2465.

Zhou, J., Wang, Y.-H., Chu, J., Luo, L.-Z., Zhuang, Y.-P. and Zhang, S.-L. (2008).

Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresource Technology.

doi:10.1016/j.biortech.2008.06.068

Zhu, S., Wu, Y., Yu, Z., Wang, C., Yu, F., Jin, S., Ding, Y., Chi, R., Liao, J. and Zhang, Y. (2006). Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosystems Engineering. 93: 279–283.

Zhu, J.-J. Yong, Q. Xu, Y. Chen, S.-X. and Yu, S.Y. (2009). Adaptation fermentation of Pichia stipitis and combination detoxification on steam exploded lignocellulosic

prehydrolyzate. Natural Science. 1: 47-54.

Zhu, Z., Sathitsuksanoh, N., Vinzant, T., Schell, D.J., McMillan, J.D., Zhang, Y.-H.

P. (2009). Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and Bioengineering. 103: 715–724.

Zwart, R.W.R., Boerrigter, H., and Drift, A. (2006). The impact of biomass

pretreatment on the feasibility of overseas biomass conversion to Fisher-Tropsch Products. Energy and Fuels. 20: 2192-2197.