bio polyesters

Upload: luuphongdien0604

Post on 07-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Bio Polyesters

    1/53

    Leonardo da Vinci

    Human ingenuity may makeHuman ingenuity may make

    various inventions, but it will nevervarious inventions, but it will neverdevise any inventions more beautiful,devise any inventions more beautiful,nor more simple, nor more to thenor more simple, nor more to the

    purpose than Nature does; because inpurpose than Nature does; because inher inventions nothing is wanting andher inventions nothing is wanting andnothing is superfluous.nothing is superfluous.

    Jim Robbins, Second Nature, Smithsonian, July 2002, Vol. 33, No. 4, p. 78-84

  • 8/6/2019 Bio Polyesters

    2/53

    Bio-polyesters Why (Bio) synthesis?

    History

    1. Interest

    b. Biodegradability

    a. Applications

    Process

    a. Nutrientsb. Biochemistry

    c. Extractionb. Bio ethics

    Future

    a. Directions

    Overview

  • 8/6/2019 Bio Polyesters

    3/53

    DegradationBiodegradation Environmental

    Intracellular Extracellular Thermal Hydrolytic

    Depolymeraseenzymes w/ dimer

    hydrolase

    Excreted DPEs Conditions 0-3380C ester linkages

    R--hydroxybutyricacid

    acetylacetate

    assimilationProduct (Iso)crotonic

    acid, dimer,trimer

    monomerichydroxy

    acid

    Griffin G. J. L.

  • 8/6/2019 Bio Polyesters

    4/53

    Factors for degradability? A ? A? A? AEOHCOOHk

    tCOOH 2$

    xx

    Non

    enzymatic

    COOH groups auto catalyze

    Second stage weight loss- porous- bulk ( surface in enzymatic)

    Crystallinity reduces reactivity

    Scission catalyzed by acids, bases(amines)

    Hydroph

    obicity reduces th

    e catalysis rateHydroph

    obicity reduces th

    e catalysis rateBlocking end groups(COOH) temporary reduction in rate

    Blending ( variable effects) PHBV/CABBlending ( variable effects) PHBV/CABBlending ( variable effects) PHBV/CABEnzymatic

    (vivo) Low Crystallinity, low Tg enhances rate, alkylsubstituents retard

  • 8/6/2019 Bio Polyesters

    5/53

    Economics

    Bacterial cost Synthetic

    PolyestersPHBV$3-4/ lb projected from1994 ($8-10/lb)

    Polypropylene$0.30-0.45/lb

    1. Substrate ~ 10%2. Separation ~ (50 70)%

  • 8/6/2019 Bio Polyesters

    6/53

    Synthetic strategies(1)O

    O

    O

    O O

    O

    Sn

    OH

    OH

    O

    O

    O

    O

    CH3

    CH3

    O

    O

    O

    O

    CaprolactoneE

    Stannous Octoate

    Ethylene Glycol

    (Catalyst)

    (initiator)

    D, L - lactide glycolide

    rom : Taylor A. E.

  • 8/6/2019 Bio Polyesters

    7/53

    Synthetic strategies(2)

    O

    O

    O

    O

    O

    OH

    O

    O

    O

    O

    O n

    OO

    O

    O n

    +

    CaprolactoneSuccinic anhydride

    1-methylimidazole

    1, 2 dichloroethane

    65-70 oC

    Carboxylic acid termination

    N2, Stannous Octate

    65 oC, 3h

    115 oC, 15h

    Polymer

    Glycidyl termination

    Storey , R. F., Hickey, T. P. J. Poly Sci.,

    Part A 1993, 31, 1825

  • 8/6/2019 Bio Polyesters

    8/53

    Synthetic strategies(3)

    C H 2 O

    C H2

    O

    C H2

    O

    C H 2 O

    C H2

    O

    O

    H

    O

    H

    O

    C H3

    C H2

    C

    H

    P C LO

    O

    P C LO

    O

    P C LO

    O

    P C L OO

    P C L OO

    P C L OO

    P C L O OP C LOO

    C

    C

    C

    T r i m e th

    y l p r o p a n e i n i t i a t e d P o l y - E - C a p r o l a c t o n e

    X y l i t o l - i n i t i a t e d P o l y - E - C a p r o l a c t o n e

  • 8/6/2019 Bio Polyesters

    9/53

    Initiators

    % conversion over time

    0

    20

    40

    60

    80

    100120

    8 14 2032

    .541

    .5 57 84 105

    129

    187

    Time (h)

