binary black hole coalescence: analysis of the plunge · 8/30/2016  · binary black hole...

34
Binary black hole coalescence: Analysis of the plunge Sourabh Nampalliwar 1,2 with Richard Price 2,3 and Gaurav Khanna 4 1 Fudan University, Shanghai 2 U. Texas, Brownsville 3 Massachusetts Institute of Technology 4 U. Mass., Dartmouth August 30, 2016 1 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Upload: others

Post on 16-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Binary black hole coalescence: Analysis of theplunge

Sourabh Nampalliwar1,2

with Richard Price2,3 and Gaurav Khanna4

1Fudan University, Shanghai

2U. Texas, Brownsville

3Massachusetts Institute of Technology

4U. Mass., Dartmouth

August 30, 2016

1 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 2: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Gravitational wave sources

via LIGO

2 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 3: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Binary black hole coalescence - the standard picture

via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity, Cambridge U. Press, New York (2010)

3 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 4: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Quasinormal ringing during the ringdown

via Berti et al., CQG 26 (2009) 163001

4 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 5: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Binary black hole coalescence

Goal: Understand plunge, in particular the excitation of QNR.

Approach: Get insights, test insights.

Principle: Simplify.

5 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 6: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Modelling

Complex frequencies → FDGF → Linearized Einstein equations

Φ =1

r

∑l,m

Ψlm(r, t)Ylm(θ, φ) (1)

− ∂2Ψ`m

∂t2+∂2Ψ`m

∂x2− V`(x)Ψ`m = S`m(x, t) (2)

r → r∗ → x (3)

Ψ(t, x) = Integral over Green function (4)

6 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 7: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Modelling

Complex frequencies → FDGF → Linearized Einstein equations

Φ =1

r

∑l,m

Ψlm(r, t)Ylm(θ, φ) (1)

− ∂2Ψ`m

∂t2+∂2Ψ`m

∂x2− V`(x)Ψ`m = S`m(x, t) (2)

r → r∗ → x (3)

Ψ(t, x) = Integral over Green function (4)

6 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 8: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Modelling

Complex frequencies → FDGF → Linearized Einstein equations

Φ =1

r

∑l,m

Ψlm(r, t)Ylm(θ, φ) (1)

− ∂2Ψ`m

∂t2+∂2Ψ`m

∂x2− V`(x)Ψ`m = S`m(x, t) (2)

r → r∗ → x (3)

Ψ(t, x) = Integral over Green function (4)

6 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 9: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Modelling

Complex frequencies → FDGF → Linearized Einstein equations

Φ =1

r

∑l,m

Ψlm(r, t)Ylm(θ, φ) (1)

− ∂2Ψ`m

∂t2+∂2Ψ`m

∂x2− V`(x)Ψ`m = S`m(x, t) (2)

r → r∗ → x (3)

Ψ(t, x) = Integral over Green function (4)

6 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 10: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Comparison - TDP vs Schwarzschild

0

0.2

0.4

0.6

0.8

x0

V(x)

Tortoise radial coordinate x

−∞← →∞

l = 1

7 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 11: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in TDP

Ψ(t− x) =x02

∫ T6

Tcross

e−ωdθ

[1

x0(sinωoθ − cosωoθ) −

2

xsinωoθ

]dT

− 1

2

∫ Tcross

−∞e−ωdξ

[( 2x0F (T )

− 1)

cosωoξ − sinωoξ

− 2x20xF (T )

(cosωoξ − sinωoξ)

]dT . (5)

where

θ = u− T + F (T ), ξ = u− T − F (T ) + 2x0.

8 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 12: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in TDP

T,F(T)

T6

xx0

t,x

Tcross

9 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 13: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in TDP

Ψ(u) =x02

∫ T6

Tcross

e−ωdθ

[1

x0(sinωoθ − cosωoθ) −

2

xsinωoθ

]dT

− 1

2

∫ Tcross

−∞e−ωdξ

[( 2x0F (T )

− 1)

cosωoξ − sinωoξ

− 2x20xF (T )

(cosωoξ − sinωoξ)

]dT . (6)

where

θ = u− T + F (T ), ξ = u− T − F (T ) + 2x0

10 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 14: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in TDP

Ψ(u) =x02

∫ T6

Tcross

e−ωdθ

[1

x0(sinωoθ − cosωoθ) −

2

xsinωoθ

]dT

− 1

2

∫ Tcross

−∞e−ωdξ

[( 2x0F (T )

− 1)

cosωoξ − sinωoξ

− 2x20xF (T )

(cosωoξ − sinωoξ)

]dT . (7)

where

θ = u− T + F (T ), ξ = u− T − F (T ) + 2x0

11 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 15: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in TDP