    %conversion

    % Conversion (AEG-

    Init.) (NMR)

    % Conversion (AEG-

    Init.) (TGA)

    % Conversion (Water-

    Init.) (NMR)

    % Conversion (Water-

    Init.) (TGA)

    % Conversion (EG-

    Init.) (NMR)

    % Conversion (EG-

    Init.) (TGA)

  • 8/6/2019 Bio Polyesters

    10/53

    Poly hydroxy alkanoates

    PHAs

    Propionate (H)

    Butyrate (CH3)

    Valerate (CH2CH3)

    Caproate (C3H7)

    Heptanoate (C4 H9)

    Octanoate (C5 H11)

    MWMWMW (50-1,000) k Da Repeat unitRepeat unitRepeat unit

  • 8/6/2019 Bio Polyesters

    11/53

    Co-polyester properties -PP

    P(3HB) P(3HB-3HV) P(3HB-4HB) P(3HO-3HH) PP

    Content 20% 16% 11%

    Tm (C) 177 145 150 61 176

    Tg (C) 2 -1 -7 -36 -10

    Crystallinity (%) 70 56 45 30 60

    Extension to break (%) 5 50 444 300 400

    Polypropylene properties compared with some

    Co-polyester content indicated is % with P(3HB).Madison LL, Huisman GW. From Doi, Y. Microbial Polyesters; VCH: New York, 1990.

  • 8/6/2019 Bio Polyesters

    12/53

    PHBV properties

    Tensile Strength

    020

    40

    60

    0 3 9 14 20 25

    %HV

    Tensile Strength(M

    )

    Impact Strength

    0

    200

    400

    600

    0 3 9 14 20 25

    %HV

    Notched Izod im pact

    strength ( m)

    ransition emperatures

    10

    0

    10

    20

    0 3 9 14 20 25

    %HV

    Glass Transition (oC)

    Griffin G . J.L.

    Melting Point (oC )

    050

    100

    150

    200

    0 3 9 14 20 25

    %HV

    Meltingpoint

    Melting Point (oC )

  • 8/6/2019 Bio Polyesters

    13/53

    ISODIMORPHISM

    Melting Point

    7

    7

    7

    %HV

    M P

    P M P

    Gr ff G J L

  • 8/6/2019 Bio Polyesters

    14/53

    Crystallinity

    Yi Wang, Yasuhide Inagawa, Terumi Saito,Ken-ichi Kasuya,Yoshiharu Doi, and Yoshio Inoue., Enzymatic Hydrolysis of Bacterial Poly(3-hydroxybutyrate-co-3-hydroxypropionate)s by Poly(3-hydroxyalkanoate) Depolymerase fromAcidovoraxSp. TP4, Biomacromolecules, 3 (4), 828-834, 2002

    P(3HB-co-3HP), Bacterial P(3HB) & Syn P(3HP)

  • 8/6/2019 Bio Polyesters

    15/53

    Biodegradability

    Synthetic polymers w/ester linkages

    Hydrolysis wouldinitiate degradation

    Structure of

    prepolymer couldpropagate

    Easy to process

    Biosynthetic polymers

    Compatible chirality

    PHB content in most

    living organisms

    High reproducibility Quick yield

    Renewable

  • 8/6/2019 Bio Polyesters

    16/53

    P(3HB-3HV) in aerobic (20C)

    sewage sludge 0, 2, 4, 6, 8, and 10 weeks

    Photograph courtesyof Dieter Jendrossek,Georg-August-Universitt, Gttingen,

    Germany.

    Lara L. Madison and Gjalt W. Huisman

    Degradation in soil

    0

    20

    40

    60

    80

    1 2 3 5 7 10 13 17 18Time in wee ks

    %

    Carbonlost

    % labelled

    carbon

    lost

  • 8/6/2019 Bio Polyesters

    17/53

    Applications

    Chiral blocks for syn, chromatography

    Various biodegradability products

    Toner (paper recyclables)

    Insecticide packaging

    Drug release matrix in vet MEDICINE

    Piezoelectric properties in temp dep

    PHBV grades allow var phy properties

    Synthetic polymers w/ ester linkages

  • 8/6/2019 Bio Polyesters

    18/53

    History

    Maurice Lemoigne (Institut Pasteur) .2525

    PHB first MENTIONEDPHB first MENTIONED

    Baptist,Werber(W. R. Grace) 60s60sLb of PHB produced for evalLb of PHB produced for eval

    Imperial Chemical Industries, Ltd. 77--80s80s

    Pruteen developed Ae 70% biomassPruteen developed Ae 70% biomass Biopol, Metabolix Inc. and Monsanto90s90s

    Bioidegradable bottle & Wella shampooBioidegradable bottle & Wella shampoo

  • 8/6/2019 Bio Polyesters

    19/53

    Philip Ball, Consulting Editor, Nature

    There is no assemblyThere is no assembly

    plant so delicate,plant so delicate,versatile and adaptive asversatile and adaptive as

    the cell.the cell.

    Jim Robbins, Second Nature, Smithsonian, July 2002, Vol. 33, No. 4, p. 78-84

  • 8/6/2019 Bio Polyesters

    20/53

    General enzymatic pathway forPHB and

    PHBHx synthesis

    Madison LL, Huisman GW.

    fatty acid degradation

    Athree-step pathway. The three

    enzymes are encoded by the genesofthe phbCAB operon. A promoter

    upstream ofphbCtranscribes the

    complete operon.

  • 8/6/2019 Bio Polyesters

    21/53

    PHBV w/o supplements

    Generally, P(3HB-3HV)is synthesized withsupplements ofpropionate, valerate, orother Codd fatty acids.

    Some organisms areable to form Propionyl-CoA through themethylmalonyl-CoApathway, from succinyl-CoA in the TCA cycle.

    Madison LL, Huisman GW.

  • 8/6/2019 Bio Polyesters

    22/53

    The two ketothiolases forPHBV synthesis

    Steven Slateret al

  • 8/6/2019 Bio Polyesters

    23/53

    Tapping the fatty acid synthesis

    Monomers from (R)-3-hydroxyacyl-ACP

    intermediates areconverted to (R)-3-hydroxyacyl-CoAthrough an acyl-

    ACP:CoAtransacylaseencoded by the

    phaG gene.

    Madison LL, Huisman GW.

  • 8/6/2019 Bio Polyesters

    24/53

    PhaG mediated synthesis

    Silke Fiedler, Alexander Steinbch

    el, and Bernd H. A. Reh

    m,

  • 8/6/2019 Bio Polyesters

    25/53

    MCL PHA syn in 'thioesterase

    I- E. coli JMU193 onGluconate1. B-ketoacyl-ACP synthase

    2. B-ketoacyl-ACP reductase

    3. hydroxyacyl-ACP

    dehydrase4. enoyl-ACP reductase

    5. 'thioesterase I

    6. acyl-CoA synthase

    7. acyl-CoA dehydrogenase

    8. Enoyl-CoA hydratase9. Isomerase

    10. specific hydratase

    11. PHA polymerase

    Klinke, S.; Ren, Q.;Witholt, B.; Kessler B

  • 8/6/2019 Bio Polyesters

    26/53

    MCL PHA syn in Transgenic

    Plants The oxidation of

    unsaturated fatty

    acids withcis doublebonds at an evencarbon are indicatedby dashed lines.

    VolkerMittendorf et al

  • 8/6/2019 Bio Polyesters

    27/53

    PHBHx Synthesis

    Fukui T., Abe H., and Doi Y

    Aeromonas caviae

    PhaC, PhaJ

    Ralstonia eutropha

    PhbA, PhbB, BktB, (S)-3HB-CoAdehydrogenase

    Streptomycescinnamonensis

    Crotonyl-CoA reductase

  • 8/6/2019 Bio Polyesters

    28/53

    Plasmid forPHBHx synthesis in R. eutrophus

    Fukui T., Abe H., and Doi Y

    The direction

    Of the codons isImportant as

    well as the

    promoters

    which are

    inducedusing external

    Control agents..