-0.04

-0.02

0

0.02

10 20 30 40 50 60

Ψ

Shifted u

vcross

across = 0.0005

12QN

0.30.310.320.330.34

12 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 16: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in TDP

-1.5

-1.2

-0.9

-0.6

-0.3

-20 -10 0 10 20 30 40 50

Ψ

Shifted retarded time u

v = 0.31, TLR = 300

aLR0.0010.0050.010.050.1

13 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 17: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in Schwarzschild

−∂2Ψ`m

∂t2+∂2Ψ`m

∂x2− V`(x)Ψ`m = S`m(x, t) (8)

14 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 18: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from radial infall in Schwarzschild

100 200 300Retarded time u (shifted)

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

Ψ

τ=250

τ=450

Data courtesy Gaurav Khanna

15 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 19: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from orbital infall in Schwarzschild

500 550 600 650

t/M

-0.0002

-0.0001

0

0.0001

ψ

0.04

0.02

0.005

0.01

Data courtesy Gaurav Khanna

16 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 20: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from orbital infall in Schwarzschild

500 550 600

t/M

-0.004

-0.002

0

0.002

0.004

ψ

-0.30

2

Data courtesy Gaurav Khanna

17 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 21: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Conclusion

During a binary black hole coalescence, the transition from theinspiral phase to the ringdown phase is completely determined bythe local properties at the photon orbit.

Thank you!

18 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 22: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

BONUS!

19 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 23: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Gravitational waves

Travel at the speed of light.

Carry energy.

via learner.org

20 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 24: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Quasinormal ringing

21 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 25: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from orbital infall in TDP

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70

Ψ

Shifted retarded time u [/M]

ω = 4, v = 0.3

22 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 26: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Comparison - Evolution vs FDGF

0 10 20 30 40Retarded time u

-1

-0.5

0

Ψ

EvolutionFDGF

a0=4 τ =1 x

0=2 x

obs=6

Evolution data courtesy Gaurav Khanna

23 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 27: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Assumption - Trajectories: Orbital

Redshift in angular velocity.

dω/d t = 0 at the light ring.

Speed of light should not be breached.

ω(T ) = ωLR27M2

(1 + σ)r(T )2

(1− 2M

r(T )

)(1 +

3σM

r(T )

)(9)

24 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 28: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Analysis - QNR from orbital motion in Schwarzschild

500 550 600 650

t/M

-0.0002

-0.0001

0

0.0001

ψ

0.04

0.02

0.005

0.01

25 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 29: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Interesting features of orbital trajectories

Speed of light constraint:

ω2LRM

2 < (1− v2LR)/27. (10)

Here this impliesωLR < 0.1836/M. (11)

26 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 30: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Direct radiation

540 560 580 600

t/M

-0.005

0

0.005

ψ

0.5

0.1 0.05

27 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 31: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Green’s function

∂2G

∂x2− ∂2G

∂t2− V (x)G = δ(x− a)δ(t− T ) (12)

Ψ(t, x) =

∫ ∞−∞

∫ ∞−∞

G(x, a; t− T )f(T )δ(a− F [T ]) da dT

(13)

G(x, a; t− T ) =1

∫ ∞−∞

e−iω(t−T )G(x, a;ω)dω , (14)

Ψ(t, x) =1

∫ ∫ ∫ ∞−∞

e−iω(t−T )G(x, a;ω)δ(a−F [T ]) dω da dT .

(15)

29 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 32: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Assumption - Trajectories: Radial

dx/dt→ −1 near the horizon.

At least two parameters.

Static initial data.

F (T ) =

{a0 + τ −

(T 3 + τ3

)1/3T ≥ 0

a0 T < 0 .(16)

30 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 33: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Approximation - Truncated Multipole Potential

Features of curvature potential*

V` =

`(`+1)x2 for r � 2M

(1− 2Mr ) for r ∼ 2M

(17)

Truncated Dipole Potential (TDP)

V =

{2/x2 for x ≥ x0

0 for x < x0(18)

where x0 is the light ring aka photon orbit aka UCO.

*Cunningham, Price & Moncrief, ApJ, 224, 643-667 (1978)

31 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge

Page 34: Binary black hole coalescence: Analysis of the plunge · 8/30/2016  · Binary black hole coalescence - the standard picture via T. W. Baumgarte, S. L. Shapiro, Numerical Relativity,

Approximation - Truncated Multipole Potential

Features of curvature potential*

V` =

`(`+1)x2 for r � 2M

(1− 2Mr ) for r ∼ 2M

(17)

Truncated Dipole Potential (TDP)

V =

{2/x2 for x ≥ x0

0 for x < x0(18)

where x0 is the light ring aka photon orbit aka UCO.

*Cunningham, Price & Moncrief, ApJ, 224, 643-667 (1978)

31 / 31 Sourabh Nampalliwar BBH coalescence: Analysis of the plunge