  • 8/6/2019 Bio Polyesters

    29/53

    Gene constructs for Transgenic

    plants

    Yves Poirier, Giovanni Ventre, and Daniela Caldelari

    PTS,Peroxisomaltargeting

    sequencePhaC1

    synthaseFatB3

    thioesteraseOCS, octopine

    synthase

  • 8/6/2019 Bio Polyesters

    30/53

    Amount of PHA relative to

    growth stage of transgenic plants7-day-old seedlings grown

    in Murashige and Skoog

    media, green & senesced

    leaves from soil-grown

    plants. Average of2 ind.

    measurements.

    http://www.pnas.org/cgi/content/full/95/23/13397

    The beta-oxidation cycle is induced upon seedgermination, involved in the mobilization of reservelipids, so the highest amount of PHA is expected to besynthesized at this stage. VolkerMittendorf et al

  • 8/6/2019 Bio Polyesters

    31/53

    Some Organisms and their copolyesters or enzymes and genesSome Organisms and their copolyesters or enzymes and genes

    Rhodosporiillu

    m rubrum

    C3- C6

    (of specialinterest)

    Pseudomonas

    oleo

    PHA

    depolymerasePHA synthase

    phaC2

    Rhodocyclusgelatinosus

    PHA synthase phaC1

    Rhodococcusruber

    Alcaligeneseutrophus

    PHA synthase

    CoA reductase

    phbC-A-B

    Pseudomonad C4- C12 Streptomycescinnamonensis

    Crotonyl-CoA

    reductase

    ccrSc

    AeromonasCaviae

    P(3HB-CO-3HHx)

    even C-

    alkanoates or

    plant oils

    PHA synthase

    enoyl-CoA

    hydratase

    phaC-JAc

    Escherichiacoli

    P(3HB-CO-4HB)

    glucose or

    glutamate

    PHA gluconate

    Ralstonia

    eutropha

    3HB, 3HA glucose

  • 8/6/2019 Bio Polyesters

    32/53

    A. CompletephbCAB

    B. Intrptd phblociC. Incomp phbloci

    D. From 2plmrsasE. P(3HB-3HH)F. msc

    Operons

    Madison LL, Huisman GW.

  • 8/6/2019 Bio Polyesters

    33/53

    Formation of a PHA granule

    C and Z are similar to Lacting on the surface ofthe granule

    Proposed mechanism:- Econverts monomerCoA tooligomers which cleave atcritical length or conc. E-oligomrers formcompartments orPHAgranules which coalesce toform larger bodies.

    C= PHA polymerase

    Z= PHA depolymerase

    L= lipase ( cleaves ester bonds)

    E= soluble enzyme

    TG=Triglyceride Madison LL, Huisman GW.

  • 8/6/2019 Bio Polyesters

    34/53

    S. Cerevisiae

    Poirier, Y., Erard, N., Petetot, J.M.-C. (2001). Synthesis of Polyhydroxyalkanoate in the Peroxisome of Saccharomyces cerevisiae by UsingIntermediates ofFatty Acid beta -Oxidation.Appl. Environ. Microbiol. 67

    Grown on 0.1% glucose 0.1% Oleic acid, 2% Pluronic 127Awt, B recombinant w/ PHA synthase, 1 um bar, arrow to PHAgranules.

  • 8/6/2019 Bio Polyesters

    35/53

    Cell medium effects (phaG)

    1. PHA accumulation andcomposition ofP. fragi

    2. NH4Cl concentrations.

    3. 50 ml of MM with 1.5%(wt/vol) sodiumgluconate

    4. At 30C for 48 h.

    5. 3HA, 3-hydroxyalkanoate;3HDD:1, 3-hydroxydodecanoate;3HDD, 3-hydroxydodecanoate;3HD, 3-hydroxydecanoate; 3HO,3-hydroxyoctanoate; 3HHx, 3-hydroxyhexanoate. Silke Fiedler, Alexander Steinbchel, and Bernd H.Silke Fiedler, Alexander Steinbchel, and Bernd H. A. RehmA. RehmApplied and Environmental Microbiology,Applied and Environmental Microbiology, May 2000, Vol. 66, No. 5, p. 2117May 2000, Vol. 66, No. 5, p. 2117--2124.2124.

  • 8/6/2019 Bio Polyesters

    36/53

    Promoter induction (thioesterase-I [bad])

    1. PHA accumulation and

    'thioesterase I activity inE. coli

    2. % Arabinose as indicated.

    3. 25 h after stat phase

    4. GC (open circles).

    5. Spectrophotometric (solidsquares)

    6. Control lacked the'thioesterase I-encodinggene.

    Klinke, S.; Ren, Q.; Witholt, B., Kessler B. ;Appl. Environ. Microbiol. 1999, 65, 540-8.

  • 8/6/2019 Bio Polyesters

    37/53

    Promoter induction (polymerase [alk])

    1. PHA accumulationby E. coli

    2. DCPK(dicyclopropylketone) conc.

    3. 25 h (shaded bars)

    4. 44h

    (open bars)5. Analyzed by GC.

    Klinke, S.; Ren, Q.; Witholt, B., Kessler B. ;Appl. Environ. Microbiol. 1999, 65, 540-8.

  • 8/6/2019 Bio Polyesters

    38/53

    Enzymatic effects (PhbA & BktB)

    1. Comparison ofPhbA and

    BktB in synthesis of

    PHBV inE. coli.

    2. Plasmidfrom R. eutropha

    phb Bplus a -

    ketothiolase gene.

    3. bktB (squares) EE245

    4. phbA(triangles) EE247

    5. Propionate in the

    medium.Steven Slater, Kathryn L. Houmiel, Minhtien Tran, Timothy A. Mitsky,Nancy B. Taylor, Stephen R. Padgette, and Kenneth J. Gruys Steven S

  • 8/6/2019 Bio Polyesters

    39/53

    Phasin effects (PhaR & PhaP)

    1. PhaP inR. eutropha

    2. wt (open squares)

    3. phaR strains (solid)4. 72 h.

    5. Average value for2cultures

    6. PhaP regulates PHBsyn, PhaR regulatesPhaP syn.

    Gregory M. York,1 JoAnne Stubbe,1,2

    and Anthony J. Sinskey1

  • 8/6/2019 Bio Polyesters

    40/53

    Ca+ Pump in P(3HB) helix

    imbedded in a membrane

    Madison LL, Huisman GW.,

    E coli is proposed totransport Ca+ out and

    DNA

    in. The Ca+

    (green) is liganded tocarbonyl oxygen andthe polyphosphate

    molecule within thehelix, transport isfacilitated byenzymatic action on

    the molecule.

  • 8/6/2019 Bio Polyesters

    41/53

    Transgenic

    Aeromonas.caviae

    Alcaligeneseutrophus

    96% yield

    P. putida

    T. pfennigii P. putida 3HB-co-3HHx-co-3HOctanoate

    Alcaligenes

    eutrophus

    E coli ketothiolase

    50%-80%

    Cosmid

    pVK102

    Plants P(3HB-co-3HV)

    PCR PHA synthase

  • 8/6/2019 Bio Polyesters

    42/53

    Transgenic w/ modifications

    Plants --- Zea Mays Corn

    G hirsutum (cotton).

    Alfalfa Arabidopsis thaliana w/

    Synthase modification

    Yeast --- S. Cervisiae w/ Oleic

    acid

    Insect cells w/ Fattyacid synthase

    Microbial mats

    Results---- Unsuccessful

    (0.34% fiber weight)

    0.025to 1.8 g kg-1 dry weight

    0.2 to 4.0 g kg-1 dry weight

    0.5% of cell dry weight

    250 to 500 g of PHA/gof dry mat

  • 8/6/2019 Bio Polyesters

    43/53

    Mats NESpain & Mass.

  • 8/6/2019 Bio Polyesters

    44/53

    Concentrated pasteConcentrated pasteConcentrated paste

    cellcell lysislysis

    purification (purification (depolymerizationdepolymerizationdepolymerization))

    centrifugationcentrifugation

    Extraction(Phy, Chem, Biochem)(Phy, Chem, Biochem)

    Griffin G. J. L.

  • 8/6/2019 Bio Polyesters

    45/53

    solvent extraction

    PhysicalPhysical

    Pretreatment with methanol or acetone toincrease permeability, removes lipids and

    denatures proteinso chloroform

    o methylene chloride

    o di and tri chloroethane

    o propylene carbonate Purification expensive , high volumes of

    solvents, crystalline precipitates with nonsolvents methanol, diethyl ether orhexane.

    Griffin G. J. L.

  • 8/6/2019 Bio Polyesters

    46/53

    Sodium hypochlorite digestion

    ChemicalChemical

    Degrades and dissolves cell wall leavingpolymer granules intact

    Depolymerization due to alkalinity reduced bytreating with phenyl acetic acid and freezedrying before procedure. surfactants

    Difficult to remove sodium hypochlorite.Careful control of pH and digestion timeimproved purity (95%)

    Griffin G. J. L.

  • 8/6/2019 Bio Polyesters

    47/53

    Enzymatic digestion

    BiochemicalBiochemicalBiochemical

    Lysozymes,& deoxy ribonuclease treatmentto solubilize peptidoglycans and proteins.

    Weakened cell walls ruptured ultrasonically.90% PHA and some peptidoglycans andproteins. Closest to vivo state.

    May be further purified with solvents. MWmay be controlled by heat treatment andspray drying.

    Griffin G. J. L.

  • 8/6/2019 Bio Polyesters

    48/53

    Some Stats and Concerns

    E coli O157:H7.virulent strain(60)

    rBGH..(14 days)

    Processed foods(60%)

    Salmonella DT104(resists 5 antibiot)

    Bacteria in a colon = 200 x all humans US..76mill...325k.5k

    $ 20 milliongoatsJennifer Ackerman, Food How safe? How altered?, National Geographic, May 2002, Vol. 201, No. 5, p2-50.

    Jim Robbins, Second Nature, Smithsonian, July 2002, Vol. 33, No. 4, p78-84.

  • 8/6/2019 Bio Polyesters

    49/53

    How Altered? 50-fold over 6 yrs

    Ge et ca y E eere Foo ro s

    0

    20

    40

    60

    80

    100

    1996 1997 1998 1999 2000 2001

    Year

    o

    s

    of

    acres

    o abean

    orn

    Jennifer Ackerman, F d How afe? How altered?, National Geographic, May 2002, Vol. 201, No. 5, p2-50.

  • 8/6/2019 Bio Polyesters

    50/53

    Pros and Cons

    Higher Yields- Tocombat world hunger.

    FewerPesticides- Lessspraying soilconservation withherbicide resistant plants.

    BetterNutrition-

    Enhanced foods rich innutrients.

    Docile farm animals

    Gene Flow-mutantshard to manage

    Toxin build up- BtCrops add it to soil.

    Allergens-Foods

    may contain chemicalby products of

    alteration.

    Jennifer Ackerman, Food How safe? How altered?, National Geographic, May 2002, Vol. 201, No. 5, p2-50.Jim Robbins, Second Nature, Smithsonian, July 2002, Vol. 33, No. 4, p78-84.

  • 8/6/2019 Bio Polyesters

    51/53

    Preventive measure

    Bt Cropresistantinsects

    moatrefuge

    insects

    Susceptible offspring

    Presumably by growingregular crops near the

    Bt crops , the cross-breeding of insects willdelay development ofresistant strains.

    Bt = Bacillus thuringiensis(source of genes capable of producing insecticide)

    Bt Corn toxic to monarch caterpillarsJennifer Ackerman, Food How safe? How altered?, National Geographic, May 2002, Vol. 201, No. 5, p2-50.

  • 8/6/2019 Bio Polyesters

    52/53

    Biomimicry

    Larvae mandiblesChain saw

    Cocklebur.Velcro Snake skin . Entropy

    GeckoAdhesive(re)

    SpiderDragline(tendons)

    GiraffeLubricant

    Jim Robbins, Second Nature, Smithsonian, July 2002, Vol. 33, No. 4, p. 78-84

  • 8/6/2019 Bio Polyesters

    53/53

    Proposed directions

    Nutrients Inexpensive and abundant substrate

    Organism Bio Stress, balance between vital cell activities and mfgSide effects of long term use,

    genetic and/ or other changes in cell chemistry

    Regulation triggers inducing enzyme production & releasechemically induced promoters to turn genes on and off.

    Process Natural excretion or secretion desired, keeping organism viableMonitoring desired, possibly with controllable viral infections,

    Purification ease of extraction, storage in specific areas, natural excretion

    Bio Ethics Sanctity of life and other issues